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Abstract

Crime in urban areas plagues every city in all countries. A notable characteristic of

urban crime, distinct from organized terrorist attacks, is that most urban crimes are

opportunistic in nature, i.e., criminals do not plan their attacks in detail, rather they

seek opportunities for committing crime and are agile in their execution of the crime. In

order to deter such crimes, police officers conduct patrols with the aim of preventing crime.

However, by observing on the spot the actual presence of patrol units, the criminals can

adapt their strategy by seeking crime opportunity in less effectively patrolled location.

The problem of where and how much to patrol is therefore important.

My thesis focuses on addressing such opportunistic crime by introducing a new game-

theoretic framework and algorithms. I first introduce the Opportunistic Security Game

(OSG), a computational framework to recommend deployment strategies for defenders

to control opportunistic crimes. I propose a new exact algorithm EOSG to optimize

defender strategies given our opportunistic adversaries. Then I develop a fast heuristic

algorithm to solve large-scale OSG problems, exploiting a compact representation. The

next contribution in my thesis is a Dynamic Bayesian Network (DBN) to learn the OSG

model from real-world criminal activity. Standard Algorithm such as EM can be applied

to learn the parameters. Also, I propose a sequence of modifications that allows for a

x



compact representation of the model resulting in better learning accuracy and increased

speed of learning of the EM algorithm. Finally, I propose a game abstraction framework

that can handle opportunistic crimes in large-scale urban areas. I propose a planning

algorithm that recommends a mixed strategy against opportunistic criminals in this ab-

straction framework. As part of our collaboration with local police departments, we apply

our model in two large scale urban problems: USC campus and the city of Nashville. Our

approach provides high prediction accuracy in the real datasets; furthermore, we project

significant crime rate reduction using our planning strategy compared to current police

strategy.
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Chapter 1

Introduction

Security is a critical societal challenge. We focus on urban security: the problem of

preventing urban crimes. Crime in urban areas plagues every city in all countries. A

notable characteristic of urban crime, distinct from organized terrorist attacks, is that

most urban crimes are opportunistic in nature, i.e., criminals do not plan their attacks in

detail, rather they seek opportunities for committing crime and are agile in their execution

of the crime.

The Stackelberg Security Game (SSG) was proposed to model highly strategic and

capable adversaries who conduct careful surveillance and plan attacks [32, 53], and has

become an important computational framework for allocating security resources against

such adversaries. While there are such highly capable adversaries in the urban security

domain, they likely comprise only a small portion of the overall set of adversaries. Instead,

the majority of adversaries in urban security are criminals who conduct little planning or

surveillance before “attacking” [13]. These adversaries capitalize on local opportunities

and react to real-time information. Unfortunately, SSG is ill-suited to model such crimi-

nals, as it attributes significant planning and little execution flexibility to adversaries.

1



1.1 Problem Addressed

In my thesis I address three questions. First, managing urban crime has always posed

a significant challenge for modern society. Distinct from elaborately planned terrorists

attacks, urban crimes are usually committed by opportunistic criminals who are less

careful in planning the attack and more flexible in executing such plans [51]. Almost

universally, preventive police patrolling is used with the goal of deterring these crimes.

At the same time, opportunistic criminals observe the police deployment and react op-

portunistically. Therefore, it is very important to deploy the police resources strategically

against informed criminals.

The first approach has focused on modeling the criminal explicitly (rational, bounded

rational, limited surveillance, etc.) in a game model. However, the proposed mathemat-

ical models of criminal behavior have not been validated with real data. Therefore, we

tackle the problem of learning the opportunistic criminal behavior from real data.

Thirdly, allocating police resources against opportunistic criminals in large scale urban

areas remains to be an open question. While security games contain various extensions to

handle different real world scenarios, the models of adversary behavior are based on expert

hypotheses, and lack detail as they are not learned from real-world data for defender’s

strategy and adversary’s reaction. While the second approach uses larger amounts of

data, such as the patrol allocation history and corresponding crime report, to learn a

richer Dynamic Bayesian Network (DBN) model of the interaction between the police

officers and opportunistic criminals. The optimal patrol strategy is generated using the

learned parameters of the DBN. While this approach predicts criminals’ behavior with

2



high accuracy for the problem in which the number of target areas is small, it has three

shortcomings: i) it cannot scale up to problems with a large number of targets; ii) the

algorithm performs poorly in situations where the defender’s patrol data is limited; iii)

the planning algorithm only searches for a pure patrol strategy, which quickly converges

to a predictable pattern that can be easily exploited by criminals.

1.2 Contributions

My thesis addresses the questions raised in previous section to control the opportunistic

criminals in urban areas.

1.2.1 Opportunistic Security Games

First, I introduces the Opportunistic Security Game (OSG), a new computational frame-

work for generating defender strategies to mitigate opportunistic criminals. This model

provides three key contributions. First, we define the OSG model of opportunistic crimi-

nals, which has three major novelties compared to SSG adversaries: (i) criminals exhibit

Quantal Biased Random Movement, a stochastic pattern of movement to search for crime

opportunities that contrasts with SSG adversaries, who are modeled as committed to a

single fixed plan or target; (ii) criminals react to real-time information about defenders,

flexibly altering plans during execution, a behavior that is supported by findings in crim-

inology literature [46]; (iii) criminals display anchoring bias [49], modeling their limited

surveillance of the defender’s strategy. Second, we introduce a new exact algorithm, Ex-

act Opportunistic Security Game (EOSG), to optimize the defender’s strategy in OSG

based on use of a markov chain. The third contribution of this work is a fast algorithm,

3



Compact OPportunistic Security game states (COPS), to solve large scale OSG prob-

lems. The number of states in the Markov chain for the OSG grows exponentially with

the number of potential targets in the system, as well as with the number of defender

resources. COPS compactly represents such states, dramatically reducing computation

time with small sacrifice in solution quality; we provided a bound for this error.

Thus, while OSG does share one similarity with SSG — the defender must commit to

her strategy first, after which the criminals will choose crime targets — the OSG model

of opportunistic adversaries is fundamentally different. This leads us to derive completely

new algorithms for OSG. OSG also differs fundamentally from another important class

of games, pursuit-evasion games (PEG) [26]; these differences will be discussed in more

depth in the related work section.

While OSG is a general framework for handling opportunistic crime, my thesis will

use as a concrete example crime in urban transportation systems, an important challenge

across the world. Transportation systems are at a unique risk of crime because they

concentrate large numbers of people in time and space [14]. The challenge in controlling

crime can be modeled as an OSG: police conduct patrols within the transportation system

to control crime. Criminals travel within the transportation system for such opportunities

[19], usually committing crimes such as thefts at stations, where it is easy to escape if

necessary [35]. These opportunistic criminals avoid committing crime if they observe

police presence at the crime location.

In introducing OSG, my thesis proposes to add to the class of important security

related game-theoretic frameworks that are widely studied in the literature, including

the Stackelberg Security Games and Pursuit Evasion Games frameworks. We use an

4



urban transportation system as an important concrete domain, but OSG’s focus is on

opportunistic crime in general; the security problems posed by such crime are relevant not

only to urban crime, but to other domains including crimes against the environment [45],

and potentially to cyber crime [17,61]. By introducing a new model and new algorithms

for this model, we open the door to a new set of research challenges.

1.2.2 Learning OSG from real data

Next, we tackle the problem of learning the criminal behavior from real data. We do

so by modeling the interaction between the criminal and patrol officers as a Dynamic

Bayesian Network (DBN). This DBN model is our first contribution. As far as we know,

we are the first to use a DBN model that considers the temporal interaction between

defender and adversary in the learning phase. Given a DBN model, we can use the well-

known Expectation Maximization (EM) algorithm to learn unknown parameters in the

DBN from given learning data. However, using EM with the basic DBN model has two

drawbacks: (1) the number of unknown parameters scales exponentially with the number

of patrol areas and in our case is much larger than the available data itself; this results

in over-fitting (2) EM cannot scale up due to the exponential growth of runtime in the

number of patrol areas. We demonstrate these two drawbacks both theoretically and

empirically.

Our second contribution is a sequence of modifications of the initial DBN model re-

sulting in a compact representation of the model, that leads to better learning accuracy

and increased speed of learning of the EM algorithm when used for the compact model.

5



This sequence of modifications involve marginalizing states in the DBN using approxi-

mation technique from the Boyen-Koller algorithm [12] and exploiting structure of this

problem. In the compact model, the parameters scale polynomially with the number of

patrol areas, and EM applied to this compact model runs in polynomial time.

Our third contribution are two planning algorithms that enable computing the opti-

mal officers’ strategy. First, we present a dynamic programming based algorithm that

computes the optimal plan in our planning and updating process. While the dynamic

programming approach is optimal, it may be slow, hence we also present a fast but sub-

optimal greedy algorithm to solve the planning problem. Further, the criminal behavior

would change as he observes and reacts to the deployment of a new strategy. Hence,

the optimal strategy with respect to the learnt behavior may not be effective for a long

time, as the adversary behavior would have changed. Thus, we propose to frequently

update our adversary model as we obtain new training data from a new deployment

of defender strategy. By repeating the planning and updating process, we recommend

officers’ strategy that are more effective than learning just once.

Finally, as part of our collaboration with the police department of USC, we obtained

criminal activity and patrol data for three years. This collaboration helped us validate

our learning approach and also provided insights about the sequence of modifications

that could be made for the basic DBN model. In fact, we project a significant reduction

in crime rate using our approach as opposed to the current patrolling approach (see

Figure 4.20). Given these results, we expect our algorithm to be tested and eventually

deployed in USC. More broadly, by introducing a novel framework to reason about urban

6



crimes along with efficient learning and planning algorithms, we open the door to a new

set of research challenges.

1.2.3 Learning large scale OSGs

Finally, we focus on the problem of generating effective patrol strategies against oppor-

tunistic criminals in large scale urban settings. In order to utilize the superior performance

of DBN as compared to other models given ample data, we propose a novel abstraction

framework. This abstraction framework is our first contribution. In this framework we

merge the targets with similar properties and extract a problem with a small number of

targets. We call this new problem the abstract layer and the original problem the original

layer. We first learn in the abstract layer using the DBN approach [60] and generate the

optimal patrol strategy, then we propagate the learned parameters to the original layer

and use the resource allocation in the abstract layer to generate a detailed strategy in

the original layer. By solving the problem hierarchically through multiple abstractions,

we can generate the optimal strategy for the original scenario.

Our second contribution is a layer generating algorithm, for which (i) we model it as

a districting problem and propose a MILP in order to merge targets in the original prob-

lem into geographically compact and contiguous aggregated targets keeping the similarity

(defined later) within them as homogeneous as possible; (ii) we develop a heuristic to

solve this problem in large scale instances; (iii) we propose two approaches to find the

optimal aggregated targets. Our third contribution is a planning algorithm that generates

an optimal mixed strategy against opportunistic criminals. We consider a mixed strategy

because (i) it broadens the scope of the defender’s strategies; (ii) previous pure strategies

7



depended on the model getting updated periodically; as mentioned earlier, the model

usually converged to a single pure strategy that is easy to exploit.

When the defender’s patrol data is limited or even missing in the original layer, the

learning approach in [60] overfits the data. Therefore, in order to solve this problem,

we propose our fourth contribution which is a heuristic model to propagate important

features from the abstract layer to the original layer. We use models from behavioral

game theory, such as Quantal Response, to extract these features. In particular, we

first approximate the learned DBN parameters in the abstract layer using behavioral

parameters. Then the behavioral parameters are propagated to the original layer.

Finally, we evaluate our abstract game in two scenarios: the University of Southern

California (USC) campus [60] and Nashville, TN. We obtain data in USC from [60]. Data

in Nashville, TN is obtained as part of the collaboration with the local police department.

1.3 Overview of Thesis

This thesis is organized as follows. Chapter 2 introduces the necessary background ma-

terials for the research presented in this thesis. Chapter 3 provides an overview of the

related work. Chapter 4 discusses the Opportunistic Security Game framework and Com-

pact OPportunistic Security game states algorithm. Chapter 5 presents the framework of

learning criminal’s behavior in OSG from real world data. Chapter 6 provides an exten-

sion of the existing learning framework to further improve its performance in large scale

problems. Finally, Chapter 7 concludes the thesis and presents possible future directions.
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Chapter 2

Background and Related Work

Motivated by urban security problems, there have been a lot research for learning crim-

inal’s behavior computing optimal defender strategies. We categorize the related work

into five main areas. The first area is game theoretic models such as Stackelberg Security

Games (SSG) and Pursuit Evasion Games (PEG). The second thread of recent research

has made inroads in the modeling of opportunistic criminal behavior. The third kind of

research applies machine learning technique in criminology to predict crimes. The fourth

thread of research uses machine learning technique in game theory. The last thread of

research we comapred with is the abstract game.

2.1 Game Theoretic Models

Game theoretic models, such as Stackelberg Security Games (SSG) [53, 55], Patrolling

security games (PSG) [6] and Pursuit Evasion Games (PEG) [26] have been widely used

in security domains. The interaction between police and criminals is modeled as a Se-

curity Game. Stackelberg Security Games [3, 5, 7, 55], use a model of highly strategic

adversaries to generate randomized patrol strategies, which is shown in Fig. 2.1(a). The
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SSG framework has been successfully applied in security domains to generate randomized

patrol strategies, e.g., to protect flights [53] and for counter-terrorism and fare evasion

checks on trains [28,58]. Recent work in SSG has begun to consider bounded rationality

of adversaries [43] and incorporate some limited flexibility in adversary execution [7,57].

However, SSG [3, 5, 7] fails to model criminals who use real-time information to adjust

their behavior in consecutive multiple attacks. In SSG, attackers cannot use real-time ob-

servation to decide whether to attack at current time, nor can they use it to update belief

and plan for next consecutive attacks. Furthermore, SSG does not investigate efficient al-

gorithms of deriving defender strategies against such opportunistic criminals; Adversarial

Patrolling Game(APG) [56], which is an improvement of SSG, considers the attacker’s

current observation. However, this game does not consider multiple consecutive attacks.

It fails to model attacker’s movement during multiple attacks and therefore the influence

of current observation on future movement.

Recent work in leader-follower games, PSG, also has made progress in generating

patrol strategies against adversaries in arbitrary topology [5]. Different types of adver-

saries in this game are considered in [7] while different security resources are considered

in [4]. Another example of a game theoretic model is Pursuit-Evasion Games (PEG),

which model a pursuer(s) attempting to capture an evader, often where their movement

is based on a graph [26]. However, PEG fail to model criminals who opportunistically

and repeatedly strike targets as modeled using QBRM in OSG. Furthermore, in PEG, a

pursuer’s goal is to capture an evader while in OSG, the defender’s goal is to minimize

crime; additionally in PEG, the evader’s goal is to avoid the pursuer and not seek crime
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(a) Stackelberg Security Games (b) Computational Criminology

(c) Machine Learning in Criminology (d) Texas Hold’em

Figure 2.1: Related Work

opportunities as in OSG. These critical differences in behaviors of defenders and adver-

saries lead to new algorithms, i.e., EOGS and COPS, for OSG, that are fundamentally

different from algorithms for PEG.

2.2 Modeling criminal behavior

Computational criminology is an interdisciplinary field that uses computing science and

math methods to formally define criminology concepts, improve our understanding of

crime distributions, and generate optimal patrol strategies against such crimes. Recent

research has also made inroads in the modeling of opportunistic criminal behavior, and

in how security forces might defend against such adversaries. In [51], which is shown in

Fig. 2.1(b), burglars are modeled as biased random walkers seeking “attractive” targets,

and [62] follows up on this work with a method for generating effective police alloca-

tions to combat such criminals. However, these works make the extreme assumption
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that criminals have no knowledge of the overall strategy of the police, and their behavior

is only affected by their observation of the current police allocation in their immediate

neighborhood. Also, in [62] police behave in a similarly reactionary way, allocating their

resources in an instantaneously optimal way in response to the current crime risk distri-

bution rather than optimizing over an extended time horizon. Furthermore, in [62] there

is no notion of the “movement” of police - rather, the distribution of police officers are

chosen instantaneously, with no regard for the mechanics of exactly how the allocation

may transform from one time step to the next. Our current approach is an attempt

to generalize these threads of research. A number of sophisticated modeling approaches

emerged aiming to tackle the full spatio-temporal complexity of crime dynamics. One

of these is based on a spatio-temporal differential equation model that captures both

spatial and temporal crime correlation [38]. These models have two disadvantages: first,

they do not naturally capture crime co-variates, and second, they are non-trivial to learn

from data. Another model in this general paradigm is Dynamic Spatial Disaggregation

Approach (DSDA) [27], which combines an autoregressive model to capture temporal

crime patterns with spatial clustering techniques to model spatial correlations. An al-

ternative approach, risk-terraine modeling, focuses on quantifiable environmental factors

as determinants of spatial crime incidence, rather than looking at crime correlation [51].

These two classes of models both have a key limitation: they ignore the temporal dynam-

ics of crime. Moreover, environmental risk factors and spatial crime analysis are likely

complementary. My approach aims to merge these ideas in a principled way.
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2.3 Machine Learning in Criminology

Machine learning is a subfield of computer science, which extracts patterns and learns

parameters. In our case, we are specifically referring to supervised machine learning,

where the computer is presented with data that has labels and features. The goal of

supervised learning is to find a pattern that maps features to labels. More specifically,

we are looking at problems that does not only includes features, but also depends on

unobserved latent variables. Recent research on Expectation Maximization algorithm

has provided an iterative method for finding maximum likelihood of parameters in such

statistical models.

Recent research applies machine learning and data mining in criminology domain to

analyze crime patterns and support police in making decisions. A general framework

for crime data mining is introduced in [16]. In [40], data mining is used to model crime

detection problems and cluster crime patterns; in [20], data mining approaches are applied

in criminal career analysis; in [42], the authors apply machine learning techniques to soft

forensic evidence and build decision support systems for police. However, this area of

research considers only crime data and does not model the interaction between patrol

officers and criminals. Such works are shown in Fig. 2.1(c)

There has also been an extensive literature devoted to understanding and predicting

crime incidence, involving both qualitative and quantitative approaches. For example, a

number of studies investigate the relationship between liquor outlets and crime [52, 54].

Many of the earlier quantitative models of crime focus on capturing spatial crime correla-

tion (hot spots), and make use of a number of statistical methods towards this end [34,39];
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these are still the most commonly used methods in practice. An alternative approach,

risk-terraine modeling, focuses on quantifiable environmental factors as determinants of

spatial crime incidence, rather than looking at crime correlation [31]. These two classes

of models both have a key limitation: they ignore the temporal dynamics of crime. More-

over, environmental risk factors and spatial crime analysis are likely complementary. Our

approach aims to merge these ideas in a principled way.

2.4 Machine Learning in Game Theory

Recent research combines machine learning with game theory. In [10], the defender’s

optimal strategy is generated in a SSG by learning the payoffs of potential attackers

from their best responses to defender’s deployments. An inherent problem with such an

approach is that the defender strategy is geared towards learning the adversary payoff,

and not exploiting the improved knowledge of the adversary payoff as the game progresses.

Another example of such work is Green Security Games (GSG) [22, 41], where poaching

data may be used to learn a model of poachers’ boundedly rational decision making.

2.5 Abstract Game

Abstract game that is widely used in large incomplete information games such as Texas

Hold’em that is shown in Fig. 2.1(d), [23, 25]. There are a number of different ap-

proaches including both lossless abstractions [24] and lossy abstractions [48]. In [18]

and [2], sub-games are generated to calculate the Nash equilibrium in a normal form

games. Abstractions have also been brought into security games. In [3], abstraction is
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used to design scalable algorithms in PSGs. However, these works focus on clustering

similar actions, strategies or states to formulate a simpler game. In our situation, we are

physically merging the similar targets to generate simpler games. The criteria of merg-

ing targets is different from that of merging actions, strategies or states. Our differing

criteria and approach for merging targets, different means of propagating results of our

abstractions, and our learning from real-world crime data set our work apart from this

work.
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Chapter 3

Opportunistic Security Games

In this chapter, I introduce the Opportunistic Security Game (OSG), a computational

framework to recommend deployment strategies for defenders to control opportunistic

crimes.

3.1 OSG Framework

OSG unfolds on a connected graph that can be seen to model a metro rail system (though

many other domains are also possible), where stations are nodes and trains connecting

two stations are edges. Fig. 3.1 shows a simple scenario with three fully connected

stations. Stations and trains are collectively referred to as locations. Let the stations be

labeled 1, . . . , N , with N denoting the number of stations. The train from station i to its

neighboring station j is denoted as i → j. The number of locations is Nl > N , e.g., in

Fig. 3.1, Nl = 9.

We divide time equally into time steps so that trains arrive at stations at the beginning

of each time step. There are two phases in any time step. First is the decision phase,

the period when trains are at stations for boarding and unboarding. In this phase, each
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passenger at each location decides where in the system to move next. There are two

types of choices available. Go i→ j means that (i) if a passenger is at station i, he gets

on the train i → j; (ii) if he is on a train arriving at station i, he now gets (or stays)

on the train i → j. Stay means that the passenger stays at the station, so that if the

passenger was on a train, he gets off. After the brief decision phase is the action phase,

in which trains depart from all stations to all directly connected stations. This model

matches the metro systems in Los Angeles, where trains leave stations at regular intervals

to all directly connected stations. Without losing generality, we assume that the time

it takes to travel between any two adjacent stations is identical; this assumption can be

relaxed by including dummy stations. In OSG, the defender (“she”) – assisted by our

algorithms – is modeled to be perfectly rational. The criminal (“he”) is modeled with

cognitive biases. Fig. 3.2 illustrates the OSG flowchart, with relevant equation numbers

near variables – these variables and equations are described in the following.

Figure 3.1: The metro network

π Td Tdb Csb Ctb E p Ts

Ct

Obj

1

52 3 4 6
Cs

Figure 3.2: Flow chart of OSG

3.1.1 Modeling Defenders

A defender is a team of police officers using trains for patrolling to mitigate crime. We

start with a single defender and deal with multiple defenders later. The defender con-

ducts randomized patrols using a Markov Strategy π, which specifies for each location a
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probability distribution over all available actions. At location l, the probabilities of Go

i→ j and Stay are denoted by gi→jl and sl respectively.

Example 1: Markov Strategy In Figure 3.1, a possible distribution for location

3→ 2 in a Markov strategy π is,

s3→2 = 0.1, g2→1
3→2 = 0.8, g2→3

3→2 = 0.1

that is, if the defender is on the train from station 3 to 2, then at the next decision phase:

she has probability 0.1 to choose Stay, thereby exiting the train and remaining at station

2; 0.8 to Go 2 → 1, meaning she remains on her current train as it travels to station 1;

and 0.1 to Go 2 → 3, meaning she exits her current train and boards the train heading

the opposite direction toward station 3.

Given π, the defender’s movement is a Markov chain over the locations with defender

transition matrix Td, whose entry at column k, row l specifies the probability of a defender

currently at location k being at location l during the next time step. In Td, index

i (i ∈ 1, . . . , N) represents station i; indexes larger than N represent trains.

Example 2: For Example 1, Td is as follows:

1 2 · · ·2→ 3 3→ 1 3→ 2

1

2

3

1→ 2

1→ 3

· · ·



s1

0

0

g1→2
1

g1→3
1

· · ·

0

s2

0

0

0

· · ·

0

0

s2→3

0

0

· · ·

s3→1

0

0

g1→2
3→1

g1→3
3→1

· · ·

0

s3→2

0

0

0

· · ·


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π Defender’s Markov strategy csb Criminal’s belief of cs

Td Defender transition matrix ctb Criminal’s belief of ct

cs Defender stationary coverage Tdb Criminal’s belief of Td
ct Defender coverage vector at time step t E Target expected value for criminals
Ts Transition matrix for the OSG Markov chain p Criminal’s next strike probability

Table 3.1: Notation used throughout this chapter.

