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ABSTRACT 

Game theoretic algorithms have been used to optimize the 

allocation of security resources to improve the protection of critical 

infrastructure against threats when limits on security resources 

prevent full protection of all targets. Past approaches have assumed 

adversaries will always behave to maximize their expected utility, 

failing to address real-world adversaries who are not perfectly 

rational. Instead, adversaries may be boundedly rational, i.e., they 

generally act to increase their expected value but do not 

consistently maximize it. A successful approach to addressing 

bounded adversary rationality has been a robust approach that does 

not explicitly model adversary behavior. However, these robust 

algorithms implicitly rely on an efficiently computable weak model 

of adversary behavior, which does not necessarily match adversary 

behavior trends. We therefore propose a new robust algorithm that 

provides a more refined model of adversary behavior that retains 

the advantage of efficient computation. We also develop an 

ensemble method used to tune the algorithm’s parameters, and 

compare this method’s accuracy in predicting adversary behavior 

to previous work. We test these contributions in security games 

against human subjects to show the advantages of our approach.  
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General Terms 

Algorithms, Security 

Keywords 

Game theory, Robust Optimization, Security, Uncertainty 

1. INTRODUCTION 
Many security situations can be modeled by Stackelberg games in 

which one player, the leader, commits to a mixed strategy and 

adversaries, the followers, respond knowing the leader’s strategy 

[4]. Game theoretic algorithms allow limited resources to be 

randomly planned and scheduled accounting for the different 

values associated with attacks on different targets and for the 

predicted adversary response. This approach has been used to 

develop many algorithms, including algorithms deployed for many 

years to allocate security resources for LAX, several major US 

ports and transit systems, the Federal Air Marshals, and various 

sustainability schemes for preventing environmental crime  [13].   

Many currently deployed algorithms, such as DOBSS [9] and 

ASPEN [13], generate an expected-utility-maximizing solution 

assuming that adversaries are perfectly rational, always seeking to 

maximize their expected reward. However, the assumption of 

perfect adversary rationality is not ideal, as substantial evidence has 

suggested the bounded rationality of human adversaries where 

human adversaries do not consistently make expected utility-

maximizing choices [3, 14]. Two general conceptual approaches 

seek to address bounded adversary rationality. The first is to begin 

with a detailed model of adversary behavior and build an algorithm 

that exploits this model, as in [15, 16]. The second is a robust 

approach that has an implicit model of adversary behavior, as in [5, 

10, 11]. While the question of which approach is stronger has not 

been settled, we focus on this second approach because it has a few 

advantages over the alternate approach: (1) it is more robust to 

potential inaccuracies within the model of adversary behavior since 

it uses milder modeling assumptions than the strict modeling 

assumptions of the other approach; and (2) these algorithms tend to 

have significantly faster runtimes.  

The most effective robust approach to date has been the MATCH 

algorithm [11] based on robust optimization [1], and research has 

found MATCH to be highly effective when tested against human 

adversaries [11]. By coupling the performance of the attacker and 

defender, it guards against the possibility of large losses to the 

defender. However, MATCH has some important limitations that 

this study seeks to address. The model implicit in MATCH is a 

weak model of adversary behavior that fits our data poorly. Also, 

while MATCH prevents large disproportionate losses to the 

defender, it leaves open the possibility of large losses to the 

defender resulting from poor attacker choices, which may be an 

unacceptable outcome. We propose a new algorithm, RADAR, that 

attempts to correct these problems by using a refined model of 

adversary behavior.  

We also test RADAR against MATCH in an online game against 

human adversaries, an approach that has been used in many 

previous studies to test other algorithms using the same framework 

[8, 11, 15]. We find that RADAR generally performs better than 

MATCH.  

2. BACKGROUND AND RELATED WORK 
Previous game-theoretic approaches, including currently deployed 

approaches such as DOBSS [9] and ASPEN [13] and other research 

into game theoretic algorithms for security [2, 6], assume that 

adversaries choose the strategy that maximizes their expected 

utility. Real-world adversaries often choose sub-optimal strategies, 

causing these approaches to perform poorly in tests against human 

adversaries in non-zero sum Stackelberg games [15]. 

