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Abstract

Security is a critical concern around the world. In many domains from cybersecurity to sustainabil-

ity, limited security resources prevent complete security coverage at all times. Instead, these

limited resources must be scheduled (or allocated or deployed), while simultaneously taking into

account the importance of different targets, the responses of the adversaries to the security pos-

ture, and the potential uncertainties in adversary payoffs and observations, etc. Computational

game theory can help generate such security schedules. Indeed, casting the problem as a

Stackelberg game, we have developed new algorithms that are now deployed over multiple years

in multiple applications for scheduling of security resources. These applications are leading to real-

world use-inspired research in the emerging research area of “security games.” The research chal-

lenges posed by these applications include scaling up security games to real-world-sized problems,

handling multiple types of uncertainty, and dealing with bounded rationality of human adversaries.

In cybersecurity domain, the interaction between the defender and adversary is quite complicated

with high degree of incomplete information and uncertainty. While solutions have been proposed

for parts of the problem space in cybersecurity, the need of the hour is a comprehensive under-

standing of the whole space including the interaction with the adversary. We highlight the innov-

ations in security games that could be used to tackle the game problem in cybersecurity.
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Introduction

Security is a critical concern around the world that manifests in

problems such as protecting our cyber infrastructure from attacks

by criminals and other nation-states; protecting our ports, airports,

public transportation, and other critical national infrastructure from

terrorists; protecting our wildlife and forests from poachers and

smugglers; and curtailing the illegal flow of weapons, drugs, and

money across international borders. In all of these problems, there

are limited security resources which prevents security coverage of all

the targets at all times; instead, security resources must be deployed

intelligently taking into account differences in the importance of tar-

gets, the responses of the attackers to the security posture, and po-

tential uncertainty over the types, capabilities, knowledge, and

priorities of attackers faced.

Game theory, which models interactions among multiple self-

interested agents, is well-suited to the adversarial reasoning required

for the security resource allocation and scheduling problem. Casting

the physical problem as a Stackelberg game, we have developed new

algorithms for efficiently solving such games that provide random-

ized patrolling or inspection strategies. These algorithms have led to

successes and advances over previous human-designed approaches

in security scheduling and allocation by addressing the key weakness

of predictability in human-designed schedules. These algorithms are

now deployed in multiple applications. The first application was

ARMOR (Assistant for Randomized Monitoring over Routes), which

was deployed at the Los Angeles International Airport (LAX) in

2007 to randomize checkpoints on the roadways entering the airport

and canine patrol routes within the airport terminals [1]. Following

that, came several other applications: IRIS (Intelligent Randomiza-

tion In Scheduling), a game-theoretic scheduler for randomized

deployment of the US Federal Air Marshals, has been in use since

2009 [1]; PROTECT, which schedules the US Coast Guard’s (USCG)
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randomized patrolling of ports, has been deployed in the port of

Boston since April 2011 and is in use at the port of New York since

February 2012 [2] and has spread to other ports such as Los An-

geles/Long Beach, Houston, and others; another application for de-

ploying escort boats to protect ferries has been deployed by the

USCG since April 2013 [3]; and TRUSTS (Tactical Randomization for

Urban Security in Transit Systems) [4], which has been evaluated in

field trials by the Los Angeles Sheriff’s Department (LASD) in the

LA Metro system. Most recently, PAWS—another game-theoretic ap-

plication was tested by rangers in Uganda for protecting wildlife in

Queen Elizabeth National Park (QENP) in April 2014 [5]; MIDAS

was tested by the USCG for protecting fisheries [6]. These initial suc-

cesses point the way to major future applications in a wide range of

security domains. Indeed, researchers have started to explore the use

of security game models in tackling security issues in the cyber

world, such as deep packet inspection [7], optimal use of honey pots

[8], and enforcement of privacy policies [9, 10].

Given the many game-theoretic applications for solving real-

world security problems, this article provides an overview of the

models and algorithms, key research challenges, and a brief descrip-

tion of our successful deployments. We also provide an overview of

applying Stackelberg game-based models to cybersecurity and com-

pare with other existing approaches to model defender–adversary

interaction in cybersecurity. Overall, the work in security games has

produced numerous game-theoretic decision aids that are in daily

use by security agencies to optimize their limited security resources.

The implementation of these applications required addressing fun-

damental research challenges and has led to an emerging “science of

security games” consisting of a general framework for modeling and

solving security resource allocation problems. We categorize the re-

search challenges associated with security games into four broad cat-

egories: (i) addressing scalability across a number of dimensions of

the game, (ii) tackling different forms of uncertainty that be present

in the game, (iii) addressing human adversaries’ bounded rationality,

and (iv) evaluation of the framework in the field. Given the success

in providing solutions for many security domains involving the pro-

tection of critical infrastructure, the science of security games has

evolved and expanded to include new types of security domains for

wildlife and environmental protection. These “green security

games” address important global conservation problems and intro-

duce additional research challenges that require incorporating new

techniques such as planning and learning into security games. The

issues in cybersecurity provide an even richer set of challenges that

include partial observability and deception.

The rest of the article is organized as follows: “Stackelberg

Security Games” section introduces the general security games

model, “Addressing scalability in real-world problems” section de-

scribes the approaches used to tackle scalability issues, “Addressing

uncertainty in real-world problems” section describes the approaches

to deal with uncertainty, “Addressing bounded rationality in real-

world problems” section focuses on bounded rationality,

“Addressing field evaluation in real-world problems” section pro-

vides details of field evaluation of the science of security games and

“Cybersecurity: challenges and opportunities” section describes some

approaches of applying security game models to cybersecurity and

privacy and also other game-theoretic approaches to cybersecurity.

Stackelberg security games

Stackelberg games were first introduced to model leadership and

commitment [11]. The term Stackelberg security games (SSG) was

first introduced by Kiekintveld et al. [12] to describe specializations

of a particular type of Stackelberg game for security as discussed

below. This section provides details on the use of Stackelberg games

for modeling security domains. We first give a generic description of

security domains followed by “security games,” the model by which

security domains are formulated in the Stackelberg game

framework.

SSG Model
In SSG, a defender must perpetually defend a set of targets T using a

limited number of resources, whereas the attacker is able to surveil

and learn the defender’s strategy and attack after careful planning.

An action, or “pure strategy,” for the defender represents deploying

a set of resources R on patrols or checkpoints, e.g., scheduling

checkpoints at the LAX airport or assigning federal air marshals to

protect flight tours. The pure strategy for an attacker represents an

attack at a target, e.g., a flight. The “mixed strategy” of the defender

is a probability distribution over the pure strategies. Additionally,

with each target are also associated a set of payoff values that define

the utilities for both the defender and the attacker in case of a suc-

cessful or a failed attack.

A key assumption of SSG (we will sometimes refer to them as

simply security games) is that the payoff of an outcome depends

only on the target attacked, and whether or not it is “covered” (pro-

tected) by the defender [12]. The payoffs do “not” depend on the re-

maining aspects of the defender allocation. For example, if an

adversary succeeds in attacking target t1, the penalty for the de-

fender is the same whether the defender was guarding target t2 or

not.

This allows us to compactly represent the payoffs of a security

game. Specifically, a set of four payoffs is associated with each tar-

get. These four payoffs are the rewards and penalties to both the de-

fender and the attacker in case of a successful or an unsuccessful

attack, and are sufficient to define the utilities for both players for

all possible outcomes in the security domain. More formally, if tar-

get t is attacked, the defender’s utility is Uc
dðtÞ if t is covered, or

Uu
dðtÞ if t is not covered. The attacker’s utility is Uc

aðtÞ if t is covered,

or Uu
a ðtÞ if t is not covered. Table 1 shows an example security game

with two targets, t1 and t2. In this example game, if the defender

was covering target t1 and the attacker attacked t1, the defender

would get 10 units of reward whereas the attacker would receive �1

units. We make the assumption that in a security game it is always

better for the defender to cover a target as compared to leaving it un-

covered, whereas it is always better for the attacker to attack an un-

covered target. This assumption is consistent with the payoff trends

in the real world. A special case is “zero-sum games,” in which for

each outcome the sum of utilities for the defender and attacker is

zero, although general security games are not necessarily zero-sum.

Solution concept: strong Stackelberg equilibrium
The solution to a security game is a “mixed” strategy for the de-

fender that maximizes the expected utility of the defender, given

that the attacker learns the mixed strategy of the defender and

Table 1. Example of a security game with two targets

Defender Attacker

Target Covered Uncovered Covered Uncovered

t1 10 0 �1 1

t2 0 �10 �1 1
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chooses a best response for himself. The defender’s mixed strategy is

a probability distribution over all pure strategies, where a pure strat-

egy is an assignment of the defender’s limited security resources

to targets. This solution concept is known as a Stackelberg equilib-

rium [13].

