
Robust Resource Allocation in Security Games and
Ensemble Modeling of Adversary Behavior

Arjun Tambe
University of Southern California

941 Bloom Walk,
Los Angeles, CA 90089-0781

arjuntambe@yahoo.com

Thanh Nguyen
University of Southern California

941 Bloom Walk,
Los Angeles, CA 90089-0781

thanhhng@usc.edu

ABSTRACT

Game theoretic algorithms have been used to optimize the

allocation of security resources to improve the protection of critical

infrastructure against threats when limits on security resources

prevent full protection of all targets. Past approaches have assumed

adversaries will always behave to maximize their expected utility,

failing to address real-world adversaries who are not perfectly

rational. Instead, adversaries may be boundedly rational, i.e., they

generally act to increase their expected value but do not

consistently maximize it. A successful approach to addressing

bounded adversary rationality has been a robust approach that does

not explicitly model adversary behavior. However, these robust

algorithms implicitly rely on an efficiently computable weak model

of adversary behavior, which does not necessarily match adversary

behavior trends. We therefore propose a new robust algorithm that

provides a more refined model of adversary behavior that retains

the advantage of efficient computation. We also develop an

ensemble method used to tune the algorithm’s parameters, and

compare this method’s accuracy in predicting adversary behavior

to previous work. We test these contributions in security games

against human subjects to show the advantages of our approach.

Categories and Subject Descriptors

H.4 [Computing Methodology]: Game Theory

General Terms

Algorithms, Security

Keywords

Game theory, Robust Optimization, Security, Uncertainty

1. INTRODUCTION
Many security situations can be modeled by Stackelberg games in

which one player, the leader, commits to a mixed strategy and

adversaries, the followers, respond knowing the leader’s strategy

[4]. Game theoretic algorithms allow limited resources to be

randomly planned and scheduled accounting for the different

values associated with attacks on different targets and for the

predicted adversary response. This approach has been used to

develop many algorithms, including algorithms deployed for many

years to allocate security resources for LAX, several major US

ports and transit systems, the Federal Air Marshals, and various

sustainability schemes for preventing environmental crime [13].

Many currently deployed algorithms, such as DOBSS [9] and

ASPEN [13], generate an expected-utility-maximizing solution

assuming that adversaries are perfectly rational, always seeking to

maximize their expected reward. However, the assumption of

perfect adversary rationality is not ideal, as substantial evidence has

suggested the bounded rationality of human adversaries where

human adversaries do not consistently make expected utility-

maximizing choices [3, 14]. Two general conceptual approaches

seek to address bounded adversary rationality. The first is to begin

with a detailed model of adversary behavior and build an algorithm

that exploits this model, as in [15, 16]. The second is a robust

approach that has an implicit model of adversary behavior, as in [5,

10, 11]. While the question of which approach is stronger has not

been settled, we focus on this second approach because it has a few

advantages over the alternate approach: (1) it is more robust to

potential inaccuracies within the model of adversary behavior since

it uses milder modeling assumptions than the strict modeling

assumptions of the other approach; and (2) these algorithms tend to

have significantly faster runtimes.

The most effective robust approach to date has been the MATCH

algorithm [11] based on robust optimization [1], and research has

found MATCH to be highly effective when tested against human

adversaries [11]. By coupling the performance of the attacker and

defender, it guards against the possibility of large losses to the

defender. However, MATCH has some important limitations that

this study seeks to address. The model implicit in MATCH is a

weak model of adversary behavior that fits our data poorly. Also,

while MATCH prevents large disproportionate losses to the

defender, it leaves open the possibility of large losses to the

defender resulting from poor attacker choices, which may be an

unacceptable outcome. We propose a new algorithm, RADAR, that

attempts to correct these problems by using a refined model of

adversary behavior.

We also test RADAR against MATCH in an online game against

human adversaries, an approach that has been used in many

previous studies to test other algorithms using the same framework

[8, 11, 15]. We find that RADAR generally performs better than

MATCH.