To date, two approaches have been developed to address the 

bounded rationality of human adversaries. One is to begin with a 

model of adversary behavior and craft a response to that model. 

Algorithms using this approach are less robust, since the model may 

not accurately predict how adversaries will actually behave. 

Moreover, since the models these algorithms are based on are often 

nonlinear, they lead to optimization problems for the defender that 

are nonlinear and non-convex, which are difficult to solve and have 

very large runtimes. For example, this is the case with one of the 

most successful model-based approaches based on the Quantal 

Response model [16].  



MATCH [11], an algorithm based on robust optimization, was 

developed to address these deficits. Its runtime is shown to be 

significantly smaller than model-based approaches [11]. MATCH’s 

general approach is to maximize the defender’s expected utility 

with a constraint bounding the loss of the defender with regard to 

the loss of the attacker when the attacker deviates from the optimal 

action. We present the Mixed Integer Linear Program (MILP) for 

MATCH below, but first, we define our problem space, using the 

same notation as [11].  

The defending force has K resources to assign to a mixed strategy 

for protecting a set of targets 𝑡1, 𝑡2, … 𝑡𝑛 ∈ 𝑇. Each target ti has a 

reward 𝑅𝑖
𝑎 for the attacker and 𝑃𝑖

𝑑 penalty for the defender if the 

target is attacked when unprotected, and has a penalty 𝑃𝑖
𝑎 for the 

attacker and reward 𝑅𝑖
𝑑 for the defender if the target is attacked 

when protected. The defender’s strategy x is set of probabilities, 

where xi is the probability that target ti is protected at a given time. 

The attacker’s strategy is given by 𝑞 ∈ {1, … , 𝑛}, and represents the 

single target the attack chooses to attack. 𝑈𝑑(𝑖, 𝑥) represents the 

expected utility for the defender of an attack on target i given 

strategy x, which can be calculated by 𝑥𝑖𝑅𝑖
𝑑 + (1 − 𝑥𝑖)𝑃𝑖

𝑑. 

Likewise, 𝑈𝑎(𝑖, 𝑥) represents the expected utility for the attacker 

of an attack on target i, calculated by (1 − 𝑥𝑖)𝑅𝑖
𝑎 + 𝑥𝑖𝑃𝑖

𝑎.  

MATCH can be represented as the following MILP [11]: 

max 𝛾 
 

s.t. ∑ 𝑥𝑖

𝑖∈𝑇

= 𝛫 
(1) 

 0 ≤ 𝑥𝑖 ≤ 1 (2) 

 𝑞 =  arg max  𝑈𝑎(�̂�, 𝑥)

�̂� ∈ {1, … , 𝑛}
 

(3) 

 𝛾 ≤ 𝑈𝑑(𝑞, 𝑥) (4) 

 𝛽 ·  (𝑈𝑎(𝑞, 𝑥) −  𝑈𝑎(�̂�, 𝑥)) ≥

 𝛾 – 𝑈𝑑(�̂�, 𝑥) ∀ 𝑥�̂�   

(5) 

Overall, MATCH attempts to maximize the defender’s expected 

utility, given by 𝛾. Constraints (1) and (2) ensure that the defender 

uses all her resources and that the probability each target is 

protected is between zero and one. Constraint (3) sets q as the target 

that maximizes the attacker’s expected utility. Constraint (4) 

requires the defender to maximize her expected utility of the 

attacker’s optimal target choice. Finally, the key constraint (5) 

bounds the loss of the defender with respect to the loss of the 

attacker. The left side calculates the loss in expected utility 

resulting from the attacker deviating from the optimal target. The 

right side calculates the loss in expected utility for the defender 

resulting from this same deviation. The loss in expected utility to 

the defender is constrained to be no more than 𝛽 times the loss to 

the attacker. 

MATCH’s strength is that it addresses bounded adversary 

rationality using a more robust approach than relying on an explicit 

model of adversary behavior. MATCH constrains the loss to the 

defender when the attacker deviates from the optimal by adding a 

lower bound on the expected utility for the defender of sub-optimal 

targets. Therefore, even when adversaries select sub-optimal 

targets, the defender will not suffer a very large loss in expected 

utility. 

