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ABSTRACT

Several models have been proposed for Stackelberg security
games (SSGs) and protection against perfectly rational and
bounded rational adversaries; however, none of these ex-
isting models addressed the collusion mechanism between
adversaries. In a large number of studies related to SSGs,
there is one leader and one follower in the game such that
the leader takes action and the follower responds accord-
ingly. These studies fail to take into account the possibil-
ity of existence of group of adversaries who can collude and
cause synergistic loss to the security agents (defenders). The
first contribution of this paper is formulating a new type of
Stackleberg security game involving a beneficial collusion
mechanism among adversaries. The second contribution of
this paper is to develop a parametric human behavior model
which is able to capture the bounded rationality of adver-
saries in this type of collusive games. This model is proposed
based on human subject experiments with participants on
Amazon Mechanical Turk (AMT).
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1. INTRODUCTION

Security agencies including the US Coast Guard (USCG),
the Federal Air Marshal Service (FAMS) and the Los An-
geles Airport (LAX) police are several major domains that
have been deploying Stackelberg security games (SSGs) and
related algorithms to protect against adversaries strategi-
cally [12]. The security games introduced in these domains,
mostly, include two players: a defender and an adversary.
The interaction between the defender and the attacker was
modeled as a single-shot game and the attacker was defined
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as a perfectly rational player. A major characteristic of this
class of SSGs is that, they are sequential. In other words,
one player (the leader or the defender) commits to a strat-
egy which can be observed by the other player (the follower
or adversary) before choosing his own strategy.

There are different variations of the SSGs in literatures.
As an example, to address the idea that the leader might
be uncertain about the types of adversary that might at-
tack (known as Bayesian Stackelberg games), an efficient
exact algorithm is proposed in [11] to develop the optimal
strategy for the leader. As an another example, repeated
interactions of defender and the adversary is studied in [7].
This type of game is famous in the wildlife security domain
and fisheries protection. In this game the defender deploys
new patrolling strategies periodically and the adversary ob-
serves these strategies and responds accordingly. [5] and
[15] propose models and algorithms against boundedly ra-
tional adversaries using behavioral models such as quantal
response (QR) [16] and subjective utility quantal response
(SUQR) [10] to model human adversaries. In protecting
wildlife domain which is an active area of research in secu-
rity game, preventing the poachers from hunting animals in
forest area by effieviently and strategically patrol allocation
is vital. In [3] and [2] Green security games are introduced,
algorithms and field optimization techniques for planning ef-
fective sequential defender strategies are proposed to tackle
the problem of protection of endangered animals and fish
stocks.

In wildlife protection domain, international illegal trade
is increasing incredibly and based on the estimations, it
is worth at least $5 billion, annually. The main types of
wildlife commodities that are subject to these illegal trades
include elephant ivory, rhino horn, tiger parts and caviar, to
name a few. These activities have the potential to introduce
several threats to the national security and evironment ar-
round the world. Biodiversity loss, potential extinctions,
introduction of invasive species and desease transmission
into healthy ecosystems, all can impact the environment ad-
veresly. In addition to that, some connections have been ob-
served among wildlife trafficking, organized crime and drug
trafficking which means that poor law enforcement, poor pa-
trol scheduling or corrupt rangers at wildlife sources, corrupt
governments at transit countries and porous borders can all
threaten the national security [14]. Despite the evidence of
illegal exchange between different groups of criminals, the
destructive synergistic effect of collusion among adversaries
is unexplored in related literature in security game domain.

To combat this illegal wildlife trade, exploitation and col-



laboration among criminals and adversaries, this papers ad-
dresses a new type of security game in which there are three
players, one defender, who is the leader, and two adversaries
who are the followers and have the option of collusion with
each other. Each adversary has access to his own targets but
he can team up with another adversary to share all of the
pay-offs with him. Each of these adversaries can be a repre-
sentative for either a poacher who is directly hunting in the
field or a trader who is illegally exchanging the animals or
financing other illegal commodities via animal trafficking.

2. COLLUSIVE SECURITY GAME

In this section, a detailed analysis of the collusive security
games for rational adversaries is presented.