2. BACKGROUND AND RELATED WORK
Previous game-theoretic approaches, including currently deployed

approaches such as DOBSS [9] and ASPEN [13] and other research

into game theoretic algorithms for security [2, 6], assume that

adversaries choose the strategy that maximizes their expected

utility. Real-world adversaries often choose sub-optimal strategies,

causing these approaches to perform poorly in tests against human

adversaries in non-zero sum Stackelberg games [15].

To date, two approaches have been developed to address the

bounded rationality of human adversaries. One is to begin with a

model of adversary behavior and craft a response to that model.

Algorithms using this approach are less robust, since the model may

not accurately predict how adversaries will actually behave.

Moreover, since the models these algorithms are based on are often

nonlinear, they lead to optimization problems for the defender that

are nonlinear and non-convex, which are difficult to solve and have

very large runtimes. For example, this is the case with one of the

most successful model-based approaches based on the Quantal

Response model [16].

MATCH [11], an algorithm based on robust optimization, was

developed to address these deficits. Its runtime is shown to be

significantly smaller than model-based approaches [11]. MATCH’s

general approach is to maximize the defender’s expected utility

with a constraint bounding the loss of the defender with regard to

the loss of the attacker when the attacker deviates from the optimal

action. We present the Mixed Integer Linear Program (MILP) for

MATCH below, but first, we define our problem space, using the

same notation as [11].

The defending force has K resources to assign to a mixed strategy

for protecting a set of targets 𝑡1, 𝑡2, … 𝑡𝑛 ∈ 𝑇. Each target ti has a

reward 𝑅𝑖
𝑎 for the attacker and 𝑃𝑖

𝑑 penalty for the defender if the

target is attacked when unprotected, and has a penalty 𝑃𝑖
𝑎 for the

attacker and reward 𝑅𝑖
𝑑 for the defender if the target is attacked

when protected. The defender’s strategy x is set of probabilities,

where xi is the probability that target ti is protected at a given time.

The attacker’s strategy is given by 𝑞 ∈ {1, … , 𝑛}, and represents the

single target the attack chooses to attack. 𝑈𝑑(𝑖, 𝑥) represents the

expected utility for the defender of an attack on target i given

strategy x, which can be calculated by 𝑥𝑖𝑅𝑖
𝑑 + (1 − 𝑥𝑖)𝑃𝑖

𝑑.

Likewise, 𝑈𝑎(𝑖, 𝑥) represents the expected utility for the attacker

of an attack on target i, calculated by (1 − 𝑥𝑖)𝑅𝑖
𝑎 + 𝑥𝑖𝑃𝑖

𝑎.

MATCH can be represented as the following MILP [11]:

max 𝛾

s.t. ∑ 𝑥𝑖

𝑖∈𝑇

= 𝛫
(1)

 0 ≤ 𝑥𝑖 ≤ 1 (2)

 𝑞 = arg max 𝑈𝑎(�̂�, 𝑥)

�̂� ∈ {1, … , 𝑛}

(3)

 𝛾 ≤ 𝑈𝑑(𝑞, 𝑥) (4)

 𝛽 · (𝑈𝑎(𝑞, 𝑥) − 𝑈𝑎(�̂�, 𝑥)) ≥

 𝛾 – 𝑈𝑑(�̂�, 𝑥) ∀ 𝑥�̂�

(5)

Overall, MATCH attempts to maximize the defender’s expected

utility, given by 𝛾. Constraints (1) and (2) ensure that the defender

uses all her resources and that the probability each target is

protected is between zero and one. Constraint (3) sets q as the target

that maximizes the attacker’s expected utility. Constraint (4)

requires the defender to maximize her expected utility of the

attacker’s optimal target choice. Finally, the key constraint (5)

bounds the loss of the defender with respect to the loss of the

attacker. The left side calculates the loss in expected utility

resulting from the attacker deviating from the optimal target. The

right side calculates the loss in expected utility for the defender

resulting from this same deviation. The loss in expected utility to

the defender is constrained to be no more than 𝛽 times the loss to

the attacker.