MATCH implicitly assumes a model of adversary behavior in 

which the frequency with which a target is attacked has a linear 

relationship with the expected utility of the target. A large deviation 

by the attacker from the optimal choice will also lead to large losses 

to the defender, which MATCH accepts because it assumes larger 

deviations are less likely; it performs well if the size of the 

deviation relates to the frequency of that deviation. Since the loss 

to the defender correlates in a linear fashion with the size of the 

deviation by the attacker, MATCH implicitly assumes the 

likelihood of a deviation should correlate in a linear fashion with 

the size of that deviation.  

3. RADAR ALGORITHM 

3.1 Key Insights into RADAR 
This study proposes RADAR (Risk-Averse Defense against 

bounded Adversary Rationality), an algorithm based on a 

modification of MATCH. MATCH has a constant ratio of expected 

utility sacrificed by the defender to expected utility sacrificed by 

the attacker, whereas in RADAR, this ratio decreases with greater 

attacker sacrifices. This results in a risk-averse strategy since it 

limits the risk that large attacker sacrifices result in large defender 

losses. 

One potential problem with MATCH is that as adversaries select 

increasingly sub-optimal targets, the defender will receive 

increasingly sub-optimal outcomes. While MATCH prevents large 

disproportionate losses resulting from small deviations by the 

attacker from their optimal choice, it still allows for the possibility 

of a poor attacker choice resulting in a large loss to the defender. 

Such large losses may be an unacceptable outcome. As security 

agencies are typically risk-averse [12], larger losses may be seen as 

disproportionately worth avoiding. An algorithm that generates 

strategies consistent with this preference for avoiding large risks, 

such as RADAR, may thus be desirable. 

Second, the assumption of a linear relationship between a target’s 

expected utility and its likelihood of being attacked does not fit our 

experimental data, where we test defender strategies in security 

games against human subject. In Figure 1, each data point 

represents one target in one game. The x-axis represents expected 

utility, and the y-axis represents frequency, or the number of times 

a target was selected for attack.  Since expected utilities differ 

across different games, we normalize each expected utility between 

-1 to 1 by dividing the expected utility of a target by the highest 

expected utility in that game. The frequency of attack is expressed 

as a percentage by dividing the number of users selecting it for 

attack by the total number of users, i.e., we normalize each point 

between 0 to 1. We gathered 200 data points from 82 human 

subjects. Our experimental setup is explained in further detail in 

section 5. 

 

Figure 1. Best fit lines for attack data 
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The solid line in Figure 1 represents the single best fit line. MATCH 

assumes that because there is a consistent linear relationship 

between expected utility and frequency, one line should best fit this 

graph. However, we find that using three best fit lines for each third 

of the graph, shown as the dotted lines on the graph, better fits the 

data. These three lines have significantly different slopes: the first 

line has a slope of -0.015, the second has a slope of 0.193, and the 

third has a slope of 0.660. Using three best fit lines has a stronger 

correlation with the data, with a correlation coefficient of 0.6683 

compared to the single line’s coefficient of 0.6188. This finding is 

statistically significant (p < 0.05). 

3.2 MILP 
Based on this analysis, we introduce RADAR. Constraints (5b) 

through (7) further limit the potential for large losses resulting from 

sub-optimal adversary choices, resulting in a risk-averse strategy. 