The most commonly adopted version of this concept in related

literature is called strong Stackelberg equilibrium (SSE) [14–17]. In

security games, the mixed strategy of the defender is equivalent to

the probabilities that each target t is covered by the defender,

denoted by C ¼ fctg [18]. Furthermore, it is enough to consider a

pure strategy of the rational adversary [15], which is to attack a tar-

get t. The expected utility for defender for a strategy profile (C, t) is

defined as Udðt;CÞ ¼ ctU
c
dðtÞ þ ð1� ctÞUu

dðtÞ, and a similar form

for the adversary. A SSE for the basic security games (non-Bayesian,

rational adversary) is defined as follows.

Definition 1. A pair of strategies C�; t�ð Þ form a SSE if they satisfy

the following:

1. The defender plays a best response: Udðt�;C�Þ�UdðtðCÞ;CÞ for

all defender’s strategy C where t(C) is the attacker’s response

against the defender strategy C.

2. The attacker plays a best response: Uaðt�;C�Þ�Uaðt;C�Þ for all

target t.

3. The attacker breaks ties in favor of the defender: Udðt�;C�Þ�
Udðt0;C�Þ for all target t0 such that t0 ¼ arg maxtUaðt;C�Þ

The assumption that the follower will always break ties in favor

of the leader in cases of indifference is reasonable because in most

cases the leader can induce the favorable strong equilibrium by se-

lecting a strategy arbitrarily close to the equilibrium that causes the

follower to strictly prefer the desired strategy [17]. Furthermore an

SSE exists in all Stackelberg games, which makes it an attractive so-

lution concept compared to versions of Stackelberg equilibrium with

other tie-breaking rules. Finally, although initial applications relied

on the SSE solution concept, we have since proposed new solution

concepts that are more robust against various uncertainties in the

model [19–21] and have used these robust solution concepts in some

of the later applications.

In the following sections, we present three key challenges in solv-

ing real-world security problems which are summarized in Fig. 1: (i)

scaling up to real-world-sized security problems, (ii) handling mul-

tiple uncertainties in security games, and (iii) dealing with bounded

rationality of human adversaries. While Fig. 1 does not provide an

exhaustive overview of all research in SSG, it provides a general

overview of the areas of research. In each case, we will use a domain

example to motivate the specific challenge and then outline the key

algorithmic innovation needed to address the challenge.

Addressing scalability in real-world problems

For simple examples of security games, such as the one shown in the

previous section, the SSE can be calculated by hand. However, as

the size of the game increases, hand calculation is no longer feasible

and an algorithmic approach for generating the SSE becomes neces-

sary. Conitzer and Sandholm [15] provided the first complexity re-

sults and algorithms for computing optimal commitment strategies

in Bayesian Stackelberg games, including both pure and mixed-strat-

egy commitments. An improved algorithm for solving Bayesian

Stackelberg games, Decomposed Optimal Bayesian Stackelberg

Solver (DOBSS) [16], is central to the fielded application ARMOR in

use at the LAX [1]. These early works required that the full set of

pure strategies for both players be considered when modeling and

solving SSG. However, many real-world problems feature billions of

pure strategies for either the defender and/or the attacker. Such large

problem instances cannot even be represented in modern computers,

let alone solved using previous techniques.

In addition to large strategy spaces, there are other scalability chal-

lenges presented by different real-world security domains. There are

domains where, rather than being static, the targets are moving and

thus the security resources need to be mobile and move in a continu-

ous space to provide protection. There are also domains where the

attacker may not conduct the careful surveillance and planning that is

assumed for a SSE and thus it is important to model the bounded ra-

tionality of the attacker in order to predict their behavior. In the for-

mer case, both the defender and attacker’s strategy spaces are infinite.

In the latter case, computing the optimal strategy for the defender

given attacker behavioral (bounded rationality) model is computation-

ally expensive. In this section, we thus highlight the critical scalability

challenges faced to bring SSG to the real world and the research con-

tributions that served to address these challenges.

Scale-up with large defender strategy spaces
This section provides an example of a research challenge in security

games where the number of defender strategies is too enormous to

be enumerated in computer memory. In this section as in others that
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Figure 1. Summary of real-world security challenges.
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will follow, we will first provide a domain example motivating the

challenge and then the algorithmic solution for the challenge.

Domain example—IRIS for US Federal Air Marshals Service

The US Federal Air Marshals Service (FAMS) allocates air marshals

to flights departing from and arriving in the USA to dissuade poten-

tial aggressors and prevent an attack should one occur. Flights are of

different importance based on a variety of factors such as the num-

bers of passengers, the population of source and destination cities,

and international flights from different countries. Security resource

allocation in this domain is significantly more challenging than for

ARMOR: a limited number of air marshals need to be scheduled to

cover thousands of commercial flights each day. Furthermore, these

air marshals must be scheduled on tours of flights that obey various

constraints (e.g., the time required to board, fly, and disembark).

Simply finding schedules for the marshals that meet all of these con-

straints is a computational challenge. For an example scenario with

1000 flights and 20 marshals, there are over 1041 possible schedules

that could be considered. Yet there are currently tens of thousands

of commercial flights flying each day, and public estimates state that

there are thousands of air marshals that are scheduled daily by the

FAMS [22]. Air marshals must be scheduled on tours of flights that

obey logistical constraints (e.g., the time required to board, fly, and

disembark). An example of a schedule is an air marshal assigned to

a round trip from New York to London and back.

Against this background, the IRIS system has been developed and

deployed by FAMS since 2009 to randomize schedules of air mar-

shals on international flights. In IRIS, the targets are the set of n

flights and the attacker could potentially choose to attack one of

these flights. The FAMS can assign m<n air marshals that may be

assigned to protect these flights.

Since the number of possible schedules exponentially increases

with the number of flights and resources, DOBSS is no longer applic-

able to the FAMS domain. Instead, IRIS uses the much faster ASPEN

algorithm [23] to generate the schedule for thousands of commercial

flights per day.

Algorithmic solution—incremental strategy generation (ASPEN)

In this section, we describe one particular algorithm ASPEN, that com-

putes SSEs in domains with a “very large” number of pure strategies

(up to billions of actions) for the defender [23]. These pure strategies

can be represented as integral points in a high-dimensional space.

ASPEN builds on the insight that there exist solutions with “small sup-

port sizes,” which are mixed strategies in which only a small set of

pure strategies are played with positive probability (applying

Carathéodory theorem [24] to the convex hull of pure strategies).

ASPEN exploits this by using a “column generation”- based approach

[25] for the defender, in which defender pure strategies are iteratively

generated and added to the optimization formulation.

In ASPEN’s security game, the attacker can choose any of the

flights to attack, and each air marshal can cover one schedule. Each

schedule here is a feasible set of targets that can be covered together;

for the FAMS, each schedule would represent a flight tour which

satisfies all the logistical constraints that an air marshal could fly.

For example, ft1; t2g would be a flight schedule, where t1 is an out-

bound flight and t2 is an inbound flight for one air marshal. A “joint

schedule” then would assign every air marshal to a flight tour, and

there could be exponentially many joint schedules in the domain. A

pure strategy for the defender in this security game is a joint sched-

ule. Thus, e.g., if there are two air marshals, one possible joint

schedule would be fft1; t2g; ft3; t4gg, where the first air marshal

covers flights t1 and t2, and the second covers flights t3 and t4. As

mentioned previously, ASPEN employs incremental strategy (column)

generation since all the defender pure strategies cannot be enumer-

ated for such a massive problem. ASPEN decomposes the problem

into a “master” problem and a “slave” problem, which are then

solved iteratively. Given a number of pure strategies, the master sol-

ves the optimization problem for the defender and the attacker with

these pure strategies, whereas the slave is used to generate a new

pure strategy for the defender in every iteration. “This incremental,

iterative strategy generation process allows ASPEN to avoid gener-

ation of the entire set of pure strategies.” In other words, by exploit-

ing the small support size mentioned above, only a few pure

strategies get generated via the iterative process; and yet we are

guaranteed to reach the optimal solution.