2.1 Collusive game model: Tertiary case

A generic security game problem as a normal form Stack-
elberg game has two players, a defender and an attacker.
In the collusive form of the game which we study in this
paper, there can be one defender, ©, and more than one
attacker, W1,...,Un, where N is the total number of attack-
ers and similar to normal Stackelberg games, defender is the
leader and attackers are the followers. In this subsection, we
focus on the zero-sum games with one leader and two fol-
lowers, such that followers can attack separate targets, but
they have two options: i) attack their own targets individu-
ally and earn pay-offs independently or ii) attack their own
targets individually but collude with each other and share
all of the pay-offs equally. Attackers pay-off are not identi-
cal in the two above mentioned cases. There are some extra
bonus reward, ¢, for collusive attacking that can motivate
the adversaries for collusion.

To discuss this more precisely, let T = {t1,...,tn } be a set
of targets that may be attacked by adversaries such that T;
is a subset of targets available to the first attacker and T5 is
a subset of targets available to the second attacker, where
Ty = T — Ti. The defender has m resources to cover the
targets. Depending on whether a target is covered by the
defender, two different cases might happen at each target.
For the game with two adversaries, there two targets that
are attacked by the adversaries, so four different situations
might happen in total. Table 1 summarizes the players’
pay-off in all possible cases when the attackers are attack-
ing individually. Ug(¢1) and Ug(t2) indicates the defender’s
pay-off at uncovered targets t1 and t2 attacked by attacker
one, ¥4, and attacker two Wa, respectively. Similarly, U§ (1)
and U§(t2) indicates the defender’s pay-off for the case of
covered targets. Ug, (t1) and Ug, (t2) indicates the pay-off
of attackers, ¥, and o, at uncovered targets ¢t; and t2, re-
spectively. Likewise, Uy, (t1) and Ug, (t2) indicates the at-
tackers’ pay-off for the case of covered targets. If attackers

Table 1: Pay-offs for individual attacks

Attackers: Wy, Wo Defender: ©

Ug, (t1), Ug, (t2) Ug(t1)+Ug(t2)
Uy, (t1), Uy, (t2) Us (t1)+Us (t2)
U{f,l(tl), U\pz (t2) Ué(t )+ Ug)(tg)
Uy, (t1), Uy, (t2) Us (t1)+Ué (t2)

collude with each other they will share all of their achieve-
ments fifty-fifty. Additionally, they will achieve a bonus re-

ward, €, per any uncovered attack by them. As we assumed
a zero-sum game, this bonus value will be deducted from
the defender’s pay-off. Table 2 summarize the adversaries
and defender pay-offs in all possible situations when attack-
ers are colluding. In more details, in both Tables 1 and 2,
the first row indicates the pay-offs for the successful attacks
by both adversaries. The second and third rows show the
pay-offs for the situations that only one of the attackers suc-
ceeds and the last rows indicates the case of failure for both
attackers.

Table 2: Pay-offs for collusive attacks
Each attacker: ¥y or Wy Defender: ©
(Ug, (t1) + Uy, (t2) +2¢)/2 Ug(t1)+Ug(t2) — 2¢
(Ug,(t1) + Uy, (t2) +€)/2 | Us(t1)+US(t2) — €
(U, (th) + Uy, (t2) +€)/2 | Us(t1)+ Us(ta) — €
(Ug, (1) + Uy, (t2))/2 Us (t1)+Ué (t2)

The coverage vector, C, gives the probability that each
target is covered, c;, and the attack vector A gives the prob-
ability of attacking a target, which we restrict to attack a
single target with the probability 1 (With this assumption
SSE solution still exists [8].). For a given coverage and attack
vector, expected utility of the defender is shown in Equation
1 and for a given coverage vector, the expected utility of the
defender, at each target, is shown in Equation 2. By re-
placing © with ¥, the same notation applies for expected
utility of the attacker. The attack set, I'(C), is also defined
in Equation 3 which contains all targets with the maximum
expected utility for the attackers given coverage vector C.

