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Abstract 

Security has been an important, world-wild concern over the past decades. Security agencies 

have been established to prevent different types of crimes in various domains, such as illegal 

poaching, human trafficking, terrorist attacks to ports and airports, and urban crimes. 

Unfortunately, in all these domains, security agencies have limited resources and cannot protect 

all potential targets at all time. Therefore, it is critical for the security agencies to allocate their 

limited resources optimally to protect potential targets from the adversary. 

Recently, game-theoretic decision support systems have been applied to assist defenders (e.g. 

security agencies) in allocating and scheduling their limited resources. Stackelberg Security Game 

(denoted as SSG), is an example of a game-theoretic model that has been deployed to assign the 

security resources to the potential targets. Indeed, decision-support systems based on SSG models 

have been successfully implemented to assist real-world security agencies in protecting critical 

infrastructure such as airports, ports, or suppressing crime in urban areas. SSG provides an 

approach for generating randomized protection strategies for the defender using a mathematical 

representation of the interaction between the defender and the attacker. Therefore, one of the key 

steps in applying the SSG algorithm to real-world security problems is to model adversary 

decision-making process. 

Building upon the success of SSGs applications, game theory is now being applied to adjacent 

domains such as Opportunistic Security. In this domain, the defender is faced with adversaries 

with special characteristics. Opportunistic criminals carry out repeated, and frequent illegal 

activities (attacks), and they generally do not conduct extensive surveillance before performing an 

attack and spend less time and effort in planning each attack.  
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To that end, in my thesis, I focus on modeling the opportunistic criminals’ behavior in which 

modeling adversary decision-making process is particularly crucial to develop efficient patrolling 

strategies for the defenders. I provide an empirical investigation of adversary behavior in 

opportunistic crime settings by conducting extensive human subject experiments and analyzing 

how participants are making their decisions to create adversary behavior prediction models to be 

deployed in many opportunistic crime domains. More specifically, this thesis provides (i) a 

comprehensive answer to the question that “which of the proposed human bounded rationality 

models best predicts adversaries’ behavior in the Opportunistic Crime domain?”, (ii) enhanced 

human behavior models which outperform existing state-of-the-art models (iii) a detailed 

comparison between human behavior models and well-known Cognitive Science model: Instance-

Based Learning model (iv) an extensive study on the heterogeneity of adversarial behavior, and 

(v) a thorough study of human behavior changing over time, (vi) as well as how to improve human 

behavior models to account for the adversaries’ behavior evolve over time.  
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Chapter 1. Introduction 

Security is a critical worldwide concern over the years, and there have been enormous efforts 

to prevent different types of crimes. For instance, tremendous efforts have been dedicated to 

protecting critical infrastructures such as ports and airports, or to suppress crimes in urban areas 

and securing cyberspace.  

In all these domains, there is a common challenge: the adversary might attack any target while 

the number of resources is limited and not all the potential targets can be protected at all time. 

Therefore, it is critical to have an algorithm which optimally allocates the limited defender 

resources to given targets, and reduces the number of crimes or attacks as much as possible. 

Meanwhile, the adversaries are observing and investigating about defenders’ patrolling strategy, 

and hence, any deterministic allocation of defense resource may be exploited by these adversaries. 

Therefore, it is crucial for the security agencies to allocate their resources in a randomized fashion. 

In recent years, Game Theory has become a well-established modeling and optimization tool 

for complex resource allocation problems in security and sustainability domains. Game-theoretic 

decision support systems assist defenders in allocating and scheduling their limited resources to 

protect targets from adversaries.  One particular game-theoretic model is the Stackelberg Security 

Game (SSG) model which has received significant attention for its success in modeling security 

problems and application in real-world settings (Figure 1), such as scheduling patrols conducted 

by the US Coast Guard at multiple major US ports (Shieh et al. 2012), scheduling police patrols 

at major airports such as LAX (Pita et al. 2008), allocating federal air marshals on flights of US 

Air Carriers and several other applications (Tambe 2008).  
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Stackelberg Security Game provides a Game Theory based representation (Tambe 2008) of 

the interaction between a leader (the defender) and a follower (the attacker). SSGs offers a 

sophisticated approach for generating unpredictable, randomized strategies that alleviate attackers 

surveillance ability and provides computational tools to optimize the defender’s action based on 

possible attacker’s moves (Tambe 2011, Korzyk, Conitzer and Parr 2010, Gatti 08). 