The MILP for RADAR is shown below: 

max 
𝑥, 𝛾, 𝑞

 𝛾 
 

s.t. ∑ 𝑥𝑖

𝑖∈𝑇

= 𝛫 
(1) 

 0 ≤ 𝑥𝑖 ≤ 1 (2) 

 𝑞 =  arg max  𝑈𝑎(�̂�, 𝑥)

�̂� ∈ {1, … , 𝑛}
 

(3) 

 𝛾 ≤ 𝑈𝑑(𝑞, 𝑥) (4) 

 𝛾 − 𝑈𝑑(�̂�, 𝑥)

≤ 𝛽1  ∙ (𝑈𝑎(𝑞, 𝑥)– 𝑈𝑎(�̂�, 𝑥)) + 𝑚1 ∀�̂� 

(5a) 

 𝛾 − 𝑈𝑑(�̂�, 𝑥)

≤ 𝛽2  ∙ (𝑈𝑎(𝑞, 𝑥)– 𝑈𝑎(�̂�, 𝑥)) + 𝑚2 ∀�̂� 

(5b) 

 …  

 𝛾 − 𝑈𝑑(�̂�, 𝑥)

≤ 𝛽𝑘  ∙ (𝑈𝑎(𝑞, 𝑥)– 𝑈𝑎(�̂�, 𝑥)) + 𝑚𝑘  ∀�̂� 

(5c) 

 𝛽𝑘 < 𝛽𝑘−1 ∀ 𝑘 (6) 

 𝑚𝑘 > 𝑚𝑘−1 ∀ 𝑘 (7) 

Constraints (1) through (4) serve the same functions in RADAR as 

they do in MATCH. Constraint (5) constrains the defender’s losses 

in the same way MATCH does, with β controlling the ratio of the 

defender’s loss to the attacker’s loss. However, since each 

additional constraint within line (5) has a greater value of 𝑚𝑘 and 

a smaller value of 𝛽𝑘 than the previous constraint, the losses to the 

defender are constrained to decreasing values as the attacker 

deviates further from his optimal strategy.  

The constraints in (5) can be displayed in the form of a graph. In 

Figure 2, the x-axis represents the potential difference in expected 

value for the attacker between the attacker’s optimal target choice 

and chosen target, and the y-axis represents the same difference in 

expected value for the defender. The slopes and intercepts in the 

inequalities represent a possible set of 𝑚𝑘 and 𝛽𝑘 values for a 

version of RADAR. The loss for the defender relative to the loss 

for the attacker is bounded to the region at the bottom of the graph, 

the intersection of all the inequalities. 

  

Figure 2. Graph of equations in constraint 5 for RADAR  

In this figure, if the attacker loses one unit of expected utility by 

selecting a sub-optimal target, both MATCH and RADAR will 

ensure that this selection will be up to one unit away from the 

optimal for the defender, marked as point A in the graph (if 𝛽 and 

𝛽1 = 1). If the attacker’s choice deviates two units from the optimal, 

then a defender using MATCH will lose two units of expected 

utility as well, while RADAR will lose only 1.5 points, marked as 

point B in the graph.  

In all forms of RADAR in this paper, we used four constraints 

within constraint (5) of RADAR, with four values of 𝛽𝑘 and 𝑚𝑘.  

4. TUNING AND WEIGHTING 

ALGORITHMS 
In both MATCH and RADAR, the parameters 𝛽 in MATCH and 

(𝛽𝑘, mk) in RADAR are key pre-determined values controlling the 

loss of the defender. Therefore, it is important to tune these 

parameters effectively to obtain a better patrolling strategy for the 

defender. In this section, we first introduce the adaptation of an 

iterative program originally used to tune MATCH to RADAR. We 

then propose an ensemble model of adversary behavior to make 

more accurate behavioral predictions. 

4.1 Tuning Program 
We develop an iterative tuning program to tune RADAR. This 

program is adapted from a program used to tune MATCH [8], and 

can be represented as below: 

Initialize 𝛾∗  ←  −𝑍 (1) 

Iterate through values of 𝛽1…𝑘, 𝑚1…𝑘 (2) 

        𝑥 ← 𝑅𝐴𝐷𝐴𝑅(𝛽1…𝑘 , 𝑚1…𝑘) (3) 

        𝛾 ← ∑ 𝑈𝑑(𝑖, 𝑥) ∙ 𝑃𝑗,𝑖𝑖∈𝑇  (4) 

        If 𝛾 ≥ 𝛾∗: (5) 

            𝛾∗ ←  𝛾,  𝛽1…𝑘
∗ ← 𝛽1…𝑘, 𝑚1…𝑘

∗ ← 𝑚1…𝑘 (6) 