Using Td and ct = (c1, c2, · · · , cN , c1→2, · · · )T , defined as the probability distribution

of a defender’s location at time t, we can calculate the coverage vector at time step t1 > t

through the formula

ct1 = (Td)
t1−t · ct (3.1)

We restrict each element in π to be strictly positive so that Td is ergodic, meaning

it is possible to eventually get from every location to every other location in finite time.

For an ergodic Td, based on Lemma 3.1.1, there is a unique stationary coverage cs, such

that Td · cs = cs. The dependence of cs on Td and hence on π is shown in Fig. 3.2.

The defender’s initial coverage, c1, is set to cs so that the criminal will face an invariant

distribution whenever he enters the system. This invariant initial distribution is analogous

to assuming that the defender patrols for a long time and becomes stable, but under our

model, criminals can enter the system at any time.

Lemma 3.1.1. (Fundamental Theorem of Markov Chains) For an ergodic Markov chain

P , there is a unique probability vector c such that P · c = c and c is strictly positive.

Proof. This is a very simple restatement of the property of ergodic Markov chain. [44]

provides detailed proof.

3.1.2 Modeling Opportunistic Criminals
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Figure 3.3: Example of strikes

Our model of the criminal con-

sists of three components.

Criminal’s probability to

commit a crime at the cur-

rent time step: We assume the

criminal will only commit crimes at stations, as discussed earlier [35], and only during

action phases, since decision phases are considered instantaneous. The probability of

such a crime is determined by two factors. The first is the attractivenes of each target

station [51], which measures the availability of crime opportunities at a station. Attrac-

tiveness measures how likely a criminal located at that station during an action phase

is to commit a crime in the absence of defenders; Att = (Att1, Att2, · · · , AttN ) is the

N vector composed of station attractiveness. The second factor is the defender’s pres-

ence; i.e., if a criminal is at the same station as a defender, he will not commit a crime.

Thus, his probability of committing a crime at station i will be influenced by ct(i). Using

this strategy, the criminal will never be caught red handed by the defender, but may

be forced toward a less attractive target. Thus, the probability of the criminal commit-

ting a crime if located at station i during the action phase of time step t, is denoted as

qc(i, t) = (1− ct(i))Att(i).

Criminal’s belief state of the defender: During the decision phase, the criminal

decides the next target station; he then moves directly to that station at the next action

phase(s). Hence, the criminal’s motion within the metro system can be distilled down to

a sequence of stations where he chooses to locate; we refer to these instances of attempted

crime as Strikes. Figure 3 is a toy example showing the relationship between the time
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steps and strikes for a criminal. As shown in the figure, only the time steps when the

criminal is at stations are counted as strikes.

When making these target decisions, the criminal tends to choose stations with high

expected utilities. He uses his knowledge of π and his real-time observations to make

such decisions. Let Tdb, ctb, and csb be his belief of Td, ct, and cs, respectively. As

the criminals have limited surveillance capability, these beliefs may not be the same

as Td, ct, and cs. To model the criminal’s surveillance imperfection we use anchoring

bias – a cognitive bias, with extensive experimental backing, which reveals the human

bias toward choosing a uniform distribution when assigning probabilities to events under

imperfect information [43, 49]. We denote the level of the criminal’s anchoring bias with

the parameter b, where b = 0 indicates no anchoring bias, and b = 1 indicates complete

reliance on such bias. We set Tdb = (1 − b) · Td + b · Tu, with corresponding stationary

coverage csb, where Tu corresponds to the uniform distribution.

At any given time step t when the criminal is at a station, i.e., a strike, he may be

modeled as using his belief and observations to estimate ctb. We assume the opportunistic

criminal only uses his current observation, csb and Tdb to estimate ctb (criminal’s belief

of defender’s location distribution). Specifically, if the criminal is at station i and the

defender is also there, then ctb is (0, 0, ..., 1, 0, ..., 0)T , where row i is 1 and all others are

0. Otherwise the defender is not at i, and

ctb =
(csb(1), csb(2), ..., 0, csb(i+ 1), ..., csb(Nl))

T[
1− csb(i)

] , (3.2)
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where row i is 0 and other rows are proportional to the corresponding rows in csb. Our

approach to compute ctb is justified on two grounds. First, it is computationally cheap.

Second, as we show in experimental results, even perfect knowledge provides very limited

improvement in the criminal’s performance given our modeling of the criminal’s bounded

rationality and anchoring bias; thus a more complex procedure is unnecessary. Given ctb

and Tdb, the belief coverage vector at time step t1 (t1 > t), ct1b , is calculated via Eq. 3.1.

Input: i: the criminal’s station; π: defender’s Markov strategy; m: the defender’s
location; b: parameter of criminal’s anchoring bias

Output: p(·|i, ct0b ): The criminal’s probability distribution for next target
1 Initial N with the number of stations ;
2 Initial Td by π;
3 Initial cs with stationary coverage of Td;

4 Initial ct0b with a 1× (3N − 2) zero vector ;
5 Tdb = (1− b) · Td + b · Tu ;
6 csb = (1− b) · cs + b · csu ;
7 if i == m then

8 ct0b (i) = 1;
9 end

10 if i 6= m then
11 for j ∈ Location do

12 ct0b (j) =
csb(j)

1− csb(i)
;

13 end

14 ct0b (i) = 0 ;

15 end
16 for j ∈ Station do
17 t = |i− j|+ 1 ;

18 ct0+tb = (Tdb)
t · ct0b ;

19 E(j|i, ct0b ) =

(
1−ct0+tb (j)

)
Att(j)

t ;

20 end
21 for j ∈ Station do

22 p(j|i, ct0b ) =
E(j|i,ct0b )λ∑N
h=1 E(h|i,ct0b )λ

;

23 end

24 return p(·|i, ct0b );

Algorithm 1: Biased Random Walk Algorithm
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We set the actual payoff for a crime to 1, but this can be generalized. The expected

payoff for the criminal when choosing station j as the next strike, given that the current

strike is at station i at time step t, is qcb(j, t + δij), where δij ≥ 1 is the minimum time

needed to arrive at j from i. But, criminals are known to discount more distant locations

when choosing targets. Therefore, the utility that the criminal places on a given payoff

is discounted over time. We implement this by dividing the payoff by the time taken.

Finally, the criminal must rely on his belief of the defender’s coverage when evaluating

qcb(j, t+ δij). Altogether, station j has the expected utility E(j|i, ctb) =
qcb(j,t+δij)

δij
, which

is

E(j|i, ctb) =

(
1−

[
(Tdb)

δij · ctb
]

(j)
)
Att(j)

δij
. (3.3)

The criminal’s Quantal Biased Random Movement (QBRM): Finally, we

propose QBRM to model the criminal’s bounded rationality based on other such models

of criminal movements in urban domains [51]. Instead of always picking the station with

highest expected utility, his movement is modeled as a random process biased toward

stations of high expected utility. Given the expected value for each station E(·|i, ctb), the

probability distribution for each being chosen as the next strike, p(·|i, ctb) is:

p(j|i, ctb) =
E(j|i, ctb)λ∑N
h=1E(h|i, ctb)λ

, (3.4)

where λ ≥ 0 is a parameter that describes the criminal’s level of rationality. This is

an instance of the quantal response model of boundedly rational behavior [37]. The

criminal may, as an alternative to choosing a further strike, leave the system at exit
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rate α. Therefore, the criminal eventually leaves the system with probability 1, and in

expectation receives a finite utility; he cannot indefinitely increase his utility.

Given the criminal’s QBRM, the Opportunistic Security Game can be simplified to

a Stackelberg game for specific value of the parameters describing criminal’s behaviour (

Theorem 3.1.2).

Lemma 3.1.2. When the criminal’s rantionality level parameter λ = 0, the defender’s

optimal strategy is a stationary strategy, meaning that the defender picks a station and

does not move in the patrol.

Proof. According to Eqn. 3.4, when λ = 0, p(j|i, ctb) = 1
N for all targets, which is indepen-

dent of defender’s Markov strategy π. Therefore, the OSG is equivalent to a Stackelberg

Game where the leader (the criminal) makes his choice first, which is independent of the

follower’s (defender’s) choice. Then the follower can decide her action given the leader’s

action. Therefore, as in a Stackelberg game, the follower’s (defender’s) optimal strategy

is a pure strategy. Furthermore, we know that in this Stackelberg game, the leader (the

criminal) is making a uniform random choice, meaning that he chooses each target with

the same probability. Therefore, the defender’s optimal strategy is staying at the station

with highest attractiveness.

To summarize, as shown in Figure 3.2, the opportunistic criminal is modeled as follows:

First, he decides whether to commit a crime or not based on the defender’s presence at

his station at each strike. Next, he uses his imperfect belief Tdb of the defender’s strategy,

which is affected by anchoring bias, and his real-time observation to update his belief

ctb using a simple scheme (Eq. 3.2). Finally, we use QBRM to model his next attack
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(Eq. 3.4) based on the expected utility of different targets (Eq. 3.3). Algorithm 1 is a

full mathematical description of the criminal’s movement. In Algorithm 1, steps 1-4 are

initialization; steps 5-6 model how the criminal generates his imperfect belief; steps 7-15

model how the criminal updates his belief given his real-time observation; steps 16-20

model how the criminal evaluates each station based on his updated belief; and steps

21-24 use QBRM to model his probability distribution of visiting each station in his next

strike.

3.2 Example of OSG

In this section, we are going to show an toy example of the OSG we discussed above. Fig-

ure 3.4(a) shows a transportation network with 3 nodes. Figure 3.4(b) is the game matrix

when both defender and criminal are at station 2. The row represents the combination of

criminal’s crime decision and target decision while the column represents the defenders’

strategy for next time step. Figure 3.4(c) shows another game matrix when criminal is

on train from target 2 to target 1 while the defender is at target 2. The opportunistic

crime is modeled as this game that has been played repeatedly.

3.3 Exact OSG (EOSG) algorithm

Given the defender and criminal models, the EOSG algorithm computes the optimal

defender strategy by modeling the OSG as a finite state Markov chain. As all the criminals

behave identically, we can focus on the interaction between the defender and one criminal

without loss of generality.
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(a) Transportation network

(b) Game matrix 1 (c) Game matrix 2

Figure 3.4: Example of OSG

Each state of the EOSG Markov chain is a combination of the criminal’s station

and the defender’s location. Here we only consider situations where the criminal is at a

station as states because he only makes decisions at stations. Since there are N stations

and Nl locations, the number of states is N · Nl in the EOSG markov chain. State

transitions in this EOSG markov chain are based on strikes rather than time steps. The

transition matrix for this Markov chain, denoted as Ts, can be calculated by combining

the defender and criminal models. For further analysis, we pick the element pS1→S2 in Ts

that represents the transition probability from state S1 to S2. Suppose in S1 the criminal

is at station i while the defender is at location m at time step t, and in S2, the criminal

is at station j while the defender is at location n at time step t+ δij . We need two steps

to calculate the transition probability pS1→S2. First, we find the transition probability

of the criminal from i to j, p(j|i, ctb). Then, we find the defender’s transition probability
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from m to n, which is ct+δij (n) =
(
(Td)

δij · em
)

(n), where em is a basis vector for the

current location m. The transition probability pS1→S2 is therefore given by

pS1→S2 = p(j|i, ctb) · ct+δij (n). (3.5)

Since p(j|i, ctb) and ct+δij (n) are determined by π, pS1→S2 is also in terms of π (see

Fig. 3.2), and hence so is Ts.

Given this EOSG model, we can calculate the defender’s expected utility at each

strike. For each successful crime, the defender receives utility ud < 0, while if there

is no crime, she receives utility 0. We do not consider the time discount factor in the

defender’s expected utility, as the goal of the defender shall be to simply minimize the

total expected number of crimes that any criminal will commit. Formally, we define a

vector rd ∈ RN ·Nl such that entries representing states with both criminal and defender

at the same station are 0 while those representing states with criminal at station i and

defender not present are Att(i) · ud. Then, the defender’s expected utility Vd(t) during

strike number t is Vd(t) = rd · xt, where xt is the state distribution at strike number t.

xt can be calculated from the initial state distribution x1, via xt = ((1 − α) · Ts)t−1x1.

The initial state distribution x1 can be calculated from the initial criminal distribution

and cs. The defender’s total expected utility over all strikes is thus

Obj = lim
`→∞

∑`

t=1
Vd(t)

= rd · (I − (1− α)Ts)
−1x1 , (3.6)
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where I is an identity matrix and α is the criminal’s exit rate. In this equation we use

the geometric sum formula and the fact that the largest eigenvalue of Ts is 1, so that

I − (1− α)Ts is nonsingular for 0 < α < 1.

The objective is a function of the transition matrix Ts and x1, which can be expressed

in terms of π via Eqs. (3.1), (3.3), (3.4), and (3.5). We have thus formulated the defender’s

problem of finding the optimal Markov strategy to commit to as a nonlinear optimization

problem, specifically to choose π to maximize Obj (that is, minimize the total amount of

crime).

3.4 OSG for multiple defenders

If K multiple defenders all patrol the entire metro, using the same π, which is denoted as

full length patrolling, then they will often be at the same station simultaneously, which

carries no benefit. On the other hand if we allow arbitrary defenders’ strategies that are

correlated, we will need to reason about complex real-time communication and coordi-

nation among defenders. Instead, we divide the metro into K contiguous segments, and

designate one defender per segment, as in typical real-world patrolling of a metro system.

Each defender will have a strategy specialized to her segment.

Defenders: In the k-th segment, the number of locations is nkl . Defender k patrols

with the Markov strategy πk. Her transition matrix is Tdk ∈ Rnkl ×n
k
l . Her coverage vector

at time t is ctk, and csk is her stationary coverage. Hence, defender k’s behavior is the

same as that in a single-defender OSG, while the collective defender behavior is described

by the Markov strategy π = (π1, π2, ..., πK). The transition matrix Td is as follows, where
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Input: i: the criminal’s station; π: vector of defender Markov strategies; m:
vector of defender locations; b: parameter of criminal’s anchoring bias

Output: p(·|i, ct0b ): The criminal’s probability distribution for next target
1 Initial N with the number of stations ;
2 Initial K with the number of defenders ;
3 Initial ki with the segment that station i is in ;
4 for k ≤ K do
5 Initial Tdk by πk;
6 Initial csk by stationary coverage of Tdk;
7 Tdbk = (1− b) · Tdk + b · Tuk;
8 csbk = (1− b) · csk + b · csuk ;

9 ct0bk = csbk
10 if k == ki then

11 Initial ct0bk with a 1× nkl zero vector ;
12 if i == m(k) then

13 ct0bk(i) = 1;
14 end
15 if i 6= m(k) then
16 for j ∈ Location in segment k do

17 ct0bk(j) =
csbk(j)

1− csbk(i)
;

18 end

19 ct0bk(i) = 0 ;

20 end

21 end

22 end

23 Tdb =


Tdb1 0 . . . 0

0 Tdb2 . . . 0
...

...
. . .

...
0 0 . . . TdbK


24 ct0b = (ct0b1; c

t0
b2; ...; c

t0
bK).

25 for j ∈ Station do
26 t = |i− j|+ 1 ;

27 ct0+tb = (Tdb)
t · ct0b ;

28 E(j|i, ct0b ) =

(
1−ct0+tb (j)

)
Att(j)

t ;

29 end
30 for j ∈ Station do

31 p(j|i, ct0b ) =
E(j|i,ct0b )λ∑N
h=1 E(h|i,ct0b )λ

;

32 end

33 return p(·|i, ct0b );

Algorithm 2: Biased Random Walk Algorithm with Mulitple defenders
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we have dropped the trains between segments from the basis for Td and ensured that

station numbering is continuous within segments:

Td =


Td1 . . . 0

...
. . .

...

0 . . . TdK

 . (3.7)

The coverage of all units at time step t is ct, and is defined as the concatenation of

coverage vectors (ct1; c
t
2; ...; c

t
K). ct sums to K since each ctk sums to 1. The vector

ct evolves to future time steps t1 in the same way as before, via Eq. 3.1. The overall

stationary coverage is cs = (cs1; c
s
2; ...; c

s
K).

Opportunistic criminals: The previous model for criminals still applies. How-

ever, any variables related to defenders (Td, ct, cs) are replaced by their counterparts

for the multiple defenders. Furthermore, the criminal in segment k at time t cannot

observe defenders other than k. As a result, his belief of defender coverage is updated

only for segment k, i.e., ctb = (csb1; c
s
b2; ...; c

s
b(k−1); c

t
bk; c

s
b(k+1); ...; c

s
bK). Algorithm 2 de-

scribes a criminal’s behavior in the multiple defenders settings. Similar to Algorithm 1,

in Algorithm 2, steps 1-3 are initialization; steps 4-22 model how the criminal generates

and updates his imperfect belief for each defender, such that for defender k(k ≤ K),

the process of calculating the criminal’s belief is exactly the same as the single defender

scenario; steps 23-24 combine the criminal’s belief for each defender as his belief for all

the defenders; steps 25-29 model how the criminal evaluates each station based on his

belief; and steps 30-34 use QBRM to model his probability distribution of visiting each

station in his next strike.
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EOSG: In optimizing defender strategies via a Markov chain, each state records the

station of the criminal and the location of each defender. As a result, each state is denoted

as S = (i,m1, ...,mK), where the criminal is at station i and defender k is at location mk.

Since defender k can be at nkl different locations, the total number of states is N ·n1l · · ·nKl .

To apply EOSG for multiple defenders, Ts is still calculated using the defender and

criminal models. The transition probability pS1→S2 from S1 = (i,m1, ...,mK) at time t

to S2 = (j, n1, ..., nK) at time t+ δij is

pS1→S2 = p(j|i, ctb)
∏

k
ct+δij (nk),

where ct+δij (nk) = ((Td)
δij · em1,m2,...,mK )(nk) and em1,m2,...,mK is an indicator vector

with 1 at entries representing locations m1,m2, ...,mK and 0 at all others. The state

distribution x and revenue rd are both N ·n1l · · ·nKl vectors. The defenders’ total expected

utility is given by Eq. (3.6); our goal remains to find a π to maximize Obj.

3.5 The COPS Algorithm

The objective of EOSG can be formulated as a non-linear optimization. Unfortunately, as

we will show in our experiments, the EOSG algorithm fails to scale-up to real-world sized

problem instances due to the size of Ts in Eq. (3.6), which is exponential ( N · n1l · · ·nKl

by N · n1l · · ·nKl ) for K defenders. We propose the Compact OPportunistic Security

game state (COPS) algorithm to accelerate the computation. COPS simplifies the model

by compactly representing the states. The size of the transition matrix in COPS is

2N×2N , regardless of the number of defenders, which is dramatically smaller than in the
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exact algorithm. The COPS algorithm is inspired by the Boyen-Koller(BK) algorithm

for approximate inference on Dynamic Bayesian Networks [12]. COPS improves upon

a direct application of BK’s factored representation by maintaining strong correlations

between locations of players in OSG.

In OSG with a single defender, there are two components in a Markov chain state for

strike t: the station of the criminal Stc and the location of the defender θtd. These two

components are correlated when they evolve. We introduce an intermediate component,

the criminal’s observation Otc, which is determined by both Stc and θtd. Given the criminal’s

current station and his observation, we can compute his distribution over the next strike

station. At the same time, the evolution of θtd is independent of Stc. Such evolution is

shown in Figure 3.5(a). This is an instance of a Dynamic Bayesian Network: Stc, O
t
c, and

θtd are the random variables, while edges represent probabilistic dependence.

A direct application of the Boyen-Koller algorithm compactly represents the states

by using the marginal distribution of these two components, Stc and θtd, as approximate

states. The marginal distributions of Stc and θtd are denoted as Pr(Stc) and Pr(θtd) respec-

tively, and it is assumed that these two components are independent, meaning we can

restore the Markov Chain states by multiplying these marginal distributions. Note that

in Section 4.2, we set Pr(θtd) = cs for all strikes. Thus, we do not need to store θtd in the

state representation. Therefore, the total number of the approximate states in this case

is just N . However, such an approximation throws away the strong correlation between

the criminal’s station and defender unit’s location through the criminal’s real-time ob-

servation. Our preliminary experiments showed that this approximate algorithm leads to

low defender expected utility.
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Figure 3.5: COPS algorithm

To design a better algorithm, we should add more information about the correlation

between the criminal and defenders. To that end, our COPS algorithm compactly rep-

resents our Markov Chain states with less information lost. Instead of just considering

the marginal distributions of each component Pr(θtd) and Pr(Stc), we also include the ob-

servation of the criminal Otc while constructing the approximate states. The criminal’s

observation is binary: 1 if the defender is at the same station with him, 0 otherwise.

The new approximate states, named COPS states, only keep the marginal probability

distribution of Pr(Stc, O
t
c). So, the new state space is the Cartesian product of the sets of

Stc and Otc, which has size 2N .

One subtask of COPS is to recover the distributions over the full state space (Stc, θ
t
d),

given our state representation Pr(Stc, O
t
c). We cannot restore such distribution by mul-

tiplying Pr(θtd) and Pr(Stc) in COPS. This is because Stc, O
t
c, and θtd are not indepen-

dent. For example, in COPS state Stc = 1, Otc = 1, θtd cannot be any value except

1. In other words, the defender’s location distribution Pr(θtd|Stc, Otc) is no longer cs.

Instead, we approximate Pr(θtd|Stc, Otc) as follows. In each COPS state (Stc, O
t
c), the es-

timated marginal distribution for the defender, P̂r(θtd|Stc, Otc), is found in a manner sim-

ilar to that used to find the criminal’s belief distribution ctb. Specifically, if Otc = 1,

P̂r(θtd|Stc, Otc) = (0, 0, ..., 1, 0, ..., 0)T , where the row representing station Stc is 1 and all
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others are 0; if Otc = 0, then P̂r(θtd|Stc, Otc) is found through Equation 3.2, but with the

csb(j) replaced by the true stationary coverage value cs(j). We can then recover the es-

timated distribution over full states P̂r(Stc = i, θtd|Stc = i, Otc) = P̂r(θtd|Stc = i, Otc) for all

i and P̂r(Stc = j, θtd|Stc = i, Otc) = 0 for all j 6= i. Estimated full distributions evolve

the same way as exact distributions do, as described in Section 4. At the future strike,

we can then project the evolved estimated full distribution to distributions over COPS

states. Figure 3.5(b) shows the whole process of the evolution of COPS states. However,

such a process would appear to involve representing a full Ts, negating the benefit of the

factored representation; we avoid that by using TCOPS , discussed below.

To streamline the process of evolving COPS states, in practice we use a transi-

tion matrix TCOPS ∈ R2N×2N . Each element of TCOPS , i.e., transition probability

Pr(St
′
c , O

t′
c |Stc, Otc), can be calculated as follows:

Pr(St
′
c , O

t′
c |Stc, Otc)

=
∑

θt
′
d

∑
θtd

Pr(St
′
c , O

t′
c |St

′
c , θ

t′
d ) · Pr(St

′
c , θ

t′
d |Stc, θtd) · P̂r(Stc, θ

t
d|Stc, Otc)

= Pr(St
′
c |Stc, Otc)

∑
θt
′
d

Pr(Ot
′
c |St

′
c , θ

t′
d ) ·

∑
θtd

Pr(θt
′
d |St

′
c , S

t
c, θ

t
d) · P̂r(θtd|Stc, Otc),

(3.8)

where Pr(St
′
c |Stc, Otc) and Pr(θt

′
d |St

′
c , S

t
c, θ

t
d) correspond to p(j|i, ct0b ) and ct0+|i−j|+1(n),

respectively, in Section 4.

