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Abstract. Leather is an integral part of the world economy and a sub-
stantial income source for developing countries. Despite government reg-
ulations on leather tannery waste emissions, inspection agencies lack ad-
equate enforcement resources, and tanneries’ toxic wastewaters wreak
havoc on surrounding ecosystems and communities. Previous works in
this domain stop short of generating executable solutions for inspection
agencies. We introduce NECTAR - the first security game application
to generate environmental compliance inspection schedules. NECTAR’s
game model addresses many important real-world constraints: a lack of
defender resources is alleviated via a secondary inspection type; imper-
fect inspections are modeled via a heterogeneous failure rate; and uncer-
tainty, in traveling through a road network and in conducting inspections,
is addressed via a Markov Decision Process. To evaluate our model, we
conduct a series of simulations and analyze their policy implications.

Keywords: Game Theory, Inspection, Security Games, Human-robot/agent in-
teraction, Multiagent Systems

1 Introduction

The leather industry is a multi-billion dollar industry [14], and in many devel-
oping countries such as India and Bangladesh, the tanning industry is a large
source of revenue. Unfortunately, the chemical byproducts of the tanning pro-
cess are highly toxic, and the wastewater produced by tanneries is sent to nearby
rivers and waterways. As a result, the Ganga River (along with many others) has
become extremely contaminated, leading to substantial health problems for the
large populations that rely on its water for basic needs (e.g., drinking, bathing,
crops, livestock) [11]. Tanneries are required by law to run wastewater through
sewage treatment plants (STPs) prior to discharge into the Ganga. In many
cases, however, the tanneries either do not own or run this equipment, and it is



up to regulatory bodies to enforce compliance. However, inspection agencies have
a severe lack of resources; the combination of tanneries’ unchecked pollution and
inspection agencies’ failure to conduct inspections forced India’s national envi-
ronment monitoring agency to ban the operation of 98 tanneries near Kanpur,
India while threatening the closure of approximately 600 tanneries [13]. It is our
goal to provide agencies with randomized inspection plans so tanneries reduce
harmful effluents and an important facet of India’s economy can operate.

In this paper, we introduce a new game-theoretic application, NECTAR
(Nirikshana for Enforcing Compliance for Toxic wastewater Abatement and
Reduction)5, that incorporates new models and algorithms to support India’s
inspection agencies by intelligently randomizing inspection schedules. We build
on previous deployed solutions based on Stackelberg Security Games (SSG) for
counter-terrorism [17] and traffic enforcement [6]. Our SSG models are also the
first to focus on the problem of pollution prevention by modeling the interaction
between an inspection agency (the leader) and leather tanneries (many follow-
ers) - an interaction which poses a unique set of challenges. (i) Because there
is a large disparity between the number of inspection teams and the number of
tanneries, inspection plans must be efficient. (ii) We cannot assume that inspec-
tors can catch 100% of violations. (iii) Inspectors must travel to the tanneries
via a road network so solutions must be robust to delays (e.g., traffic). Finally,
current fine policies may not be sufficient to induce compliance, and (iv) it is
important to investigate alternative fine structures.

NECTAR addresses these new challenges of tannery inspections. (i) Our SSG
model captures the inspection process and accounts for two types of inspections:
thorough inspections and simple (i.e., quick) inspections. While thorough in-
spections take longer to conduct (and thus less of them can be conducted), they
are more likely to detect violations than simple, surface-level inspections which
may only be able to check for obvious violations. To model the imperfect nature
of these inspections, we (ii) introduce two failure rates: one for thorough inspec-
tions and one for simple inspections, with simple inspections failing at a higher
rate. (iii) We also address the uncertainty involved with road networks by using
a Markov Decision Process (MDP) that will represent and ultimately generate
the game solution. Finally, (iv) we also investigate how tannery compliance is
affected by two fine structures: fixed fines and variable fines, where the latter will
result in larger tanneries receiving larger fines. For the evaluation of our model,
we apply NECTAR to a real-world network of tanneries in Kanpur, India, we
evaluate the quality of NECTAR’s generated solutions, and we demonstrate how
NECTAR’s solutions can be visualized via a Google Earth overlay.