Return 𝛽1…𝑘
∗ , 𝑚1…𝑘

∗ , 𝛾∗ (7) 

The program uniformly generates a set of N samples for each 

parameter 𝛽1…𝑘 and 𝑚1…𝑘 within a range, and then iterates through 

each sampled value for each parameter to find the best combination 

of parameters. Specifically, Line 1 initializes the value of � (the 

final expected utility for the defender) at a very large negative 

number, -Z. Line (2) iterates through values of 𝛽1…𝑘 and 𝑚1…𝑘 (for 

example, by using a set of nested for loops). Line (3) uses the 

current parameter values to generate a protection strategy x using 

RADAR, and line (4) uses this protection strategy to determine the 

Loss for Attacker 

Lo
ss

 f
o

r 
D

e
fe

n
d

er
 

A 

B 



defender’s expected utility for each target, and to generate a 

prediction of adversary behavior P using a model of adversary 

behavior j, e.g., SUQR [8], explained in section 5.3. 𝑃𝑗,𝑖 refers to 

the predicted likelihood of a target i being attacked, which comes 

from the model of human behavior. In line (6), the defender’s total 

expected utility is computed given x under the assumption that the 

attacker responds stochastically according to the human behavior 

model j. This process is repeated for each parameter value 

combination, and the output of the program in line (7) is the set of 

parameter values that generates the highest defender expected 

utility. 

4.2 Ensemble Model 
The tuning program in section 4.1 requires a model of adversary 

behavior to generate a prediction of which targets adversaries may 

choose to attack. The more accurate these models are, the better the 

tuned algorithms will perform against human adversaries. The 

following ensemble model of adversary behavior replaces the 

single model j used in the section above. 

The ensemble model is used as a heuristic to tune RADAR’s 

parameter set, but is not used in the algorithm itself. We favor this 

approach because using the ensemble model mitigates the risk of a 

single model being flawed by including several models, whereas a 

single model is not robust to this risk. However, using a model of 

adversary behavior in the algorithm itself greatly slows the 

algorithm’s runtimes (as shown in the Introduction section), which 

is an especially severe problem given that the ensemble model’s 

uses several models of adversary behavior is therefore more 

complex.  

The following algorithm allows multiple models to be combined 

into weighted average prediction (ensemble modeling of adversary 

behavior), replacing the use of a single model in the original tuning 

program. The algorithm multiplies the prediction made by each 

model by a certain value less than one (a “weight”), where the sum 

of all the weights is one. These products are summed to generate a 

final prediction. The algorithm, shown below, optimizes these 

weights such that the final prediction matches as closely as possible 

the actual behavior of attackers.  

In the following algorithm, 𝑃𝑓 corresponds to the final prediction, 

𝑤𝑗  refers to the weight corresponding to a model j, and 𝐷 refers to 

the adversary behavior from actual data. The predictions, {𝑃𝑗,𝑖}, are 

a set of probabilities denoting the probability each target is 

attacked, while the data, {𝐷𝑖} are a set of percentages denoting how 

many times each target is attacked. 

min
𝑤

 ∑ 𝐺𝑖

𝑖∈𝑇

 
 

s.t. 𝐺𝑖 ≥ 𝑃𝑓,𝑖 − 𝐷𝑖   ∀𝑖  (1) 

 𝐺𝑖 ≥ −(𝑃𝑓,𝑖 − 𝐷𝑖) ∀𝑖 (2) 

 𝑃𝑓,𝑖 = ∑ 𝑤𝑗𝑃𝑗,𝑖  ∀𝑖

𝑗

 
(3) 

 ∑ 𝑤𝑗

𝑗

= 1 
(4) 

Constraints (1) and (2) replace the use of an absolute value, which 

cannot be used in a linear program, and define Gi as the 1-norm 

distance between the final prediction Pf and the actual data D. The 

algorithm minimizes G by adjusting the values of 𝑤𝑗  to bring 𝑃𝑓,𝑖 

closer to 𝐷𝑖. The output is an optimal value for each weight, and an 

optimal final prediction. The final prediction is used to replace the 

prediction 𝑃𝑗 in the tuning program in section 4.1. This ensemble 

method is used in the tuning programs for both MATCH and 

RADAR for the sake of consistency. 