The defenders’ total expected utility in COPS is calculated in a similar way as the

exact algorithm, which is

ObjCOPS = rd,COPS · (I − (1− α)TCOPS)−1x1,COPS , (3.9)
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where rd,COPS , x1,COPS are the expected utility vector and the initial distribution for

COPS states. Similar to rd, rd,COPS(S) is 0 if in state S the defender is at the same

station with the criminal, else rd,COPS(S) = ud. COPS is faster than the exact algorithm

because the number of states is reduced dramatically. Meanwhile, the approximation

error of COPS algorithm is bounded according to Theorem 3.5.2.

Definition 3.5.1. Let mi be the location corresponding to station i. For a distribution

over OSG full states x, the corresponding distribution over COPS states xCOPS is:

xCOPS(i, o) =


x(i,mi) if o = 1

∑
m 6=mi x(i,m) if o = 0

For a distribution over COPS states xCOPS, the corresponding approximate distribu-

tion over OSG full states x′ is:

x′(i,m) =


xCOPS(i, 1) if m = mi

xCOPS(i, 0) · cs(m)
1−cs(i) otherwise

This conversion can be summarized through a single matrix multiplication, such that

x′ = Ax.

Lemma 3.5.1. Let µ2 be the magnitude of the second largest eigenvalue of transition

matrix Ts. Let δ be the largest possible L2 approximation error introduced when full state

distribution x is transformed into the COPS representation vector xCOPS and back into

the approximate distribution x′ over full states: ||x − Ax|| ≤ δ. At strike number t, the

L2 norm between the EOSG distribution yt and the distribution found through COPS

algorithm xt is bounded, such that ||yt − xt||2 ≤ (1− α)t−1
δ(1−µt2)
1−µ2 .

Proof. Let xt be the state vector as found through the COPS algorithm at time t. The

time evolution for x proceeds then as follows: xt = (1−α)t−1(ATs)
t−1x1, where x1 = Ay1,
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and y1 is the initial state vector for the EOSG algorithm. So, consider the L2 error

introduced at iteration t by the COPS approximation alone

||Tsxt −ATsxt||2 = (1− α)t−1||Ts(ATs)t−1x1 −ATs(ATs)t−1x1||2.

Since the vector Ts(ATs)
t−1x1 is a full state vector, the error bound here is simply

||Tsxt −ATsxt||2 ≤ δ(1− α)t−1. (3.10)

Now, assume that the error between the state vectors xt and yt at some time t is

bound by ε: ||yt − xt||2 ≤ ε. Since in the EOSG Markov chain it is possible to travel

from any state to any other state in a finite amount of time, this Markov chain is ergodic.

Let the stationary distribution of Ts be xs, which is normalized such that
−→
1 · xs = 1.

µ1 = 1 > µ2 ≥ ... ≥ µN ·Nl are the magnitudes of the eigenvalues of Ts corresponding

to eigenvectors v1(= xs), v2, ..., vN ·Nl . Since Ts is the transition matrix of an ergodic

Markov chain, µk < 1 for k ≥ 2. For eigenvectors vk, k ≥ 2, we have |Ts · vk| = |µk · vk|.

Multiplying by
−→
1 and noting that

−→
1 · Ts =

−→
1 , we get |−→1 · vk| = |µk ·

−→
1 · vk|. Since

µk 6= 1,
−→
1 · vk = 0.

Write xt and yt in terms of v1, v2, ..., vN ·Nl as:

yt = β1x
s +

N ·Nl∑
i=2

βivi

xt = β′1x
s +

N ·Nl∑
i=2

β′ivi
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Since yt = (1 − α)t−1T t−1s y1, then
−→
1 · yt = (1 − α)t−1; similarly,

−→
1 · xt = (1 − α)t−1.

Multiplying both equations above by
−→
1 , we get β1 = β′1 = (1− α)t−1. Therefore,

||Ts · yt − Ts · xt||2 ≤ ||
N ·Nl∑
i=2

(βi − β′i)µivi||2

≤ |µ2|
√

(β2 − β′2)2 + (β3 − β′3)2 + · · ·+ (βN ·Ni − β′N ·Ni)
2

≤ µ2||xt − yt||2

≤ µ2ε

Accordingly, at t = 1, we have

||y1 − x1||2 = ||y1 −Ay1||2 ≤ δ .

At t = 2, we have

||y2 − x2||2 = (1− α)||Tsy1 −ATsx1|| = (1− α)||Tsy1 −ATsx1 + Tsx1 − Tsx1|| ≤

(1− α)||Tsy1 − Tsx1||2 + (1− α)||Tsx1 −ATsx1||2 .

From above, the bound for the first term is µ2δ, given the error bound at t = 1. The

bound for the second term is directly given by (3.10), and is simply δ. Hence

||y2 − x2||2 ≤ (1− α)δ(µ2 + 1) .
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At t = 3, we have

||y3 − x3||2 = (1− α)||Tsy2 −ATsx2|| = (1− α)||Tsy2 −ATsx2 + Tsx2 − Tsx2|| ≤

(1− α)||Tsy2 − Tsx2||2 + (1− α)||Tsx2 −ATsx2||2 .

From above, the bound for the first term is µ2(1− α)δ(µ2 + 1), given the error bound at

t = 2. The bound for the second term is taken from (3.10), and is δ(1− α). Hence

||y3 − x3||2 ≤ (1− α)2δ(µ22 + µ2 + 1) .

By extension, then, the error bound at time step t between EOSG and COPS states

is:

||yt − xt||2 ≤ (1− α)t−1δ
t−1∑
i=0

µi2 = (1− α)t−1δ
1− µt2
1− µ2

.

Theorem 3.5.2. The difference between the EOSG objective and the COPS approximate

objective |Obj −ObjCOPS | is bounded by
√
N ·Nlδ|ud|

[1−(1−α)µ2] α

Proof. Since Lemma 3.5.1 gives the bound of L2 distance while |Obj − ObjCOPS | is L1

distance, we use the fact that for any two vectors v1, v2, the relationship between the L1

distance and L2 distance is: ||v1 − v2||2 ≤ ||v1 − v2||1 ≤
√
n||v1 − v2||2, where n is the

dimension of the vectors. Therefore, ||yt − xt||1 ≤
√
N ·Nl(1−α)t−1(1−µt2)δ

1−µ2 . Hence we have:

38



|Obj −ObjCOPS | =
∞∑
t=1

|rd · yt − rd · xt|

=

∞∑
t=1

|rd · (yt − xt)|

≤
∞∑
t=1

|rmax|||yt − xt||1

≤ |rmax|
∞∑
t=1

√
N ·Nl(1− α)t−1(1− µt2)δ

1− µ2

= |rmax|
√
N ·Nl δ

[1− (1− α)µ2] α

where rmax is the element in rd with largest magnitude, which is min(Att(i) ·ud) because

rd is a non-positive vector by definition. Given Att(i) ≤ 1, we have |Obj − ObjCOPS | ≤
√
N ·Nlδ|ud|

[1−(1−α)µ2] α

3.6 Experimental Results

(a) 6 stations (b) 10 stations (c) 20 stations

Figure 3.6: Part of metro systems in mega cities

Settings: We use the graphs in Figure 3.6 – metro structures commonly observed

in the world’s mega cities – in our experiments. We also tested our algorithm on line

structure systems, and the results are similar. We solve the non-linear optimization in
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OSG using the FindMaximum function in Mathematica, which computes a locally opti-

mal solution using an Interior Point algorithm. Each data point we report is an average

of 30 different instances, each based on a different attractiveness setting; these instances

were generated through a uniform random distribution from 0 to 1 for the attractiveness

of each station. For multiple patrol unit scenarios, we use segment patrolling (except

for Fig. 3.7(d)), and divide the graph so that the longest distances in each segments

are minimized; the dashed boxes in Fig. 3.6 show the segments used. Results for other

segmentations are similar. The defender’s utility of a successful crime is ud = −1. The

criminal’s initial distribution is set to a uniform distribution over stations. The criminal

exit rate is α = 0.1. Strategies generated by all algorithms are evaluated using Equation

3.6. All key results are statistically significant (p < 0.01).

Results: Fig. 3.7(a) shows the performance of the COPS algorithm and the EOSG

algorithm using the settings from Fig. 3.6(a) and Fig. 3.6(b). In both, we set λ = 1.

The Interior Point algorithm used by Mathematica is a locally optimal solver and there

is always a current best feasible solution available, although the quality of the solution

keeps improving through iterations. Therefore, one practical way to compare solutions

is to check the solution quality after a fixed run-time. The x-axis in this figure shows

runtime in seconds on a log scale, while the y-axis maps the defenders’ average expected

utility against one criminal, achieved by the currently-best solution at a given run time.

Focusing first on results of 6 stations, where we have one defender, COPS outperforms

EOSG for any runtime within 100 s, even though COPS is an approximate algorithm.

This is because COPS reaches a local optimum faster than EOSG. Further, even for

runtime long enough for EOSG to reach its local optimum (3160 s), where it outperforms
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COPS, the difference in solution quality is less than 1%. Focusing next on results of

10 stations with 2 defenders (using segment patrolling), the conclusions are similar to 6

stations, but the advantage of COPS is more obvious in this larger scale problem. In

most instances, COPS reaches a local optimum in 1000 s while the output of EOSG are

the same as initial values in 3160 s.

Figure 3.7(b) employs criminals with varying levels of rationality to compare the

performance of three different strategies: the uniform random strategy, which is a Markov

strategy with equal probability for all available actions at each location; an SSG strategy,

which is the optimal strategy against a strategic attacker that attacks a single target; and

a COPS OSG strategy (given 1800 s so it reached a local optimum). In Fig. 3.7(b), we set

b = 0; results with other b are similar. The system consists of 10 stations and 2 defenders.

The COPS OSG strategy outperforms the random and SSG strategies significantly for

any λ. Next, two more settings are tested: the first is the OSG strategy against criminals

who have perfect knowledge of defenders’ current location. This is a purely hypothetical

setting, and created only to check if a more complex criminal belief model than the one in

Eq. 3.2 would have led to significantly different defender performance. The degradation

in performance against perfect criminals is less than 6%, indicating that a more complex

belief update for defenders’ current location would have insignificant impact on the results.

The second is also an OSG strategy, but the defenders set a fixed λ during computation

to test performance when the defender has an inaccurate estimate of λ. We picked λ = 1

from a set of sampled λ, since the OSG strategy with λ = 1 performs best against

criminals with various levels of rationality. Even though the OSG strategy assuming

λ = 1 performs slightly worse than that using the correct λ, it is still better than SSG
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Figure 3.7: Experimental Results

and uniform strategies. We conclude that OSG is a better model against opportunistic

criminals even with an inaccurate estimation of λ.

The COPS strategy, the SSG, and the uniform random strategy are compared again

in Fig. 3.7(c), this time against criminals with different levels of anchoring bias b. In order

to evaluate the performance of COPS when the defender has an inaccurate estimate of

the anchoring bias b, we plotted both the expected utility of COPS where the defender

has an accurate estimate of the criminal’s anchoring bias and that using a fixed anchoring

bias b = 0.5. b = 0.5 was picked from a set of sampled b since the OSG strategy with this

b performs best. In Fig. 3.7(c), λ is fixed to 1, but experiments with other λ generate

similar results. Again, COPS outperforms uniform random and SSG strategies.
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To show COPS’s scalability, we compare its performance with different numbers of

defenders in metro systems with a varying number of stations; Five different settings are

compared in Fig. 3.7(d): one defender, two defenders with full length patrolling, three

defenders with full length patrolling, two defenders with segment patrolling, and three

defenders with segment patrolling. The max runtime is 1800 s. With the same patrol

techniques, more defenders provide higher expected utility. But, with the same amount

of resources, segment patrolling outperforms full length patrolling.
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Chapter 4

Learning OSG from Real Data

In this chapter, I introduce a model to recommend optimal police patrolling strategy

against opportunistic criminals. I first build a game-theoretic model that captures the

interaction between officers and opportunistic criminals. However, while different models

of adversary behavior have been proposed, their exact form remains uncertain. Rather

than simply hypothesizing a model as done in previous work, one key contribution is to

learn the model from real-world criminal activity data. To that end, we represent the

criminal behavior and the interaction with the patrol officers as parameters of a Dynamic

Bayesian Network (DBN), enabling application of standard algorithms such as EM to

learn the parameters.

4.1 Motivating Example

Domain Description: The motivating example for this study is the problem of con-

trolling crime on a university campus. Our case study is about USC in USA. USC has

a Department of Public Safety (DPS) that conducts regular patrols, similar to police

patrols in urban settings. As part of our collaboration with USC DPS, we have access to
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Figure 4.1: Campus map Figure 4.2: DBN for games

the crime report as well as patrol schedule on campus for the last three years (2011-2013).

USC is a large enough university that allows us to claim that our methods are applicable

to other large campuses, including large mall areas.

Shift A B C D E

1 1 1 2 2 2

2 1 1 1 2 1

3 2 1 1 3 1

Table 4.1: Crime data for 3 shifts.

In USC, the campus map is divided into five pa-

trol areas, which is shown in Fig 5.5. DPS patrols

in three shifts per day. In the crime data all crimes

are local, i.e., no crime happens across two patrol

areas or patrol shifts. At the beginning of each pa-

trol shift, DPS assigns each available patrol officer
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Figure 4.3: Sample Crime Report

to a patrol area and the officer patrols this area in this shift. At the same time, the crim-

inal is seeking for crime opportunities by deciding which target they want to visit. Dis-

cussions with DPS reveal that criminals act opportunistically, i.e., crime is not planned in

detail, but occurs when opportunity arise and there is insufficient presence of DPS officers.

Figure 4.4: Patrol Schedule for 1 shift

There are two reports

that DPS shared with us.

The first is about crimi-

nal activity that includes

details of each reported

crime during the last three

years, including the type of

crime and the location and

time information about the

crime. We show a snapshot

of this data in Figure 5.1. In my thesis, we do not distinguish between the different types
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of crime and hence we consider only the number of crimes in each patrol area during each

shift. Therefore, we summarize the three year crime report into 365× 3× 3 = 3285 crime

data points, one for each of the 8-hour patrol shift. Each crime data point contains five

crime numbers, one for each patrol area.

The second data-set contains the DPS patrol allocation schedule. Every officer is

allocated to patrolling within one patrol area. We show a snapshot of this data in Fig. 5.2.

We assume that all patrol officers are homogeneous, i.e., each officer has the same effect on

criminals’ behavior. As a result, when generating a summary of officer patrol allocation

data, we record only the number of officers allocated to each patrol area in each shift.

Table 5.2 shows a sample of the summarized officer patrol allocation data, where the

row corresponds to a shift, the columns correspond to a patrol area and the numbers in

each cell is the number of patrol officers. Table 5.1 shows a sample of the summarized

crime data, where the row corresponds to a shift, the columns correspond to a patrol area

and the numbers in each cell is the number of crimes. For example, from Table 5.2, we

know that in shift 1, the number of officers in area A is 2 while the number of officers

in area B, C, D and E is 1, while from Table 5.1 we know that in shift 1, there was 1

crime each in area A and B, and 2 crimes each in C, D and E. However, we do not know

the number of criminals in any patrol area in any patrol shift. We call the patrol area as

targets, and each patrol shift a time-step.

Shift A B C D E

1 2 1 1 1 1

2 1 1 2 2 2

3 2 1 1 3 1

Table 4.2: Patrol data for 3 shifts.

Problem Statement: Given data such as the

real world data from USC, our goal is to build a

general learning and planning framework that can
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be used to design optimal defender patrol alloca-

tions in any comparable urban crime setting.

We model the learning problem as a DBN, and

we describe the basic model and the EM algorithm in the next section. Then, we present

a compact form of our model that leads to improved learning performance. After that,

we present methods to find the optimal defender plan for the learnt model with frequent

update of the criminal model.

4.2 Learning Model

As stated earlier, we propose two approaches to learn the interaction between criminals

and defenders: MCM and DBNM. The first approach, MCM directly relates crime dis-

tribution to observed data while MCM simply uses the number of unobserved criminals.

4.2.1 Markov models (MCM)

The models presented can be divided into three sub-categories: (1) crime as a function of

crime history, (2) crime as a function of defender allocation and (3) crime as a function

of crime history and defender allocation jointly. One motivation for this classification is

to figure out the correlation between previous-time crime and previous or current-time

defenders in the targets and find out if the presence of patrol officers affects the pattern

of crime or not. We discuss these modeling approaches in the following sub-sections.

Crime predicts crime: In the first model shown in Fig. 4.5, we investigate prediction

of crime based on crime distribution at the previous time step at the same target. This

correlation is suggested based on some ideas introduced in criminology literature [36].
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The desired correlation can be defined with the following mathematical function for all

targets n: Yn,t+1 = f(Yn,t).

Figure 4.5: M1 Figure 4.6: M2 Figure 4.7: M3 Figure 4.8: M4

To define and formalize the correlation and a pattern for crime prediction from history,

we define a transition matrix, A, that represents how crime occurrences changes from one

time step to the next one and apply maximum likelihood estimation to obtain it. In

particular, A(Yn,t, Yn,t−1) = P (Yn,t|Yn,t−1).

For this model, probability for a sequence of events, i.e., Yn which refers to numbers

of crimes over a sequence of time steps, can be calculated as follows:

P (Yn;A) = P (Yn,t, ..., Yn,0;A) =
∏

1≤t≤T
P (Yn,t|Yn,t−1;A) =

∏
1≤t≤T

A(Yn,t, Yn,t−1)
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Figure 4.9: M5 Figure 4.10: M6 Figure 4.11: M7 Figure 4.12: M8

In the above equations n indicates target number and A is the parameter to be

estimated. Log likelihood for the above model for target i can be written as the following:

l(A) = logP (Yn;A) =
∑|SY |

i=1

∑|SY |
j=1

∑T
t=1 1{Yn,t = Si ∧ Yn,t−1 = Sj} logAij

where Si and Sj indicates different values that Y can take and SY indicates the total

possible number of values that Y can take, and 1 is the indicator function. As previously

mentioned, in our case we made a binary assumption for variables, so they can take values

zero and one. The optimization problem for maximizing the log-likelihood is :

max
A

l(A) subject to

|SY |∑
i=1

Ai,j = 1 for j = 1...|SY |, Aij ≥ 0 for i, j = 1...|SY |.
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The above optimization can be solved in closed form using the method of Lagrangian

multipliers to obtain:

Âij =

∑T
t=1 1{Yt = Si ∧ Yt−1 = Sj}∑T

t=1 1{Yt−1 = Sj}

For each target we find a similar transition matrix. For all other models in this section, the

same procedure for deriving the transition matrix is used. The model shown in Fig. 4.6

includes number of the crime at all other targets. This approach can be described with

the following mathematical function: Yn,t+1 = f(Y1:n,t).

Defender allocation predicts crime In the second approach we study the predic-

tion of the crime based on the defender allocation. Four cases are studied: In Fig. 4.7,

Yn,t+1 = f(Dn,t+1), which means the effect of the defender at the same target and time

step is considered; in Fig. 4.8, Yn,t+1 = f(Dn,t), which means the defender allocation

at previous step is considered; in Fig. 4.9, Yn,t+1 = f(Dn,t, Dn,t+1), which means the

defender allocation in both the current and previous time step is considered; in Fig. 4.10,

Yn,t+1 = f(D1:n,t, Dn,t+1), meaning the defender allocation at all other targets from the

previous time step and the defender allocation from the current time is considered. The

same procedure as the previous subsection is used to find the transition matrix for the

above models.

Crime and Defender allocation predicts crime In this sub-section we study the

effect of crime and defender distribution jointly and investigate whether this combination

improves the prediction. In Fig. 4.11, Yn,t+1 = f(Dn,t+1, Yn,t), which means that the

distribution of the crime at the previous step and the defender allocation at the current

step is considered; in Fig. 4.12, Yn,t+1 = f(Dn,t, Yn,t), this has a similar structure as the
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previous one except that it considers the defender allocation at the previous time step;

in Fig. 4.12, Yn,t+1 = f(Dn,t, Dn,t+1, Yn,t), that is, the crime at that specific target is

considered in addition to the defender allocation at the previous and current step.

4.2.2 Dynamic Bayesian Network Models (DBNM)

The second approach is based on the Dynamic Bayesian Network (DBN) model. A

DBN is proposed in order to learn the criminals’ behavior, i.e, how the criminals pick

targets and how likely are they to commit crime at that target. This behavior is in part

affected by the defenders’ patrol allocation. In this section we assume that criminals are

homogeneous, i.e., all criminals behave in the same manner.

Figure 4.13: DBN for games

In every time-step of the DBN we capture the follow-

ing actions: the defender assigns patrol officers to protect

N patrol areas and criminals react to the defenders’ alloca-

tion strategy by committing crimes opportunistically. Across

time-steps the criminal can move from any target to any

other, since a time-step is long enough to allow such a move.

From a game-theoretic perspective, the criminals’ payoff is

influenced by the attractiveness of targets and the number of

officers that are present. These payoffs drive the behavior of

the criminals. However, rather than model the payoffs and

potential bounded rationality of the criminals, we directly

learn the criminal behavior as modeled in the DBN.
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The DBN is shown in Fig 5.4: squares are observed states, where N white squares

represent input states (number of defenders at each target) and N black squares represent

output states (number of crime at each target) while N circles (number of criminals at

each target) are hidden states. For ease of exposition, we use C to denote the largest

value that any state can take. Next, we introduce the various parameters of this DBN.

DBN Parameters First, we introduce parameters that measure size of the problem

• N : Total number of targets in the graph.

• T : Total time steps of the training data.

Next, we introduce random variables for the observed state (input defender distri-

bution and output crime distribution in our case) and the hidden state. We use three

random variables to represent the global state for defenders, criminals and crimes at all

targets.

• dt: Defender’s allocation strategy at step t: number of defenders at each target in

step t with CN possible values.

• xt: Criminals’ distribution at step t with CN possible values

• yt: Crime distribution at step t with CN possible values.

Next, we introduce the unknown parameters that we wish to learn.

• π: Initial criminal distribution: probability distribution of x1.

• A (movement matrix ): The matrix that decides how xt evolves over time. Formally,

A(dt, xt, xt+1) = P (xt+1|dt, xt). Given the CN values for each argument of A,

representing A requires CN × CN × CN parameters.
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• B (crime matrix ): The matrix that decides how criminals commit crime. For-

mally, B(dt, xt, yt) = P (yt|dt, xt). Given the CN values for each argument of B,

representing B requires CN × CN × CN parameters.

Next, we introduce variables that are used in the EM algorithm itself. These variables

stand for specific probabilities as illustrated below. We use dji (yji ) as shorthand for

di, . . . , dj (yi, . . . , yj):

• Forward prob.: α(k, t) = P (yt1, xt = k|dt1)

• Backward prob.: β(k, t) = P (yTt+1|xt = k, dTt+1)

• Total prob.: γ: γ(k, t) = P (xt = k|yT1 , dT1 )

• 2-step prob.: ξ(k, l, t) = P (xt = k, xt+1 = l|yT1 , dT1 ).

The transition and observation probabilities in this model are multi-dimensional (> 2),

i.e., they are tensors, but we call them matrix throughout the thesis. As shown in Fig 5.4,

movement matrix A represents how the criminal distribution and DPS patrol strategy at

step t affects the criminal distribution at step t+ 1; crime matrix B represents how the

criminal distribution and DPS patrol strategy at step t affects the crime distribution at

this step. Observe that we do not explicitly model the attractiveness of a target, as that

factor is implicitly taken into account in A and B.