5 Nirikshana, the Hindi word for inspect. As many mythological stories and even
popular Bollywood songs attest, Ganga water is supposed to be NECTAR (or Amrit,
the Hindi antonym of poison) which has inspired our project. The project name is
intentionally chosen to fit this international and inter-cultural theme.



2 Related Work

Several theoretical papers have used game theory to model the impact of envi-
ronmental policies. Environmental games [18] use Stackelberg Games to model
interactions between a regulator and a polluting firm, while [7] used game theory
to study the effect of environmental policies in the Chinese electroplating indus-
try. Inspection games consider the general problem of scheduling inspections,
and have been extensively studied in the literature. For example, [8] models
cases where an inspector must travel to multiple sites and determine violations
as a stochastic game. A general theory of inspection games for problems such
as arms control and environmental policy enforcement has been studied in [2],
including analysis of whether inspectors can benefit from acting first. [16] also
considered inspection games with sequential inspections, including compact re-
cursive descriptions of these games. However, most of these works do not focus
on concrete applications and thus, unlike our work, do not provide executable
inspection schedules to inspectors.

Other areas of research have considered various models of patrolling strategies
and scheduling constraints. These include patrolling games [1, 5, 3] and security
games with varying forms of scheduling constraints on resources [19, 12, 6]. There
has also been recent work on utilizing MDPs to represent strategies in security
games [15, 4]. However, none of these efforts have focused on environmental in-
spections and have not investigated topics important in this domain, such as the
impact of fine structures on adversary behavior (i.e., compliance).

3 Motivating Domain

The pollution of India’s rivers is a major concern. The waters of India’s largest
river, the Ganga (or Ganges) River, are used by over 400 million people – roughly
one-third of India’s population and more than the entire population of the United
States. Unfortunately, the Ganga is ranked the fifth dirtiest river in the world.
Generated from various sources such as sewage and industrial effluents, the pol-
lution inflicts serious health conditions on all life that depends on the river. In
Kanpur, villagers suffer from health conditions (e.g., cholera, miscarriages), and
livestock yield less milk and die suddenly [9].

Situated around the city of Kanpur, the various leather tanneries are a major
source of pollution in the Ganga River [9]. While there are a few sewage treat-
ment plants (STPs) in Kanpur, they can neither treat the full volume nor the
full range of produced pollutants [10]. In particular, treating heavy metals like
chromium, mercury, arsenic, and nickel is costly and needs specialized personnel
(in addition to the personnel required to operate the STPs). The government has
put in regulations requiring the tanneries to own and operate effluent plants to
remove the pollutants before they discharge their sewage. However, the tanneries
have not been willing to undertake the additional cost of installing and operating
the treatment units. Even when tanneries have installed the units, they avoid
operating them whenever possible.



To address non-compliance issues, the government sends inspection teams
to visit the tanneries. Inspecting the tanneries is a time-consuming, quasi-legal
activity where the “as-is” situation is carefully recorded and samples are collected
that can later be subjected to judicial scrutiny. It is also costly because, apart
from the inspectors themselves, help from local police is requisitioned for safety,
lab work is done for sample testing, and movement logistics are carefully planned;
a full inspection is costly to conduct. Due to these costs, the number of inspectors
that can be sent out on a patrol is very limited. Our application seeks to help by
(1) generating randomized inspection patrols that maximize the effectiveness of
available inspectors, and (2) introducing limited inspection teams which conduct
simple inspections - a low-cost alternative to full inspection teams which conduct
thorough inspections. While limited inspection teams cannot replace the needed
capabilities of a full inspection team, they can still inspect tanneries and issue a
fine for obvious violations (e.g., the site not owning an STP). We will refer to full
inspection teams and limited inspection teams as thorough inspection resources
and simple inspection resources, respectively.