The iterative process is graphically depicted in Fig. 2. The master

operates on the pure strategies (joint schedules) generated thus far,

which are represented using the matrix P. Each column of P; Jj, is

one pure strategy (or joint schedule). An entry Pij in the matrix P is 1

if a target ti is covered by joint-schedule Jj, and 0 otherwise. For

Figure 2. Strategy generation employed in ASPEN: the schedules for a defender are generated iteratively. The “slave” problem is a novel minimum-cost integer

flow formulation that computes the new pure strategy to be added to P; J4 is computed and added in this example.
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example, in Fig. 2, the joint schedule J3 covers target t1 but not tar-

get t2. The objective of the master problem is to compute x, the opti-

mal mixed strategy of the defender over the pure strategies in P. The

objective of the slave problem is to generate the best joint schedule

(pure strategy) to add to P. The best joint schedule is identified using

the concept of “reduced costs,” which measures if a pure strategy

can potentially increase the defender’s expected utility (the details of

the approach are provided in [23]). While a naı̈ve approach would

be to iterate over all possible pure strategies to identify the pure

strategy with the maximum potential, ASPEN formulates the slave

problem as a minimum-cost integer flow problem to efficiently iden-

tify the best pure strategy to add. ASPEN always converges on the op-

timal mixed strategy for the defender.

Employing incremental strategy (column) generation for large

optimization problems is not an “out-of-the-box” approach; the

problem has to be formulated in a way that allows for domain prop-

erties to be exploited. The novel contribution of ASPEN is to provide

a linear formulation for the master and a minimum-cost integer flow

formulation for the slave, which enables the application of strategy

generation techniques.

Scale-up with large defender and attacker strategy

spaces
Whereas the previous section focused on domains where only the de-

fender’s strategy was difficult to enumerate, we now turn to do-

mains where both defender and attacker strategies are difficult to

enumerate. Once again we provide a domain example and then an

algorithmic solution.

Domain example—road network security

One area of great importance is securing urban city networks, trans-

portation networks, computer networks, and other network-centric se-

curity domains. For example, after the terrorist attacks in Mumbai of

2008 [26], the Mumbai police started setting up vehicular checkpoints

on roads. We can model the problem faced by the Mumbai police as a

security game between the Mumbai police and an attacker. In this

urban security game, the pure strategies of the defender correspond to

allocations of resources to edges in the network—e.g., an allocation of

police checkpoints to roads in the city. The pure strategies of the at-

tacker correspond to paths from any “source” node to any “target”

node—e.g., a path from a landing spot on the coast to the airport.

The strategy space of the defender grows exponentially with the

number of available resources, whereas the strategy space of the at-

tacker grows exponentially with the size of the network. For ex-

ample, in a fully connected graph with 20 nodes and 190 edges,

the number of defender pure strategies for only 5 defender resources

is
190
5

� �
or almost 2 billion, while the number of attacker pure

strategies (i.e., paths without cycles) is on the order of 1018. Real-

world networks are significantly larger, e.g., the entire road network

of the city of Mumbai has 9503 nodes (intersections) and 20 416

edges (streets), and the security forces can deploy dozens (but not as

many as number of edges) of resources. In addressing this computa-

tional challenge, novel algorithms based on incremental strategy

generation have been able to generate randomized defender strat-

egies that scale-up to the entire road network of Mumbai [27].

Algorithmic solution—double oracle incremental strategy

generation (RUGGED)

In domains such as the urban network security setting, the number

of pure strategies of both the defender and the attacker are

exponentially large. In this section, we describe the RUGGED algo-

rithm [28], which generates pure strategies for both the defender

and the attacker. This algorithm is inspired by the double oracle al-

gorithm of solving large-scale games [29].

RUGGED models the domain as a zero-sum game, and computes

the minimax equilibrium, since the minimax strategy is equivalent

to the SSE in zero-sum games. Figure 3 shows the working of

RUGGED: at each iteration, the Minimax module generates the opti-

mal mixed strategies hx; ai for the two players for the current payoff

matrix, the Best Response Defender module generates a new strategy

for the defender that is a best response against the attacker’s current

strategy a, and the Best Response Attacker module generates a new

strategy for the attacker that is a best response against the defender’s

current strategy x. The rows Xi in the figure are the pure strategies

for the defender; they would correspond to an allocation of check-

points in the urban road network domain. Similarly, the columns Aj

are the pure strategies for the attacker; they represent the attack

paths in the urban road network domain. The values in the matrix

represent the payoffs to the defender. For example, in Fig. 3, the

row denoted by X1 indicates that there was one checkpoint setup,

and it provides a defender payoff of �5 against attacker strategy

(path) A1, and a payoff of 10 against attacker strategy (path) A2.

In Fig. 3, we show that RUGGED iterates over two oracles: the de-

fender best response and the attacker best response oracles. In this

case, the defender best response oracle has added a strategy X2, and

the attacker best response oracle then adds a strategy A3. The algo-

rithm stops when neither of the generated best responses improves

on the current minimax strategies.

The contribution of RUGGED is to provide the mixed integer for-

mulations for the best response modules which enable the applica-

tion of such a strategy generation approach. The key once again is

that RUGGED is able to converge to the optimal solution without enu-

merating the entire space of defender and attacker strategies.

However, originally RUGGED could only compute the optimal solu-

tion for deploying up to four resources in real-city network with 250

nodes within a time frame of 10 h (the complexity of this problem

can be estimated by observing that both the best response problems

are NP-hard themselves [28]). More recent work [27] builds on

RUGGED and proposes SNARES, which allows scale-up to the entire

city of Mumbai, with 10–15 checkpoints.

Scale-up with mobile resources and moving targets
Whereas the previous two sections focused on incremental strategy

generation as an approach for scale-up, this section introduces an-

other approach: use of compact marginal probability

Figure 3. Strategy generation employed in RUGGED: the pure strategies for

both the defender and the attacker are generated iteratively.
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representations. This alternative approach is shown in use in the

context of a new application of protecting ferries.

Domain example—ferry protection for the USCG

The USCG is responsible for protecting domestic ferries, including

the Staten Island Ferry in New York, from potential terrorist at-

tacks. Here are a number of ferries carrying hundreds of passengers

in many waterside cities. These ferries are attractive targets for an

attacker who can approach the ferries with a small boat packed

with explosives at any time; this attacker’s boat may only be de-

tected when it comes close to the ferries. Small, fast, and well-armed

patrol boats can provide protection to such ferries by detecting the

attacker within a certain distance and stop him from attacking with

the armed weapons (Figure 4). However, the numbers of patrol

boats are often limited, thus the defender cannot protect the ferries

at all times and locations. We thus developed a game-theoretic sys-

tem for scheduling escort boat patrols to protect ferries, and this has

been deployed at the Staten Island Ferry since 2013 [3].

The key research challenge is the fact that the ferries are continu-

ously moving in a continuous domain, and the attacker could attack

at any moment in time. This type of moving targets domain leads to

game-theoretic models with continuous strategy spaces, which pre-

sents computational challenges. Our theoretical work showed that

while it is “safe” to discretize the defender’s strategy space (in the

sense that the solution quality provided by our work provides a

lower bound), discretizing the attacker’s strategy space would result

in loss of utility (in the sense that this would provide only an upper

bound, and thus an unreliable guarantee of true solution quality).

We developed a novel algorithm that uses a compact representation

for the defender’s mixed strategy space while being able to exactly

model the attacker’s continuous strategy space. The implemented al-

gorithm, running on a laptop, is able to generate daily schedules for

escort boats with guaranteed expected utility values.

Algorithmic solution—compact strategy representation (CASS)

In this section, we describe the CASS (Solver for Continuous Attacker

Strategy) algorithm [3] for solving security problems where the de-

fender has mobile patrollers to protect a set of mobile targets against

the attacker who can attack these moving targets at any time during

their movement. In these security problems, the sets of pure strat-

egies for both the defender and attacker are continuous with respect

to the continuous spatial and time components of the problem do-

main. The CASS algorithm attempts to compute the optimal mixed

strategy for the defender without discretizing the attacker’s continu-

ous strategy set; it exactly models this set using sub-interval analysis

that exploits the piecewise-linear structure of the attacker’s expected

utility function. The insight of CASS is to compactly represent the de-

fender’s mixed strategies as a “marginal” probability distribution,

overcoming the short-coming of an exponential number of pure

strategies for the defender.

CASS casts problems such as the ferry protection problem men-

tioned above as a “zero-sum” security game in which targets move

along a “one-dimensional” domain, i.e., a straight line segment con-

necting two terminal points. This “one-dimensional” assumption is

valid as in real-world domains such as ferry protection, ferries nor-

mally move back-and-forth in a straight line between two terminals

(i.e., ports) around the world. Although the locations of the targets

vary with respect to time changes, these targets have a fixed daily

schedule, meaning that determining the locations of the targets at a

certain time is straightforward. The defender has mobile patrollers

(i.e., boats) that can move along between two terminals to protect

the targets. While the defender is trying to protect the targets, the at-

tacker will decide to attack a certain target at a certain time. The

probability that the attacker successfully attacks depends on the pos-

itions of the patroller at that time. Specifically, each patroller pos-

sesses a protective circle of radius within which she can detect and

try to intercept any attack, whereas she is incapable of detecting the

attacker prior to that radius.