We used four models of adversary behavior in the ensemble model: 

Quantal Response (QR), Subjective Utility Quantal Response 

(SUQR), a uniform attack distribution (Uniform), and a perfectly 

rational adversary (Rational Adversary), all of which are explained 

in section 5.3.  

We argue that the ensemble model has two advantages over any 

singular model. First, it is more robust to inaccuracies of a single 

model. If one model in the ensemble approach happens to fit the 

data poorly, the incorporation of additional models will mitigate the 

impact of this inaccuracy. Second, the ensemble model can be no 

worse than any single model. Even if a single model were to fit the 

test set better than any combination of models, the output of the 

ensemble model would assign a weight of 1 to that single model. 

5. EXPERIMENTS 

5.1 Format of Experiments 
The algorithms were tested in an online game, in the same format 

as [8, 11, 15]. In all the experiments, the defending force used three 

guards to protect eight gates. A screenshot of the game interface is 

shown in Figure 3. 

 

Figure 3. Screenshot of game interface.  

As shown in Figure 3, each human subject, playing the role of the 

attacker in the security game, chooses one gate in each game, with 

full information about the rewards and penalties associated with an 

attack on each gate. Subjects also know the probability of each gate 

being protected, but do not know which gates will be protected at a 

given time.   

Before playing, subjects were given a brief tutorial and a practice 

round to ensure they understood the game. The experiments were 

run in Amazon Mechanical Turk with a payment of US $1.50 for 

playing. Subjects received an additional $.10 for each “point” of 

reward earned. Two “dummy” games with obvious answers were 

included (ie, the gate with the highest reward and lowest penalty 

had the lowest probability of being protected), and if subjects did 

not select the obvious answers their results were not counted. 

Subjects were informed that results from only some of their games 

would count towards their payment to incentivize them to play their 

best in all the games. 

Since the weighting algorithm requires some data to learn the 

weights for the different models, we conducted our experiments in 

two batches, a training data set and a test set. In both sets, we used 



four reward structures from a previous study [15] that found these 

structures to be representative of a larger group of reward 

structures. In the training set, we compared versions of RADAR 

and MATCH whose parameter values were determined without 

tuning, i.e., by hand. Our training set includes data from 39 subjects 

who each played 12 games each in the training set, using 3 reward 

structures1 with 4 algorithms, DOBSS, MATCH with β =1, and 2 

parameter sets of RADAR2.  

The data from the training set was used in the weighting and tuning 

algorithms to generate a tuned version of RADAR and MATCH. 

The test set of experiments included the tuned and untuned versions 

of MATCH and RADAR, and DOBSS. 43 subjects played 20 

games each (4 reward structures with 5 algorithms) in the test set. 

The training and test sets had an entirely different subject pool. 

In the following sections, we compare the performance of each 

algorithm against human adversaries, then provide findings 

regarding the ensemble model. 

5.2 Algorithm Results 
We present our results in four sets of pairwise comparisons between 

RADAR and each other algorithm. In each of the following graphs, 

the x-axis represents an algorithm’s performance, measured by the 

defender’s expected utility obtained by different algorithms given 

the subjects’ responses. On the y-axis, each pair of bars represents 

the results from one game. 

 

Figure 4. Bar graph comparing performance of RADAR-

tuned vs DOBSS 

 

Figure 5. RADAR-tuned vs RADAR-untuned 

                                                                 

1 We omitted the fourth reward structure in the training set since 

the strategies generated by each untuned algorithm were very 

similar. In the test set, the tuned algorithms generated different 

strategies. 

 

Figure 6. RADAR-tuned vs MATCH-tuned 

 

Figure 7. RADAR-tuned vs MATCH-untuned 

We note several key findings. First, as shown in Figure 4, 

RADAR-tuned outperforms DOBSS by a very large margin in all 

four games. Since DOBSS’ approach represents a common 

assumption of adversary rationality also found in some recent 

algorithms, RADAR’s better performance over DOBSS is an 

important finding. Second, as shown in Figure 5, tuning RADAR 

causes it to perform better in 3 of 4 games. This shows that the 

process of tuning RADAR is an important step to improve its 

performance. Third, in Figure 6, RADAR-tuned outperforms 

MATCH-tuned in all four games.  