4 Model

In this section, we model this pollution prevention problem as a defender-attacker
Stackelberg Security Game (SSG). The task of the defender is to send resources
to different tannery sites (i.e., the multiple adversaries) on a road network. The
defender must devise a patrol strategy to maximize compliance among a number
of sites (each site denoted by l), where each site has a number of factories fl and
each site’s compliance cost increases with the number of factories. In addition,
the defender must take into account the time it takes to travel to and inspect
each site. We model the road network as a graph where the nodes represent sites
and the edges represent the roads connecting each site. Each edge also has a cost,
eab, associated with it that represents the travel time from a site a to another
site b. Using publicly available data regarding tannery locations in Kanpur, we
constructed a graph consisting of 50 sites.

The defender has two types of resources: r1 number of thorough inspection
resources and r2 simple inspection resources. For thorough inspection resources,
the inspector conducts a detailed inspection that takes i time units. We model
imperfect inspections such that even if a violation exists, the inspectors will
fail to detect it with a low probability γ1. For simple inspection resources, the
inspector will conduct a superficial inspection that takes d time units. Since the
inspection is not detailed, simple inspection resources will not detect anything
but obvious violations. Thus, such resources have a higher probability of failure
γ2. Each of the defender’s resources (thorough and simple) have a maximum
time budget, t1 and t2 respectively, to conduct inspections and travel to sites.

In the SSG framework, the defender will commit to a randomized patrol strat-
egy (a mixed strategy) which is a probability distribution over the executable
daily inspection patrols (the pure strategies for all resources). The adversaries
(the sites) can fully observe the defender’s mixed strategy and know the proba-



bility of being inspected by a thorough inspection team or a simple inspection
team on a given day. Formulating the mixed strategy requires enumerating all
feasible pure strategies for the defender. However, this approach is impractical
for two main reasons: (1) for any realistically-sized patrolling problem, the de-
fender pure strategy space is so large that it cannot fit into memory. For example,
with our Kanpur graph of 50 tanneries, only one defender resource, and a time
horizon of 10 hours, the pure strategy space size would be too large to enumerate
(approximately 50 choose 10). Therefore, we adopt a compact representation (a
transition graph) that will allow our approach to scale to large problem sizes. (2)
Inspectors must travel to sites via a road network (with potential delays), and
the corresponding uncertainty cannot be handled by a standard SSG formula-
tion. Rather than reasoning about mixed strategies, we instead use the compact
representation to reason about spatio-temporal flow through a transition graph.
To account for stochasticity and uncertainty in the outcome of actions, we use a
Markov Decision Process (MDP) to represent the defender’s inspection patrolling
problem. We can solve the corresponding linear program (LP) to compute the
optimal inspection strategy, i.e., the optimal MDP policy.

4.1 Compact Game Representation: Transition Graph

Brown et al. also faced the challenge of large state spaces for a traffic enforce-
ment domain [6]. Since their game also takes place on a road network, there are
sufficient similarities between our approach and theirs to apply their techniques,
based on transition graphs, to improve the scalability of our model.

Instead of enumerating an exponential number of pure strategies, we need
only enumerate a polynomial number of states and edges in the transition graph.
We then compute the optimal probability flow (as seen in the next section),
also called a marginal coverage vector, and sample from the vector to create
inspection schedules. As the defender resource types (thorough and simple) have
different time constraints, each has its own transition graph.

We discretize time into a granularity of h hours. In the thorough inspection
resource transition graph, a vertex is added for each site l every h hours until the
resource time budget t1 has been expended. Similarly for the simple resource’s
transition graph, vertices are added until the time budget t2 has been expended.

4.2 MDP Formulation

We present an MDP 〈S,A, T,R〉 to incorporate uncertainty into the transition
graph. An example MDP is shown in Figure 1 to illustrate these definitions.

– S: Finite set of states. Each state s ∈ S is a tuple (l, τ), where l is the site
that the resource is located, and τ is the current time step. For example,
an inspector at site A at hour 1 is represented as sA,1. Each vertex in the
transition graph corresponds to a state s.