In CASS, the defender’s strategy space is discretized and her mixed

strategy is compactly represented using flow distributions. Figure 5

shows an example of a ferry transition graph in which each node of

the graph indicates a particular pair (location, time step) for the tar-

get. Here, there are three location points namely A, B, and C on a

straight line where B lies between A and C. Initially, the target is at

one of these location points at the 5-min time step. Then the target

moves to the next location point which is determined based on the

connectivity between these points at the 10-min time step and so on.

For example, if the target is at the location point A at the 5-min time

step, denoted by (A, 5 min) in the transition graph, it can move to

the location point B or stay at location point A at the 10-min time

step. The defender follows this transition graph to protect the target.

A pure strategy for the defender is defined as a trajectory of this

graph, e.g., the trajectory including (A, 5 min), (B, 10 min), and (C,

15 min) indicates a pure strategy for the defender. One key challenge

of this representation for the defender’s pure strategies is that the

transition graph consists of an exponential number of trajectories,

i.e., OðNTÞ where N is the number of location points and T is the

number of time steps. To address this challenge, CASS proposes a

compact representation of the defender’s mixed strategy. Instead of

directly computing a probability distribution over pure strategies for

the defender, CASS attempts to compute the marginal probability

that the defender will follow a certain edge of the transition graph,

e.g., the probability of being at the node (A, 5 min) and moving to

Figure 5. An example of a ferry transition graph.

Figure 4. Escort boats protecting the Staten Island Ferry use strategies gener-

ated by our system.
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the node (B, 10 min). CASS shows that “any strategy in full represen-

tation can be mapped into a compact representation” as well as

“compact representation does not lead to any loss in solution qual-

ity”. This compact representation allows CASS to reformulate the re-

source-allocation problem as computing the optimal “marginal”

coverage of the defender over a number of O(NT) edges of the tran-

sition graph.

Scale-up with boundedly rational attackers
One key challenge of real-world security problems is that the at-

tacker is boundedly rational; the attacker’s target choice is nonopti-

mal. In SSGs, attacker-bounded rationality is often modeled via

behavior models such as Quantal Response (QR) [30, 31]. In gen-

eral, QR attempts to predict the probability the attacker will choose

each target with the intuition is that the higher the expected utility

at a target is, the more likely that the adversary will attack that tar-

get. Another behavioral model that was recently shown to provide

higher prediction accuracy in predicting the attacker’s behavior than

QR is Subjective Utility QR (SUQR) [32]. SUQR is motivated by the

lens model which suggested that evaluation of adversaries over tar-

gets is based on a linear combination of multiple observable features

[33]. However, handling multiple attackers with these behavioral

models in the context of large defender’s strategy space is computa-

tional challenge. In this section, we mainly focus on handling the

scalability problem given behavioral models of the attacker. The

problem of handling the attacker’s bounded rationality (e.g., model-

ing and learning) is explained in detail in “Addressing bounded ra-

tionality in real-world problems” section.

To handle the problem of large defender’s strategy space given

behavioral models of attackers, we introduce yet another technique

of scaling up, which is similar to the incremental strategy gener-

ation. Instead, here we use incremental marginal space refinement.

We use the compact marginal representation, discussed earlier, but

refine that space incrementally if the solution produces violates the

necessary constraints.

Domain example—fishery protection for USCG

Fisheries are a vital natural resource from both an ecological and

economic standpoint. However, fish stocks around the world are

threatened with collapse due to illegal, unreported, and unregulated

(IUU) fishing. The USCG is tasked with the responsibility of protect-

ing and maintaining the nation’s fisheries. To this end, the USCG de-

ploys resources (both air and surface assets) to conduct patrols over

fishery areas in order to deter and mitigate IUU fishing. Due to the

large size of these patrol areas and the limited patrolling resources

available, it is impossible to protect an entire fishery from IUU fish-

ing at all times. Thus, an intelligent allocation of patrolling re-

sources is critical for security agencies like the USCG.

Natural resource conservation domains such as fishery protec-

tion raise a number of new research challenges. In stark contrast to

counter-terrorism settings, there is frequent interaction between the

defender and attacker in these resource conservation domains. This

distinction is important for three reasons. First, due to the compara-

tively low stakes of the interactions, rather than a handful of persons

or groups, the defender must protect against numerous adversaries

(potentially hundreds or even more), each of which may behave dif-

ferently. Second, frequent interactions make it possible to collect

data on the actions of the adversaries over time. Third, the adversa-

ries are less strategic given the short planning windows between

actions.

Algorithmic solution—incremental constraint generation (MIDAS)

Generating effective strategies for domains such as fishery protec-

tion requires an algorithmic approach which is both “scalable” and

“robust”. For scalability, the defender is responsible for protecting a

large patrol area and therefore must consider a large strategy space.

Even if the patrol area is discretized into a grid or graph structure,

the defender must still reason over an exponential number of patrol

strategies. For robustness, the defender must protect against “mul-

tiple” boundedly rational adversaries. Bounded rationality models,

such as the QR model [31] and the SUQR model [32], introduce sto-

chastic actions, relaxing the strong assumption in classical game the-

ory that all players are perfectly rational and utility maximizing.

These models are able to better predict the actions of human adver-

saries and thus lead the defender to choose strategies that perform

better in practice. However, both QR and SUQR are nonlinear mod-

els resulting in a computationally difficult optimization problem for

the defender. Combining these factors, MIDAS models a population

of boundedly rational adversaries and utilizes available data to learn

the behavior models of the adversaries using the SUQR model in

order to improve the way the defender allocates its patrolling

resources.

Previous work on boundedly rational adversaries has considered

the challenges of scalability and robustness separately, in [34, 35]

and [5, 6], respectively. The MIDAS algorithm was introduced to

merge these two research threads for the first time by addressing

scalability and robustness simultaneously. Figure 6 provides a visual

overview of how MIDAS operates as an iterative process. Similar to

the ASPEN algorithm described earlier, given the sheer complexity of

the game being solved, the problem is decomposed using a master–

slave formulation. The master utilizes multiple simplifications to

create a relaxed version of the original problem which is more effi-

cient to solve. First, a piecewise-linear approximation of the security

game is taken to make the optimization problem both linear and

convex. Second, the complex spatiotemporal constraints associated

with patrols are initially ignored and then incrementally added back

using cut generation. In other words, we ignore the spatiotemporal

constraint that a patroller cannot simple appear and disappear at

different locations instantaneously; and that a patroller must pass

through regions connecting two different regions if the patroller is

go from one region to another. This significantly simplifies the mas-

ter problem.

Figure 6. Overview of the multiple iterative process within the MIDAS

algorithm.
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Due to the relaxations, solving the master produces a marginal

strategy x which is a probability distribution over targets. However,

the defender ultimately needs a probability distribution over patrols.

Additionally, since not all of the spatiotemporal constraints are con-

sidered in the master, the relaxed solution x may not be a feasible so-

lution to the original problem. Therefore, the slave checks if the

marginal strategy x can expressed as a linear combination, i.e., prob-

ability distribution, of patrols. Otherwise, the marginal distribution

is infeasible for the original problem. However, given the exponen-

tial number of patrol strategies, even performing this optimality

check is intractable. Thus, column generation is used “within” the

slave where only a small set of patrols is considered initially in the

optimality check and the set is expanded over time. Much like previ-

ous examples of column generation in security games, e.g., [23],

new patrols are added by solving a minimum-cost network flow

problem using reduced cost information from the optimality check.

If the optimality check fails, then the slave generates a cut which is

returned to refine and constrain the master, incrementally bringing

it closer to the original problem. The entire process is repeated until

an optimal solution is found. Finally, MIDAS has been successfully

deployed and evaluated by the USCG in the Gulf of Mexico.

Addressing uncertainty in real-world problems

The standard security game model features a number of strong as-

sumptions including that the defender has perfect information about

the game payoff matrix as well as the attacker’s behavioral model.