MATCH’s strength is that it addresses bounded adversary

rationality using a more robust approach than relying on an explicit

model of adversary behavior. MATCH constrains the loss to the

defender when the attacker deviates from the optimal by adding a

lower bound on the expected utility for the defender of sub-optimal

targets. Therefore, even when adversaries select sub-optimal

targets, the defender will not suffer a very large loss in expected

utility.

MATCH implicitly assumes a model of adversary behavior in

which the frequency with which a target is attacked has a linear

relationship with the expected utility of the target. A large deviation

by the attacker from the optimal choice will also lead to large losses

to the defender, which MATCH accepts because it assumes larger

deviations are less likely; it performs well if the size of the

deviation relates to the frequency of that deviation. Since the loss

to the defender correlates in a linear fashion with the size of the

deviation by the attacker, MATCH implicitly assumes the

likelihood of a deviation should correlate in a linear fashion with

the size of that deviation.

3. RADAR ALGORITHM

3.1 Key Insights into RADAR
This study proposes RADAR (Risk-Averse Defense against

bounded Adversary Rationality), an algorithm based on a

modification of MATCH. MATCH has a constant ratio of expected

utility sacrificed by the defender to expected utility sacrificed by

the attacker, whereas in RADAR, this ratio decreases with greater

attacker sacrifices. This results in a risk-averse strategy since it

limits the risk that large attacker sacrifices result in large defender

losses.

One potential problem with MATCH is that as adversaries select

increasingly sub-optimal targets, the defender will receive

increasingly sub-optimal outcomes. While MATCH prevents large

disproportionate losses resulting from small deviations by the

attacker from their optimal choice, it still allows for the possibility

of a poor attacker choice resulting in a large loss to the defender.

Such large losses may be an unacceptable outcome. As security

agencies are typically risk-averse [12], larger losses may be seen as

disproportionately worth avoiding. An algorithm that generates

strategies consistent with this preference for avoiding large risks,

such as RADAR, may thus be desirable.

Second, the assumption of a linear relationship between a target’s

expected utility and its likelihood of being attacked does not fit our

experimental data, where we test defender strategies in security

games against human subject. In Figure 1, each data point

represents one target in one game. The x-axis represents expected

utility, and the y-axis represents frequency, or the number of times

a target was selected for attack. Since expected utilities differ

across different games, we normalize each expected utility between

-1 to 1 by dividing the expected utility of a target by the highest

expected utility in that game. The frequency of attack is expressed

as a percentage by dividing the number of users selecting it for

attack by the total number of users, i.e., we normalize each point

between 0 to 1. We gathered 200 data points from 82 human

subjects. Our experimental setup is explained in further detail in

section 5.

Figure 1. Best fit lines for attack data

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

-1 -0.5 0 0.5 1

F
re

q
u

e
n

c
y

Expected Utility

The solid line in Figure 1 represents the single best fit line. MATCH

assumes that because there is a consistent linear relationship

between expected utility and frequency, one line should best fit this

graph. However, we find that using three best fit lines for each third

of the graph, shown as the dotted lines on the graph, better fits the

data. These three lines have significantly different slopes: the first

line has a slope of -0.015, the second has a slope of 0.193, and the

third has a slope of 0.660. Using three best fit lines has a stronger

correlation with the data, with a correlation coefficient of 0.6683

compared to the single line’s coefficient of 0.6188. This finding is

statistically significant (p < 0.05).

3.2 MILP
Based on this analysis, we introduce RADAR. Constraints (5b)

through (7) further limit the potential for large losses resulting from

sub-optimal adversary choices, resulting in a risk-averse strategy.