Fig. 1. Illustrative MDP Example

– A: Finite set of actions. A(s) corresponds to the set of actions available from
state s (i.e., the set of sites reachable from l) that the resource can travel to
and inspect. For example, at site A at hour 1, the only available action is to
move to site B (i.e., the solid arrow from A to B in Figure 1).

– T1(s, a, s′): Probability of an inspector ending up in state s′ after performing
action a while in state s. Travel time and inspection time are both repre-
sented here. As a simple example, there could be probability 0.7 for transition
T1(sA,1, aB , sB,2): a transition from site A at hour 1 to move to and inspect
site B will, with a probability of 0.7, finish at hour 2 (a travel + inspec-
tion time of 1 hour). The dashed lines in Figure 1 represent the remaining
probability (0.3) that the same action will instead finish at hour 3 (due to a
delay). Note that the two resource types have separate transition functions
due to the difference in action times (i for thorough inspection resources and
d for simple inspection resources).

– R(s, a, s′): The reward function for ending in state s′ after performing action
a while in state s. As we are interested in the game-theoretic reward, we
define the reward in the LP and define R = 0 ∀s, a, s′.

5 Inspection Patrol Generation

We provide a linear program (LP) to compute the optimal flow through the
MDP (i.e., the transition graph with uncertainty). By normalizing the outgoing
flow from each state in the MDP, we obtain the optimal MDP policy from
which we can sample to generate dynamic patrol schedules. In the following LP
formulation, we make use of the following notation. A site l has a number of
factories fl, and if a site is caught violating during an inspection, they receive
a fine, αl. On the other hand, if a site wants to remain in compliance, they
will need to pay a compliance cost β for each factory (total cost = βfl). We
represent the expected cost for each site l as vl. As defined in the following LP,
the expected cost corresponds to the lowest of either the site’s expected fine or
the site’s full cost of compliance; we assume that these adversaries are rational
and that they will choose to pay the lowest of those two values (expected fine or
cost of compliance). Finally, we denote as Sl the set of all states that correspond
to site l (i.e., all time steps associated with site l).

As discussed in the transition graph definition, the optimal flow through the
graph corresponds to the optimal defender strategy, and that flow is represented



by a marginal coverage vector. We denote the marginal probability of a resource
type i (either thorough or simple inspection team) reaching state s and executing
action a as wi(s, a). We also denote, as xi(s, a, s

′), the marginal probability of a
resource type i reaching state s, executing action a, and ending in state s′.

max
w,x

∑
l

vl (1)

s.t.xi(s, a, s
′) = wi(s, a)Ti(s, a, s

′),∀s, a, s′, i (2)∑
s′,a′,i

xi(s
′, a′, s) =

∑
a,i

wi(s, a),∀s, i (3)

∑
a,i

wi(s
+
i , a) = ri (4)

∑
s,a,i

xi(s, a, s
−
i ) = ri (5)

wi(s, a) ≥ 0 (6)

vl ≤ αl(pl1 + pl2) (7)

pl1 = (1− γ1)
∑
s∈Sl,a

w1(s, a) (8)

pl2 = (1− γ2)
∑
s∈Sl,a

w2(s, a) (9)

pl1 + pl2 ≤ 1 (10)

0 ≤ vl ≤ βfl (11)

The objective function in Equation 1 maximizes the total expected cost over all
sites. Constraints 2-5 detail the transition graph flow constraints (for thorough
inspections and simple inspections). Constraint 2 defines that x is equal to the
probability of reaching a state s and performing action a multiplied by the
probability of successfully transitioning to state s′. Constraint 3 ensures that
the flow into a state s is equal to the flow out of the state. Constraints 4-5
enforce that the total flow in the transition graph, corresponding to the number
of defender resources ri, is held constant for both the flow out of the dummy
source nodes s+i and into the dummy sink nodes s−i .