Additionally, the defender is assumed to be capable of exactly exe-

cuting the computed patrolling strategy. However, uncertainty is en-

demic in real-world security domains and thus it may be impossible

or impractical for the defender to accurately estimate various aspects

of the game. Also, there are many number of practicalities and un-

foreseen events that may force the defender to change their patrol-

ling strategy. These types of uncertainty can significantly deteriorate

the effectiveness of the defender’s strategy and thus addressing un-

certainty when generating strategies is a key challenge of solving

real-world security problems. This section describes several

approaches for dealing with various types of uncertainties in SSGs.

We first summarize the major types of uncertainties in SSGs as a

3-dimensional uncertainty space with the following three dimen-

sions (Fig. 7): (i) uncertainty in the adversary’s payoffs; (ii) uncer-

tainty related to the defender’s strategy (including uncertainty in the

defender’s execution and the attacker’s observation); and (iii) uncer-

tainty in the adversary’s rationality. These dimensions refer to three

key attributes which affect both players’ utilities. The origin of the

uncertainty space corresponds to the case with no uncertainty.

Figure 7 also shows existing algorithms for addressing uncertainty

in SSGs which follow the two different approaches. First approach

is applying robust optimization techniques using uncertainty inter-

vals to represent uncertainty in SSGs. For example, BRASS [36] is a

robust algorithm that only addresses attacker-payoff uncertainty,

RECON [19] is another robust algorithm that focuses on addressing

defender-strategy uncertainty, and Monotonic Maximin [37] is to

handle the uncertainty in the attacker’s bounded rationality. Finally,

URAC (Unified Robust Algorithmic framework for addressing

unCertainties) [38] is a unified robust algorithm that handles all

types of uncertainty. The second approach is based on the Bayesian

Stackelberg game model with dynamic execution uncertainty in

which the uncertainty is represented using Markov Decision Process

(MDP) where the time factor is incorporated.

In the following, we present two algorithmic solutions which are

the representatives of these two approaches: URAC—a unified robust

algorithm to handle all types of uncertainty with uncertainty inter-

vals and the MDP-based algorithm to handle execution uncertainty

with an MDP representation of uncertainty.

Security patrolling with unified uncertainty space
Domain example—security in LAX

LAX is the largest destination airport in the USA and serves 60–70

million passengers per year. The LAX police use diverse measures to

protect the airport, which include vehicular checkpoints, police units

patrolling the roads to the terminals, patrolling inside the terminals

(with canines), and security screening and bag checks for passengers.

The application of our game-theoretic approach is focused on two

of these measures: (i) placing vehicle checkpoints on inbound roads

that service the LAX terminals, including both location and timing,

and (ii) scheduling patrols for bomb-sniffing canine units at the dif-

ferent LAX terminals. The eight different terminals at LAX have

very different characteristics, like physical size, passenger loads,

international versus domestic flights, etc. These factors contribute to

the differing risk assessments of these eight terminals. Furthermore,

the numbers of available vehicle checkpoints and canine units are

limited by resource constraints. Thus, it is challenging to optimally

allocate these resources to improve their effectiveness while avoiding

patterns in the scheduled deployments.

The ARMOR system focuses on two of the security measures at

LAX (checkpoints and canine patrols) and optimizes security re-

source allocation using Bayesian Stackelberg games (Figure 8). Take

the vehicle checkpoints model as an example. Assuming that there

are n roads, the police’s strategy is placing m<n checkpoints on

these roads where m is the maximum number of checkpoints.

Figure 7. Uncertainty space and algorithms. Figure 8. LAX checkpoints are deployed using ARMOR.
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ARMOR randomizes allocation of checkpoints to roads. The adver-

sary may conduct surveillance of this mixed strategy and may poten-

tially choose to attack through one of these roads. ARMOR models

different types of attackers with different payoff functions, repre-

senting different capabilities and preferences for the attacker.

ARMOR has been successfully deployed since August 2007 at LAX

[1].

Although standard SSG-based solutions (i.e., DOBSS) have been

demonstrated to improve the defender’s patrolling effectiveness sig-

nificantly, there remains potential improvements that can be made

to further enhance the quality of such solutions such as taking uncer-

tainties in payoff values, in the attacker’s rationality, and in de-

fender’s execution into account. Therefore, we propose the unified

robust algorithm, URAC, to handle these types of uncertainties by

maximizing the defender’s utility against the worst case scenario re-

sulting from these uncertainties.

Algorithmic solution—uncertainty dimension reduction (URAC)

In this section, we present the robust URAC algorithm for addressing

a combination of all uncertainty types [38]. Consider an SSG where

there is uncertainty in the attacker’s payoff, the defender’s strategy

(including the defender’s execution and the attacker’s observation),

and the attacker’s behavior, URAC represents all these uncertainty

types (except for the attacker’s behaviors) using uncertainty inter-

vals. Instead of knowing exactly values of these game attributes, the

defender only has prior information with respect to the upper

bounds and lower bounds of these attributes. For example, the at-

tacker’s reward if successfully attacking a target t is known to lie

within the interval ½1; 3�. Furthermore, URAC assumes the attacker

monotonically responds to the defender’s strategy. In other words,

the higher the expected utility of a target, the more likely that the at-

tacker will attack that target; however, the precise attacking prob-

ability is unknown for the defender. This monotonicity assumption

is motivated by the QR model—a well-known human behavioral

model for capturing the attacker’s decision making [31].

Based on these uncertainty assumptions, URAC attempts to com-

pute the optimal strategy for the defender by maximizing her utility

against the worst case scenario of uncertainty. The key challenge of

this optimization problem is that it involves several types of uncer-

tainty, resulting in multiple minimization steps for determining the

worst case scenario. Nevertheless, URAC introduces a unified repre-

sentation of all these uncertainty types as a uncertainty set of

attacker’s responses. Intuitively, despite of any type of uncertainty

mentioned above, what finally affects the defender’s utility is the at-

tacker’s response, which is unknown to the defender due to uncer-

tainty. As a result, URAC can represent the robust optimization

problem as a single maximin problem.

However, the infinite uncertainty set of the attacker’s responses

depends on the planned mixed strategy for the defender, making this

maximin problem difficult to solve if the traditional method is directly

applied (i.e., taking the dual maximization of the inner minimization

of maximin and merging it with the outer maximization—maximin

now can be represented as a single maximization problem).

Therefore, URAC proposes a divide-and-conquer method in which the

defender’s strategy set is divided into subsets such that the uncertainty

set of the attacker’s responses is the same for every defender strategy

within each subset. This division leads to multiple sub-maximin prob-

lems which can be solved by using the traditional method. The opti-

mal solution of the original maximin problem can now be computed

as a maximum over all the sub-maximin problems.

Security patrolling with dynamic execution uncertainty
Domain example—TRUSTS for security in transit systems

Urban transit systems face multiple security challenges, including

deterring fare evasion, suppressing crime and counter-terrorism. In

particular, in some urban transit systems, including the Los Angeles

Metro Rail system, passengers are legally required to purchase tickets

before entering but are not physically forced to do so (Fig. 9). Instead,

security personnel are dynamically deployed throughout the transit

system, randomly inspecting passenger tickets. This proof-of-payment

fare collection method is typically chosen as a more cost-effective

alternative to direct fare collection, i.e., when the revenue lost to fare

evasion is believed to be less than what it would cost to directly pre-

clude it. In the case of Los Angeles Metro, with approximately

300 000 riders daily, this revenue loss can be significant; the annual

cost has been estimated at $5.6 million [39]. The LASD deploys uni-

formed patrols on board trains and at stations for fare-checking (and

for other purposes such as crime prevention). The LASD’s current

approach relies on humans for scheduling the patrols, which places a

tremendous cognitive burden on the human schedulers who must take

into account all of the scheduling complexities (e.g., train timings,

switching time between trains, and schedule lengths).

The TRUSTS models the patrolling problem as a leader–follower

Stackelberg game [4]. The leader (LASD) precommits to a mixed

Figure 9. TRUSTS for transit systems.
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strategy patrol (a probability distribution over all pure strategies),

and riders observe this mixed strategy before deciding whether to

buy the ticket or not. Both ticket sales and fines issued for fare eva-

sion translate into revenue for the government. Therefore the utility

for the leader is the total revenue (total ticket sales plus penalties).

The main computational challenge is the exponentially many pos-

sible patrol strategies, each subject to both the spatial and temporal

constraints of travel within the transit network under consideration.

To overcome this challenge, TRUSTS uses a compact representation of

the strategy space which captures the spatiotemporal structure of

the domain.

The LASD conducted field tests of this TRUSTS system in the LA

Metro in 2012, and one of the feedback comments from the officers

was that patrols are often interrupted due to execution uncertainty

such as emergencies and arrests.