(C A Zat Ct. U@ + (1 — Ct)U@) (1)
Uo(t,C) = cr.US+ (1 —ct)US (2)

IC)= {t:Us(t,C)>Us(t,C) V' eT} (3)

2.2 ERASER based solution for generating the
optimal defender strategy

The ERASER algorithm, proposed in [8], takes a security
game as input and solves for an optimal defender coverage
vector corresponding to a SSE strategy through a mixed in-
teger linear program (MILP). The original formulation was
developed for SSGs including one defender and one adver-
sary. Using the same idea, we developed a new form of
MILP which solves for an optimal defender coverage vector
in presence of collusion between two adversaries, presented
in Equation 4-20. In all of the equations, nc stands for not
colluding cases and c stands for colluding cases. Equation
5 defines the integer variables ay'“, af are, respectively, at-
tackers’ actions for when they do not collude and when they
collude. a1 and as are decision variables that indicate each
adversary’s decision for collusion and 3 is the decision made
in the game based on a; and as. Meaning that, if both ad-
versaries are inclined to collude, then 8 will be equal to 1.
Equation19 and 20 enforce this constraint. Equations 6 and
7 along with 5 forces that attack vector to assign a single
target probability 1. Equation 8 forces that coverage vector
to probabilities in range [0,1] and Equation 9 restricts the
coverage by the number of the defender resources. Equa-
tions 10 and 11 indicate the defender expected utilities in
colluding and not colluding cases. In equations 12 to 18, Z



is a large constant relative to the maximum pay-off value.
Equation 12 and 13 define the defender’s expected pay-off,
contingent on the target attacked when attackers are not
colluding and colluding, respectively. Equation 14 and 15
defines the expected utility of the attackers in colluding and
non-colluding situations.

mazx d (4)

ay,af,a1,00,8 € {0,1} VieThUTy (5)

art = 1 i=1,2 (6)

tET;
> af, =1 i=1,2 (7)

tET;
ct € [O, 1] Vt c T1 @] T2 (8)
th < m (9)

teT

Vt, eT;, 1i=1,2:

U(gc(thtz,C): U@(t1,0)+U@)(t2,C) (10)

Ué(t1,t2, C) = U@(thC) + U@(tz, C)—
(I —ct)e—(1—cy)e (11)

d—U8(t1,t2,C) < (1 —ay)Z+ (1 —aiy)Z
+BZ (12)

d—U§(t1,t2,C) < (1—ai,)Z+ (1 —as,)Z
+(1-8)Z (13)

Ugi(ti,C) = Uy, (t:,C) (14)

Us (t:,C) = Us,(t:;,C) + (1 — cr,)e (15)

0<k-Ug(t:;,C) < (1—al")Z (16)

0 <k —Us,(t.0) < (1-af)Z (17)
i=1,2:

—aiZ S K- S+ < (- a0)Z (18)

B< (19)

(1taz) < B+1 (20)

Equation 16 and 17 constrain the attackers to select a strat-
egy in attack set of C' in each situation. So the last four con-
straints are mutual best responses of defender and attacker
in either colluding or non-colluding situations. Equation 18
forces each attacker to make his decision based on compar-
ing the shared pay-off in collusion and his individual pay-off
for non-colluding situation.

To formalize the solution concept further, the leader choose

a strategy first, then given this strategy the followers play a
Nash equilibrium. Ties between equlibria are broken as:

1. Equilibria with 8 = 1 are chosen over equlibria in
which S = 0 if both followers obtain strictly higher
utility in the 8 = 1 equilibrium.

2. In all other cases, the followers break ties in favor of
the leader.

Given this, the leader’s strategy is chosen to maximize his
utility.

THEOREM 1. Any solution to the above MILP is an
equilibrium of the game.

PROOF. We start by showing that the followers play a
Nash equilibrium. Let (af,, o) be the action of one of the
followers produced by the MILP where ¢; is the target to
attack and «; is the decision of whether to collude. Let
(at,, i) be an alternative action. We need to show that the
follower cannot obtain strictly higher utility by switching
from (a7,, o) to (at;, o).

If af, = ou,, then Equations 16 and 17 imply that as,
already maximizes the follower’s utility.

If, af, # o then Equations 18 implies that (ay,, )
yields at least as much utility as (a¢,,1 — aj), for the ay,
which maximizes the follower’s utility given that they make
the opposite decision about collusion. So, (as,,«}) yields at
least as much utility as (at,, a;) as well.