Constraint 7 constrains the expected cost for site l. Constraints 8-9 define
the probability of successfully inspecting a given site l and is the summation
of probabilities of reaching any of l’s corresponding states (thus triggering an
inspection) and taking any action a. Note that the failure probability γ means
that even if a violating site is inspected, there may not be a fine issued. Constraint
10 limits the overall probability of a site being inspected. If a site is visited by
both thorough and simple inspection resources, the site will only have to pay a
fine, at most, once. Constraint 11 defines the bounds for the adversary’s expected
cost; if the adversary’s expected cost is at the upper bound (vl = βfl), we assume



that the adversary would prefer to have a positive public perception and choose
to comply rather than pay an equivalent amount in expected fines.

6 Evaluation

In order to explore the strategic tradeoffs that exist in our model of the tannery
domain, we ran a series of experiments on our Kanpur tannery graph. For each
experiment, we generated 3 distinct patrolling strategy types. 1. NECTAR’s
strategy, 2. the Uniform Random (UR) strategy: at each time step, every site
has an equal probability of being chosen, and 3. an Ad-Hoc (AH) strategy: a
deterministic strategy where sites are visited in numerical order (by ID number).

In order to analyze how different resource types affect performance, for each
experiment we generated six defender strategies: the first three (NECTAR, UR,
AH) correspond to when the defender had twice as many simple inspection
resources as thorough inspection resources, and the last three (again NECTAR,
UR, AH) correspond to when the defender had no simple inspection resources.

In addition to running experiments where each site l has the same fine (α),
we ran a set of experiments where each site’s fine αl was: αl = αfl or, in other
words, the fine amount is a constant α multiplied by the number of factories fl at
that site – sites with more factories will be penalized for violations more harshly
than sites with fewer factories. As this type of analysis requires heterogeneous
sites, we randomize the number of factories at each site.

Ultimately, we are interested in inducing compliance in sites, and for our
performance metric, we compute the number of sites that would be in full com-
pliance given the defender strategy (i.e., how many sites’ cost vl = βfl). The
maximum number of sites in compliance for each experiment is 50 (i.e., the
number of sites on our graph). The default parameter values for each experi-
ment (unless otherwise specified) are listed in Table 1.

Table 1. Default Experiment Values

Variable Value

Compliance Cost β 10
Fixed Fine Amount α 100

Number of Factories at Each Site fl 2-5
Number of Simple Inspections r2 2

Number of Sites 50
Number of Thorough Inspections r1 1

Patrol duration (hours) t1, t2 6
Simple Inspection Failure Rate γ2 0.6

Thorough Inspection Failure Rate γ1 0.1
Time granularity (hours) h 1

Time steps to complete simple inspection 1
Time steps to complete thorough inspection 2

Variable Fine Amount αl 30

Fixed Fine Amount In Figure 2, we analyze the effects of the fixed fine
amount α on the number of complying sites. The x-axis shows the fixed fine



Fig. 2. Fixed Fine: Number of Sites in Compliance

Fig. 3. Variable Fine: Number of Sites in Compliance

amount, and the y-axis shows the number of sites that are complying (i.e., vl =
βfl).

From the figure, we observe the following trends: (1) the NECTAR strategy
does not achieve any compliance until the fine amount is 350, with all sites in
compliance at 400. This is due to the objective function attempting to maximize
expected cost over all sites simultaneously with a homogeneous fine. (2) While
the UR and AH strategies achieve compliance from some of the sites for smaller
fine amounts, they do not achieve compliance for all of the sites as quickly as
the NECTAR strategy. (3) The inclusion of simple inspection resources improve
performance for every strategy as expected.

Variable Fine Amount In Figure 3, we analyze the effects of the variable
fine amount αl on the number of complying sites. The x-axis shows the variable
fine amount, and the y-axis shows the number of sites in compliance (i.e., vl =
βfl).