In an SSG, the defender commits to a mixed strategy, which is a randomized allocation of her 

security resources. Then, considering the defender strategy, the attacker chooses the best response 

- the one which gives him the highest expected utility. In result, the defender and the attacker 

receive payoffs that depend on the target that was attacked and whether or not it was defended; 

this payoff is considered the utility of attacker or defender. The Stackelberg equilibrium 

computation considers the adversary’s response and provides defender with a mixed strategy 

which maximizes her expected utility. 

Following the success of applying SSG-based approaches in protecting infrastructures such as 

airports and ports, researchers are now studying the application of SSG to Urban Crimes (Figure 

Figure 1: Stackelberg Security Games applied to protect ports and airports 
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2). In this domain, it is known that adversaries are more flexible in planning and executing their 

attacks. The adversaries generally do not conduct extensive surveillance before performing an 

attack and spend less time and effort on each attack. Considering this opportunistic behavior of 

criminal in this domain, Opportunistic Security Game (OSG) is used to design optimal patrolling 

strategy for the defender.  

       

Figure 2: Examples of Opportunistic Crimes 

1.1. Problem Addressed 

As mentioned earlier in this chapter, the Stackelberg equilibrium computation involves finding 

the mixed strategy that maximizes the utility for the defender, while taking into consideration the 

adversary’s response. One of the key steps in SSGs is how attackers choose strategies based on 

their knowledge of the defender strategy. Traditionally, Stackelberg Security Game assumes a 

perfectly rational adversary and adopts a perfect rationality model. This model is a reasonable 

starting point and is justifiable when considering domains such as counter-terrorism, where the 

adversary has sufficient time and motivation to launch a single carefully planned attack; whereas 

in other domains, such as urban crime, this assumption appears weak. Indeed, it is known that 

adversaries in OSG domain are boundedly rational and may deviate from the optimal choice 

(Zhang et al. 2014). Moreover, human subjects do not generally demonstrate perfect rationality in 

their decisions (Camerer and Chongn 2004; Costa-Gomes et al. 2011). Failure to account for this 

bounded rationality can lead to non-optimal defender strategies in OSG and hence significant 
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losses for the defender. Therefore, constructing a reliable model of the adversary behavior is vital 

for enhancing security against urban crime.  

To address bounded rationality of human subjects (as opposed to perfect rationality 

assumptions), we need to answer multiple open questions. First, among various bounded 

rationality models presented in behavioral game theory and cognitive psychology (Camerer et al., 

2004; Costa-Gomes et al., 2001), which model can best represent the fundamental features of 

human behavior in the opportunistic crime domain? Next, how these models can be improved by 

considering the particular characteristic of opportunistic criminals?  

In addition, in most behavioral game theory models in security games, adversary assumed to 

be homogenous while some recent researches have focused on the heterogeneity of human 

adversarial behavior. These researches have considered the heterogeneous behavior of adversary 

by either assuming a smooth distribution of the model parameters for the entire adversary 

population (Yang et al., 2014) or by utilizing a single behavioral model for each adversary (Haskell 

et al., 2014; Yang et al., 2014). However, it is unclear if, in OSG domain, defenders are dealing 

with heterogeneous opportunistic criminals; and if so, which approach can capture this 

heterogeneity the best.  

Lastly, this thesis is the first to study opportunistic adversary behavior dynamics 

systematically. This is a significant advancement as previously, despite the widespread use of 

SSGs, there has been no systematic study of how adversary behavior changes over time. This new 

study is the first to provide such a systematic study in Opportunistic Security Game Setting. 
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1.2. Dissertation Contributions 

This thesis focuses on an empirical investigation of human adversary behavior modeling in 

opportunistic crime setting. In the Opportunistic Security Game domain, to model the adversary’s 

decision-making process in opportunistic crimes (Zhang et al. 2014), Quantal Biased Random 

Movement (QBRM) was previously proposed, but not evaluated.  In this thesis, I compare QBRM 

with variations of two commonly used bounded rationality models: Quantal Response (QR), and 

Subjective Utility Quantal Response (SUQR) combined with Prospect Theory (PT) functions. 