We can apply the EM algorithm to learn the unknown initial criminal distribution

π, movement matrix A and output matrix B. However, EM applied to the basic DBN

model above results in practical problems that we discuss in the next section.

Expectation Maximization EM is a class of algorithms for finding maximum like-

lihood estimation for unknown parameters in DBN [21]. The EM algorithm has an
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initialization step, expectation (E) step and maximization (M) step. The initialization

step chooses initial estimates for unknown parameters (π, A, B). The E step computes α,

β, γ, ξ using these estimates. The M step updates the estimates of π, A, B using values

of α, β, γ, ξ from E step. By iteratively performing E and M step, the EM algorithm

converges to a local maxima of the likelihood function for parameters in the DBN. The

particular mathematical equations used in E and M depends on the underlying model [9].

Initialization step

In our problem scenario, the EM algorithm is used to learn π, A and B from the

given data for the observed states. The initial estimates of the variables should satisfy

the condition

∑
i

π̂(i) = 1,
∑
xt+1

Â(dt, xt, xt+1) = 1,
∑
yt

B̂(dt, xt, yt) = 1 .

As EM only converges to local optima, we employ the standard method of running the

algorithm with several randomly chosen initial condition in our experiments.

Expectation step

In the expectation step, we calculate the α, β, γ and ξ based on the current estimate

of π, A and B, given by π̂, Â and B̂

As is standard in inference in DBNs, α(k, 1) is calculated in a recursive manner.

Hence, we first calculate forward probability at step 1, α(k, 1), which is shown in Eqn. 1
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α(k, 1) = P (y1, x1 = k|d1) = B̂(d1, k, Y1) · π̂(k) (4.1)

α(k, t) = P (y1, y2, ..., yt, xt = k|d1, d2, ..., dt)

=
∑
xt−1

α(xt−1, t− 1)Â(dt−1, xt−1, xt)B̂(dt, k, yt) (4.2)

β(k, T ) = 1 (4.3)

β(k, t) = P (yt+1, yt+2, ..., yT |xt = k, dt, dt+1, ..., dT ) =∑
xt+1

β(xt+1, t+ 1)B̂(dt+1, xt+1, yt+1)Â(dt, k, xt+1) (4.4)

Given forward probability and backward probability at each step, the total probability

γ is computed as shown in Eqn. 5 and the two step probability ξ is computed as shown

in Eqn. 6.

γ(k, t) = P (xt = k|y, d) =
α(k, t) · β(k, t)∑
k α(k, t) · β(k, t)

(4.5)

ξ(k, l, t) = P (xt = k, xt+1 = l|y, d)

=
α(k, t) ·A(dt, k, l) · β(l, t+ 1) ·B(dt+1, l, yt+1)∑

k α(k, t) · β(k, t)
(4.6)

Maximization step

In maximization step, the estimate of π, A and B is updated using the probabilities

we derive in expectation step.
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π̂(k) = γ(k, 1) (4.7)

Â(d, k, l) =

∑
t 1dt=dξ(k, l, t)∑

t

∑
l 1dt=dξ(k, l, t)

(4.8)

B̂(d, x, y) =

∑
t 1yt=y,dt=dγ(x, t)∑
t 1dt=dγ(x, t)

(4.9)

where 1dt=d is an indicator function: 1dt=d = 1 when dt = d and 0 otherwise.

1yt=y,dt=d is also defined similarly. As a result, the new estimate of A(d, k, l) is the

ratio of the expected number of transitions from k to l given defender vector d to the

expected total number of transitions away from k given defender vector d. The updated

estimate of B(d, x, y) is the ratio of the expected number of times the output of crimes

equals to y while the defender is d, criminal is x to the total number of situations where

the defender is d and criminal is x. To find a local optimal solution, the E and M steps

is repeated, until π̂, Â, B̂ do not change significantly any more.

In EM algorithm, the size of movement matrix A is CN × CN × CN and the size of

crime matrix B is also CN×CN×CN . The number of unknown variables is O(C3N ). The

exponentially many parameters make the model complex, and hence results in over-fitting

given limited data. In addition, the time complexity as well as the space complexity of

EM depends on the number of parameters, hence the problem scales exponentially with

N . In practice, we can reduce C by categorizing the number of defenders, criminals and

crimes. For example, we can partition the number of defenders, criminals and crimes

into two categories each: the number of officers at each station is 1 (meaning ≤ 1) or

2 (meaning ≥ 2); the number of criminals/crimes is 0 (no criminal/ crime) or 1 (≥ 1
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criminal/crime). However, the number of unknown parameters is still exponential in N .

As a concrete example, in USC, N = 5 and the number of unknown parameters are more

than 32768, even when we set C = 2. As we have daily data for three years, which

is 365 × 3 × 3 = 3285 data points, the number of parameters is much more than the

number of data points. Therefore, we aim to reduce the number of parameters to avoid

over-fitting and accelerate the computing process.

4.3 EM on Compact model (EMC2)

In this section, we introduce our second contribution, which is to modify the basic DBN

model to reduce the number of parameters. In the resultant compact model, the EM

learning process runs faster and avoids over-fitting to the given data. The improvement

may be attributed to the well-established learning principle of Occam’s Razor [11], and

our experimental results support our claims.

4.3.1 Compact model

We use three modifications to make our model compact. (1) We infer from the available

crime data that crimes are local, i.e., crime at a particular target depends only on the

criminals present at that target. Using this inference, we constructed a factored crime

matrix B that eliminates parameters that capture non-local crimes. (2) Next, we rely on

intuition from the Boyen-Koller [12] (BK) algorithm to decompose the joint distribution of

criminals over all targets into a product of independent distributions for each target. (3)

Finally, our consultations with the DPS in USC and prior literature on criminology [51]

led us to conclude that opportunistic criminals by and large work independently. Using
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this independence of behavior of each criminal (which is made precise in Lemma 4.3.1),

we reduce the size of the movement matrix. After these steps, the number of parameters

is only O(N · C3).

Before describing these modifications in details, we introduce some notations that aid

in describing the different quantities at each target: Yt = [Y1,t, Y2,t, ..., YN,t] is a N by 1

random vector indicating the number of crimes Yi,t at each target i at step t. Dt is a N

by 1 random vector indicating the number of defenders Di,t at each target i at step t.

Xt is a N by 1 random vector indicating the number of criminals Xi,t at each target i at

step t.

Factored crime matrix: The number of crime at one target at one step is only

dependent on the criminals and officers present at that target at that step. Therefore, we

factor the crime matrix B to a matrix that has an additional dimension with N possible

values, to represent how the criminals and officers at one target decide the crime at that

target. Therefore, instead of the original crime matrix B of size CN×CN×CN matrix, we

have a factored crime matrix of size N ×C ×C ×C crime matrix. The first dimension of

factored crime matrix represents the target, the second dimension represents the number

of defenders at this target, the third dimension represents the number of criminals and

the fourth dimension represents the number of crimes. We still refer to this factored crime

matrix as B, where B(i,Di,t, Xi,t, Yi,t) = P (Yi,t|Di,t, Xi,t)

Marginalized hidden state: The BK algorithm presents an approximation method

by keeping the marginals of the distribution over hidden states, instead of the full joint

distribution. Following the BK intuition, we marginalize the hidden state, i.e., instead of

considering the full joint probability of criminals at all targets (with CN possible values),
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we consider a factored joint probability that is a product of marginal probability of the

number of criminals at each target.

In the unmodified DBN, the distribution over all the states at step t, P (xt) is a CN

by 1 vector. Additionally, the size of movement matrix A, which is the transition matrix

from all the input and hidden state combinations at current step to the state at next step,

is CN × CN × CN . After marginalization, the marginals for each target i in the hidden

state is P (Xi = k, t), is a vector of size C. After we marginalize the hidden states, we

only need to keep N marginals at each step, i.e., consider only N parameters. At each

step, we can recover the distribution of full state by multiplying the marginals at this

step. Then, we get the marginals at next step by evolving the recovered joint distribution

of state at current step. Therefore, A can be expressed as a CN × CN ×N × C matrix,

where A(dt, xt, i,Xi,t+1) = P (Xi,t+1|dt, xt).

Pairwise movement matrix Am: Even with marginalized hidden state, we still need

to recover the distribution of full state in order to propagate to next step. Therefore, the

movement matrix size is still exponential with CN × CN × N × C. In order to further

reduce the number of unknown parameters and accelerate the computing process, we use

properties of opportunistic criminals. Based on the crime reports and our discussion with

DPS in USC, unlike organized terrorist attacks, the crimes on campus are committed

by individual opportunistic criminals who only observe the number of defenders at the

target they are currently at and do not communicate with each other. Therefore, at

current step, the criminals at each target independently decide the next target to go to,

based on their target-specific observation of number of defenders.
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Based on the above observation, we can decompose the probability P (Xi,t+1 = 0|Dt, Xt)

into a product of probabilities per target m. Denote by Xm→i
t+1 the random variable that

counts the number of criminals moving from target m to target i in the transition from

time t to t + 1. Lemma 4.3.1 proves that we can represent P (Xi,t+1 = 0|Dt, Xt) as

a product of probabilities P (Xm→i
t+1 = 0) for each m. P (Xm→i

t+1 = 0) is a function of

Dm,t, Xm,t

Lemma 4.3.1. (Independence of behavior) For a N target learning problem, given

the number of defenders at each location Dt = [D1,t, ..., DN,t] and the number of criminals

Xt = [X1,t, ..., XN,t], the probability P (Xi,t+1 = 0|Dt, Xt) of the number of criminal being

0 at location i at step t+ 1 is given by
∏N
j=1 P (Xj→i

t+1 = 0).

Proof. Note that we must have Xm→i
t+1 ≥ 0. We have the total number of criminals at

target i at time step t+ 1 as Xi,t+1 =
∑

mX
m→i
t+1 , i.e, the number of criminals at target

i at step t + 1 is the sum of criminals that move from each target to target i. Clearly

Xi,t+1 = 0 iff X
Dm,t,Xm,t
i,t+1 = 0. Therefore, we have P (Xi,t+1 = 0|Dt, Xt) = P (X1→i

t+1 =

0, . . . , XN→i
t+1 = 0). Since the criminals’ decisions at each target are independent, we have

P (X1→i
t+1 = 0, ..., XN→i

t+1 = 0) =
∏N
m=1 P (Xm→i

t+1 = 0).

When C = 2 and Xi,t ∈ {1, 2}, we can construct the whole movement matrix A using

P (Xm→i
t+1 = 0) (pairwise transition probabilities) by utilizing the fact that P (Xi,t+1 =

1|Dt, Xt) = 1−P (Xi,t+1 = 0|Dt, Xt). Therefore, instead of keepingA, we keep a transition

matrix Am where Am(i,Di,t, Xi,t, j,Xj,t+1) = P (Xi→j
t+1 ). The number of parameters in

Am is N × 2 × 2 × N = 4N2. We do not consider the range of Xj,t+1 because we

only need one parameter to store the two cases of Xj,t+1 = 1 and Xj,t+1 = 0 since
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Am(i,Di,t, Xi,t, j,Xj,t+1 = 1) = 1 − Am(i,Di,t, Xi,t, j,Xj,t+1 = 0). When C > 2, the

number of variables in Am are C2(C−1)N2; we can readily extend the above construction

of A from Am.

One simple example is when Xi,t ∈ {0, 1, 2}, we can apply Lemma 1 to derive

P (Xi,t+1 = 0|Dt, Xt) =
∏N
j=1 P (Xi,t+1 = 0|Dj,t, Xj,t)

P (Xi,t+1 = 1|Dt, Xt) =
∑N

j=1[P (Xi,t+1 = 1|Dj,t, Xj,t)∏N
k=1,k 6=j P (Xi,t+1 = 0|Dk,t, Xk,t)]

P (Xi,t+1 = 2|Dt, Xt) = 1− P (Xi,t+1 = 0|Dt, Xt)

−P (Xi,t+1 = 1|Dt, Xt)

4.3.2 EMC2 procedure

EM on CompaCt model (EMC2) procedure applies the EM algorithm to the compact

DBN model. To learn the initial distribution πk,i = P (Xi,1 = k), matrix Am and ma-

trix B, we first generate initial estimates of these parameters that satisfy the condition∑
k π̂(k, i) = 1,

∑
Xj,t+1

Âm(i,Di,t, Xi,t, j,Xj,t+1) = 1 and∑
Yi,t

B̂(i,Di,t, Xi,t, Yi,t) = 1.

Next, we define the intermediate variables used in the EM algorithm. These differ

from the earlier application of EM because of our changed model. We use the shorthand

Y j
i to denote Yi, ..., Yj and Dj

i to denote Di, ..., Dj :

Forward prob.: α(i, k, t) = P (Y t
1 , Xi,t = k|Dt

1),

Backward prob.: β(i, k, t) = P (Y T
t+1|Xi,t = k,DT

t ),
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Total prob.: γ(i, k, t) = P (Y,Xi,t = k|DT
1 ),

2-step prob.: ξ(i, k, j, l, t) = P (Xi,t = k,Xj,t+1 = l|Y T
1 , D

T
1 ).

Next, the E and M steps are used with random restarts to learn the values of π, Am

and B. While the equations used in the E and M steps can be derived following standard

EM techniques, we illustrate a novel application of the distributive law for multiplication

in the E step that enables us to go from exponential time complexity to polynomial (in

N) time complexity. Without going into details of the algebra in the E step, we just focus

on the part of the E step that requires computing P (Y t−1
1 , Xi,t = 0|Dt

1).

The following can be written from total law of probability

P (Y t−1
1 , Xi,t = 0|Dt

1) =
∑
Xt−1

P (Y t−1
1 , Xi,t = 0, Xt−1|Dt

1)

=
∑
Xt−1

P (Y t−1
1 |Dt

1, Xi,t = 0, Xt−1)P (Xi,t = 0|Dt
1, Xt−1)

P (Xt−1|Dt
1)

The above can be simplified using the Markovian assumptions of the DBN to the following

∑
Xt−1

P (Y t−1
1 |Dt

1, Xt−1)P (Xi,t = 0|Dt−1, Xt−1)P (Xt−1|Dt
1)

The first and third term can be combined (Bayes theorem) to obtain

∑
Xt−1

P (Y t−1
1 , Xt−1|Dt

1)P (Xi,t = 0|Dt−1, Xt−1)
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Using the Boyen-Koller assumption in our compact model we get

P (Y t−1
1 , Xt−1|Dt

1) =
∏
j P (Y t−1

1 , Xj,t−1|Dt
1)

Also, using Lemma 4.3.1 we get

P (Xi,t = 0|Dt−1, Xt−1) =
∏
j P (Xj→i

t = 0)

Thus, using these we can claim that P (Y t−1
1 , Xi,t = 0|Dt) is

∑
Xt−1

∏
j P (Y t−1

1 , Xj,t−1|Dt
1)P (Xj→i

t = 0)

Since the range of Xt−1 is CN , naively computing the above involves summing CN terms,

thus, implying a time complexity of O(CN ). The main observation that enables polyno-

mial time complexity is that we can apply principles of the generalized distributive law [1]

to reduce the computation above. As an example, the three summations and four multi-

plication in ab+ ac+ bc+ bd can be reduced to two summations and one multiplication

by expressing it as (a+ b)(c+ d). Using distributive law we reduce the computation for

P (Y t−1
1 , Xi,t = 0|Dt

1) by switching sum and product

∏
j

∑
Xj,t−1

P (Y t−1
1 , Xj,t−1|Dt

1)P (Xj→i
t = 0)
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The complexity of computing the above is O(NC). Applying this idea, we can calculate

α, β, γ and ξ from the estimated value of π̂, Âm and B̂ in the expectation step in time

polynomial in N .

For the maximization step, we update the estimate of π, Am and B using the proba-

bilities we derive in the expectation step. The procedure is the same as Equation (7) to

(9).

4.3.3 Variable definitions

Yt is a N by 1 vector indicating the appearance of crime at each target at step t; Dt is a

N by 1 vector indicating the appearance of defender at each target at step t; Xt is a N

by 1 vector indicating the appearance of criminal at each target at step t. Yi,t indicates

the appearance of crime at target i at step t; Di,t indicates the appearance of defender

at target i at step t; Yi,t indicates the appearance of criminal at target i at step t.

Example

Yt = [Y1,t, Y2,t], where Yt is a vector with N = 2 elements Yi,t; so is Dt, Di,t and

Xt, Xi,t

For simplicity, we set Xi,t and Yi,t as binary variables with value 0 and 1, indicating

there is no criminal/crime at target i at step t and there is at least 1 criminal/crime at

target i at step t. Also, we set Di,t as a variable with 2 values: Di,t = 1 means there is

at most 1 defender at target i at step t, Di,t = 2 means there is at least 2 defender at

target i at step t. These variables can be easily extended to those with more than 2 values.
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Criminal Distribution π: π is a 2 by T by N matrix. The three dimensions are

the appearance probability of criminals at target i at step t, inference of step t, inference

of target i.

Example

Element π(k, t, i) represents the probability of appearance of k criminal(s) at target i

at step t, e.g. π(0, 1, 1) is the probability that at step 1, there is 0 criminal at target 1.

Based on our binary setting, we do have π(0, 1, 1) + π(1, 1, 1) = 1, which is also true for

other stations and steps

Transition Matrix A: A is a 2N by 2N by 2 by N matrix. The four dimensions are

the appearance of defender at current step dt, the appearance of criminal at current step

xt, the appearance of criminal at next step at target i, the inference of i.

Example

We encode Dt(1 by N vector) with a number dt (2N possible values). e.g. dt = 1

equals to [D1,t = 1, D2,t = 1]; dt = 2 equals to [D1,t = 2, D2,t = 1]; dt = 3 equals to

[D1,t = 1, D2,t = 2]; dt = 4 equals to [D1,t = 2, D2,t = 2]; we use the similar way to

encode Xt with xt.

Element A(dt, xt, xi,t+1, i) represents given dt and xt at step t, the probability of crim-

inal’s appearance xi,t+1 at station i at t+1, e.g. A(2, 1, 0, 2) = 0.1 means that if at step t,

D1,t = 2(2 defenders at target 1), D1,t = 1 and X1,t = 0, X2,t = 0, there is 0.1 probability

that at step t+ 1 there are no criminals at target 2.
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Output Matrix B: B is a 2 by 2 by 2 by N matrix. The four dimensions are the

appearance of crime at target i, the appearance of criminal at target i, the appearance

of defender at target i, the inference of i.

Example

Element B(y, x, d, i) represents given the criminal’s appearance x and the defender’s

appearance d at target i, the probability of crime’s appearance is y. B(1, 1, 2, 2) = 0.2

means if there are 1 criminal and 2 defender at target 2, there is 0.2 probability that there

will be a crime.

Forward probability α: α is a 2 by T by N matrix. The three dimensions are the

appearance of criminals at target i at step t, inference of step t, inference of target i.

Element α(k, t, i) = P (Y1, ..., Yt, Xi,t = k|D1, ..., Dt)

Backward probability β: β is a 2 by T by N matrix. The three dimensions are the

appearance of criminals at target i at step t, inference of step t, inference of target i.

Element β(k, t, i) = P (Yt+1, ..., YT |Xi,t = k,Dt, ..., DT )

Total probability γ: γ is a 2 by T by N matrix. The three dimensions are the

appearance of criminals at target i at step t, inference of step t, inference of target i.

Element γ(k, t, i) = P (Xi,t = k|Y,D)
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Two-step probability ξ: ξ is a 2 by T by N by 2N matrix. The four dimensions

are the appearance of criminals at target i at step t+ 1, inference of step t, inference of

target i, the appearance of criminals at step t.

Element ξ(k, t, i, xt) = P (Xt = xt, Xi,t+1 = k|Y,D)

4.3.4 Initialization step

Set random initial conditions for start criminal distribution π(k, 1, i), Transition Matrix

A and Output Matrix B

Example

The initial distribution of criminals π(k, 1, i), transition matrix A and output matrix

B are all set to be uniform distribution, which is shown below.

π(0, 1, 1) = 0.5, π(1, 1, 1) = 0.5;

π(0, 1, 2) = 0.5, π(1, 1, 2) = 0.5;

A(1, 1, 0, 1) = 0.5, A(1, 1, 1, 1) = 0.5;A(1, 1, 0, 2) = 0.5, A(1, 1, 1, 2) = 0.5;

...

A(4, 4, 0, 1) = 0.5, A(4, 4, 1, 1) = 0.5;A(4, 4, 0, 2) = 0.5, A(4, 4, 1, 2) = 0.5;

B(0, 0, 1, 1) = 0.5, B(1, 0, 1, 1) = 0.5;

...

B(0, 1, 2, 2) = 0.5, B(1, 1, 2, 2) = 0.5;
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This initialization means that at time step 1, for each target there are 0.5 probability

there is a criminal and 0.5 probability that there is no criminal. Also, the probability for

criminal to transit from any target i at step t to any target j at step t+1 is 0.5. Finally, the

probability of criminal committing a crime at any target is 0.5 with or without defender.

After iteratively executing expectation and maximization step, the initial variables will

converges to the real distribution.

4.3.5 Expectation step

The main idea of the expectation step is to calculate the forward probability α and

backward probability β based on the knowledge of estimation of π(k, 1, i), Transition

matrix A and Output matrix B.

Step 1: iteratively calculating forward probability

Firstly calculate forward probability at step 1 α(k, 1, i)

α(k, 1, i) = P (Yi1, Xi1 = k|Di1) = B(y, k, d, i) · π(k, 1, i) (4.10)

The equation holds because B(y, k, d, i) = P (Yi1|Xi1 = k,Di1) and π(k, 1, i) = P (Xi1 =

k) = P (Xi1 = k|Di1): At the beginning P (Xi1 = k) is given and independent from Di1

Then iteratively calculate forward probability from step 2 to T α(k, t, i)
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α(k, t, i) = P (Y1, Y2, ..., Yt, Xit = k|D1, D2, ..., Dt)

=
∑
Xt−1

[P (Xi,t = k|Xt−1) · P (Y1, Y2, ..., Yt−1, Xt−1|D1, D2, ..., Dt−1)]

· P (Yit|Xit = k,Dit)

=
∑
Xt−1

[A(Dt−1, Xt−1, k, i) ·
N∏
j=1

α(Xj,t−1, t− 1, j)] ·B(y, k, d, i) (4.11)

We play with the conditional probability here.

Step 2: iteratively calculating backward probability

Firstly calculate backward probability at step T β(k, T, i)

β(k, T, i) = 1 (4.12)

Then iteratively calculate forward probability from step T-1 to 1 β(k, t, i)

β(k, t, i) = P (Yt+1, Yt+2, ..., YT |Xi,t = k,Dt, Dt+1, ..., DT )

=
∑

Xt:Xi,t=k∈Xt

[
∑
Xt+1

P (Yt+2, Yt+3, ..., YT |Xt+1, Dt+1, .., DT )

· P (Yt+1|Xt+1, Dt+1)P (Xt+1|Xt, Dt)]

=
∑
Xt+1

∑
Xt:Xi,t=k∈Xt

N∏
j=1

[β(Xj,t+1, t+ 1, j)

·B(Yj,t+1, Xj,t+1, Dj,t+1, j) ·A(Dt, Xt, Xj,t+1, j)] (4.13)
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This step is similar to calculating forward probability

4.3.6 Maximization step

The main idea of the maximization step is to update the new estimation of π(k, 1, i),

Transition matrix A and Output matrix B based on new-calculated forward/backward

probability α and β.