Figure 7, where RADAR-tuned is compared to MATCH-untuned, 

is the only instance where RADAR-tuned does not perform the 

best in at least three games. Here, RADAR-tuned performs better 

in games 1 and 4, and there is no statistically significant 

difference in game 2. While MATCH performs better in game 3, 

the fact that tuning both algorithms made them perform worse in 

this game casts doubt on this finding. Since the tuning process 

was calibrated using past data, subjects in the training set may 

have played game 3 different than subjects in the test set, skewing 

the results. Interestingly, MATCH suffers more from tuning in 

this game than RADAR does, i.e. the difference between 

MATCH-tuned and MATCH-untuned is larger than the difference 

between RADAR-tuned and RADAR-untuned, which provides 

evidence of RADAR’s robustness. Based on these results, we can 

conclude there are some reward structures for which RADAR is 

the superior algorithm to both the tuned and untuned versions of 

MATCH. 

5.3 Weighting Algorithm Results 
In this section, we explain why the tuned version of RADAR 

performed better than the untuned version: the ensemble model 

used to tune it predicted adversary behavior well. 

2 Both versions set 𝛽1, 𝛽2, 𝛽3, and 𝛽4 to 1, 0.5, 0.25, and 0.125. In 

one version, 𝑚1, 𝑚2, 𝑚3, and 𝑚4 are 0, 0.5, 1, and 3.75; and in 

the other, 𝑚1, 𝑚2, 𝑚3, and 𝑚4 are 0, 0.875, 1.75, and 2.40625. 
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We use four models of adversary behavior: Quantal Response 

(QR), Subjective Utility Quantal Response (SUQR), a uniform 

attack distribution (Uniform), and a perfectly rational adversary 

that attacks only the optimal target (Rational Adversary). QR 

makes predictions consistent with the trend that targets with a 

higher expected utility are more likely to be attacked. SUQR is 

based on QR, but replaces the expected utility function with a 

heuristic it assumes humans use in place of calculating expected 

utilities. For a more detailed discussion of QR, see [7], and for a 

detailed discussion of SUQR, see [8]. Using the data from the 

training set of experiments, the weighting program generated a set 

of weights used in the ensemble model, which generated 

predictions of adversary behavior. These predictions are compared 

to the predictions made by each model individually by their fit with 

the actual data.  

In Figure 8, predictions made by the ensemble model were 

compared to the predictions of other models in two ways: first, by 

how well they fit the training set, and second, by how well they fit 

the test set. On the y-axis, the models’ accuracies are expressed as 

the average 1-norm distance between each model’s prediction and 

the actual data, then normalized between 0 and 1 by dividing it by 

the highest possible 1-norm distance.  

 

Figure 8. Comparison Between Accuracy of the Ensemble 

Model and Other Models 

In the figure, the ensemble model’s predictions match the 

adversary’s behavior more closely than any other model with 

statistical significance. We additionally note that the ensemble 

model is more robust when the test data varies from the training 

data. In Figure 8, QR fits the training set best, whereas SUQR fits 

the test set best. Selecting QR as the single model based on its 

performance in the training set would have failed to fit the test set 

accurately, whereas the ensemble model fits both data sets well. 

These findings, in addition to the ensemble method’s two general 

advantages shown in section 4.2, are a strong indication that the 

ensemble model is an effective method to predict human behavior. 

6. CONCLUSIONS 
Game theoretic algorithms have been used to improve the 

protection of critical infrastructure against threats, but many 

algorithms assume perfect adversary rationality. A leading robust 

approach to addressing imperfect human decision-making, 

MATCH, has been successful in experimental evaluation. 