The MILP for RADAR is shown below:

max
𝑥, 𝛾, 𝑞

 𝛾

s.t. ∑ 𝑥𝑖

𝑖∈𝑇

= 𝛫
(1)

 0 ≤ 𝑥𝑖 ≤ 1 (2)

 𝑞 = arg max 𝑈𝑎(�̂�, 𝑥)

�̂� ∈ {1, … , 𝑛}

(3)

 𝛾 ≤ 𝑈𝑑(𝑞, 𝑥) (4)

 𝛾 − 𝑈𝑑(�̂�, 𝑥)

≤ 𝛽1 ∙ (𝑈𝑎(𝑞, 𝑥)– 𝑈𝑎(�̂�, 𝑥)) + 𝑚1 ∀�̂�

(5a)

 𝛾 − 𝑈𝑑(�̂�, 𝑥)

≤ 𝛽2 ∙ (𝑈𝑎(𝑞, 𝑥)– 𝑈𝑎(�̂�, 𝑥)) + 𝑚2 ∀�̂�

(5b)

 …

 𝛾 − 𝑈𝑑(�̂�, 𝑥)

≤ 𝛽𝑘 ∙ (𝑈𝑎(𝑞, 𝑥)– 𝑈𝑎(�̂�, 𝑥)) + 𝑚𝑘 ∀�̂�

(5c)

 𝛽𝑘 < 𝛽𝑘−1 ∀ 𝑘 (6)

 𝑚𝑘 > 𝑚𝑘−1 ∀ 𝑘 (7)

Constraints (1) through (4) serve the same functions in RADAR as

they do in MATCH. Constraint (5) constrains the defender’s losses

in the same way MATCH does, with β controlling the ratio of the

defender’s loss to the attacker’s loss. However, since each

additional constraint within line (5) has a greater value of 𝑚𝑘 and

a smaller value of 𝛽𝑘 than the previous constraint, the losses to the

defender are constrained to decreasing values as the attacker

deviates further from his optimal strategy.

The constraints in (5) can be displayed in the form of a graph. In

Figure 2, the x-axis represents the potential difference in expected

value for the attacker between the attacker’s optimal target choice

and chosen target, and the y-axis represents the same difference in

expected value for the defender. The slopes and intercepts in the

inequalities represent a possible set of 𝑚𝑘 and 𝛽𝑘 values for a

version of RADAR. The loss for the defender relative to the loss

for the attacker is bounded to the region at the bottom of the graph,

the intersection of all the inequalities.

Figure 2. Graph of equations in constraint 5 for RADAR

In this figure, if the attacker loses one unit of expected utility by

selecting a sub-optimal target, both MATCH and RADAR will

ensure that this selection will be up to one unit away from the

optimal for the defender, marked as point A in the graph (if 𝛽 and

𝛽1 = 1). If the attacker’s choice deviates two units from the optimal,

then a defender using MATCH will lose two units of expected

utility as well, while RADAR will lose only 1.5 points, marked as

point B in the graph.

In all forms of RADAR in this paper, we used four constraints

within constraint (5) of RADAR, with four values of 𝛽𝑘 and 𝑚𝑘.

4. TUNING AND WEIGHTING

ALGORITHMS
In both MATCH and RADAR, the parameters 𝛽 in MATCH and

(𝛽𝑘, mk) in RADAR are key pre-determined values controlling the

loss of the defender. Therefore, it is important to tune these

parameters effectively to obtain a better patrolling strategy for the

defender. In this section, we first introduce the adaptation of an

iterative program originally used to tune MATCH to RADAR. We

then propose an ensemble model of adversary behavior to make

more accurate behavioral predictions.

4.1 Tuning Program
We develop an iterative tuning program to tune RADAR. This

program is adapted from a program used to tune MATCH [8], and

can be represented as below:

Initialize 𝛾∗ ← −𝑍 (1)

Iterate through values of 𝛽1…𝑘, 𝑚1…𝑘 (2)

 𝑥 ← 𝑅𝐴𝐷𝐴𝑅(𝛽1…𝑘 , 𝑚1…𝑘) (3)

 𝛾 ← ∑ 𝑈𝑑(𝑖, 𝑥) ∙ 𝑃𝑗,𝑖𝑖∈𝑇 (4)

 If 𝛾 ≥ 𝛾∗: (5)

 𝛾∗ ← 𝛾, 𝛽1…𝑘
∗ ← 𝛽1…𝑘, 𝑚1…𝑘

∗ ← 𝑚1…𝑘 (6)