Step 1: Calculating total probability γ

γ(k, t, i) = P (Xi,t = k|Y,D)

= P (Y |Xi,t = k,D) · P (Xi,t = k,D)

P (Y,D)

= P (Y1, ..., Yt|Xi,t = k,D) · P (Yt+1, ..., YT |Xi,t = k,D) · P (Xi,t = k,D)

P (Y,D)

= P (Y1, ..., Yt|Xi,t = k,D) · P (Yt+1, ..., YT , Xi,t = k|D) · P (D)

P (Y,D)

=
α(k, t, i) · β(k, t, i)∑
k α(k, t, i) · β(k, t, i)

(4.14)

Still we play with the transformation of conditional probability. There are two impor-

tant points in this equation: 1, From second line to the third line, we use the conditional

independence of Y1, ..., Yt and Yt+1, ..., YT given Xi,t = k,D; 2, in the last line, we use

the normalization to represents P (D)
P (Y,D)
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Step 2: Calculating two-step probability ξ

ξ(k, t, i, xt) = P (Xt = xt, Xi,t+1 = k|Y,D)

= P (Y |Xt = xt, Xi,t+1 = k,D) · P (Xi,t+1 = k|Xt = xt, D) · P (Xt = xt, D) · 1

P (Y,D)

= P (Y1, .., Yt|Xt = xt, Xi,t+1 = k,D) · P (Yt+1|Xt = xt, Xi,t+1 = k,D)

· P (Yt+2, ..., YT |Xt = xt, Xi,t+1 = k,D) · P (Xi,t+1 = k|Xt = xt, D)

· P (Xt = xt, D)
1

P (Y,D)
= P (Y1, .., Yt|Xt = xt, D1, .., Dt) · P (Yt+1|Xi,t+1 = k,Dt+1)

· P (Yt+2, ..., YT |Xi,t+1 = k,Dt+1, ..., DT ) · P (Xi,t+1 = k|Xt = xt, D)

· P (Xt = xt, D)
1

P (Y,D)
= P (Y1, .., Yt, Xt = xt, D1, .., Dt) · P (Yt+1|Xi,t+1 = k,Dt+1)

· P (Yt+2, ..., YT |Xi,t+1 = k,Dt+1, ..., DT ) · P (Xi,t+1 = k|Xt = xt, D) · 1

P (Y,D)

=

∏
j α(xj,t, t, j) ·A(Dt, xt, k, i) · βk(t+ 1) ·B(Yi,t+1, k,Di,t+1, i)∑

k

∑
xt

∏
j α(xj,t, t, j) ·A(Dt, xt, k, i) · βk(t+ 1) ·B(Yi,t+1, k,Di,t+1, i)

(4.15)

This calculation is very complex. However, the idea is similar to the way we calculate

γ. From second line to third line, we use the conditional independence of Y1, .., Yt and

Yt+1 and Yt+2, ..., YT given Xt, Xi,t+1, D. Again, we use the normalization to represent

1
P (Y,D)

Step 3: Update the initial state distribution:

π(k, 1, i) = γ(k, 1, i) (4.16)

by definition, π(k, 1, i) is γ at step 1, which is the expected frequency of value k for

target i at time 1
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Step 4: Update Output matrix B

B(y, x, d, i) =

∑
t 1Yit=y,Dit=dγ(x, t, i)∑

t 1Dit=dγ(x, t, i)
(4.17)

1Yit=y,Dit=d =


1, Yit = y,Dit = d

0, otherwise

1Dit=d =


1, Dit = d

0, otherwise

where 1Yit=y,Dit=d is an indicator function and and B(y, x, d, i) is the expected number

of times the output of target i crimes have been equal to y while the defender is d, criminal

is k over the expected total number of times.

Step 5: Update Transition Matrix A

A(d, θ, k, i) =

∑
t 1Dt=dξ(k, t, i, θ)∑

t

∑
j 1Dt=dξ(j, t, i, θ)

(4.18)

which is the expected number of transitions from criminal vector θ to criminal number

k at target i given defender vector d compared to the expected total number of transitions

away from criminal vector θ given defender vector d.
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4.3.7 Repeat

Repeat expectation step and maximization step, which is π,A,B, γ, ξ → α, β → π,A,B, γ, ξ,

until π,A,B do not change anymore. This means we reach the local optimal solution.

EMC2 procedure

4.3.8 Initialization step

Set random initial conditions for start criminal distribution π, Transition Matrix A and

Output Matrix B

Example

For initial step, we just randomly set the number. A simple way is using the uniform

distribution, which is:(of course random starts is an better option...)

π(0, 1) = 0.5, π(1, 1) = 0.5, π(0, 2) = 0.5, π(1, 2) = 0.5;

A(1, 1, 0, 1, 0) = 0.5, A(1, 1, 0, 1, 1) = 0.5, A(1, 1, 0, 2, 0) = 0.5, A(1, 1, 0, 2, 1) = 0.5;

...

A(2, 2, 1, 1, 0) = 0.5, A(2, 2, 1, 1, 1) = 0.5, A(2, 2, 1, 2, 0) = 0.5, A(2, 2, 1, 2, 1) = 0.5;

B(1, 1, 1, 0) = 0.5, B(1, 1, 1, 1) = 0.5, B(1, 1, 2, 0) = 0.5, B(1, 1, 2, 1) = 0.5;

...

B(2, 2, 0, 0) = 0.5, B(2, 2, 0, 1) = 0.5, B(2, 2, 1, 0) = 0.5, B(2, 2, 1, 1) = 0.5;
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4.3.9 Expectation step

The main idea of the expectation step is to calculate the forward probability α and

backward probability β based on the estimation of π, A and B.

Step 1: iteratively calculating forward probability

Firstly calculate forward probability at step 1 α(i, k, 1)

α(i, k, 1) = P (Y1, Xi,1 = k|D1) = P (Yi,1, Xi,1 = k|Di,1)

= P (Yi,1|Xi,1 = k,Di,1) · P (Xi,1 = k|Di,1) = B(i,Di,1, k, Yi,1) · π(k, i)

Then iteratively calculate forward probability from step 2 to T α(i, k, t). We apply dy-

namic programming to go one step forward. We use P (Y1, Y2, ..., Yt−1, Xi,t|D1, D2, ..., Dt−1)

as an intermediate variable.

First, we calculate P (Y1, Y2, ..., Yt−1, Xi,t|D1, D2, ..., Dt−1) using α(m, k, t− 1):
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P (Y1, Y2, ..., Yt−1, Xi,t|D1, D2, ..., Dt−1)

=
∑
Xt−1

P (Y1, Y2, ..., Yt−1, Xt−1, Xi,t|D1, D2, ..., Dt−1)

=
∑
Xt−1

P (Y1, Y2, ..., Yt−1|Xi,t, Xt−1, D1, D2, ..., Dt−1)P (Xi,t|Xt−1, Dt−1)P (Xt−1)

=
∑
Xt−1

P (Y1, Y2, ..., Yt−1|Xt−1, D1, D2, ..., Dt−1)P (Xi,t|Xt−1, Dt−1)P (Xt−1)

=
∑
Xt−1

P (Y1, Y2, ..., Yt−1, Xt−1, D1, D2, ..., Dt−1)P (Xi,t|Xt−1, Dt−1)

ifXi,t = 0

=
∑
Xt−1

∏
m

α(m,Xm,t−1, t− 1)
∏
m

P (Xi,t = 0|Xm,t−1, Dm,t−1)

=
∏
m

∑
Xm,t−1

α(m,Xm,t−1, t− 1)P (Xi,t = 0|Xm,t−1, Dm,t−1)

ifXi,t = 1

=
∑
Xt−1

∏
m

α(m,Xm,t−1, t− 1)

[
∏
m

∑
xi,t

P (Xi,t = xi,t|Xm,t−1, Dm,t−1)−
∏
m

P (Xi,t = 0|Xm,t−1, Dm,t−1)]

=
∏
m

∑
Xm,t−1

α(m,Xm,t−1, t− 1)
∑
xi,t

P (Xi,t = xi,t|Xm,t−1, Dm,t−1)

−
∏
m

∑
Xm,t−1

α(m,Xm,t−1, t− 1)P (Xi,t = 0|Xm,t−1, Dm,t−1) (4.19)

The complexity is this step is O(N2) to calculate the whole intermediate vector. Next,

we calculate α(i, k, t) using P (Y1, Y2, ..., Yt−1, Xi,t|D1, D2, ..., Dt−1).
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α(i, k, t) = P (Y1, Y2, ..., Yt, Xi,t = k|D1, D2, ..., Dt)

=
∑

Xt:Xi,t=k

P (Y1, Y2, ..., Yt, Xt|D1, D2, ..., Dt)

=
∑

Xt:Xi,t=k

P (Y1, Y2, ..., Yt|Xt, D1, D2, ..., Dt)P (Xt|D1, D2, ..., Dt)

=
∑

Xt:Xi,t=k

P (Y1, Y2, ..., Yt−1|Xt, D1, D2, ..., Dt)

P (Yt|Xt, D1, D2, ..., Dt)P (Xt|D1, D2, ..., Dt)

=
∑

Xt:Xi,t=k

P (Y1, Y2, ..., Yt−1|Xt, D1, D2, ..., Dt)

P (Yt|Xt, D1, D2, ..., Dt)P (Xt|D1, D2, ..., Dt)

=
∑

Xt:Xi,t=k

P (Y1, Y2, ..., Yt−1, Xt|D1, D2, ..., Dt−1)P (Yt|Xt, Dt)

=
∑

Xt:Xi,t=k

∏
j

P (Y1, Y2, ..., Yt−1, Xj,t|D1, D2, ..., Dt−1)
∏
j

P (Yj,t|Xj,t, Dj,t)

=
∏
j 6=i

∑
Xj,t

P (Y1, Y2, ..., Yt−1, Xj,t|D1, D2, ..., Dt−1)P (Yj,t|Xj,t, Dj,t)

· P (Y1, Y2, ..., Yt−1, Xi,t = k|D1, D2, ..., Dt−1)P (Yi,t|Xi,t = k,Di,t) (4.20)

The complexity to calculate each element is O(N) and the total complexity is still

O(N2)

Step 2: iteratively calculating backward probability

Firstly calculate backward probability at step T β(i, k, T )
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β(i, k, T ) = 1 (4.21)

Then iteratively calculate forward probability from step T-1 to 1 β(k, t, i)

β(i, k, t) = P (Yt+1, ..., YT |Xi,t = k,Dt, ..., DT )

=
∑
Xt+1

P (Yt+1, Yt+2, ..., YT , Xt+1|Xi,t, Dt, Dt+1, ..., DT )

=
∑
Xt+1

P (Yt+1, Yt+2, ..., YT |Xt+1, Xi,t, Dt, Dt+1, ..., DT )P (Xt+1|Xi,t, Dt)

=
∑
Xt+1

P (Yt+1, Yt+2, ..., YT |Xt+1, Dt, Dt+1, ..., DT )P (Xt+1|Xi,t, Dt)

=
∑
Xt+1

P (Yt+2, ..., YT |Xt+1, Dt, Dt+1, ..., DT )

P (Yt+1|Xt+1, Dt, Dt+1, ..., DT )P (Xt+1|Xi,t, Dt)

=
∑
Xt+1

∏
m

(P (Yt+2, ..., YT |Xm,t+1, Dt, Dt+1, ..., DT )

P (Ym,t+1|Xm,t+1, Dm,t+1)P (Xm,t+1|Xi,t, Dt))

=
∏
m

∑
Xm,t+1

(P (Yt+2, ..., YT |Xm,t+1, Dt, Dt+1, ..., DT )

P (Ym,t+1|Xm,t+1, Dm,t+1)P (Xm,t+1|Xi,t, Dt))

=
∏
m

∑
Xm,t+1

(β(m,Xm,t+1, t+ 1)

B(m,Dm,t+1, Xm,t+1, Ym,t+1)A(i,Di,t, Xi,t,m,Xm,t+1)) (4.22)

This step is similar to calculating forward probability. The complexity is still O(N)
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Step 3: Calculating total probability γ

γ(i, k, t) = P (Xi,t = k|Y,D)

=
∑

Xt:Xi,t=k

P (Xt|Y,D)

=
∑

Xt:Xi,t=k

P (Y |Xt, D) · P (Xt, D)

P (Y,D)

=
∑

Xt:Xi,t=k

P (Y1, ..., Yt|Xt, D) · P (Yt+1, ..., YT |Xt, D) · P (Xt, D)

P (Y,D)

=
∑

Xt:Xi,t=k

P (Y1, ..., Yt|Xt, D) · P (Yt+1, ..., YT , Xt|D) · P (D)

P (Y,D)

= α(i, k, t) · β(i, k, t)
∏
j 6=i

∑
Xj,t

α(j,Xj,t, t)β(j,Xj,t, t) ·
P (D)

P (Y,D)

=
α(i, k, t) · β(i, k, t)∑
k α(i, k, t) · β(i, k, t)

(4.23)

Still we play with the transformation of conditional probability. There are two impor-

tant points in this equation: 1, From second line to the third line, we use the conditional

independence of Y1, ..., Yt and Yt+1, ..., YT given Xt = k,D; 2, in the last line, we use the

normalization

79



Step 4: Calculating two-step probability ξ

ξ(m,xm,t, i, xi,t+1, t) = P (Xm,t = xm,t, Xi,t+1 = xi,t+1|Y,D)

= P (Y |xm,t, xi,t+1, D) · P (xi,t+1|xm,t, D) · P (xm,t, D)

= P (Y1, .., Yt|xm,t, xi,t+1, D) · P (Yt+1, ..., YT |xm,t, xi,t+1, D) · P (xm,t, D)P (xi,t+1|xm,t)

= P (Y1, .., Yt, xm,t, D) · P (Yt+1, ..., YT |xi,t+1, D)P (xi,t+1|xm,t) = P (Y1, .., Yt, xm,t, D)

·
∑

Xt+1:Xi,t+1=xi,t+1

P (Yt+2, ..., YT |Xt+1, D)P (Yt+1|Xt+1, D)P (xi,t+1|xm,t)

= P (Y1, .., Yt, xm,t, D) · P (Xi,t+1|Xm,t)P (Yt+2, ..., YT |Xi,t+1, D)P (Yi,t+1|Xi,t+1, D)∏
j 6=i

∑
Xj,t+1

P (Yt+2, ..., YT |Xj,t+1, D)P (Yj,t+1|Xj,t+1, D)P (Xj,t+1|Xm,t)

= α(m,xm,t, t) ·A(i,Di,t, Xi,t,m,Xm,t+1)β(j,Xi,t+1, t+ 1)∏
j 6=i

∑
Xj,t+1

(β(j,Xj,t+1, t+ 1)B(j,Dj,t+1, Xj,t+1, Yj,t+1)A(i,Di,t, Xi,t, j,Xj,t+1)) (4.24)

This calculation is similar to the way we calculate γ. From second line to third line, we

use the conditional independence of Y1, .., Yt and Yt+1 and Yt+2, ..., YT given Xt, Xt+1, D.

Again, we use the normalization to represent 1
P (Y,D) . Edit: maybe we can simplify the

calculation. However, this is not important since it is O(N)

4.3.10 Maximization step

The main idea of the maximization step is to update the new estimation of π, Transition

matrix A and Output matrix B based on new-calculated forward/backward probability

α and β.
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Step 1: Update the initial state distribution:

π(k, i) = γ(i, k, 1) (4.25)

by definition, π is γ at step 1, which is the expected frequency of value k at time 1

Step 2: Update Output matrix B

B(i, di,t, xi,t, yi,t) =

∑
t 1Yi,t=yi,t,Di,t=di,tγ(i, xi,t, t)∑

t 1Di,t=di,tγ(i, xi,t, t)
(4.26)

1Yi,t=yi,t,Di,t=di,t =


1, Yi,t = yi,t, Di,t = di,t

0, otherwise

1Di,t=di,t =


1, Di,t = di,t

0, otherwise

where 1Yi,t=yi,t,Di,t=di,t is an indicator function and B(i, d, x, y) is the expected number

of times the output of crimes have been equal to y while the defender is d, criminal is k

over the expected total number of times at target i.

Step 3: Update Transition Matrix A

A(m, dm,t, xm,t, i, xi,t+1) =

∑
t 1Dt=dtξ(m, dm,t, xm,t, i, xi,t+1))∑

t

∑
xi,t+1

1Dt=dtξ(m, dm,t, xm,t, i, xi,t+1))
(4.27)
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which is the expected number of transitions from xt to k given defender vector dt

compared to the expected total number of transitions away from xt given defender vector

dt.

4.3.11 Repeat

Repeat expectation step and maximization step, which is π,A,B → α, β, γ, ξ → π,A,B,

until π,A,B do not change anymore. This means we reach the local optimal solution.

Computational complexity analysis The complexity of EM on the basic model

is O(C2NT ), and for EMC2 it is O(NC+1T + (C ·N)2T ). The detailed derivation is not

hard and delegated to the appendix. Therefore, EMC2 procedure runs much faster than

EM in the basic model when C is small.

4.4 Example of EMC2

In this section, I want to give an example of how EMC2 compactly represents the param-

eters in the DBN model.

4.4.1 Factorize crime matrix

In the original DBN model shows in Figure 5.4, the crime matrix is shown in Figure

4.14(a). The size of this crime matrix is 22N by 2N for game with N targets. This is

because the input entry of crime matrix is the combination of defenders’ allocation at N

target (2N ) and criminals’ possible distribution at N targets (2N ) and the output entry

is the crime distribution at N targets (2N ). In EMC2 model, we compactly represents

such transition by assuming crime at each targets are independent. An example of the
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(a) Original Crime Matrix (b) Original Transition Matrix

(c) Factorized Crime Matrix (d) Pairwise Transition Matirx

Figure 4.14: Example of learnt parameters

factorized crime matrix for target 1 is show in Figure 4.14(c). For all other targets, the

size of the crime matrix is the same. Therefore, the total size of the factorized crime

matrix is 4by2byN , which is significantly smaller.

4.4.2 Pairwise transition matrix

Similarly, in the original DBN model, the output matrix is shown in Figure 4.14(b). The

size of transition matrix is also 22N by 2N for game with N targets. The input entry of

transition matrix is the combination of defenders’ allocation at N target at time step T

(2N ) and criminals’ possible distribution at N targets (2N ) at time step T . The output

entry is the criminals’ distribution at N targets (2N ) at time step T +1. In EMC2 model,

we assume the transition matrix can be reconstructed by using the pairwised transition

matrix from each target i to each target j. An example of the pairwised transition matrix

from target 1 to target 1 is shown in Figure 4.14(d). For all other target pairs, the size

83



of the transition matrix is the same. Therefore, the total size of the pairwised transition

matrix is 4by2byN2, which is significantly also smaller.

4.5 Dynamic Planning

The next step after learning the criminals’ behavior is to design effective officer alloca-

tion strategies against such criminals. In this section, we first introduce a simple online

planning mechanism, in which we iteratively update criminals’ behavior model and plan

allocation strategies. Next, we present a slower optimal planning algorithm and faster

but sub-optimal greedy algorithm.

Online Planning Mechanism. We first state our template for iterative learning and

planning before describing the planning algorithms. The criminal behavior may change

when the criminal observes and figures out that the defender strategy has changed. Thus,

the optimal strategy planned using the learned parameters is no longer optimal after some

time of deployment of this strategy, as the parameters itself change in response to the

deployed strategy.

To address the problem above, we propose an online planning mechanism. In this

mechanism, we update criminal’s model based on real-time crime/patrol data and dy-

namically plan our allocation strategy. The first step is to use the initial training set

to learn an initial model. Next, we use a planning algorithm to generate a strategy for

the next Tu steps. After executing this strategy, we can collect more crime data and use

them to update the model with the original training data. By iteratively doing this, we
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generate strategies for the whole horizon of T steps. Algorithm 3 presents the details of

this mechanism.

Input: Train data: the training crime and patrol data; Tu: the time steps to plan
ahead in one iteration; T : the total time steps to plan ahead

Output: [D1, ..., DT ]: The patrol strategies for T times.
1 A,B, π ← Learn(Train data) t = 0 while t < T do
2 [Dt, ..., Dt+Tu ]← Plan(A,B, π) [Y1, ..., YTu ]← Execute{D1, ..., DTu}

Train data← Train data ∪ {D1, Y1, ..., DTu , YTu}
A,B, π ← Update(Train data,A,B, π) t = t+ Tu;

3 end

Algorithm 3: Online planning

Compared to simply applying planning algorithm for T steps, our online planning

mechanism updates criminals’ behavior model periodically based on his response to the

currently deployed strategy. In this online planning mechanism, three parts are needed:

learning algorithm, updating algorithm and planning algorithm. For learning and updat-

ing algorithm, we apply the EMC2 learning algorithm from Section 5. In addition, we

also need a planning algorithm, which we discuss next.

4.5.1 Planning Algorithms

The planning problem. In the planning problem, the criminals’ behavior is known, or

more specifically, we already know the criminals’ initial distribution π, movement matrix

A and crime matrix B in the DBN model. Given a pure defender patrol allocation

strategy for Tu steps, we can plug those values for the input state in the DBN and get the

expected number of crimes in Tu steps. The goal of planning is to find the defenders’ pure

strategy that optimizes the defenders’ utility, which in our case is to minimize the total

expected number of crimes. (In our way our framing, any randomized strategy, which is
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the combination of pure strategies, results in more number of crimes than the optimal

pure strategy). Thus, planning against opportunistic criminals is a search problem in

defender’s pure strategy space. First, we present the practical impossibility of a brute

force search.

Brute Force search: A naive way to solve this problem is to try all possible allo-

cation strategies and pick the one that leads to least crimes in Tu steps. However, since

at each step, the number of possible allocation strategies is CN and there are Tu steps

in total, the strategy space is CNTu . For example, for our specific problem of patrolling

in USC with five targets, two categories and the goal of planning for Tu = 300 steps, we

need to search 21500 ≈ 10451 different strategies, which is impractical to solve.

Input: A: Criminal’s transition matrix; B: Crime matrix; π: Criminal’s initial
distribution

Output: D̂: Defender’s optimal patrol strategy.
1 for each officer allocation Di

1 do
2 Parent[i, 1]← 0; Pi,1 ← fY (A, π,Di

1); Xi,1 ← π for t← 2, 3, ..., Tu do

3 for each officer allocation Dj
t do

4 Let F (i) = fY (fX(A,Xi,t−1, D
i
t−1), D

j
t , B) + Pi,t−1

Parent[Dj
t , t]← argmini[F (i)] Pj,t ← mini[F (i)]

Xj,t ← fX(A,X
Parent[Djt ,t],t−1

, D
Parent[Djt ,t]
t−1 )

5 end

6 index[T ]← argmini Pi,T ; D̂[T ]← D
index[T ]
T

7 end
8 for t← T − 1, ..., 1 do

9 index[t]← Parent[D
index[t+1]
t , t+ 1] D̂[t]← D

index[t]
t

10 end

11 end

Algorithm 4: DOGS

Dynamic Opportunistic Game Search (DOGS): First, we list some notation

that will be used in the next two planning algorithms.
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• Dj
t indicates the jth strategy for the defender from the CN different defender strate-

gies at time step t.

• Pj,t is the total number of crimes corresponding to the optimal defender strategy

for the first t time-steps that has j as its final defender strategy.

• Xj,t is the criminals’ location distribution corresponding to the optimal defender

strategy for the first t time-steps that has j as its final defender strategy.

• fY (Xt, D,B) is the expected number of crimes at all targets at t given the criminal

location distribution Xt and defender’s allocation strategy D at step t and output

matrix B.

• fX(A,Xt, Dt) is the criminal location distribution at step t + 1 given the criminal

location distribution Xt and defender’s allocation strategy Dt at t and transition

matrix A.