Lastly, we need to verify that the two tie-breaking rules
are respected. For the first, note that in Equation 18, both
followers compute the utility for collusion assuming that the
other will also collude. So, if follower ¢ would be best off in an
equilibria with 8 = 1, the MILP requires that «; = 1. This
implies that if both followers receive strictly highest utility
in an equilibrium with 8 = 1, both will set « = 1 as required.
In all other cases, the objective is simply maximizing d, so
ties will be broken in favor of the defender.

The following observations and propositions hold for the
games with symmetric reward distribution between the two
adversaries.

OBSERVATION 1. The defender’s main strategy is to
break the collusion between them by enforcing an imbalance
in resource allocation on both sides.

In other words, the optimal solution satisfy 8 # 0 where
0 = |z1 — x2|, & = ZtieT- ct; is the resource fraction on
side of the attacker i such that x1 + 2 = m for the case of
two adversaries in the game. This approach put one of the
attackers in a better situation so he refuses to collude.

To analyze the effect of the imbalance in resource al-
location on defender expected pay-off, we added another
constraint to the MILP formulation shown in Equation 21.
With this constraint, we will be able to keep the resource
imbalance at an arbitrary level, 6. For the case of symmetric
reward distribution, WLOG, we can fix the first attacker to
be the one who receives higher payoff and simply linearize
the following equation; however generally, we can divide the
equation into two separate linear constraints.

k7 — k5| =8 (21)

OBSERVATION 2. By varying the §, one of the fol-
lowing cases can happen:

1. For 6 < 6", ki*° — %(kf + k5) < 0 for both attackers

and consequently a; = 1 for i = 1,2. In other words,



the defender is not able to break the collusion between
the attackers and B = 1.

2. For § = 6%, k¢ — %(kf + kS) = 0 for one of the at-

tackers and k3¢ — %( {4+ k5) < 0 for the other one, so

consequently a1 can be either 0 or 1 and az = 1. In
this case, the followers break ties in favor of the leader,
so a1 =0 and B =0.

3. Ford > 6", ki — %(k{ +k5) > 0 for one of the attack-

ers and consequently cy = 0. For the other attacker

1
khe — §(kf + k5) < 0 and az = 1. In other words,

the defender is able to break the collusion between the
attackers and 8 = 0.

PROPOSITION 1. The switch-over point, §*, introduced
in the observation 2 is lower bounded by 0 and upper bounded
by 2e.

PROOQOF. Using Equation 16, we know that at any target
ti, ki'¢ > Ug$(ti, C). If we assume that the attacker attacks
target t; with coverage cf, by adding and subtracting a term
as €(1 — cf,), we can conclude that k' > ki — (1 — cf,).
Consequently, k7 + kS < k'° + k3 4+ €(1 —cf,) + €(1 — cf,).
On the other halnd, according to observation 2.2, at § = 0%,

5( { 4+ k5) = 0. Combining these last two
equations, we will get (kT° — k3°) < e(1 —cf,) +€(1 —cf,)
. The LHS is equal to §* and the RHS can be rearranged
as 2e — e(cf, + ¢f,), so we will have 0™ < 2e — e(cf, + cf,)-
Given the fact that coverage at each target is in range [0, 1],
the upper bound for —(cf, + ¢f,) will be zero. Finally, by
aggregating these results, we can conclude that §* < 2e.
Following the same analysis, the lower bound for §* can be
found starting from k7 +k5 > kT°+k3 +e(1—cp)+e(1—cty)
and as a result, 0 < §*.

Given the facts presented in Proposition 1, by enforcing an
imbalance of maximum 2¢, the defender will be able to break
the collusion. These bounds can be tighter, if we have more
information about the distribution of reward at targets. For
instance, if reward distribution over targets is close enough
to uniform distribution, then the average coverage on each

. . _ 2 _ 2
side will be ¢, = ZL and ¢, = =£2, where 1 and x2 are
1 " 2 )

fraction of resources assigned to each side and there are %
targets on each side. As a result, —(cf, +¢f,) >~ — (G, +Ct,)-
So we will be able to find an approximate upper bound of
2¢(1 — %), where m = x1 + z2. These results also implies
that the larger the ratio of 7, the less imbalance in resource
allocation needed to break the collusion. In human subject
experiments that will be discussed in the next section, we
also observed that the wider the range of rewards over tar-

gets, the harder we can break the collusion among attackers.

we have kT°¢ —

3. HUMAN SUBJECT EXPERIMENTS

The linear program model developed in previous section
assumes the rational behavior for the attackers. However,
we know that human adversaries are bounded rational and
taking that behavior into account will improve the attack
prediction accuracy and optimal defender strategy. To that
end, we simulated the game in wildlife domain and asked
real human subjects to play this game. Then we analyzed
the human subject decisions to derive a more accurate model

to describe the human adversary behavior in security games
in presence of collusion.