Return 𝛽1…𝑘
∗ , 𝑚1…𝑘

∗ , 𝛾∗ (7)

The program uniformly generates a set of N samples for each

parameter 𝛽1…𝑘 and 𝑚1…𝑘 within a range, and then iterates through

each sampled value for each parameter to find the best combination

of parameters. Specifically, Line 1 initializes the value of � (the

final expected utility for the defender) at a very large negative

number, -Z. Line (2) iterates through values of 𝛽1…𝑘 and 𝑚1…𝑘 (for

example, by using a set of nested for loops). Line (3) uses the

current parameter values to generate a protection strategy x using

RADAR, and line (4) uses this protection strategy to determine the

Loss for Attacker

Lo
ss

 f
o

r
D

e
fe

n
d

er

A

B

defender’s expected utility for each target, and to generate a

prediction of adversary behavior P using a model of adversary

behavior j, e.g., SUQR [8], explained in section 5.3. 𝑃𝑗,𝑖 refers to

the predicted likelihood of a target i being attacked, which comes

from the model of human behavior. In line (6), the defender’s total

expected utility is computed given x under the assumption that the

attacker responds stochastically according to the human behavior

model j. This process is repeated for each parameter value

combination, and the output of the program in line (7) is the set of

parameter values that generates the highest defender expected

utility.

4.2 Ensemble Model
The tuning program in section 4.1 requires a model of adversary

behavior to generate a prediction of which targets adversaries may

choose to attack. The more accurate these models are, the better the

tuned algorithms will perform against human adversaries. The

following ensemble model of adversary behavior replaces the

single model j used in the section above.

The ensemble model is used as a heuristic to tune RADAR’s

parameter set, but is not used in the algorithm itself. We favor this

approach because using the ensemble model mitigates the risk of a

single model being flawed by including several models, whereas a

single model is not robust to this risk. However, using a model of

adversary behavior in the algorithm itself greatly slows the

algorithm’s runtimes (as shown in the Introduction section), which

is an especially severe problem given that the ensemble model’s

uses several models of adversary behavior is therefore more

complex.

The following algorithm allows multiple models to be combined

into weighted average prediction (ensemble modeling of adversary

behavior), replacing the use of a single model in the original tuning

program. The algorithm multiplies the prediction made by each

model by a certain value less than one (a “weight”), where the sum

of all the weights is one. These products are summed to generate a

final prediction. The algorithm, shown below, optimizes these

weights such that the final prediction matches as closely as possible

the actual behavior of attackers.

In the following algorithm, 𝑃𝑓 corresponds to the final prediction,

𝑤𝑗 refers to the weight corresponding to a model j, and 𝐷 refers to

the adversary behavior from actual data. The predictions, {𝑃𝑗,𝑖}, are

a set of probabilities denoting the probability each target is

attacked, while the data, {𝐷𝑖} are a set of percentages denoting how

many times each target is attacked.

min
𝑤

 ∑ 𝐺𝑖

𝑖∈𝑇

s.t. 𝐺𝑖 ≥ 𝑃𝑓,𝑖 − 𝐷𝑖 ∀𝑖 (1)

 𝐺𝑖 ≥ −(𝑃𝑓,𝑖 − 𝐷𝑖) ∀𝑖 (2)

 𝑃𝑓,𝑖 = ∑ 𝑤𝑗𝑃𝑗,𝑖 ∀𝑖

𝑗

(3)

 ∑ 𝑤𝑗

𝑗

= 1
(4)

Constraints (1) and (2) replace the use of an absolute value, which

cannot be used in a linear program, and define Gi as the 1-norm

distance between the final prediction Pf and the actual data D. The

algorithm minimizes G by adjusting the values of 𝑤𝑗 to bring 𝑃𝑓,𝑖

closer to 𝐷𝑖. The output is an optimal value for each weight, and an

optimal final prediction. The final prediction is used to replace the

prediction 𝑃𝑗 in the tuning program in section 4.1. This ensemble

method is used in the tuning programs for both MATCH and

RADAR for the sake of consistency.