DOGS is a dynamic programming algorithm, hence in order to find the optimal strat-

egy for t steps, we first find the optimal strategy for the sub-problem with t − 1 steps

and use it to build the optimal strategy for t steps. Given the values of π, A and B

from our learning step, the optimal defender allocation strategy D1, ..., DTu is given by

the recurrence relations:

Pj,1 = fY (π,Dj
1, B)

Pj,t = mini[fY (fX(A,Xi,t−1, D
i
t−1), D

j
t , B) + Pi,t−1]
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Retrieving the optimal allocation strategy requires remembering the allocation Di
t−1 that

minimizes the second equation, which is done by storing that information in the function

Pa, as follows:

Pa[j, t] = argmin
i

[fY (fX(A,Xi,t−1, D
i
t−1), D

j
t , B) + Pi,t−1]

As Pj,Tu is the total number of crime for the optimal defender strategies for Tu time-

steps that has j as the final strategy, the optimum strategy for time-step Tu is given by

DTu = argminj Pj,Tu . Then, recursively, given optimal Dt we find the optimal strategy

in the previous time-step using function Pa: Dt−1 = Pa[Dt, t]. The complexity of DOGS

algorithm (Algorithm 4) is O(C2NTu).

Greedy search. The dynamic programming based algorithm can generate the op-

timal strategy, but takes time O(C2NTu). We present a greedy algorithm that runs in

O(CNTu) time, but the solution may be sub-optimal. In greedy search, we split the strat-

egy space into Tu slices. Each slice represents the strategy at each step. Then, instead

of searching the optimal strategy for Tu steps, we only look one step ahead to search

the strategy that optimize defender’s utility at current step (Algorithm 5). It finds the

optimal patrol allocation Dt at current step by minimizing the expected number of crime

at all targets at step t. For the next step, we compute the criminal’s distribution Xt+1

and greedily search again. We keep iterating this process until we reach Tu step. The

complexity of Greedy search is O(CNTu).
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Input: A: Criminal’s transition matrix; B: Crime matrix; π: Criminal’s initial
distribution

Output:
D = [D1, ..., DTu ]

: Defender’s optimal patrol strategy.
1 for t← 1, . . . , Tu do
2 Dt ← argminD fY (Xt, D,B); Xt+1 ← fX(A,Xt, Dt)
3 end

Algorithm 5: GREEDY

4.6 Experimental Results

Experimental setup. All our experiments were performed on a machine with 2.4GHz

and 16GB RAM. MATLAB was our choice of programming language. There are two

threads of experiments, one on learning and other on learning and planning. To avoid

leaking confidential information of USC Department of Public Safety, all the crime num-

bers shown in the results are normalized.

Learning (Setting): Our first experiment is on evaluating performance of EMC2

algorithm in learning criminals’ behavior. We use the case study of USC in our ex-

periments. We obtained three years of crime report and corresponding patrol schedule

followed in USC. Since EMC2 algorithm and EM algorithm only reach locally optimal

solution, we run the algorithms for 30 different randomly chosen start points and choose

the best solution from among these runs. These start points, i.e., values of A, B and

π, are generated by sampling values from a uniform random distribution over [0, 1] for

all the elements and then normalizing the probabilities so that they satisfy the initial

conditions. C is set to 2 by default while the effect of varying C is compared in Figure

4.19.

Results:
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Figure 4.15: Total number of crime
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Figure 4.16: Individual Accuracy
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Figure 4.17: Varying data
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Figure 4.18: Varying data(Runtime)

The results shown in Figure 4.15 compares the estimated numbers of crimes using

different learning algorithms with real number of crimes in 30 days. Three different

algorithms are compared: (1) the Markov chain (MC) algorithm, in which the best per-

formance among all eight models are shown, (2) the exact EM algorithm and (3) the

EMC2 algorithm. We divide the three year data into four equal parts of nine months

each. For each part we train on the first eight months data and test on the ninth month

data. The x-axis in this figure indicates the index of the part of data that we evaluate

on. y-axis is the total number of crimes in 30 days. The closer this number is to the real

number of crime, the better the prediction is. As can be seen, the prediction of EMC2
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Figure 4.19: Vary C
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Figure 4.20: Compare with deployed
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Figure 4.22: Vary Tu(Runtime)

is much closer compared to those of EM and MC algorithm in all the training groups.

This indicates that the crime distribution is related to criminals’ location and including

number of criminals at each target as a hidden state helps improving performance. In

addition, EMC2 algorithm achieves better performance than EM by reducing number of

unknown variables to avoid over-fitting.

For Figure 4.16, we measure learning performance for each individual target using a

metric that we call accuracy. To define this metric, let nit be the actual number of crimes

at target i for time step t, let n′it be the predicted number of crimes at target i at time step

t. Then, accuracy at step t is the probability of the event
∑N

i=1 |nit − n′it| ≤ 1. In other
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words, it is the probability that we make less than one mistake in predicting crimes for all

N targets. The reported accuracy is the average accuracy over all t. In Figure 4.16, the

y-axis represents the accuracy. The higher accuracy is, the more accurate our prediction

is. We compare four different algorithm: MC, EM, EMC2 algorithm and the uniform

random algorithm, which sets equal probability for all possible numbers of crimes at each

target. As expected, EMC2 outperforms all other algorithms in all training groups. In

addition, even though the accuracy of the algorithms varies in different training groups,

which we attribute to the noisy nature of the data in the field, the largest difference is

within 15%. This indicates accuracy of the algorithms are data-independent.

We present additional results under this setting in Figure 4.17 and 4.18. We compare

the four approaches for varying size of training data, thus, the x-axis in both figures shows

the number of training data (in days of data) used in learning. Our test data is all of the

data points from a 30 day period, and the training data are the data points just before (in

order of time) the test data points. For Figure 4.17, EMC2 algorithm again outperforms

all other algorithms for any number of training data in accuracy. In addition, the more

data we have for training, the better accuracy we achieve. In Figure 4.18, the y-axis shows

runtime in seconds on a log scale. The more data we have, the longer it takes for each

training method. Random algorithm is pre-generated and takes almost no time, hence

that data is not shown in the figure; the runtime for MC is negligible because the number

of state is small (O(4N )) and we traverse all the data points only once; the runtime for

EMC2 algorithm is significantly better than that for EM algorithm, as is expected by our

complexity analysis in Section 5.
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In Figure 4.19, we compare the four approaches by varying C. The x-axis shows the

value of C. We use 1100 data points for training while 30 data points, which is just after

the training data points, are used for testing. The accuracy decreases as C increases. This

is because when C increases, there are more possible values of number of crimes. Thus,

the possibility of predicting an accurate number decreases. However, when C increases

from 3 to 4, the decrease in accuracy is small in EMC2 due to the fact that data with

value 4 rarely appears in both the crime and patrol data-set. This indicates a small

C is a good approximation. In addition, EMC2 algorithm again outperforms all other

algorithms for any C.

RP M1 M2 M3 M4 M5 M6 M7 M8 M9
0

0.1

0.2

0.3

0.4

Model Index

A
cc

ur
ac

y 
(1

−
di

st
an

ce
)

 

 

Set 1 Set 2 Set 3 Set 4

Figure 4.23: Markov Chain Models

In Figure 4.23, all the Markov Chain

models are compared. The x-axis is the

model index. RP represents the uniform

random predicting. M1 through M9 are

the nine Markov Chain models. The y-axis

represents the accuracy. We use four sets

of data that are the same as Figure 4.16

to test the performance. All the Markov

chain models give similar accuracy, which

outperforms RP significantly. However, as showed in Figure 4.16, all these models are

outperformed by EM and EMC2 algorithms.

Learning and Planning (Real world data): Figure 4.20 compares DOGS with

the actual deployed allocation strategy generated by DPS experts in USC. Similar to the

settings in Figure 4.15, we divide the three year data into four equal parts of nine months.
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For each part we train on the first eight months data using EMC2 algorithm and test

different allocation strategy on the first 10 days of the ninth month data. When testing

the strategy, we assume the criminals’ behavior remain unchanged during these 10 days.

Three different scenarios are compared: (1) the real number of crimes, shown as Real in

Fig. 4.20; (2) the expected number of crimes with DPS strategy and learned criminal

behavior, shown as Real-E and (3) the expected numbers of crime with DOGS allocation

and learned criminal behavior, shown as DOGS. As shown in Fig 4.20, the expected

number of crime with DPS strategy is close to the real number of crimes, which indicates

EMC2 captures the main features of the criminal behavior and provides close estimate of

the number of crimes. In addition, DOGS algorithm outperforms the strategy generated

by domain experts significantly. This demonstrates the effectiveness of DOGS algorithm

as compared to current patrol strategy. By using allocation strategy generated by DOGS,

the total crime number reduces by ∼50% as compared to the currently deployed strategy.

Learning and planning (Simulated data): Next, we evaluate the performance of

our online planning mechanism. We use simulations for this evaluation. In the simulation,

the criminal model is simulated using the model from an earlier work on opportunistic

criminals [59], in which the authors explicitly model an opportunistic criminal’s behavior.

However, the defender does not know the type of criminals in our experiments. Instead,

the defender starts by executing a random patrol schedule for 300 steps and collects the

corresponding crime report using which they learn an initial criminal behavior model.

The criminal responds to the defenders’ patrol schedule as predicted by the behavior

model in [59]. Since the criminal behavior in [59] is probabilistic, we run the experiment

30 times and each data point we report in this part is an average over these 30 instances.
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We fix the number of patrol officers to 2N − 2, where N is the number of targets. This

number is consistent with our real data-set numbers (8 officers for 5 targets), where there

were enough officers to allocate one officer to each target, but not enough to allocate two

officers to each target. We use EMC2 algorithm as the learning algorithm.
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Figure 4.24: Varying N

Results: Figure 4.21 to 4.24 presents

the results from our experiments about the

online learning and planning mechanism.

Four planning mechanisms that we con-

sider are as follows: first, a random plan-

ning mechanism that randomly generates

allocation strategy with limited resources;

second, a pure planning mechanism, where

we learn the criminal behavior model once

and apply this model to plan for the entire horizon T using DOGS algorithm; third, a

online planning mechanism with greedy planning algorithm that updates every Tu time-

steps; and the last mechanism is online planning mechanism with DOGS algorithm that

also updates every Tu time-steps. In Figure 4.21, the total planning horizon T is set to

600. In addition to the four planning mechanisms, we also consider the worst case where

the defender always protect the least valuable targets. The x-axis shows the update in-

terval Tu, which is the time interval after which we update criminals’ behavior model.

The y-axis is the expected number of crimes that happens under the deployed allocation

strategy within 600 steps. Expected number of crimes under pure planning mechanism

stay the same with different Tu because it does not update the criminals’ model at all.
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For online mechanisms, the expected number of crimes increases as the update interval Tu

increases. This is because with infrequent updates of the criminals’ behavior model, we

cannot keep up with the real criminals’ behavior. In addition, with any size of the update

interval, DOGS algorithm outperforms the greedy algorithm. In Figure 4.22, we present

the runtime of three mechanisms for the same experiment. We do not show the runtime

for the random planning mechanism as it is small and same for any planning horizon T .

The runtime decreases as the update interval Tu increases. There is a runtime-quality

trade-off in choosing Tu. Figure 4.24 shows the performance of the four planning mech-

anisms, but with different number of targets in the model. The x-axis is the number of

targets in the graph and the y-axis is the expected number of crimes under the deployed

strategy. We set T = 600, Tu = 2. The results here are similar to the results of Fig. 4.21.

These results lead us to conclude that online mechanisms outperform the baseline

planning mechanisms significantly in any settings. For online mechanisms, DOGS achieves

better performance while greedy planning algorithm requires less runtime. Thus, based on

the specific problem being solved, the appropriate algorithm must be chosen judiciously.
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Chapter 5

Large Scale OSG

In this chapter, I aim to deter urban crime by recommending optimal police patrol strate-

gies against opportunistic criminals in large scale urban problems. While previous work

has tried to learn criminals’ behavior from real world data and generate patrol strategies

against opportunistic crimes, it cannot scale up to large-scale urban problems. Our first

contribution is a game abstraction framework that can handle opportunistic crimes in

large-scale urban areas. In this game abstraction framework, we model the interaction

between officers and opportunistic criminals as a game with discrete targets. By merg-

ing similar targets, we obtain an abstract game with fewer total targets. We use real

world data to learn and plan against opportunistic criminals in this abstract game, and

then propagate the results of this abstract game back to the original game. Our second

contribution is the layer-generating algorithm used to merge targets as described in the

framework above. This algorithm applies a mixed integer linear program (MILP) to merge

similar and geographically neighboring targets in the large scale problem. As our third

contribution, we propose a planning algorithm that recommends a mixed strategy against

opportunistic criminals. Finally, our fourth contribution is a heuristic propagation model
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to handle the problem of limited data we occasionally encounter in large-scale problems.

As part of our collaboration with local police departments, we apply our model in two

large scale urban problems: a university campus and a city. Our approach provides high

likelihood in the real datasets; furthermore, we project significant crime rate reduction

using our planning strategy compared to current police strategy.

5.1 Problem Statement

Figure 5.1: Sample Crime Report Figure 5.2: Sample Schedule

In my thesis, we focus on limiting opportunistic crimes in large scale urban areas.

Such large scale areas are usually divided into N targets by the defenders. At the same

time, defenders divide the time into patrol shifts. T denotes the total number of shifts.

At the beginning of each patrol shift, the defender assigns each available patrol officer to a

target and the officer patrols this target in this shift. The criminals observe the defender’s

allocation and seek crime opportunities by deciding the target to visit. In order to learn

the criminal’s opportunistic reaction to the defender’s allocation, two categories of data

are required for T shifts. The first is about crime activity which contain crime details.

Figure 5.1 shows a snapshot of this kind of data in a campus region. In my thesis, we

only consider the time and location information of crimes, ignoring the difference among
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different types of crimes. Therefore, we can summarize the crime report into a table like

Table 5.1. In this table, columns represents the index of each target while rows represents

total number of shifts, 1...T. Each element in the table represents the number of crimes

at the corresponding target in that shift. N × T data points are recorded in the table.

Shift 1 2 3 ... N

1 1 1 2 ... 2

2 1 1 1 ... 1

3 2 1 1 ... 1

Table 5.1: Crime data

The second category is the patrol allocation

schedule at these shifts. The snapshot of such data

is shown in Figure 5.2. We ignore the individual

difference between officers and assume that the of-

ficers are homogeneous and have the same effect on

criminals’ behavior. Therefore, only the number of

officers at each target and shift affects criminals’ behavior and we can summarize the

patrol data in the similar manner as crime reports, which is shown in Table 5.2.

Shift 1 2 3 ... N

1 2 1 1 ... 1

2 1 1 2 ... 2

3 2 1 1 ... 1

Table 5.2: Patrol data

Given the available data for crime and patrol

officers, our goal is to recommend efficient patrol

strategies to prevent opportunistic crimes in prob-

lems with a large number of targets. To begin with,

we learn criminals’ behavior from data and apply

the abstract game framework to hierarchically learn

the criminal’s behavior. Next, we propose a planning algorithm that generates the mixed

strategy that optimizes the defender’s utility against the learned behavior of criminals.
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5.2 Abstract Game

Even though previous approaches [60] deal with opportunistic crimes, they cannot directly

be applied to large scale problems. There are two reasons. First, over-fitting is inevitable

in the learning process of large scale problems. The number of unknown variables in the

learning process is O(N2) while the number of data points is O(N × T ) [60]. When N

increases, the number of variables gets close to the number of data points and causes

over-fitting. The second reason is the runtime. The complexity of previous approaches

is at least O(NC+1T ) where C is the largest value that any variable in the model of [60]

can take and it grows quickly with N . In fact, our experiments shows that the algorithm

does not converge in one day even with N = 25. Therefore, we propose the abstract game

framework to deal with opportunistic crimes in large scale urban areas.

Figure 5.3: Game Abstraction

The idea of abstracting the most essential prop-

erties of a complex real problem to form a simple

approximate problem has been widely used in the

poker game domain [23]. Using such an abstrac-

tion the problem can be solved hierarchically and a

useful approximation of an optimal strategy for the

real problem is provided. In my thesis, we use the

concept of abstraction to transform the large scale

urban area problem into a smaller abstract prob-

lem and solve it hierarchically. Figure 5.3 illustrates

the four steps in our game abstraction framework.
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First, we need to generate the abstract layer from

the original layer (Section 4.1). Targets that have

similar properties are merged together into aggregated targets. The set of aggregated tar-

gets is called the abstract layer while the set of original targets is called the original layer.

Currently we only consider two layers: the original layer and the abstract layer. If the

problem in the abstract layer is still too large to solve, we need to do further abstraction,

which we will discuss in Section 4.5. After we obtain the abstract layer, the second step

is to learn the criminal’s behavior and generate an optimal patrol strategy in the abstract

layer (Section 4.2). The third step is to propagate information, such as criminal behavior

features, from the abstract layer to the original layer (Section 4.3). Finally, we use the

information from the abstract layer and data in the original layer to learn the criminal’s

behavior and generate an optimal patrol strategy in the original layer (Section 4.4).

5.2.1 Layer Generating Algorithm

We model the layer generation as a Districting Problem [15,29]. The districting problem

is the well known problem of dividing a geographical region into balanced subregions with

the notion of balance differing for different applications. For example, police districting

problems focus on workload equality [15]. Our layer generation is a districting problem

that group targets in the original layer into aggregated targets in the abstract layer.

However, distinct from the classic Districting problem where the resources are balanced

among different aggregated targets, in our problem, we try to maximize the similarity

of the targets inside the same aggregated target. We do so by modeling the similarity
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of targets within each aggregated target and use this similarity measure as one of the

criteria in the optimization formulation of our problem.

When generating the aggregated targets, there are three principles to follow. First, the

aggregated targets should follow the geometric constraints in the districting problem such

as contiguity, compactness and environmental constraints. Contiguity means that every

target is geographically connected; compactness means that all targets in an aggregated

target should be close together; and environmental constraints are the constraints for

defender’s patrol convenience. For example, if two neighboring targets are divided by

a highway, they should not be merged together. Second, the dissimilarity within the

aggregated targets should be minimized. We consider two properties of target i, the

number of crimes per shift with the defender’s presence ci1 and the number without the

defender’s presence ci0. For target i and target j, we define the Dissimilarity distance

function as Disij = |ci1 − c
j
1|+ |ci0 − c

j
0|.

Third, the algorithm should consider the scalability constraint for learning algorithm.

Let N denote the number of targets in the original layer and n denote the largest scale

of problem that the learning and planning algorithms can scale up to. Then there can

be no more than n targets inside each aggregated target and no more than n aggregated

targets in the abstract layer. Therefore, N ≤ n2 in the original layer. When N > n2, we

need multiple layer abstraction that will be introduced later. As we prove next in Lemma

5.2.1, the more the aggregated targets are in the abstract layer, the less information is

lost during the abstraction. Hence, we would want to have as many targets as possible

in the abstract layer. Thus, we set n aggregated targets in the abstract layer.
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Let I = {1, . . . , N} be a set of targets in the original layer. A partition of size K

of this set I is a collection of sets {Ik}Kk=1 such that Ik 6= ∅ for all k ∈ {1, . . . ,K},

Ik ∩ Il = ∅ for all k, l ∈ {1, . . . ,K}, k 6= l and
⋃K
k=1 Ik = I. {Ik}Kk=1 is the set of the

aggregated targets in the abstract layer. Let PK(I) denote the set of all partitions of I

of size K. Given Ik ⊂ I we define its inner Dissimilarity as Dis(Ik) =
∑

i,j∈Ik Disij =∑
i,j∈Ik |c

i
1 − c

j
1| + |ci0 − c

j
0| . Also we define its Inertia as In(Ik) = minj

∑
i∈Ik dij , with

dij denoting the physical distance between the geometric centers of targets i, j. In our

districting process we want to find a partition which achieves both low inner Dissimilarity

and Inertia over all elements of the partition. Given α > 0 as a normalization parameter,

we define the information loss function LI(K) as the lowest cost with a partition of size

K, mathematically LI(K) = min{Ik}Kk=1∈PK(I)

∑K
k=1 αIn(Ik) +Dis(Ik).

Lemma 5.2.1. The information loss decreases with K, that is LI(K + 1) ≤ LI(K).

Proof:

First, note that In({i}) = Dis({i}) = 0 for all i ∈ I. Let j∗ be the value of j that

achieves the minimum in In(Ik) = minj
∑

i∈Ik dij . Let {I∗j }Kj=1 the optimal partition of I

and k∗ ∈ argmaxk={1,··· ,K}αIn(I∗k) +Dis(I∗k). Then |I∗k∗ | > 1 otherwise LN (K) = 0 and

|I∗k | = 1 for all k and there is no clusters. Let i∗ ∈ I∗k∗ − {j∗}. Note that:

In(I∗k∗) =
∑
i∈I∗

k∗

dij∗ ≥
∑

i∈I∗
k∗−{i

∗}

dij∗ ≥ In(I∗k∗ − {i∗})

Dis(I∗k∗) =
∑

i,j∈I∗
k∗

Disij ≥
∑

i,j∈I∗
k∗−{i

∗}

Disij = Dis(I∗k∗ − {i∗})
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Then,

LN (K) =
K∑
j=1

αIn(I∗k∗) +Dis(I∗k∗)

≥
K∑
j=1

αIn(I∗k∗) +Dis(I∗k∗)

+αIn({i∗}) +Dis({i∗})︸ ︷︷ ︸
=0

≥ LN (K + 1)

Then, the partition {I1, . . . , Ik∗−1, Ik∗−{i∗}, {i∗}, Ik∗+1, . . . , IK} ∈ PI(K+1) is feasi-

ble for the problem of K + 1 clusters and has lower loss function value, then the optimal

clustering in PI(K + 1) also has the lower objective function.

Based on these three principles, we propose a mixed integer linear program (MILP) to

solve the districting problem. We apply an extension of the capacitated K-median prob-

lem with K = n. While the capacitated K-median problem [50] satisfies the scalability

constraint by setting a maximum capacity for each aggregated target, it cannot handle

the geometric constraints such as contiguity. A counterexample is shown below. In this

work, we handle the geometric constraints by considering the inertia of each aggregated

target as part of the information loss function.

Counterexample of capacitated K-median problem

For a problem with 4 targets located on a 1-dimension string. Target 1 has attractive-

ness 0.9 and geometric information [0,0.001]; Target 2 has attractiveness 0.1 and geomet-

ric information [0.001,0.002]; Target 3 has attractiveness 0.9 and geometric information

[0.002,0.003]; Target 4 has attractiveness 0.9 and geometric information [0.003,0.004].

Using capacitated K-median problem, target 1 and 3 should be clustered together while
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2 and 4 should be clustered together. However, such segmentation violate the contiguity

constrained in the Districting problem so the approach is inapplicable in the problem.

minx,y,z α
∑

i,j dijyij +
∑

ik zik

s.t.
∑

j yij = 1 ∀i ∈ I

yij ≤ xj ∀i, j ∈ I

∑
j xj = n

∑
j yij ≤ n ∀j ∈ I

zik ≥ Disik(yij + ykj − 1) ∀i, k, j ∈ I

zik ≥ 0 ∀i, k ∈ I

yij + ykj ≤ 1 ∀j ∈ I

yij , xj ∈ {0, 1} ∀i, j ∈ I

(5.1)

xj is a binary variable. It is 1 if the target j is the center of an aggregated target

and 0 otherwise. The variable yij takes the value 1 when the target i is allocated to

the aggregated target centered in j and 0 otherwise. The variable zik is a continuous

non-negative variable that takes the value Disik when target i and target k are allocated

to the same aggregated target, otherwise zik is 0. The objective function is the weighted

sum of inertia and dissimilarity. α represents the trade-off between geometric shape and

the similarity within each aggregated target.