Unfortunately, MATCH implicitly relies on a weak model of 

adversary behavior, which should be refined to fit our data more 

closely. Our new robust algorithm, RADAR, provides a refined 

model of adversary behavior, and plays a more risk-averse strategy 

than MATCH, which may be desirable for risk-averse security 

agencies. We also develop an ensemble method to predict human 

behavior and use this method to tune the parameters in MATCH 

and RADAR. We test these contributions in human subjects 

experiments, and find that RADAR performs as well or better than 

MATCH in three of four games. RADAR also consistently 

outperforms an algorithm assuming perfect adversary rationality. 

We also find that our ensemble modeling approach predicts 

adversary behavior significantly more accurately than alternative 

models of adversary behavior, highlighting the advantages of using 

such an approach. 

7. ACKNOWLEDGEMENTS 
Thanh Nguyen is supported by MURI Grant W911NF-11-1-0332. 

8. REFERENCES 
[1] Aghassi, M., and Bertsimas, D. Robust game theory. Math 

Program, 107 (1-2), 231–273. 

[2] Basiloco, N., Gatti, N., and Amigoni, F. Leader-follower 

strategies for robotic patrolling in environments with 

arbitrary topologies. in AAMAS, (2009). 

[3] Camerer, C. Behavioral Game Theory: Experiments in 

Strategic Interaction. Princeton University Press, Princeton, 

2003. 

[4] Conitzer, V. 2012. Computing Game-Theoretic Solutions 

and Applications to Security. in Twenty-Sixth AAAI 

Conference, (2012), Association for the Advancement of 

Artificial Intelligence. 

[5] Jiang, A., Nguyen, T., Tambe, M., Procaccia, A. Monotonic 

Maximin: A Robust Stackelberg Solution Against Boundedly 

Rational Followers. In GameSec 2013.  

[6] Letchford, J., and Vorobeychik, Y. Computing randomized 

security strategies in networked domains. in AARM 

Workshop in AAAI (2011). 

[7] McKelvey, R. and Palfrey, T. Quantal response equilibria for 

normal form games. Games and economic behavior, 10 (1). 

6-38. 

[8] Nguyen, T., Yang, R., Azaria, A., Kraus, S., and Tambe, M. 

Analyzing the Effectiveness of Adversary Modeling in 

Security Games. in AAAI 2013. 

[9] Paruchuri, P., Pearce, J., Marecki, J., Tambe, M., Ordonez, 

F., and Kraus, S. Playing Games for Security: An Efficient 

Exact Algorithm for Solving Bayesian Stackelberg Games. in 

AAMAS 2008, 895-902. 

[10] Pita, J., Jain, M., Tambe, M., Ordonez, F., and Kraus, S. 

Robust solutions to stackelberg games: Addressing bounded 

rationality and limited observations in human cognition. 

Artificial Intelligence Journal, 174 (15), 1142–1171. 

[11] Pita, J., John, R., Maheswaran, R., Tambe, M., and Kraus, S. 

A Robust Approach to Addressing Human Adversaries in 

Security Games. in 20th European Conference on Artificial 

Intelligence, (2012). 

[12] Stewart, M., and Mueller, J. Aviation Security, Risk 

Assessment, and Risk Aversion for Public Decisionmaking. 

Journal of Policy Analysis and Management, 32 (3). 615-

633. 

[13] Tambe, M. Security and Game Theory: Algorithms, 

Deployed Systems, Lessons Learned. Cambridge University 

Press, 2011. 

[14] Wright, J. R., and Leyton-Brown, K. Beyond equilibrium: 

Predicting human behavior in normal-form games. in AAAI, 

(2010). 

[15] Yang, R., Kiekintveld, C., and Ordonez, F. Improving 

Resource Allocation Strategies Against Human Adversaries 

0

0.2

0.4

0.6

0.8

1

Fits Training Set Fits Test Set

Ensemble Model

QR

SUQR

Uniform

Rational
Adversary



in Security Games: An Extended Study. Artificial 

Intelligence, 195. 440-469. 

[16] Yang, R., Ordonez, F., and Tambe, M. Computing Optimal 

Strategy against Quantal Response in Security Games. in 

AAMAS (2012). 

 