3.1 Game Interface Design

In our game, human subjects are asked to play the role
of a poacher in a national park in Africa. There are dif-
ferent number of hippopotamus distributed over the park
which indicates animal density distribution over the area.
The entire park area is divided into two sections (right and
left) and each human subject can only attack in one section
(either right or left); however, they can explore the whole
park. The other section of the park is only available to an-
other player who is playing the same game. Each section of
the park is divided into 3 x 3 grid, i.e. each player has 9 cells
(sub-regions) accessible to him to attack. Players are able
to choose different sub-regions and all of the information
about success and failure likelihood, reward for the attacker
(which is animal density in each sub-region) and penalty at
each sub-region (either on left or side of park) will be shown
to them. To avoid any bias on part of the human subjects,
we assigned the sides to each player randomly and kept the
other player anonymous but we used a dummy name as ei-
ther Alice or Bob (chosen on a random basis) to indicate the
other player’s side and information. To help the human sub-
jects to have a better view of the success/failure percentage
(which is defender coverage) over all the sub-regions, we put
a heat-map of that overlaid on Google Map view of the park.
Also, to help the players to have a better understanding of
the collusion in this game, we provided a table that sum-
marizes all possible pay-offs for collusive attacks based on
the collusion bonus considered for each game. The human
subjects need to make decisions about: i)whether they are
inclined to collude with the other player or not and ii)which
region of the park to put their snare (trap) where there is
less chance of getting caught and also a high chance of cap-
turing a hippopotamus. So the human subjects may decide
to attack ”individually and independently” or attack “collu-
sively” with the other player. In both situations, they will
attack different sections separately but if both of them agree
to attack collusively, they will share all of their pay-offs with
each other, equally (fifty-fifty). To enhance understanding
of the game, participants were asked to play one trial game
to become familiar with the game interface and procedures.
Then we provided a validation game to make sure that the
players have read the instructions of the game and are fully
aware of the rules and options of the game. For our analy-
sis, we selected the valid players based on their performance
in validation game and our validating criteria. Finally, the
third game which is the main game is shown to the human
subjects and their decisions are recorded and analyzed.

Bob Trial Game 00:26 You

0%
Payefts based on not cooperating

Yousucceed g Youtal

Pay-offs based on cooperstion
Yousucoeed  You'al

Goag
Total: $0.1

Cooperation was NOT preferred by

Attack!

Figure 1: Hunters vs Rangers game interface



3.2 Game Pay-off Design

The "Hunters vs Poachers” game described in the previous
sub-section is designed as a three-player zero-sum security
game with 9 targets available to each attacker. There is
one leader (defender) with m resources to cover all the 18
targets (sub-regions in the park) and there are two followers
(attackers) that can attack a side of the park. Reward of
the adversaries at each cell for an uncovered attack is equal
to the animal density at that cell and the penalty of the
adversaries at each cell for a covered attack is equal to —1.
We designed two different reward structures (animal density
distributions), RS1 and RS2, shown in Figure2(a) and 2(b)
and deployed on Amazon Mechanical Turk (AMT). In both
of these symmetric structures, both players have identical
reward distribution and we assumed a bonus of 1 for both
setups.