The first set of constraints ensures that every target is allocated to an aggregated

target. The second set of constraints ensures that the center of an aggregated target

belongs to this aggregated target. The third expression states that there are n aggregated
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targets. The fourth set of inequalities ensures the size of every aggregated target to be no

greater than n. The fifth and sixth constraint ensures that zik will take the value Disik

when target i and target k are allocated to the same aggregated target, otherwise zik will

be 0. The seventh constraint is an example of environmental constraints that target i

and target k cannot be in the same aggregated target.

Directly solving this MILP is NP-hard [30]. Therefore we use the heuristic constraint

generation algorithm (Algorithm 6) to approximately solve the problem.

Input: I: Set of targets; K: number of aggregated targets
Output: {y∗}: objective function.

1 Center ← Location Problem(I,K); Cuts=∅ for i = 1, · · · ,MAX IT do
2 y∗, z∗ ← Allocation Phase(Center, Cuts)

i∗, j∗, k∗ = argmini,j,k z
∗
ik −Disik(yij + ykj − 1) if

(z∗i∗k∗ −Disi∗k∗(yi∗j∗ + yk∗j∗ − 1)) ≥ 0 then
3 break
4 end
5 else
6 Cuts ← Cuts ∪ {zi∗k∗ ≥ Disi∗k∗(yi∗j∗ + yk∗j∗ − 1)}
7 end

8 end

Algorithm 6: Constraint Generation Algorithm

The algorithm has two phases: first, the location problem is solved as a K-median

problem. In the second phase, we use the constraint generation technique [8] to solve the

optimization problem. The iterative constraint generation algorithm is shown as the for

loop (line 2-9). To start with, all the constraints zik ≥ Disik(yij + ykj − 1) for i, j, k are

removed completely (denoted by the empty set Cuts in line 1), and then in each iteration

of the for loop the MILP is solved (line 3) and then we check whether any of the left out

constraints are violated (line 4, 5). If yes, then the most violated constraint is added to
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Cuts or else the loop stops. The maximum number of iterations is limited by MAX IT .

Constraint generation guarantees an optimal solution given large enough MAX IT .

5.2.2 Abstract Layer

Figure 5.4: DBN framework

Learning Algorithms: As noted earlier, having

generated the abstract layer, the next step is learn

the adversary model at the abstract layer. As stated

before, the Dynamic Bayes Network (DBN) learn-

ing algorithm presented in [60] could not be used in

the original layer due to scaling difficulties; how-

ever, with a sufficiently small number of targets

in the abstract layer, we can now use it. To il-

lustrate its operation, we reproduce the operation

with N targets as shown in Figure 5.4. Three types

of variables are considered in the DBN: squares in

the top represent the number of defenders at ag-

gregated target i during shift t, Di,t, squares in

the bottom represent the number of crimes at ag-

gregated target i during shift t, Yi,t, while circles represents the number of criminals

at aggregated target i during shift t, Xi,t. As shown in Figure 5.4, there are two

transitions in the DBN: the criminal’s transition from shift t to t + 1, which is mod-

eled as the transition probability and the crime transition at shift t, which is modeled

as the crime output probability. Mathematically, a transition probability is defined
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as P (Xi,t+1|D1,t, ..., DN,t, X1,t, ..., XN,t) and the crime output probability is defined as

P (Yi,t|D1,t, ..., DN,t, X1,t, ..., XN,t). This model uses two matrices to represent the transi-

tion probabilities, the movement matrix A which consists of all the criminal’s transition

probability P (Xi,t+1|D1,t, ..., DN,t, X1,t, ..., XN,t) and the crime matrix B which consists

of all the crime output probability P (Yi,t|D1,t, ..., DN,t, X1,t, ..., XN,t). A and B contains

CN × CN × CN unknown parameters.

Given available data about Di,t (patrol schedule), Yi,t (crime report), this model ap-

plies the Expectation Maximization algorithm to learn A and B while estimating Xi,t.

The detail of this learning model is present in [60]. The novelty in this chapter is propa-

gating adversary behavior parameters (A and B) from the abstract layer to the original

layer, which we discuss in Section 4.3; but we do that, we discuss planning in the abstract

layer.

Planning Algorithms: In this chapter, we focus on planning with mixed strategies

for the defender rather than the pure strategy plans from previous work [60]. This change

in focus is based on two key reasons. First, this change essentially broadens the scope of

the defender’s strategies; if pure strategies are superior our new algorithm will settle on

those (but it tends to result in mixed strategies). Second, previous work [60] on planning

with pure strategies depended on repeatedly cycling through the following steps: planning

multiple shifts of police allocation for a finite horizon, followed by updating of the model

with data. This approach critically depended on the model getting updated periodically

in deployment. Such periodic updating was not always easy to ensure. Thus, within any

one cycle, the algorithm in [60] led to a single pure strategy (single police allocation)

being repeated over the finite horizon in real-world tests as it tried to act based on the
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model learned from past data; such repetition was due to a lack of updating of the

criminal model with data, and in the real-world, the criminals would be able to exploit

such repetition. Instead, here we plan for a mixed strategy. We assume that the model

updates may not occur frequently and as a result we plan for a steady state.

We model the planning procedure as an optimization problem where our objective

is to maximize the defender’s utility per shift. After the defenders’ (mixed) strategy is

deployed for a long time, criminals receive perfect information of the strategy and their

(probabilistic) reaction will not change over time. As a result, the criminals’ distribution

becomes stationary and this is called criminals’ stationary state. In our case, ergodicity

guarantees unique stationary state.

Ergodic to unique stationary distribution

For criminal’s distribution, it is a Markov Chain. This Markov chain is ergodic since

the criminal’s distribution can transfer from any state to any other states. Therefore,

this Markov chain is ergodic. By the Fundamental Theorem of Markov Chain, a ergodic

Markov chain P has a unique probability vector c such that P · c = c. c is the stationary

distribution of criminal. Therefore, ergodic leads to unique stationary distribution.

Crime and stationary constraints

As introduced in [60], P (Yi,t|d1, ..., dN , x1, ..., xN ) is defined as the crime probabil-

ity, which can be represented as P (Yi,t|d1, ..., dN , x1, ..., xN ) = B(Yi, Xi, Di, i). At the

same time, P (Xi,t+1|d1, ..., dN , x1, ..., xN ) is defined as the criminal transition probabil-

ity, which can be represented as A(xi,t+1, d1,t, ..., dN,t, x1,t, ..., xN,t). Therefore, the crime

and stationary constraints can be represented as below:
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yi =
∑

Yi,t
Yi,t·

B(Yi, Xi, Di, i), i ∈ I,

xi =
∑

Xi,t+1
Xi,t+1·

A(xi,t+1, d1,t, ..., dN,t, x1,t, ..., xN,t), i ∈ I.

(5.2)

Reconstruct transition matrices from human behavior parameters

Given Equation 3 in Section 4.3, where we extract behavior parameters from A and

B. We can inverse this process and get A and B from λ, µ and Att as below:

A(Xj,t+1, Di,t, Xi,t) =


e
Attnewj∑

n∈N eAtt
new
n
· eλiXi,t+µiDi,t , if i 6= j

e
Attnewj∑

n∈N eAtt
new
n
· eλiXi,t−µiDi,t , otherwise

B(Yi,t, Di,t, Xi,t) = B(Yk,t, Dk,t, Xk,t) ·
Attnewi∑
i∈k Att

new
i

(5.3)

where k is the aggregated target that target i belongs to.

Our planning algorithm assumes criminals’ stationary state when maximizing the

defender’s utility. We define defender’s utility as the negation of the number of crimes.

Therefore, the objective is to minimize the number of crimes that happen per shift in

the stationary state. Let’s define I = {i} as the set of aggregated targets, D as the total

number of defenders that are available for allocation; dI = {di} as the set of defender’s

allocation at target set I, xI = {xi} as the set of criminal’s stationary distribution at

target set I with respect to defender’s strategy dI and yI = {yi} as the set of expected

number of crimes at target I. Note that C is the largest value that the variables Di, Xi

and Yi can take. The optimization problem can be formed as follows:
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minimize
dI

∑
i∈I yi

subject to 0 ≤ xi ≤ C, i ∈ I,

0 ≤ di ≤ C, i ∈ I,∑
i∈I di ≤ D,

yi =
∑

Yi,t
Yi,t·

P (Yi,t|d1, ..., dN , x1, ..., xN ), i ∈ I,

xi =
∑

Xi,t+1
Xi,t+1·

P (Xi,t+1|d1, ..., dN , x1, ..., xN ), i ∈ I.

(5.4)

In this optimization problem, we are trying to minimize the total number of crimes

occurring in one shift while satisfying five sets of constraints. The first two constraints

ensure the defender and criminal’s distribution are non-negative and no more than an

upper bound C. The third constraint represents the constraint that the number of de-

ployed defender resources cannot be more than the available defender resources. The

fourth constraint is the crime constraint. It sets yi to be the expected number of crime

at target i. The last constraint is the stationary constraint, which means that the crim-

inals’ distribution is not changing from shift to shift with respect to the patrol strategy

dI . The transitions are calculated by movement matrix A and crime matrix B. When

merging targets in layer m to generate targets in layer m + 1, we need to figure out the

total number of targets in layer m + 1. The direct approach to solve this problem is

to enumerate all the possible combinations of number of targets in all M layers. This
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approach is computationally inapplicable since we have to call the MILP in Section 4.1

for o(NM ·M) times.

For example, if N = 50 and n = 5. Then, there should be M = log550 + 1 = 3

layers. For layer 1, there will be 50 targets. For layer 2, the number of targets can be

from 10 to 25. For layer three, the number of targets can be 2 to 5. The direct learning

algorithm tries every possible combinations of these three layers and runs the MILP for

each combination to generate the optimal segmentation with respect to the combination.

For example, we run MILP for 50→ 25→ 5, 50→ 24→ 5...50→ 10→ 2.

In order to solve the problem, we first propose a Dynamic Programming layer gen-

erating algorithm so that the minimum information lost is achieved by abstraction. We

introduce this algorithm by mathematical induction.

In layer 1, there are N targets. In layer 2, the possible number of targets N2 has a

range of N
n <= N2 <= nM−1. The lower bound for N2 ensures the aggregated targets in

layer 2 does not includes more than n targets in layer 1; the upper bound is the necessary

condition that in layer m > 2, no aggregated targets includes more than n targets. For

all the possible N2, we run the MILP in Section 4.1. Then we get the target clusters and

information loss for all N2, denoted as Cl(N2) and Los(N2). The number of calls is o(N).

Assume for mth layer, the number of targets ranges [N l
m, N

u
m], then for (m + 1)th

layer, the number of targets Nm+1 ranges from N l
m
n to min(N

u
m
n , nM+1−m). For each

possible Nm+1 in layer m + 1, we enumerate Nm in layer m. If Nm < n ·Nm+1, we run

the layer generation algorithm in Section 4.1 from Nm to Nm+1 and get the clusters and

information losses. We denote information loss from Nm to Nm+1 as Los(Nm, Nm+1)

while clusters as Cl(Nm, Nm+1). We choose the minimum loss among all Los(Nm, Nm+1)
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as Los(Nm+1) and the corresponding cluster as Cl(Nm+1). The number of MILP calls is

o(N2).

By repeating the above process M − 2 times, we can get the optimal clusters for M

layers. The mathematical formulation is shown in Algorithm 7. In this algorithm, the

optimal clusters are achieved and we only need to call the MILP O(N2 ·M) times, which

is significantly smaller than direct approach.

1 M = blognNc+ 1, Nmin
1 = N, Nmax

1 = N for m = 2, · · · ,M do

2 N l
m =

N l
m−1

n , Nu
m = min(

Nu
m−1

n , nM−m) for i = N l
m, . . . , N

u
m do

3 opt objective(i) = +∞, Targets(i) = null, optimal path to(i)=null for

j = N l
m−1, . . . , N

u
m−1 do

4 Cluster(i), obj(i)= Cluster Algorithm(Cluster(j), i) if opt objective(i) >
opt objective(j)+obj(i) then

5 opt objective(i)= opt objective(j)+obj(i) optimal path to(i) = j
Targets(i) = I(i)

6 end

7 end

8 end

9 end

Algorithm 7: Dynamic Programming based Multi-Layer Generating Algorithm

Another layer generating algorithm is the greedy algorithm. By Lemma 1, we know

that the more targets in that layer, the less information is lost at this layer. Therefore,

the greedy algorithm set the number of targets to be maximum. Therefore, for the mth

layer, the number of targets is nM+1−m. The number of calls is only o(M). However, the

clusters are only local optima.

5.2.3 Propagation of learned criminal model

In the previous section, we generate the patrol allocation for the aggregated targets in

the abstract layer. In order to provide patrolling instructions for the original layer, we
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propagate the learned criminal model in the abstract layer to the original layer. We

need to address two cases: when there is no detailed patrol data and when there is.

In particular, we have found that some police departments record the location of police

patrols in detail at the level of targets in the original layer, but many others specifically

only keep approximate information and do not record details (even if they record all crime

locations in detail); thus leading to the two cases. We start by describing the case with

sufficient patrol data in the original layer.

Direct learning (sufficient data): When there is detailed patrol data in the original

layer and nothing is approximated away, we know the numbers of police at each target

in the original layer at each shift. Then, we can directly learn A and B in this DBN. The

learning algorithm is same as that applied in the abstract layer. The data used in the

algorithm is the crime report and patrol schedule inside each aggregated target. While we

directly learn A and B, computation of the patrol strategy at the abstract layer affects

the patrol strategy in the detailed layer as discussed in Section 5.2.4.

Parameter Propagation (limited data): If the patrol data in the original layer is

limited, the DBN model that we learned in the original layer will be inaccurate if we still

apply the same learning algorithm as the abstract layer to learn matrices A and B. One

remedy is to provide addition criminal information to the original layer from the abstract

layer to help the process of learning criminal model in the original layer. However, in the

abstract layer, movement matrix A and crime matrix B represent the criminal’s behavior

in aggregated targets. It cannot directly describe the criminal’s behavior in the targets

in the original layer. Therefore, we propose a human behavior based model of extracting

behavior parameters from A and B in the abstract layer. Then we set these behavior
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parameters of an aggregated target as the behavior parameters for the targets contained

within this aggregated target in the original layer.

Parameter extraction: We introduce the process of using a human behavior model

to extract the behavior parameters from A and B. The basic assumption of a human

behavior model is that the criminal follows certain patterns when moving from shift to

shift. Specifically, the criminals follow the movement by the well established Quantal

Response (QR). In the learning algorithm [60], one simplification made was breaking

down the criminals’ transition probabilities into marginal probability P (Xj,t+1|Di,t, Xi,t)

which represents the movement of a criminal from target i to target j. Based on the

Quantal Response model, we approximate this movement using the following equation:

P (Xj,t+1 = 1) = eAttj∑
n∈N eAttn

where Attn is the attractiveness property of target n. In the

DBN, the movement depends not only on the attractiveness, but also on the allocation of

defenders and criminals at previous shift. Therefore, we formulate P̂ (Xj,t+1 = 1|Di,t, Xi,t)

as (λi, µi ≥ 0):


eAttj∑

n∈N eAttn
· eλiXi,t+µiDi,t , if i 6= j

eAttj∑
n∈N eAttn

· eλiXi,t−µiDi,t , otherwise

(5.5)

The reason for the above effect of defender is that the defender at target i disperses

criminals to other targets. However, λ, µ andAtt are not known and we need to learn them

from data. Our approach to compute λ, µ and Att is to find their values that minimize

the L1 distance between P̂ (Xj,t+1 = 1|Di,t, Xi,t) and the learned marginal probability

P (Xj,t+1 = 1|Di,t, Xi,t). We can formulate this problem as the following optimization:
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minAtt,λ,µ
∑

i,j,Di,t,Xi,t
||P (Xj,t+1 = 1|Di,t, Xi,t)−

P̂ (Xj,t+1 = 1|Di,t, Xi,t)||

subject to µi ≥ 0, λi ≥ 0, i = 1, ..., N

The constraints represent the positive effect of number of criminals on the transition

probability and more defenders lead to faster dispersion of criminals. λ, µ and Att are

the behavior parameters that we propagate to original layer.

Since λ and µ represent the influence of the number of criminals and number of

defenders on the criminals’ movement in the aggregated target, it is reasonable to assume

that the criminals’ movement in the targets that belong to the aggregated target inherit

these parameters. In other words, this means that the influence of the number of criminals

and defenders is the same within the aggregated target. At the same time, Att measures

the availability of the crime opportunities. Therefore, within one aggregated target, the

attractiveness is distributed among the targets proportional to the total number of crimes

in each target. For example, if the attractiveness of an aggregated target I (made up of

I1 and I2) is 0.6, the total number of crimes at target I1 is 80 while that at target I2 is

40, then the attractiveness of A1 is 0.4 while that of A2 is 0.2. λ, µ and Att for each

target are the behavior parameters that will be used in crime and stationary constraints

in the planning algorithm.
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5.2.4 Computing Strategy in the Original Layer

In the previous section, we generated the adversary behavior parameters in the original

layer. In order to provide patrolling instructions for the original layer, we utilize the strat-

egy in the abstract layer to assign resources in the original layer. Then, combined with

the propagated adversary behavior parameters we generate the strategy at the original

layer.

Resource Allocation: In the abstract layer, the optimal strategy recommends the

number of resources allocated to each aggregated target. We use this recommendation as

a constraint on the number of resources in planning within the aggregated targets at the

original layer. For example, the abstract layer may provide 0.8 as the allocation to an

aggregated target say X; then we plan patrols in X in the original layer using 0.8 as the

total number of resources.

Next, in the original layer, we treat each aggregated target in the abstract layer as an

independent DBN as shown in Figure 5.4. The same algorithm for generating a mixed

strategy in the abstract layer can be applied in each of the independent DBNs. The

optimization problem is the same as Equation 5.4. D is the total number of resources

allocated to these aggregated targets (e.g., 0.8 to target X).

In addition, the formulations of crime and stationary constraints required in the com-

putation of the mixed strategy are different for the scenario with sufficient and limited

data. For the scenario with sufficient data these constraints are formulated using the

parameters A and B of the DBN that is learned in this original layer. For the scenario

with limited data the propagated values of λ, µ and Att are used to estimate the the A
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and B parameters for the DBN representation of the adversary behavior in the original

layer. The estimation is the inversion of parameter extraction, and it happens in the

original layer. For example, we use Equation 5.5 to estimate the parameters using λ, µ

and Att. The details are presented in the appendix. Then, these reconstructed A and B

are used to formulate the crime and stationary constraints.

5.2.5 Extended Abstract Game

When n2 < N , we can use two layers of abstraction to solve the problem. However, when

the real problem has N > n2 targets, even two layered abstraction does not suffice since

there must be a layer in the game with more than n targets. Therefore, we propose the

multiple layer framework to handle problems with an arbitrarily large number of targets.

This framework is an extension of the two layer abstract game. We apply an iterative

four step process. As a first step, we need to decide the number of layers as well as the

districting of targets for each of the layers. Considering the scalability constraints (recall

that there cannot be more than n targets within each aggregated target), the number of

layers is M = blognNc+1. We denote the original layer as Layer 1 and the layer directly

generated from Layer m as layer m + 1. In this notation, the topmost abstract layer is

Layer M . The second step is learning criminals behavior in the top layer. The third step

is to generate a patrol strategy at this layer. The fourth step is to propagate parameters

to the next layer. We keep executing steps two to four for each layer until we reach the

original layer. At each layer, we decide whether to do parameter propagation based on

the availability of the patrol data. If we have sufficient patrol data at layer m, we do
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direct learning at layer m. Otherwise, we do parameter propagation from layer m+ 1 to

layer m.

We propose three different layer generation algorithms. The first algorithm is the

direct algorithm. For example, if N = 50 and n = 5. Then, there should be M = 3

layers. For layer 1, there will be 50 targets. For layer 2, the number of targets could

be any integer between 10 to 25. For layer 3, the number of targets can be 2 to 5. The

direct learning tries all the combinations of three layers and runs the MILP for each

combination to generate the optimal segmentation. It calls the MILP in Section 4.1 for

O(NM ·M) times; the second algorithm is a dynamic programming approach that ensures

the solution is globally optimal. The MILP is called O(N2 ·M) times; the third algorithm

is the greedy algorithm that sets the number of targets to be maximum, which for the

mth layer is nM+1−m. The number of calls is M while the solution is not necessarily

optimal. Details are in the appendix.

5.3 Real World Validation

Figure 5.5: Campus map 1 Figure 5.6: Campus map 2

We use two sets of real world data to validate the game abstraction framework. In

the first case we use the data from the University of Southern California (USC) campus
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that is provided by [60]. We thank the authors for providing three years (2012-2014)

of crime report and patrol schedule from the USC campus. The number of total crime

events is on the order of 102. [60] reports that the campus patrol area (USC campus and

its surroundings) is divided into five patrol areas, which are shown in Fig 5.5. In order to

make the patrols more efficient, the police officers wish to further divide the whole campus

into 25 patrol areas and get patrol recommendations on these 25 patrol areas. There are

two tasks for us, (a) starting from city blocks (there are 298 city blocks and they form the

basis of the USC map), create 25 separate ”targets”, as in our layer generation problem;

(b) generate an optimal patrol strategy for these 25 targets. The creation of 25 targets is

also a districting problem and the technique in Section 4.1 can be directly applied. The

25 targets generated by the districting algorithm is shown in Figure 6.1. We treat these

25 targets as the original layer. n is set to be 5 as the runtime of learning and planning

algorithm with n = 5 is reasonably small. So then we use two layer game abstraction

to solve this problem with 25 targets. The abstract layer is the five patrol areas in Fig

5.5. This is because of the center area (the darkest area) is the campus itself and is

separated from its environment by fences and gates. These environmental constraints

cause our layer generation to automatically create the area into 5 targets as shown in

Figure 5.5. Additionally, police only record their presence in the five areas, and thus, we

do not have detailed police presence data; as a result, we use our behavior learning to

propagate parameters from the abstract layer to the original layer.

In the second case, we use data about crime and detailed police patrol locations in

Nashville, TN, USA. The data covers a total area of 526 sq. miles. Only burglaries

(burglary/breaking and entering) have been considered for the analysis. Burglary is the
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chosen crime type as it is a major portion of all property crimes and is well distributed

throughout the county. Data for 10 months in 2009 is used. The number of total crime

events is on the order of 103. Observations that lacked coordinates were geocoded from

their addresses. Police presence is calculated from GPS dispatches made by police patrol

vehicles. Each dispatch consists of a unique vehicle identifier, a timestamp and the exact

location of the vehicle at that point in time. We divide the whole city into N = 900 targets

as shown in Figure 5.7. Since n is 5, the number of layers we need is M = blog5 900c+1 =

5. We use the multiple layer abstraction framework to solve this problem.

5.4 Experimental Results

Figure 5.7: City map

Experiment setup. We use MATLAB to solve

our optimization problems. There are two threads

of experiments, one on the USC campus problem

and the other on Nashville, TN problem. To avoid

leaking confidential information of police depart-

ments, all crime numbers shown in the results are

normalized. The experiments were run on a ma-

chine with 2.4 GHz and 16 GB RAM.

Game Abstraction Framework: Our first

experiment is on comparing the performance of our

game abstraction framework with the DBN framework proposed in [60] for large scale

problems. Since the DBN framework cannot even scale to problems with 25 targets, in
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Figure 5.11: Information Loss

this experiment we run on problems with subsets containing N targets (5 ≤ N < 25) out

of these 25 targets in the USC campus. As shown in Figure 5.8, we compare the run-

time of these two frameworks. The x-axis in Fig. 5.8 is the number of targets N in the

problem. For each N , we try ten different subsets and the average runtime is reported.