Algorithmic solution—marginal MDP strategy representation

Utilizing techniques from planning under uncertainty (in particular,

MDPs), we proposed a general approach to dynamic patrolling

games in uncertain environments, which provides patrol strategies

with contingency plans [40]. This led to schedules now being loaded

onto smartphones and given to officers. If interruptions occur, the

schedules are then automatically updated on the smartphone app.

The LASD has conducted successful field evaluations using the

smartphone app. We now describe the solution approach in more

detail. Note that the targets, e.g., trains normally follow predeter-

mined schedules, thus timing is an important aspect which deter-

mines the effectiveness of the defender’s patrolling schedules (the

defender needs to be at the right location at a specific time in order

to protect these moving targets). However, as a result of execution

uncertainty (e.g., emergencies or errors), the defender could not

carry out her planned patrolling schedule in later time steps. For ex-

ample, in real-world trials for TRUSTS carried out by LASD, there is

interruption (due to writing citations, felony arrests, and handling

emergencies) in a significant fraction of the executions, causing the

officers to miss the train they are supposed to catch as following the

pre-generated patrolling schedule.

In this section, we present the Bayesian Stackelberg game model

for security patrolling with dynamic execution uncertainty intro-

duced by [40] in which the uncertainty is represented using MDPs.

The key advantage of this game-theoretic model is that patrol sched-

ules which are computed based on Stackelberg equilibrium have

contingency plans to deal with interruptions and are robust against

execution uncertainty. Specifically, the security problem with execu-

tion uncertainty is represented as a two-player Bayesian Stackelberg

game between the defender and the attacker. The defender has mul-

tiple patrol units while there are also multiple types of attackers

which are unknown to the defender. A (naive) patrol schedule con-

sists of a set of sequenced commands in the following form: at time

t, the patrol unit should be at location l, and execute patrol action a.

This patrol action a will take the unit to the next location and time

if successfully executed. However, due to execution uncertainty, the

patrol unit may end up at a different location and time. Figure 10

shows an example of execution uncertainty in a transition graph

where if the patrol unit is currently at location A at the 5-min time

step, she is supposed to take the on-train action to move to location

B in the next time step. However, unlike CASS for ferry protection in

which the defender’s action is deterministic, there is a 10% chance

that she will still stay at location A due to execution uncertainty.

This interaction of the defender with the environment when execut-

ing patrol can be represented as an MDP.

In essence, the transition graph as represented above is aug-

mented to indicate the possibility that there are multiple uncertain

outcomes possible from a given state. Solving this transition graph

results in marginals over MDP policies. When a sample MDP policy

is obtained and loaded on to a smart phone, it provides a patroller

not only the current action but contingency actions also, should the

current action fail or succeed. So the MDP policy provides options

for the patroller, allowing the system to handle execution uncer-

tainty. A key challenge of computing the SSE for this type of security

problem is that the dimension of the space of mixed strategies for

the defender is exponential in the number of states in terms of the

defender’s times and locations. Therefore, instead of directly com-

puting the mixed strategy, the defender attempts to compute the

marginal probabilities of each patrolling unit reaching a state

s ¼ ðt; lÞ, and taking action a which have dimensions polynomial in

the sizes of the MDPs (the details of this approach are provided in

[40]).

Addressing bounded rationality in real-world
problems

Game theory models the strategic interactions between multiple

players who are assumed to be perfectly rational, i.e., they will al-

ways select the optimal strategy available to them. This assumption

may be applicable for high-stakes security domains such as infra-

structure protection where presumably the adversary will conduct

careful surveillance and planning before attacking. However, there

are other security domains where the adversary may not be perfectly

rational due to short planning windows or because the adversary is

less strategic due to lower stakes associated with attacking. Security

strategies generated under the assumption of a perfectly rational ad-

versary are not necessarily as effective as would be feasible against a

less-than-optimal response. Therefore, addressing the boundedly ra-

tionality exhibited by human adversaries is a fundamental challenge

for applying security games to wide variety of domains.

Domain example—green security domains
A number of our newer applications are focused on resource conser-

vation, through suppression of environmental crime. One area is

protecting forests [41], where we must protect a continuous forest

area from extractors by patrols through the forest that seek to deter

such extraction activity (Figure 11). With limited resources for per-

forming such patrols, a patrol strategy will seek to distribute the

patrols throughout the forest, in space and time, in order to minim-

ize the resulting amount of extraction that occurs or maximize the

degree of forest protection. This problem can be formulated as a

Stackelberg game and the focus is on computing optimal allocations

of patrol density [41].

Figure 10. An example of execution uncertainty in a transition graph.
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Endangered species poaching is reaching critical levels as the

populations of these species plummet to unsustainable numbers.

The global tiger population, e.g., has dropped over 95% from the

start of the 1900s and has resulted in three out of nine species ex-

tinctions. Depending on the area and animals poached, motivations

for poaching range from profit to sustenance, with the former being

more common when profitable species such as tigers, elephants, and

rhinos are the targets. To counter poaching efforts and to rebuild

the species’ populations, countries have set up protected wildlife re-

serves and conservation agencies tasked with defending these large

reserves. Because of the size of the reserves and the common lack of

law enforcement resources, conservation agencies are at a significant

disadvantage when it comes to deterring and capturing poachers.

Agencies use patrolling as a primary method of securing the park.

Due to their limited resources, however, patrol managers must care-

fully create patrols that account for many different variables (e.g.,

limited patrol units to send out, multiple locations that poachers can

attack at varying distances to the outpost).

Behavioral modeling and learning
Recently, we have conducted some research on applying ideas from

behavioral game theory (e.g., prospect theory [42] and QR [43])

within security game algorithms. One line of approaches is based on

the QR model to predict the behaviors of the human adversary, and

then to compute optimal defender strategies against such behavior

of the adversary. These include BRQR [44] which follows the logit

QR [43] model and subsequent work on SUQR models [32]. The

parameters of these models are estimated by experimental tuning.

Data from a large set of participants on the Amazon Mechanical

Turk (AMT) were collected and used to learn the parameters of the

behavioral models to predict future attacks. In real-world domains

like fisheries protection, or wildlife crime, there are repeated interac-

tions between the defender and the adversary, where the game pro-

gresses in “rounds.” We call this a Repeated SSG (RSSG) where in

each round the defender would play a particular strategy and the ad-

versary would observe that strategy and act accordingly. In order to

simulate this scenario and conduct experiments to identify adversary

behavior in such repeated settings, an online RSSG game was de-

veloped (shown in Fig. 12) and deployed.

In our game, human subjects play the role of poachers looking to

place a snare to hunt a hippopotamus in a protected wildlife park.

The portion of the park shown in the map is actually a Google Maps

view of a portion of the QENP in Uganda. The region shown is div-

ided into a 5*5 grid, i.e., 25 distinct cells. Overlaid on the Google

Figure 11. Examples of illegal activities in green security domains.

Figure 12. Interface of the wildlife poaching game to simulate an RSSG.
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Maps view of the park is a heat-map, which represents the rangers’

mixed strategy x—a cell i with higher coverage probability xi is

shown more in red, while a cell with lower coverage probability is

shown more in green. As the subjects play the game and click on a

particular region on the map, they were given detailed information

about the poacher’s reward, penalty, and coverage probability at

that region. However, the participants are unaware of the exact lo-

cation of the rangers while playing the game, i.e., they do not know

the pure strategy that will be played by the rangers, which is drawn

randomly from mixed strategy x shown on the game interface. In

our game, there were nine rangers protecting this park, with each

ranger protecting one grid cell. Therefore, at any point in time, only

9 out of the 25 distinct regions in the park are protected. A player

succeeds if he places a snare in a region which is not protected by a

ranger, else he is unsuccessful. Similar to the Guards and Treasures

game, here also we recruited human subjects on AMT and asked

them to play this game repeatedly for a set of rounds with the de-

fender strategy changing per round based on the behavioral model

being used to learn the adversary’s behavior.

While behavioral models like QR [43] and SUQR [32] assume

that there is a homogeneous population of adversaries, in the real

world we face heterogeneous populations of adversaries. Therefore

Bayesian SUQR was proposed to learn the behavioral model for

each attack [5]. Protection Assistant for Wildlife Security (PAWS) is

an application which was originally created using Bayesian SUQR.