Quantal Response (McKelvey and Palfrey 1995) models the bounded rationality of human subjects 

by introducing uncertainty into their decision-making process. The SUQR model is 

mathematically equivalent to the conditional logit model in discrete choice theory in which 

Subjective Utility (SU) (Fischhoff, Goitein, and Shapira 1981) and Quantal Response (McKelvey 

and Palfrey 1995) are combined. Prospect Theory (Kahneman, Tversky 1979) models decision 

making under uncertainty and captures the bounded rationality by mapping the real probability 

values to a person’s interpretation of probabilities through a non-linear probability weighting 

function, while also accounting for the adversary’s risk preference. 

In this thesis, I have conducted extensive human subject experiments, compare various 

bounded rationality models, and show that: (1) although previous the research proposed the use of 

well-known stochastic choice Quantal Response (QR) model for human adversary, this model is 

significantly outperformed by more advanced models of Subjective Utility Quantal Response 

(SUQR) in the context of opportunistic crime; (2) while it is important to model the non-linear 

human weighing of probability, proposed by prospect theory, our findings contradict with the 

original prospect theory in terms of how humans are seen to weigh probability; and (3) 

combinations of the well-known prospect theory model with SUQR models lead to an even better 
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performance in modeling human adversary behavior (4) improvement over the SUQR model by 

introducing two additional indicator features that refer to an attacker’s preference to attack the 

same target (different target) when he was successful (failed) in the previous round. 

Moreover, Instance-Based Learning (IBL) model have been evaluated in the Opportunistic 

Security Domain. The results showed the similar performance of the IBL model as the Quantal 

Response behavior models when the models applied to the aggregated data.  

In addition, this thesis indicates that participants have heterogeneous behavior and can be 

categorized into multiple distinct groups, and each such group can be represented by the distinct 

degree of rationality. Interestingly, for the group with the highest rationality level, behavioral game 

theory models provide a significantly better fit compared to the IBL cognitive model.  

Finally, for the first time in the opportunistic security domain, I systematically study adversary 

behavior dynamics. This is a significant advancement; previously, despite the widespread use of 

SSGs, there has been no systematic study of how adversary behavior changes over time. 

Furthermore, in order to account for adversary behavior change, I modified the traditional human 

bounded rationality models with a Bayesian update method so these models would also be able to 

predict behavior change over time.  

1.3. Overview of this Dissertation  

The rest of this thesis is organized as follows: Chapter 2 provides a background and related 

work on the fundamentals of Stackelberg Security Games, and the particular case of SSG: 

Opportunistic Security Game. The chapter also focuses on the literature review about optimal 

defender strategy used in designing the experiment, behavioral game theory and instance based 

learning models, as well as, related work on the heterogeneous adversary, followed up with some 
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relevant information about the human subject experiment. Chapter 3 describes the methodologies 

to model behavior of human adversaries with bounded rationality, as well as the experiment setup 

to collect data on human behavior, followed by its results. Chapter 4 describes the performance of 

instance-based model compared to the discrete choice model, as well as, studying the heterogeneity 

of the adversaries. Chapter 5 focuses on adversary behavior dynamics and modified versions of 

human behavior models. Finally, Chapter 6 presents the concluding points of this thesis and 

presents possible future directions.   
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Chapter 2. Background and Related Work  

2.1. Stackelberg Security Game 

A Stackelberg Security Game (SSG) is a game model that captures the interaction between a 

single defender (leader) and one adversary (follower). The defender protects a set of 

targets with a limited number of resources from attack by the adversary. A pure strategy of  

the defender is an assignment of the security resources to the targets. A mixed strategy is a 

probability distribution over the set of all possible pure strategies, which is represented as a vector 

of size |𝑇| in which each element of the vector represents the probability of covering a target  