Figure 2: Reward structures deployed on AMT

3.3 Experiment Results

For rational adversaries, based on the linear formulation
developed in previous section, the defender can obtain the
maximum expected utility by breaking the collusion between
two adversaries. The main idea for breaking the collusion is
to put one adversary in a better condition in terms of de-
fender coverage and the other one in a worse condition, then
collusion will not be preferred by one of adversaries and col-
lusion breaks. The corresponding optimal strategy results
in an imbalance between the maximum expected utilities
on left and right side of the park. We refer to this differ-
ence as & which indicates the level of asymmetry in allo-
cating resources on both sides. The correlation between
and aggregated coverage imbalance, 6, is illustrated in Fig-
ure 5(b). Blue plots with circular markers in Figure3(a)
and 3(b) show the changes in defender loss while § varies for
RS1 and RS2, respectively. A key point of this figure is that
there is threshold § in which we can break the collusion be-
tween rational adversaries which is equal to 0.9 for RS1 and
0.8 for RS2. Another important point is that as we increase
the difference between the fraction of resources allocated on
both sides, the defender loss will decrease and at § equal
to 1.5 the optimum point will be reached. To see how de-
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(a) Defender loss, RS1 (b) Defender loss, RS2

Figure 3: Defender loss vs §

viating from balanced resource allocation can affect human

adversaries’ decisions about collusion, we ran human sub-
jects experiments on AMT for various § values. Figure4(a)
and 4(b) illustrate two sample cases that we have deployed
on AMT for RS2 such that in the first case, resources are
distributed symmetrically but in the second case § was set
equal to 1 and one side is covered more in comparison with
the other one. For each reward structure, we tested 4 dif-

15/ 0 |32)32, 0 |15]|3 | 0 {22)42| 0 |28
0 0j]0 oj|l0|510]0 0
52| 0 |43]43| 0 |[52| |44] 0 [35]52| 0

(a) § = 0, RS2 (b) 6 =1, RS2

Figure 4: Defender strategy deployed on AMT

ferent coverage distribution such that 6 € {0,1,2,3}. The
experiments showed that the level of collusion (percentage of
population who decided to collude) decreased by increasing
6 for both RS1 and RS2 as shown in Figure 5(a) for ad-
vantaged attacker who are in a better situation, RS1-A and
RS2-A. But for the attackers that are in the disadvantaged
situation, RS1-DA and RS2-DA, for both reward structures,
we can see a high level of collusion at all levels of §. Average

N

o w1 m 1 N W

~-RSI1-A RS2-A -+'RS1-DA -+ RS2-DA
100
90
80
70
60
50
40
30

Res. Imbalance
-

=)

Collusion %

(a) Collusion level

(b) Resource imbalance

Figure 5: Collusion level and resource imbalance

defender loss based on the observations are plotted in dashed
red lines with rectangular markers in Figure3(a) and 3(b).
Instead of a sharp switch-over point from colluding situation
into non-colluding situation, we can see a smooth change in
average defender loss along with a delayed optimum point
in comparison with rational assumption situation. Based on
the observations, not all of the targets are identical in terms
of attractiveness to the attackers. To illustrate this fact, fre-
quency of attack for both reward structures for the player
in a better situation at different levels of § are shown in
Figure6(a) and 6(b) and the related human behavior mod-
els are discussed in the next section. These figures show
that human subjects are showing more risk averse behavior
in RS1 relative to RS2. In more details, in similar situations
in terms of J, players in RS2 are not only more interested
in collusion but also more interested in attacking cells with
higher rewards and consequently higher coverage.

4. BOUNDED RATIONALITY

4.1 Human behavior models

Subjective Utility Quantal Response (SUQR):To
incorporate the effect of bounded rational adversaries, we
use the SUQR model, [10], to predict the probability of at-
tack at each target ¢;. This model is an extension to QR
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model presented in [9]. The key idea behind QR model is
that, there is higher probability for the adversary to attack a
target with higher expected utility. In SUQR, a new utility
function called Subjective Utility, is defined which is a lin-
ear combination of key features such as defender’s coverage
probability, adversary’s reward and penalty at each target.
These features are assumed to be the most important factors
in adversary decision-making process.