We used four models of adversary behavior in the ensemble model:

Quantal Response (QR), Subjective Utility Quantal Response

(SUQR), a uniform attack distribution (Uniform), and a perfectly

rational adversary (Rational Adversary), all of which are explained

in section 5.3.

We argue that the ensemble model has two advantages over any

singular model. First, it is more robust to inaccuracies of a single

model. If one model in the ensemble approach happens to fit the

data poorly, the incorporation of additional models will mitigate the

impact of this inaccuracy. Second, the ensemble model can be no

worse than any single model. Even if a single model were to fit the

test set better than any combination of models, the output of the

ensemble model would assign a weight of 1 to that single model.

5. EXPERIMENTS

5.1 Format of Experiments
The algorithms were tested in an online game, in the same format

as [8, 11, 15]. In all the experiments, the defending force used three

guards to protect eight gates. A screenshot of the game interface is

shown in Figure 3.

Figure 3. Screenshot of game interface.

As shown in Figure 3, each human subject, playing the role of the

attacker in the security game, chooses one gate in each game, with

full information about the rewards and penalties associated with an

attack on each gate. Subjects also know the probability of each gate

being protected, but do not know which gates will be protected at a

given time.

Before playing, subjects were given a brief tutorial and a practice

round to ensure they understood the game. The experiments were

run in Amazon Mechanical Turk with a payment of US $1.50 for

playing. Subjects received an additional $.10 for each “point” of

reward earned. Two “dummy” games with obvious answers were

included (ie, the gate with the highest reward and lowest penalty

had the lowest probability of being protected), and if subjects did

not select the obvious answers their results were not counted.

Subjects were informed that results from only some of their games

would count towards their payment to incentivize them to play their

best in all the games.

Since the weighting algorithm requires some data to learn the

weights for the different models, we conducted our experiments in

two batches, a training data set and a test set. In both sets, we used

four reward structures from a previous study [15] that found these

structures to be representative of a larger group of reward

structures. In the training set, we compared versions of RADAR

and MATCH whose parameter values were determined without

tuning, i.e., by hand. Our training set includes data from 39 subjects

who each played 12 games each in the training set, using 3 reward

structures1 with 4 algorithms, DOBSS, MATCH with β =1, and 2

parameter sets of RADAR2.

The data from the training set was used in the weighting and tuning

algorithms to generate a tuned version of RADAR and MATCH.

The test set of experiments included the tuned and untuned versions

of MATCH and RADAR, and DOBSS. 43 subjects played 20

games each (4 reward structures with 5 algorithms) in the test set.

The training and test sets had an entirely different subject pool.

In the following sections, we compare the performance of each

algorithm against human adversaries, then provide findings

regarding the ensemble model.

5.2 Algorithm Results
We present our results in four sets of pairwise comparisons between

RADAR and each other algorithm. In each of the following graphs,

the x-axis represents an algorithm’s performance, measured by the

defender’s expected utility obtained by different algorithms given

the subjects’ responses. On the y-axis, each pair of bars represents

the results from one game.

Figure 4. Bar graph comparing performance of RADAR-

tuned vs DOBSS

Figure 5. RADAR-tuned vs RADAR-untuned

1 We omitted the fourth reward structure in the training set since

the strategies generated by each untuned algorithm were very

similar. In the test set, the tuned algorithms generated different

strategies.

Figure 6. RADAR-tuned vs MATCH-tuned

Figure 7. RADAR-tuned vs MATCH-untuned

We note several key findings. First, as shown in Figure 4,

RADAR-tuned outperforms DOBSS by a very large margin in all

four games. Since DOBSS’ approach represents a common

assumption of adversary rationality also found in some recent

algorithms, RADAR’s better performance over DOBSS is an

important finding. Second, as shown in Figure 5, tuning RADAR

causes it to perform better in 3 of 4 games. This shows that the

process of tuning RADAR is an important step to improve its

performance. Third, in Figure 6, RADAR-tuned outperforms

MATCH-tuned in all four games.