However, in real-world security domains, we may have very limited

data, or may only have some limited information on the biases dis-

played by adversaries. An alternative approach is based on robust

optimization: instead of assuming a particular model of human deci-

sion making, try to achieve good defender expected utility against a

range of possible models. One instance of this approach is MATCH

[21], which guarantees a bound for the loss of the defender to be

within a constant factor of the adversary loss if the adversary re-

sponds nonoptimally. Another robust solution concept is monotonic

maximin [37], which tries to optimize defender utility against the

worst case monotonic adversary behavior, where monotonicity is

the property that actions with higher expected utility is played with

higher probability. Recently, there have been attempts to combine

such robust optimization approaches with available behavior data

[6] for RSSGs, resulting in a new human behavior model called

Robust SUQR. However, one question of research is how these pro-

posed models and algorithms will fare against human subjects in

RSSGs. This has been explored in recent research [45] in the “first-

of-its-kind” human subjects experiments in RSSGs over a period of

46 weeks with the “Wildlife Poaching” game, a brief summary of

which is presented below.

In our human subjects experiments in RSSGs, we observe that:

(i) existing approaches (QR, SUQR, Bayesian SUQR) [5, 6, 32] per-

form poorly in initial rounds, while Bayesian SUQR which is the

basis for PAWS [5], perform poorly throughout all rounds; (ii) sur-

prisingly, simpler models like SUQR which were originally proposed

for single-shot games performed better than recent advances like

Bayesian SUQR and Robust SUQR which are geared specifically to-

ward addressing repeated SSGs. Therefore, we proposed a new

model called SHARP (Stochastic Human behavior model with

AttRactiveness and Probability weighting) [45] which addresses the

limitations of the existing models in the following way: (i) modeling

the adversary’s adaptive decision making process in repeated SSGs,

SHARP reasons based on success or failure of the adversary’s past

actions on exposed portions of the attack surface, where attack sur-

face is defined as the n-dimensional space of the features used to

model adversary behavior; (ii) addressing limited exposure to

significant portions of the attack surface in initial rounds, SHARP

reasons about similarity between exposed and unexposed areas of

the attack surface, and also incorporates a discounting parameter to

mitigate adversary’s lack of exposure to enough of the attack sur-

face; (iii) addressing the limitation that existing models do not ac-

count for the adversary’s weighting of probabilities, we incorporate

a two-parameter probability weighting function. Based on our

human subjects experiments highlighted in [45], we observe that

SHARP completely outperforms existing approaches consistently

over all rounds, most notably in initial rounds.

Addressing field evaluation in real-world
problems

Evidence showing the benefits of the algorithms discussed in the previ-

ous sections is definitely an important issue that is necessary for us to

answer. Unlike conceptual ideas, where we can run thousands of care-

ful simulations under controlled conditions, we cannot conduct such

experiments in the real world with our deployed applications. Nor

can we provide a proof of 100% security—there is no such thing.

Instead, we focus on the specific question of: are our game-

theoretic algorithms better at security resource optimization or se-

curity allocation than how they were allocated previously, which

was typically relying on human schedulers or a simple dice roll for

security scheduling (simple dice roll is often the other automation

that is used or offered as an alternative to our methods). We have

used the following methods to illustrate these ideas. These methods

range from simulations to actual field tests.

1. Simulations (including using a machine learning attacker): we

provide simulations of security schedules, e.g., randomized pa-

trols, assignments, comparing our approach to earlier approaches

based on techniques used by human schedulers. We have a ma-

chine learning-based attacker who learns any patterns and then

chooses to attack the facility being protected. Game-theoretic

schedulers are seen to perform significantly better in providing

higher levels of protections [1, 46]. This is also shown in Fig. 13.

2. Human adversaries in the lab: we have worked with a large

number of human subjects and security experts (security offi-

cials) to have them get through randomized security schedules,

where some are schedules generated by our algorithms, and

some are baseline approaches for comparison. Human subjects

are paid money based on the reward they collect by successfully

intruding through our security schedules; again our game-theor-

etic schedulers perform significantly better ([47]).

3. Actual security schedules before and after: for some security ap-

plications, we have data on how scheduling was done by humans

(before our algorithms were deployed) and how schedules are

generated after the deployment of our algorithms. For measures

of interest to security agencies, e.g., predictability in schedules,

Figure 13. ARMOR evaluation results.
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we can compare the actual human-generated schedules versus

our algorithmic schedules. Again, game-theoretic schedulers are

seen to perform significantly better by avoiding predictability

and yet ensuring that more important targets are covered with

higher frequency of patrols. Some of this data is published [2]

and is also shown in Fig. 14.

4. “Adversary” teams simulate attack: in some cases, security agen-

cies have deployed adversary perspective teams or mock attacker

teams that will attempt to conduct surveillance to plan attacks;

this is done before and after our algorithms have been deployed

to check which security deployments worked better. This was

done by the USCG indicating that the game-theoretic scheduler

provided higher levels of deterrence [2].

5. Real-time comparison—human versus algorithm: this is a test we

ran on the metro trains in Los Angeles. For a day of patrol sched-

uling, we provided head-to-head comparison of human sched-

ulers trying to schedule 90 officers on patrols versus an

automated game-theoretic scheduler. External evaluators then

provided an evaluation of these patrols; the evaluators did not

know who had generated each of the schedules. The results show

that while human schedulers required significant effort even for

generating one schedule (almost a day), and the game-theoretic

scheduler ran quickly, the external evaluators rated the game-

theoretic schedulers higher (with statistical significance) [48].

6. Actual data from deployment: this is another test run on the

metro trains in Los Angeles. We had a comparison of game-

theoretic scheduler versus an alternative (in this case a uniform

random scheduler augmented with real-time human intelligence)

to check fare evaders. In 21 days of patrols, the game-theoretic

scheduler led to significantly higher numbers of fare evaders cap-

tured than the alternative [48, 49].

7. Domain expert evaluation (internal and external): there have

been of course significant numbers of evaluations done by do-

main experts comparing their own scheduling method with

game-theoretic schedulers and repeatedly the game-theoretic

schedulers have come out ahead. The fact that our software is

now in use for several years at several different important air-

ports, ports, air-traffic, and so on, is an indicator to us that the

domain experts must consider this software of some value.

Cybersecurity: challenges and opportunities

The domain of computer security and privacy provides a rich set

of challenges that requires new innovation and techniques. The

application of game theory to cybersecurity is a new and promising

research field. The potential benefits of applying game theory to

cybersecurity problems are:

1. Game theory captures the adversarial nature of cybersecurity

interactions and provides quantitative and analytical tools that

may help find the optimal defense strategies.

2. Computer implementations of those methods allow examination

of a large number of threat scenarios, which human analyst can

miss due to cognitive limitations and biases.

3. Game theory provides methods for predicting actor’s behavior

in uncertain situations and suggesting probable actions along

with predicted outcomes.

One of the challenges of applying game theory to cybersecurity is

choosing the appropriate game model for a given security problem.

Currently, selecting a game that has relevant features for represent-

ing a cybersecurity scenario is primarily based on intuition. There is

a lack of analysis and empirical data to validate those choices. The

problem is even more aggravated in the domain of privacy, where

there is a fundamental tension between utility of data and privacy

loss from data sharing.

Prior approaches based on simultaneous move games
Much work has focused on modeling cybersecurity problems as a

simultaneous move games. The resulting Nash equilibrium analysis

assume that all players: (i) form beliefs based on an analysis of what

others might do (strategic thinking); (ii) choose the best response

given those beliefs; and (iii) adjust best responses and beliefs until

they are mutually consistent.

We survey some prior work on game theory approaches to

cybersecurity problems. In the next section, we discuss security

game-based approaches to cybersecurity problems. A popular model

for the interaction between a defender and attacker in cybersecurity

is the FlipIt game [50]. This is a continuous time game that models

the fact that any cybersystem will ultimately be compromised and

the defender will have to expend effort to detect and recover. Many

variants of the game have been studied, such as playing FlipIt with

actual human subject experiments [51]. The FlipIt model does not

model the details of a defender–adversary interaction in a cyber-

settings. As such, the model cannot be used directly in any real-

world network to provide guidance about how to use and deploy de-

fense resources at a fine-grained level.

There is lot of work on economics of security that uses game-

theoretic reasoning. For example, Vratonjic et al. [52] explores the

Figure 14. PROTECT evaluation results: predeployment (left) and postdeployment patrols (right).
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economics and privacy aspects of internet service providers (ISPs)

joining the online advertising market, analysis of security invest-

ments via insurance in different settings (weakest link, etc.) [53],

and by considering interdependence and repeated interaction in con-

text of security investments [54]. Recently, deception has been con-

sidered as a defense mechanism in network security. Pawlick et al.

[55] consider a game model of honeypots used for network defense,

where the interaction is modeled as a cheap talk game.