In this paper, we assume there are two attackers in the
security game, so we might see different behaviors from at-
tackers. Since the main idea for breaking the collusion is to
impose a resource imbalance between two adversaries, one
adversary will be in the better position and the other one
will be in the worse position. Assuming perfectly rational
adversaries, we expect an inevitable inclination towards col-
lusion from the disadvantaged attacker and an inevitable
declination from the advantaged attacker. However, our ob-
servation from human subjects experiment did not support
this expectation. So to model human behavior, we need
to consider all of the possible cases: i) a disadvantaged at-
tacker who is inclined to collude, DA-C , ii) a disadvantaged
attacker who is not inclined to collude, D-NC, iii) an ad-
vantaged attacker who is inclined to collude, A-C, and iv)
an advantaged attacker who is not inclined to collude, A-
NC. Given this classification of adversaries, we define a re-
vised version of expected utility in Equation 22 which can be
adopted in security games involving collude. In this equation
¢ indicates the attacker that can attack t; € T; and (8 indi-
cage eachﬁadversarys’ decision about collusion. The vector

w? = (W}, w?,,w?,) contains information about each ad-
i 1,10 4,20 %4,3

versary type behavior and each component of Wf indicates
the relative weights the adversary gives to each feature in
the decision making process. Ug, (t:), Ug,(t:) and é;; shows
the penalty, reward and modified coverage probability of
the attackers, respectively. Modified coverage probability
is a function of the actual coverage probability and will be
discussed soon.

0\1;1. (ti, é, ﬁ) :wi‘il'éti + wi’iQ.UuC\pi (tl) + wisU&,l(tl) (22)

According to the SUQR model, the probability that the
adversary will attack target ¢; for each group of adversaries
that the defender might face, is given by:

el (t6.C.8)

Z e[j\lli (t:,C.8)

t; €Ty

4::(C | B) = (23)

Probability weighting function: Prospect Theory pro-
vides a descriptive model of how humans make decision

among alternatives choices in presence of risk [6], [13]. Ac-
cording to this model, individuals overestimate low probabil-
ity and underestimate high probability. Following this idea,
there are literature in this domain that propose parametric
models which capture the non-uniform weighting schemes
including both inverse S-shaped as well as S-shaped proba-
bility curves, [1], [4]. With the notion of Prospect Theory,
the modified coverage observed by the attackers is assumed
to be related to the actual probability based on Equation
24, where v and n determine the elevation and curvature of
the function, respectively.

, ned,
= 24
cti ned, + (1 —cy)7 @9

4.2 Results

Figures 7(a) and 7(b) show the probability weighting func-
tions learned for the disadvantaged and advantaged adver-
saries for both groups who are colluding and not colluding.
Figures 7(c) and 7(d) show the same results for reward struc-
ture 2.
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Figure 7: Curves learned based on Prospect Theory

The vector w? = (wf’17 wffg, wftg)7 n? and 47 are computed

by performing Maximum Likelihood Estimation (MLE) on
available attack data from human subject experiments for
four classes of attackers. Table 3 and 4 show the results for
both reward structures.

Table 3: Params. learned from data for RS1
Class (i, 8) wﬁl wﬁZ wiég nf fyf
DANC | (1,0) | =44 |08 |03 |4 |24

DA-C | (1,1)| —228 |33 |03 |08 | 2.2
ANC | (2,0)| =67 |15 |03 |4 | 1.8
AC (2,1)| —32 |08 |03 |02 | 1.6

Table 4: Params. learned from data for RS2
B B B B B

Class (4,8) | wia Wi | Wiz | M Vi
DA-NC | (1,0) | —44.5 | 6 03 |14 |22
DA-C (1,1) | —40.8 | 4 0.3 |06 | 14
A-NC (2,0) | —145 | 1.5 |03 |4 2.4
A-C (2,1) | —7.6 1 03 | 4 3

S. CONCLUSIONS

This paper provides two contributions: the first one is
formulating a new type of Stackleberg security game involv-
ing a beneficial collusion mechanism among adversaries and



developing a MILP program that enables us to find the opti-
mal defender strategy. The second contribution of this paper
is to develop a parametric human behavior model which is
able to capture the bounded rationality of adversaries in this
type of collusive games. This model is proposed based on
prospect theory, SUQR model and real data collected from
conducting human subject experiments with participants on
Amazon Mechanical Turk. The observation showed that the
collusion between adversaries can be broken by imposing se-
curity resource imbalance among adversaries’ targets. How-
ever, human adversaries are not perfectly rational and do
not follow the exact patterns predicted by the MILP devel-
oped in this paper. To address this mismatch, the related
human behavior models were proposed and discussed.
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