Figure 7, where RADAR-tuned is compared to MATCH-untuned,

is the only instance where RADAR-tuned does not perform the

best in at least three games. Here, RADAR-tuned performs better

in games 1 and 4, and there is no statistically significant

difference in game 2. While MATCH performs better in game 3,

the fact that tuning both algorithms made them perform worse in

this game casts doubt on this finding. Since the tuning process

was calibrated using past data, subjects in the training set may

have played game 3 different than subjects in the test set, skewing

the results. Interestingly, MATCH suffers more from tuning in

this game than RADAR does, i.e. the difference between

MATCH-tuned and MATCH-untuned is larger than the difference

between RADAR-tuned and RADAR-untuned, which provides

evidence of RADAR’s robustness. Based on these results, we can

conclude there are some reward structures for which RADAR is

the superior algorithm to both the tuned and untuned versions of

MATCH.

5.3 Weighting Algorithm Results
In this section, we explain why the tuned version of RADAR

performed better than the untuned version: the ensemble model

used to tune it predicted adversary behavior well.

2 Both versions set 𝛽1, 𝛽2, 𝛽3, and 𝛽4 to 1, 0.5, 0.25, and 0.125. In

one version, 𝑚1, 𝑚2, 𝑚3, and 𝑚4 are 0, 0.5, 1, and 3.75; and in

the other, 𝑚1, 𝑚2, 𝑚3, and 𝑚4 are 0, 0.875, 1.75, and 2.40625.

-6 -5 -4 -3 -2 -1 0 1 2

Game 1

Game 2

Game 3

Game 4

RADAR-tuned

DOBSS

-1 -0.5 0 0.5 1 1.5

Game 1

Game 2

Game 3

Game 4

RADAR-tuned

RADAR-
untuned

-1 -0.5 0 0.5 1 1.5

Game 1

Game 2

Game 3

Game 4

RADAR-tuned

MATCH-tuned

-1 -0.5 0 0.5 1 1.5

Game 1

Game 2

Game 3

Game 4

RADAR-tuned

MATCH-
untuned

We use four models of adversary behavior: Quantal Response

(QR), Subjective Utility Quantal Response (SUQR), a uniform

attack distribution (Uniform), and a perfectly rational adversary

that attacks only the optimal target (Rational Adversary). QR

makes predictions consistent with the trend that targets with a

higher expected utility are more likely to be attacked. SUQR is

based on QR, but replaces the expected utility function with a

heuristic it assumes humans use in place of calculating expected

utilities. For a more detailed discussion of QR, see [7], and for a

detailed discussion of SUQR, see [8]. Using the data from the

training set of experiments, the weighting program generated a set

of weights used in the ensemble model, which generated

predictions of adversary behavior. These predictions are compared

to the predictions made by each model individually by their fit with

the actual data.

In Figure 8, predictions made by the ensemble model were

compared to the predictions of other models in two ways: first, by

how well they fit the training set, and second, by how well they fit

the test set. On the y-axis, the models’ accuracies are expressed as

the average 1-norm distance between each model’s prediction and

the actual data, then normalized between 0 and 1 by dividing it by

the highest possible 1-norm distance.

Figure 8. Comparison Between Accuracy of the Ensemble

Model and Other Models

In the figure, the ensemble model’s predictions match the

adversary’s behavior more closely than any other model with

statistical significance. We additionally note that the ensemble

model is more robust when the test data varies from the training

data. In Figure 8, QR fits the training set best, whereas SUQR fits

the test set best. Selecting QR as the single model based on its

performance in the training set would have failed to fit the test set

accurately, whereas the ensemble model fits both data sets well.

These findings, in addition to the ensemble method’s two general

advantages shown in section 4.2, are a strong indication that the

ensemble model is an effective method to predict human behavior.

6. CONCLUSIONS
Game theoretic algorithms have been used to improve the

protection of critical infrastructure against threats, but many

algorithms assume perfect adversary rationality. A leading robust

approach to addressing imperfect human decision-making,

MATCH, has been successful in experimental evaluation.