Although most of the existing literature on applications of game

theory to cybersecurity assume that the cost and effectiveness of the

actions of the players are time independent, this is usually not true

in practice. The cost and probability of success of attacks may vary

over time: as much as the attacker’s costs depend on the timing of

the attack, the defender’s costs depend on when to act to success-

fully thwart attacks. Recent work by Johnson et al. [56] has started

to focus on the importance of analyzing the cost and effectiveness of

players’ actions in dynamic settings. They develop and analyze a

continuous-time as well as a discrete-time model of the entire pro-

cess occurring during the lifetime of a vulnerability, starting from its

discovery till it is rendered useless and the on-going mitigation ef-

forts by the defender while the vulnerability can still be exploited.

Similarly, Rasouli et al. [57] has developed an analytical approach

for dynamic cybersecurity problems that capture progressive attacks

to a computer network. Importantly, the model recognizes the fact

that the defender, i.e., the cyber-system supervisor, may not be able

to observe the malicious actions of the adversary in real time. Thus,

the defender must maintain a belief over the state of the computer

network and include network monitoring as part of strategy in add-

ition deterring and mitigating cyber attacks. Lu et al. [58] studies

the active cyber defense in the setting of strategic attackers and/or

strategic defenders. In particular, the paper combines control- and

game-theoretic models under the “homogeneous” assumption that

each compromised computer can attack the same portion of com-

puters. The work first studies two cases: infinite-time horizon opti-

mal control and fast optimal control when the attackers are

nonstrategic. Then they provide the Nash equilibrium strategies in

the case of strategic attackers.

A drawback of simultaneous move games with perfect rational-

ity assumptions is the low predictability power of the model, as has

been pointed out by behavioral economists [42, 43]. The model pla-

ces sufficient computational burden on the players, which results in

the predicted outcomes not being realized in practice. Thus, often in

economics such model are used for high level reasoning and post

hoc understanding of the problem at hand. A day–to-day oper-

ational defense aid requires a detailed model of the problem as well

as decent predictability.

Potential cybersecurity applications of security game

techniques
Our Stackelberg game-based approach provides a complementary

approach to the approaches described in the last subsection. In

Stackelberg games the adversary’s computational burden is lower

and further we account for uncertainty and bounded rational behav-

ior of the adversary. Even with a perfect rationality assumption, the

overall lower complexity of computation of the Stackelberg equilib-

rium (as compared to the Polynomial Parity Arguments on Directed

graphs (PPAD) complexity of Nash equilibrium) allows for a de-

tailed model of the underlying domain with scalable algorithms to

compute the equilibrium. There has been some initial work on using

the security games model to address problems in cybersecurity and

privacy. We present three different potential applications here, two

for cybersecurity and one for privacy policy enforcement in

organization.

In [7], the authors study the problem of optimal resource alloca-

tion for packet selection and inspection to detect potential threats in

large computer networks with multiple computers of differing im-

portance. A number of intrusion detection and monitoring systems

are deployed in real-world computer networks with the goal of de-

tecting and preventing attacks. One countermeasure employed is to

conduct “deep packet inspections,” a method that periodically se-

lects a subset of packets in a computer network for analysis, but is

costly in terms of throughput of the network. The security problem

is formulated as a Stackelberg security game between two players:

the attacker (or the intruder) and the defender (the detection sys-

tem), which is played on a computer network modeled as a graph.

The intruder wants to gain control over (or to disable) a valuable

computer in the network by scanning the network, compromising a

more vulnerable system, and/or gaining access to further devices on

the computer network. The actions of the attacker can therefore be

seen as sending malicious packets from a controlled computer

(termed source) to a single or multiple vulnerable computers (termed

targets). The objective of the defender is to prevent the intruder

from succeeding by selecting the packets for inspection, identifying

the attacker, and subsequently thwarting the attack. However,

packet inspections cause unwanted latency and hence the defender

has to decide where and how frequently to inspect network traffic in

order to maximize the probability of a successful malicious packet

detection. The authors provide polynomial time approximation al-

gorithm that benefits from the submodularity property of the discre-

tized zero-sum variant of the game and finds solutions with

bounded error in polynomial time.

In a recent paper [8], the authors study the problem of optimal

number of “honeypots” to be placed in a network. Honeypots are

fake copies of electronic resources (servers, computers, routers, etc.)

that aim to confuse the attacker so that the attacker attacks these

honeypots. Attacks on honeypots also enable the defender to study

the attacker and possibly catch them. The use of honeypots as a de-

ceptive defense mechanism seems promising, but has an associated

cost in setting up the fake electronic assets. Thus, a central question

in this defense mechanism is how many and which types of honey-

pots should be used? The authors use attack graphs to model pos-

sible attack trajectories that the attacker may use. The nodes in

attack graphs are annotated with costs of attacks and benefits of

successful attack, and also the probability of success of attack. In

particular, the number and types of honeypots deployed influence

the probability of success of attacks. The authors model the game as

a Stackelberg security game with the defender choosing the number

and type of honeypots to deploy. The attacker chooses an attack

path with the best utility. The authors provide heuristic algorithm

for the NP-hard problem of finding the optimal attack by converting

the problem to a MDP.

One interesting work, called audit games [9, 10], enhances the

security games model with choice of punishments in order to capture

scenarios of security and privacy policy enforcement in large organ-

izations. Large organizations (such as Google, Facebook, hospitals)

hold enormous amounts of privacy sensitive data. These organiza-

tions mandate their employees to adhere to certain privacy policies

when accessing data. Auditing of access logs is used by organizations

to check for policy violating accesses and then the violators are pun-

ished. Auditing often requires human help to investigate suspicious

cases, and thereby arises the problem of allocating few resources to

the huge number of cases to investigate. Another relevant question

in this domain is how much should the organization punish in case
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of a violation? The audit game models the adversary as an agent

that performs certain tasks (e.g., accesses to private data), and a sub-

set of these tasks are policy violations. The auditor inspects a subset

of the tasks and detects violations from the inspected set. As punish-

ments do affect the behavior of the adversary, it is critical for the

auditor to choose the right level of punishment. As a consequence,

the choice of a punishment level is added to the action space of the

auditor. However, punishment is not free for the auditor; the intu-

ition being that a high punishment level creates a hostile work envir-

onment, leading to lack in productivity of employees which results

in loss for the organization (auditor). As a consequence, the auditor

cannot impose infinite punishment and deter any adversary. The

auditor’s cost for a punishment level is modeled as a loss propor-

tional to the choice of the punishment level. The auditor moves first

by committing to an inspection and punishment strategy, followed

by the best response of the adversary. The resultant Stackelberg

equilibrium optimization turns out to be nonconvex due to the pun-

ishment variable. The authors present efficient algorithms for vari-

ous types of scheduling constraints.

Conclusion

Security is recognized as a world-wide challenge and game theory is

an increasingly important paradigm for reasoning about complex se-

curity resource allocation. We have shown that the general model of

security games is applicable (with appropriate variations) to varied

security scenarios. There are applications deployed in the real world

that have led to a measurable improvement in security. We pre-

sented approaches to address four significant challenges: scalability,

uncertainty, bounded rationality, and field evaluation in security

games. Cybersecurity provides additional challenges that include

limited observability and deception.

In short, we introduced specific techniques to handle each of

these challenges. For scalability, we introduced three approaches: (i)

incremental strategy generation for addressing the problem of large

defender strategy spaces; (ii) double oracle incremental strategy gen-

eration with respect to large defender and attacker strategy spaces;

(iii) compact representation of strategies for the case of mobile re-

sources and moving targets; and (iv) cutting plane (incremental con-

straint generation) for handling multiple boundedly rational

attacker. For handling uncertainty we introduced two approaches:

(i) dimensionality reduction in uncertainty space for addressing a

unification of uncertainties; and (ii) MDP with marginal strategy

representation with respect to dynamic execution uncertainty. In

terms of handling attacker-bounded rationality, we propose differ-

ent behavioral models to capture the attackers’ behaviors and intro-

duce human subject experiments with game simulation to learn such

behavioral models. Finally, for addressing field evaluation in real-

world problems, we discussed two approaches: (i) data from deploy-

ment and (ii) mock attacker team.

While the deployed game-theoretic applications have provided a

promising start, significant amount of research remains to be done.

In particular, cybersecurity provides challenges and opportunities in

modeling multiple agents interacting in the extremely complicated

cyber world. These are large-scale interdisciplinary research chal-

lenges that call upon multiagent researchers to work with re-

searchers in other disciplines, be “on the ground” with domain

experts and examine real-world constraints and challenges that can-

not be abstracted away.
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