From the figure, we observe the following trends: (1) both the NECTAR and
UR strategies achieve compliance from all sites for the same variable fine amount;
(2) as the fines are not homogeneous for all sites, it is beneficial for NECTAR
to try to maximize expected cost in sites with many factories first (unlike with
the fixed fine, there is no “water filling” effect); the NECTAR approach achieves
faster compliance from larger sites, and (3) the NECTAR achieves compliance
from the most sites at every point.

Number of Resources: Variable Fine In Figure 4, we analyze the effect of
the number of resources when there is a variable fine amount αl on the number of
complying sites. The x-axis shows the number of thorough inspection resources,



Fig. 4. Number of Resources: Variable Fine: Number of Sites in Compliance

Fig. 5. Patrol Duration: Variable Fine: Number of Sites in Compliance

r1 (for the strategies with simple inspection resources, the number of simple
inspection resources is r2 = 2 × r1), and the y-axis shows the number of sites
that are complying (i.e., vl = βfl).

From the figure, we observe the following trends: (1) the NECTAR and AH
strategies achieve compliance from some sites even with few thorough inspection
resources, but NECTAR achieves compliance from the most sites at every point,
(2) both the NECTAR and UR strategies achieve compliance from all sites for
the same number of thorough inspection resources, and (3) even when there are
many resources, the AH strategy does not achieve compliance from all sites.

Patrol Duration: Variable Fine In Figure 5, we analyze the effects of
the patrol duration when there is a variable fine amount αl on the number of
complying sites. The x-axis shows the patrol duration, and the y-axis shows the
number of sites that are complying (i.e., vl = βfl).

From the figure, we observe the following trends: (1) while the NECTAR
strategy performs the best for lower values of patrol duration, it is eventually
outpaced by the AH strategy, (2) regardless of the strategy, there is not much
change in the number of sites in compliance as a function of patrol duration.
For this experiment, the default values for the other parameters result in a low
compliance rate regardless of the value of the variable of interest, and (3) having
simple inspection resources is helpful for the NECTAR and AH strategies, but
it is not very helpful for the UR strategy.



7 Discussion and Results Visualization

Based on these simulations, we make the following conclusions: (1) when the
number of resources or variable fine amount is the experiment variable, NECTAR
makes the most efficient use of its resources, regardless of whether it is using
only thorough inspections or a combination of simple and thorough inspections;
(2) having more resources (more manpower) is more useful than increasing the
duration of patrols (longer work hours). This is intuitive when considering that
each resource must spend time traveling to each site; two resources can each
cover a separate sub-section of the graph whereas one resource will be forced to
spend more time traveling. Finally, (3) using a variable fine (in which sites are
fined according to their number of factories) leads to better compliance rates.
This observation makes sense when put in the context of our LP’s objective
function: maximize the sum of the expected costs vl over all sites.

Since our goal is to assist inspection agencies with patrol planning, it is useful
to visualize the proposed inspection patrols. In Figure 6, we show a simple graph
and strategy visualization in Google Earth (a visualization for the Kanpur area
is shown in Figure 7). The lines represent edges on the graph (i.e., straight
line connections between sites). Each line also has a time step and a coverage
probability associated with it, where the probability represents the value of the
MDP’s transition function, T (s, a, s′). In other words, this information answers
the question: “If the defender resource starts at site l at the beginning of this
edge at time step t (i.e., state s), what is the probability that the defender
resource will take action a and arrive at site l′, at the end of this edge, in a
following time step t′ (i.e., state s′)?” By clicking on an edge, the user can call
up the aforementioned defender strategy information (shown in Figure 6).

Fig. 6. Visualization example Fig. 7. A Kanpur inspection patrol plan

NECTAR has been proposed to decision makers in governments, pollution
control boards, and funding agencies that cover cleaning of large river basins.
While field inspectors have not used randomized inspection schemes in the past,
they have given positive feedback on this approach. These proposals are still in
a preliminary state, and experience from literature suggests that the success of



such initiatives, potentially lasting years, will greatly depend on the collaboration
of multiple stakeholders so that the tannery industry and economy can continue
to grow while the urgent need to protect the environment is also satisfied.
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