Unfortunately, MATCH implicitly relies on a weak model of

adversary behavior, which should be refined to fit our data more

closely. Our new robust algorithm, RADAR, provides a refined

model of adversary behavior, and plays a more risk-averse strategy

than MATCH, which may be desirable for risk-averse security

agencies. We also develop an ensemble method to predict human

behavior and use this method to tune the parameters in MATCH

and RADAR. We test these contributions in human subjects

experiments, and find that RADAR performs as well or better than

MATCH in three of four games. RADAR also consistently

outperforms an algorithm assuming perfect adversary rationality.

We also find that our ensemble modeling approach predicts

adversary behavior significantly more accurately than alternative

models of adversary behavior, highlighting the advantages of using

such an approach.

7. ACKNOWLEDGEMENTS
Thanh Nguyen is supported by MURI Grant W911NF-11-1-0332.

8. REFERENCES
[1] Aghassi, M., and Bertsimas, D. Robust game theory. Math

Program, 107 (1-2), 231–273.

[2] Basiloco, N., Gatti, N., and Amigoni, F. Leader-follower

strategies for robotic patrolling in environments with

arbitrary topologies. in AAMAS, (2009).

[3] Camerer, C. Behavioral Game Theory: Experiments in

Strategic Interaction. Princeton University Press, Princeton,

2003.

[4] Conitzer, V. 2012. Computing Game-Theoretic Solutions

and Applications to Security. in Twenty-Sixth AAAI

Conference, (2012), Association for the Advancement of

Artificial Intelligence.

[5] Jiang, A., Nguyen, T., Tambe, M., Procaccia, A. Monotonic

Maximin: A Robust Stackelberg Solution Against Boundedly

Rational Followers. In GameSec 2013.

[6] Letchford, J., and Vorobeychik, Y. Computing randomized

security strategies in networked domains. in AARM

Workshop in AAAI (2011).

[7] McKelvey, R. and Palfrey, T. Quantal response equilibria for

normal form games. Games and economic behavior, 10 (1).

6-38.

[8] Nguyen, T., Yang, R., Azaria, A., Kraus, S., and Tambe, M.

Analyzing the Effectiveness of Adversary Modeling in

Security Games. in AAAI 2013.

[9] Paruchuri, P., Pearce, J., Marecki, J., Tambe, M., Ordonez,

F., and Kraus, S. Playing Games for Security: An Efficient

Exact Algorithm for Solving Bayesian Stackelberg Games. in

AAMAS 2008, 895-902.

[10] Pita, J., Jain, M., Tambe, M., Ordonez, F., and Kraus, S.

Robust solutions to stackelberg games: Addressing bounded

rationality and limited observations in human cognition.

Artificial Intelligence Journal, 174 (15), 1142–1171.

[11] Pita, J., John, R., Maheswaran, R., Tambe, M., and Kraus, S.

A Robust Approach to Addressing Human Adversaries in

Security Games. in 20th European Conference on Artificial

Intelligence, (2012).

[12] Stewart, M., and Mueller, J. Aviation Security, Risk

Assessment, and Risk Aversion for Public Decisionmaking.

Journal of Policy Analysis and Management, 32 (3). 615-

633.

[13] Tambe, M. Security and Game Theory: Algorithms,

Deployed Systems, Lessons Learned. Cambridge University

Press, 2011.

[14] Wright, J. R., and Leyton-Brown, K. Beyond equilibrium:

Predicting human behavior in normal-form games. in AAAI,

(2010).

[15] Yang, R., Kiekintveld, C., and Ordonez, F. Improving

Resource Allocation Strategies Against Human Adversaries

0

0.2

0.4

0.6

0.8

1

Fits Training Set Fits Test Set

Ensemble Model

QR

SUQR

Uniform

Rational
Adversary

in Security Games: An Extended Study. Artificial

Intelligence, 195. 440-469.

[16] Yang, R., Ordonez, F., and Tambe, M. Computing Optimal

Strategy against Quantal Response in Security Games. in

AAMAS (2012).