The y-axis indicates the runtime in seconds. The cut-off time is 3600s. As can be seen

in Figure 5.8, the runtime of the DBN framework grows exponentially with the scale of

the problem and cannot finish in an hour when N = 20. At the same time, the runtime

of the game abstraction framework grows linearly with the scale of the problem. It takes

less than 5 minutes to solve the problems with N = 20. This indicates that the DBN
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Figure 5.12: Likelihood (USC)
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Figure 5.14: Plan (USC)
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Figure 5.15: Plan (city)

framework fails to scale up to large scale problems while the game abstraction framework

can handle many more targets.

In Figure 5.9 we compare the likelihood of these two different frameworks. We divide

the 36 months’ data sets into two parts, the first 35 months’ data is used for learning

while we predict the crime distribution for the last month and compare it with the real

crime data in that month. For every target and every shift, we measure the likelihood

as the predicted probability of the number of crimes reported in the data for that target

and shift. For example, for target i and shift t, our prediction is that there is 30%

probability that no crime occurs and 70% that one crime occurs while in the data there
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is one crime at target i in shift t. Then, the likelihood for target i for shift t is 0.7.

Since in most areas there is no crime, we first selected targets with crime. The we select

a random set of targets without crime that has the equal number as those with crime.

The reported likelihood is the average likelihood over all selected targets and all shifts

over all ten different subsets. The higher the likelihood, the better our prediction. As

can be seen in Figure 5.9, the game abstraction framework achieves similar likelihood

compared to the DBN algorithms given any number of targets in the problem. This

indicates that even through information may be lost during the abstraction, the game

abstraction framework captures important features of the criminal and performs as well

as the exact DBN framework while running 100 of times faster.

Layer Generation Algorithm: Next, we use the data from the city to evaluate the

performance of our layer generation algorithms. Again, we run the layer generation algo-

rithms on problems with subsets containing N targets (N ≤ 900) out of the 900 targets

in the city map. For each N , we try ten different subsets and report the average value

except when N = 900 for which only one subset is possible. Figure 5.10 compares the

runtime of different layer generation algorithms in log format. Three different algorithms

are compared, the direct algorithm (Direct) that traverses all possible layer combinations;

the dynamic programming algorithm (DP) and the greedy algorithm (Greedy). The x-

axis in Fig. 5.10 is the number of targets N . For N = 25, two layers are needed; for

N = 50, three layers are needed; for N = 200, four layers are needed and for N = 900,

five layers are needed. The y-axis is the runtime of different algorithms in seconds. The

cut-off time is set at 36000s. When N = 25, the runtime of these three algorithms are the

same because the layer generation is unique. The number of targets in layer 2 is 5. When
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N = 50, the runtime of the direct algorithm is the same as that of the DP algorithm

while the runtime of the greedy algorithm is significantly lower. When N = 200, the di-

rect algorithm cannot finish in 10 hours; the DP algorithm takes around five hours while

greedy algorithm finishes in less than 10 minutes. When N = 900, both direct learning

and DP are cut off while the runtime for greedy is less than 15 minutes. This validates

our theoretical result that the runtime of direct algorithm grows exponentially with the

scale of the problem, that of DP grows polynomially and that of greedy algorithm grows

linearly with the number of layers. Since both direct and DP algorithm cannot scale

up to the problem with N = 900, we use the greedy algorithm as the layer generation

algorithm in the city problem.

In Figure 5.11, we compare the information loss of different layer generation algo-

rithms. The information loss is defined as the objective in Equation 5.1. As can be seen

in Fig. 5.11, the information loss of DP is the same as that of direct learning in any

situations. This is because DP ensures a globally optimal solution. At the same time, the

information loss of the greedy algorithm is higher than that of the DP algorithm but no

more than 15% higher. This indicates that while greedy algorithm cannot ensure global

optimal information loss, it can reach a good approximation in reasonable runtime.

Learning: Third, we evaluate the performance of our learning algorithm. Game

abstraction is used for both problems and we evaluate the predictions in the original

layer.

The result shown in Figure 5.12 and Figure 5.13 compares the likelihood of different

algorithms in USC campus and the city problem respectively. Three different algorithms

are compared: (1) the Random approach, in which the probabilities of each situation
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are the same (Random), (2) game abstraction with direct learning for both the abstract

and original layer (DL) and (3) game abstraction with parameter propagation in the

original layer (PP). We divide the whole data sets into four equal parts. For each part,

the first 90% of data is used for training while we test on the last 10% of data. The

x-axis in Fig. 5.12 and 5.13 is the index of the part of data that we evaluate on. y-axis

indicates the likelihood on the test set. As can be seen in both figures, the likelihood

of both game abstraction based approaches are higher than that of the baseline random

algorithm in all the test sets. This indicates that game abstraction models help improve

the prediction in large scale problems. In addition, parameter propagation at the original

layer outperforms direct learning at this layer in the USC problem in Figure 5.12. Direct

learning outperforms parameter propagation in Nashville problem in Figure 5.13. This is

because the patrol data at the original layer in USC is limited. That is, only the aggregate

number of police resources over several targets is available while the resources at each

target remain unknown. Parameter propagation is better at handling limited patrol data.

However, the patrol data is adequate in the city problem and direct learning is a better

fit in such situations. Therefore, in the later experiments, we use parameter propagation

as the learning algorithm in the USC and direct learning as the learning algorithm in

Nashville.

The result shown in Figure 5.16 compares the likelihood of different layer generation

algorithms in the Nashville problem. Two different algorithms are compared: (1) the Op-

timal approach by our layer generation algorithm (Optimal); (2) the Random approach,

in which the neighboring targets are randomly merged to form the new layers (Random).

We divide the whole data sets into four equal parts. For each part, the first 90% of data
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is used for training while we test on the last 10% of data. The x-axis in Fig. 5.16 is the

index of the part of data that we evaluate on. y-axis indicates the likelihood on the test

set. As can be seen in Figure 5.16, the likelihood of optimal layer generation is signifi-

cantly higher than that of the random layer generation. This indicates that optimal layer

generation helps improve the crime prediction in large scale abstraction models.

Figure 5.16: Likelihood (city)

Planning: Next, we evaluate the per-

formance of our planning algorithm in

both the problems. Figure 5.14 and 5.15

compare strategies generated using the

game abstraction framework with the ac-

tual deployed allocation strategy gener-

ated by the domain experts. Three differ-

ent scenarios are compared: the real num-

ber of crimes, shown as Real; the expected

number of crimes with manually generated

strategies and learned adversary model with game abstraction, shown as Real-E and the

expected number of crimes with the optimal strategy computed using game abstraction,

shown as Optimal. As shown in Figure 5.14 and 5.15, the expected number of crime

with manually generated strategy is close to the real number of crimes, which indicates

game abstraction model captures the feature of criminals and provide good estimation of

the real number of crimes. In addition, strategy generated using the game abstraction

is projected to outperform the manually generated strategy significantly. This shows the

effectiveness of our proposed patrol strategy as compared to the current patrol strategy.
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Runtime: Finally, we break down

the total runtime of the game abstraction

framework in the city problem layer by

layer and show it in Figure 5.17. The x-

axis is the index of the layer, which goes

from the original layer (Layer 1) to the top

layer (Layer 5). The y-axis is the total

runtime of the propagation, learning and

planning algorithm in that layer. As can

be seen, the runtime increases as the layer index decreases except for Layer 1. This is

because in greedy layer generation, for the fifth layer the number of targets is 5, and for

the fourth layer it is 52, for third layer it is 53, for the second layer it is 54 but for the

first layer it is only 900. Therefore, the number of targets within each aggregated target

in layer two is less than 3 < n = 5. Therefore, the runtime in layer 1 is faster. However,

the total runtime of the whole process is less than an hour in each data set. Therefore,

the game abstraction framework can be extended to large scale problems with reasonable

runtime performance.
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Chapter 6

Example of learnt DBN for USC problem

6.1 USC background

Figure 6.1: USC campus map
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In order to provide more detailed patrol strategies for defender against opportunistic

criminals in USC areas, we divide the whole campus into 25 targets instead of 5 targets.

We want to learn the criminals’ behavior on these 25 targets and recommend patrol

strategies, which is shown in Figure 6.1 shows the 25 targets segmentation. There is

geometric distortion in the map while the relative relation of targets keeps the same. In

Figure 6.1, we further divide these 5 targets into 25 targets. 6 targets are painted with

colors. Purple, yellow, orange and blue targets are in the campus region while green and

red targets are in region B, which is the Exposition Park. We will focus on these five

targets later in crime matrix.

As the result of the abstract game, we are able to generate the criminals’ crime matrix

as well as movement matrix for these 25 targets in Figure 6.1 for USC problem. Recall

that as introduced in DBN model in Figure 5.4, crime matrix contains probabilities of

criminals committing a crime at each target with the defender’s patrol strategy. The

movement matrix contains probabilities of criminals moving to a targets at next time

step with the defender’s patrol strategy.

6.2 Crime Matrix

As stated before, the crime matrix is factorized and each element of the matrix represents

the probability P (Yi,t|Di,t, Xi,t), where i is the index of the target, t is the time step. Yi,t

is the number of crimes at target i at step t; Di,t is the number of defenders at target i at

step t and Xi,t is the number of criminals at target i at step t. Therefore, P (Yi,t|Di,t, Xi,t)

is the probability that there will be Yi,t crimes given Di,t defenders and Xi,t criminals.
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In binary cases that we are considering, Yi,t ∈ {0, 1}, indicating there will be no crime

or there will be at least one crime; Di,t ∈ {1, 2}, indicating there will be at most one

defenders or there will be at least two defenders and Xi,t ∈ {0, 1}, indicating there will

be no criminals or there will be at least one criminal. Therefore, the crime matrix should

be 2× 2× 2×N , where N is the number of targets in the problem. However, there are

two facts to help reduce the size of the crime matrix: 1, P (Yi,t = 1|Di,t, Xi,t) + P (Yi,t =

0|Di,t, Xi,t) = 1, meaning that the sum of probability of having a crime and not having a

crime should be 1 for each targets. Therefore, we only need to show P (Yi,t = 1|Di,t, Xi,t)

and P (Yi,t = 0|Di,t, Xi,t) is just the compensation. Therefore, the sime of the crime

matrix is trim down to 2 × 2 × N ; 2, moreover, P (Yi,t = 1|Di,t, Xi,t = 0) = 0, which

means that if there is no criminal at target i at step t, there will be no crime at target i

at target t. This is true for all i and therefore we omit this part in the crime matrix. By

applying these two facts, the size of the crime matrix is trim down to 2×N where only

P (Yi,t = 1|Di,t, Xi,t = 1) are shown.

Figure 6.2 shows the crime matrix for N = 25 targets problem. We split this 2 × 25

crime matrix into 4 lines. D = 1 represents there is at most one defender protecting the

target while D = 2 represents that at least two defenders are protecting the target. There

are two conclusions we can draw from the crime matrix: First, a general conclusion is

that for each target, the probability for criminals to commit a crime when the defender is

protecting the target is lower than the probability that the criminals will commit a crime

when the defender is not at that target. Clearly this shows a difference due to defender

presence, that is, the defender’s appearance has negative effect on criminal’s probability

of committing a crime. The more defenders are at a target, the less likely the criminal
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Figure 6.2: Crime Matrix

commit a crime at this target. Secondly, the impact of defenders at different targets are

different. For example, the defender can reduce crime dramatically in target 12, 13, 14

and 15, which are the purple, green, orange and blue targets respectively in Figure 6.1.

At the same time, the difference of crime probability with different number of defenders

is smaller in target 24 and 25, which are the greed and red targets respectively. In order

to explain such phenomenon, we form the following hypothesis: As stated before, 12, 13

and 15 are in campus region, there will be more crime opportunities due to the large

amount of students. At the same time, target 24 and 25 are in exposition park that

usually do not have too many crime opportunities. Therefore, the crime probability are

higher in 12, 13, 15 than that in 24 and 25. At the same time, the defender will be more
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effective in campus because i) the campus region is smaller; ii) the transportation is easier

and iii) there are facilities such as cameras to assist them. Therefore, the probability of

committing a crime drops largest in these targets when more defenders are protecting. In

target 24 and 25, i) the criminal are less active; ii) the region is large for patrol and iii)

there are no facilities to help the defenders. Therefore the effect of increasing defenders

are smaller in reducing crime probabilities.

6.3 Movement Matrix

Figure 6.3: Movement Matrix
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For movement matrix, it describes how the criminals move with respect to different

allocation strategies of defender. That is, the element in the movement matrix represents

the probability P (Xi,t+1|Xj,t, Dj,t). Xi,t+1 is the number of criminals at target i at step

t+1; Xj,t is the number of criminals at target j at step t andDj,t is the number of defenders

at target j at step t. Since the criminal can move from any target to any target, therefore,

the size of the movement matrix is N×2×N×2×2 since we need to consider all the targets

at step i and all the targets at step j. Again, we can reduce the size of the movement

matrix by making use of 2 facts: 1, P (Xi,t+1 = 1|Xj,t, Dj,t) +P (Xi,t+1 = 0|Xj,t, Dj,t) = 1

which indicates the probability of criminal at target i at step t + 1 and the probability

of criminal not at target i at step t + 1 are sum up to 1. Therefore, we only show

P (Xi,t+1 = 1|Xj,t, Dj,t) in the movement matrix; 2, P (Xi,t+1 = 1|Xj,t = 0, Dj,t) = 0

which indicates if there is no criminal at target j at step t, then there will be no criminal

transition from target j to any other target i. Therefore, the size of the movement matrix

is reduced to N ×N × 2.

Figure 6.3 shows the part of the movement matrix where j = 1, which is the transition

probability originated at target 1 at step t to all the targets at step t + 1, P (Xi,t+1 =

1|X1,t = 1, D1,t). At can be seen in Figure 6.3, the transition probability to target 1

when there is 1 defender P (X1,t+1 = 1|X1,t = 1, D1,t = 1) = 0.4275 is higher than the

probability when there is 2 defenders P (X1,t+1 = 1|X1,t = 1, D1,t = 2) = 0.4050. This

indicates that the criminals are less likely to stay at the same target when more defenders

are showing up at this target. For all other targets i ∈ 2, ..., 25, P (Xi,t+1 = 1|X1,t =

1, D1,t = 1) < P (Xi,t+1 = 1|X1,t = 1, D1,t = 2), which indicates that the more defenders

are at target 1, the more likely that the criminal will transit to another target than 1. As
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we can summarized from the movement matrix originated from target 1, the defender’s

appearance at target 1 disperses the criminals. That is, the criminals are less likely to

stay at the target 1 if the defender is at this target. The trends are the same for all other

24 targets from the other part of the movement matrix, which is omitted because of the

space limit.
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Chapter 7

Conclusion and Future Work

7.1 Summary

My thesis first introduces the Opportunistic Security Game, a new computational frame-

work to address opportunistic crime, opening the door for further research on this topic.

We propose a new exact algorithm, EOSG, to compute defender resource allocation strate-

gies, and an approximate algorithm, COPS, to speed up defender allocation to real-world

scale scenarios. Our experimental results show that the OSG strategy outperforms base-

line strategies with different types of criminals. We also show that COPS is more efficient

than EOSG in solving real-world scale problems. Given our experimental results, COPS

is being evaluated in the Los Angeles Metro system. In introducing OSG, my thesis

has added to the class of important security-focused game-theoretic frameworks in the

literature, opening the door to a new set of research challenges for the community of

researchers focused on game theory for security.

Secondly, my thesis introduces a novel framework to learn and plan against adaptive

opportunistic criminals using real data. First, we model the interaction between officers
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and adaptive opportunistic criminals as a DBN. Next, we propose a sequence of mod-

ifications to the basic DBN resulting in a compact model that enables better learning

accuracy and running time. Finally, we present an iterative learning and planning mech-

anism with two planning algorithm to keep pace with adaptive opportunistic criminals.

Experimental validation with real data supports our choice of model and assumptions.

Further, our modeling assumptions were informed by inputs from our collaborators in the

DPS at USC. These promising results have opened up the possibility of deploying our

method in USC. My thesis has further opened up the integration of opportunistic crime

security games [59] with machine learning.

Finally, my thesis introduces a novel game abstraction framework to learn and plan

against opportunistic criminals in large-scale urban areas. First, we model the layer-

generating process as a districting problem and propose a MILP based technique to solve

the problem. Next, we propose a planning algorithm that outputs randomized strategies.

Finally, we use a heuristic propagation model to handle the problem with limited data.

Experiments with real data in two urban settings shows that our framework can handle

large scale urban problems that previous state-of-the-art techniques fail to scale up to.

Further, our approach provides high crime prediction accuracy and the strategy generated

from our framework is projected to significantly reduce crime compared to current police

strategy.

In summary, in my thesis I propose a novel framework to learn and plan against

adaptive opportunistic criminals using real world data. This general framework can be

applied to opportunistic crime problem in any urban settings such as USC campus, city of

Nashville and Los Angeles Metro System. Moreover, this framework can also be applied
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to opportunistic crime problem in other domains. Two examples are the wildlife poaching

problem and the cyber security problem. There are a lot of endangered species such as

elephants and rhinos that are the target of poachers. Patrol units are sent in the field

to prevent the wildlife poaching. Such wildlife poaching problem can be modeled as an

Opportunistic Crime Security Game. In this game, the opportunistic criminals are the

poachers who put snares to capture wild animals. The defender are the patrol units who

conduct foot patrol to destroy these snares. The interesting feature in this problem is

that the defender can only get partial observation of crime activity due to the limited

patrol resource and huge area to patrol. Therefore, Partially Observable Markov Decision

Processes (POMDP) should be considered in this Opportunistic Criminal Security Game

for wildlife poaching problem. At the same time, when designing the patrol strategy in

the poaching problem, we need to consider the exploration-exploitation trade-off. That

is, at each step, the patrol units need to decide whether to protect the targets that

they have visited before to exploit the criminal’s behavior at those targets or explore the

unknown targets that they have never visited before. The second example is the cyber

security problem. In this problem, there are a cluster of machines/users in a computer

network. The opportunistic criminals try to hack and attack the vulnerable machine in

this network. At the same time, the defender analyzes the outside visit to detect the

attacks. It can also be modeled as an Opportunistic Crime Security Game. Given the

limited resources, the defenders cannot detect every visit so she has to decide the subset

of machines she have to protect at each time. Since the criminals frequently attack the

network and may change their behavior rapidly from the result the observed, fast online

learning and planning algorithms are needed in this problem.
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Even though the Opportunistic Security Game has various extensions, it has following

four limitations: First, the Opportunistic Security Game framework assumes the criminals

are opportunistic and not always make the decision that maximize their utilities. Such

setting may not be efficient when we deal with attackers that are rational. For example,

in terrorist attacks, the terrorists will conduct long time surveillance and make careful

plan before executing the attack. Therefore, the Opportunistic Security Game may not

be a good model for this kind of problems. Second, this framework requires adequate

amount of data in order to learn the Dynamic Bayesian Network. By our experience, the

amount of available data should be at least ten times more than the unknown variables.

Since the scale of unknown variables is O(N2), where N is the number of targets in the

problem, the amount of data that is needed grows rapidly with N . Therefore, for large

scale problems, the available data points may not be adequate and the learned criminal

model may be inefficient. The third limitation of this framework is the runtime of the

algorithm. Even after all the accelerating approaches, the runtime grows exponentially

to the scale of the problem and the number of officers. Therefore, it may take days

to generate patrol strategy in large scale problem while the officers may want to know

their patrol schedule for next hour or next shift. How to generate patrol strategy in

real time fashion remains to be a problem for this model. The final limitation of this

model is the real world execution uncertainty. In our paper, we assume that the patrol

officers can always perfectly execute the patrol strategy. However, this might not be

true in real world scenarios. Police officers may have execution uncertainties such as

sickness or personal emergency. Sometimes they may not follow the patrol schedule we

generated for them simply because they don’t like it. Therefore, how can we address
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these execution uncertainties remain to be a problem. In order to solve this problem, we

need to implement our algorithm and get feedback from officers in the field.

There are four implications from this framework: i) it is efficient to model the whole

group of opportunistic criminals instead of each individual. Even though criminals have

different background and may behave differently, our model considers them to be homo-

geneous. Results show that such setting helps better predict crimes, which implies that

the criminals behave similarly when committing crimes regardless of their background;

ii) as mentioned above, instead of profiling different types of people, our model focuses

on the general behavior patterns of the criminals. That is, we do not divide them by any

properties such as gender or race. Under this setting we can generate accurate criminal

model without revealing the personal information. However, we are aware of research on

explainable machine learning and knowledge discovery systems [33, 47]. In these works,

researchers are trying to figure out the important factors that affect the system’s pre-

dicting ability. However, we need to be extremely careful if we want to introduce such

system in our domain since personal information and human rights must be considered

and protected; iii) the behavior pattern of opportunistic criminals can be mostly learned

with crime and patrol historical data. While there are a lot of factors that may affect

the criminal’s decision of committing a crime such as environment, weather and so on,

our result shows that only considering the interaction between crime and patrol officer’s

allocation can achieve high likelihood, which indicates patrol is a major factor that af-

fects criminals’ behavior; iv) defenders’ mixed strategy is unpredictable for opportunistic

criminals and therefore more efficient against such kind of criminals. As shown in our

experiments, when defenders follow the strategy that is manually generated by domain
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experts, criminals can easily figure out the pattern and commit more crimes. At the same

time, when defenders apply the mixed strategy that is provided by the Opportunistic Se-

curity Game model, it is harder for criminals to find out the pattern. This results in less

crime that they commit.

7.2 Future Work

My current work has provided models and algorithms to handle opportunistic criminals

in urban areas. There are three possible directions to explore.

7.2.1 Combine two approaches

A straightforward idea is to combine Opportunistic Security Games with the machine

learning based approach. The advantage of machine learning approach is that it learns

criminals behavior model directly from real world data and it is a parameter free model,

meaning that we do not need to make prior assumptions on criminals behavior. How-

ever, it requires adequate amount of data points to estimate such model. OSG, on the

other hands, only require little data to build criminals behavior, but set constraints for

criminal’s behavior such as quantal biased random movement. Even though these con-

straints are justified in game theory and computational criminology, we still need to verify

whether they are suitable for opportunistic criminals. Therefore, by combining these two

approaches, we want to lean a game-theoretic model that contains enough parameters to

describe opportunistic criminals.
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7.2.2 Improve model and algorithm

Even though COPS algorithm has already accelerated the computing, the runtime still

grows exponentially to the scale of the problem and the number of officers. A nature

question is whether there is a faster algorithm for recommending patrol strategies. After

doing a survey on existing literature, I haven’t found an fast approach for my models.

Therefore, I am now working on developing fast algorithms for generating patrol strategy.

Moving forward, I also expect to generate patrol schedule in a more detailed level. Current

approaches consider the urban area in an abstract level, ignoring the internal structure

for each target. In reality, such internal structure, such as the platform and parking lots

of a train station and the library on campus, is crucial for designing patrol. Besides, there

are different types of patrol officers, who has different duties and different impacts on the

crime. Finally, we need to consider the types of crimes, which are committed by criminals

with different behavior patterns. In order to handle these situations, more sophisticated

approaches are needed.

7.2.3 Real-world Implementation

Finally, these algorithms will eventually be implemented in real urban area for evaluating

and improving. I will implement these algorithms to schedule patrol strategies on campus

with the help of the Department of Public Safety in University of Southern California.

To fill the gap between simulation and implementation, I need to consider practical con-

straints such as the appearance of events, e.g. football games, and emergency. Meanwhile,

the defender’s patrol preference is also an important factor. For example, within the same
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target area, some officers spend more time near library while others patrol gym more fre-

quently. Also, building a potable device or software for the officers is a non-trivial task.

I have submitted the initial model to the Demo session of AAMAS 2015 and I will keep

improving it.
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