(Korzhyk, Conitzer, and Parr 2010). SSG assumes strategic adversaries who learn the defender’s 

strategy by conducting long-term surveillance; the adversary’s pure strategy best response is then 

to choose a target to attack that maximizes the adversary’s expected utility. The utility of the 

adversary is given by 𝑈𝑎
𝑐(𝑡) and 𝑈𝑎

𝑢(𝑡) when the adversary attacks the target which is covered or 

uncovered, respectively (the utility of the defender is given by 𝑈𝑑
𝑐(𝑡) and𝑈𝑑

𝑢(𝑡)). Given the 

defender mixed strategy 𝑥 , 𝑥𝑡 refers to the marginal probability that the defender protects target 

𝑡, and the adversary’s expected utility in attacking target t is given by the following equation:  

𝑈𝑎(𝑡, 𝑥) = 𝑥𝑡𝑈𝑎
𝑐(𝑡) + (1 − 𝑥𝑡)𝑈𝑎

𝑢(𝑡) 

The equilibrium in this game corresponds to the optimal strategy 𝑥 that maximizes the 

defender’s utility assuming the adversary provides his best response. However, the above equation 

assumes a perfectly rational adversary, which may be more appropriate in domains such as 

counter-terrorism. On the other hand, in domains such as opportunistic crime settings, the 

adversary’s behavior may be governed by models of bounded rationality (Zhang et al. 2014). 
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2.2. Opportunistic Security Game 

SSG assumes strategic adversaries who learn the defender’s strategy and then decide an attack 

plan which will not change later on. However, in domains such as urban crime (i.e. theft on trains), 

the attackers (adversary) are opportunistic, i.e., they are flexible in executing their plan and seek 

opportunities for crime rather than strategically planning their attacks. For example, a thief may 

decide not to steal if he observes a police officer, and may move to another area to seek another 

opportunity for committing a crime.  In particular, the creation of opportunistic crime can be 

thought of as an interaction between three essential groups: attackers (opportunistic criminal) 

victim/target and defenders.  

These types of crime are really important to be considered; based on the Census report, there 

were almost eight million such crimes in 2009 which resulted in around eleven billion dollars loss. 

Recent work by Zhang et al. (2014) explores a model of opportunistic attackers, the authors 

describe three characteristics of an opportunistic attacker: (i) opportunistically and repeatedly 

seeks to commit crimes; (ii) reacts to real-time information at execution time rather than planning 

attacks in advance; and (iii) has limited observation of defender strategy and selects the crime 

location with limited information and computations i.e. bounded rationality.  

 

  

Figure 3: Examples of defender’s patrolling strategy against opportunistic criminals 
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2.3. Bounded Rationality Models  

Bounded rationality, first introduced by Herbert Simon  (Simon, 1956) as an alternative for the 

mathematical modeling of decision theory. Bounded rationality implies that people have a limited 

ability to compute the expected utility of every single decision alternative and thus might not be 

able to choose the most optimum alternative; instead, they use a heuristic approach that may lead 

to suboptimal decision making. Simon believes this sub-optimality is due to the human limitation 

on the ability to processes information, as well as, formulate and solve the decision problem.  

While Herbert Simon focuses on an imperial challenge of the actual decision-making process, 

other economists such as Ariel Rubinstein (Rubinstein 1998) focuses more on exploring the formal 

models and relaxing some less realistic standard assumptions in decision-making theory. He 

proposes bounded rationality models by emphasizing on the decision-making procedures involved, 

and using examples when the assumption of perfect rationality can and should be relaxed. In this 

section, we describe details of some of these models that have been explored in the literature, 

including Quantal Response, Subjective Utility Quantal Response, and Prospect Theory.  

2.3.1. Quantal Response Model  

Quantal Response model captures the bounded rationality of a human player through the 

uncertainty in the decisions making process (McKelvey & Palfrey 1995; McFadden 1976). Instead 

of maximizing the expected utility, Quantal Response posits that the decision maker chooses an 

action that gives a high expected utility, with a probability greater than another action which gives 

a lower expected utility. In the context of OSG, given the defender’s strategy, the probability of 

the adversary choosing to attack target 𝑖 when in target 𝑗 ,𝑞𝑖,𝑗 (𝑠), is given by the following 

equation:  
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𝑞𝑖,𝑗(𝑠) =  
𝑒𝜆 ∗ 𝐸𝑈𝑖,𝑗(𝑠)

∑ 𝑒𝜆 ∗ 𝐸𝑈(𝑘,𝑗)(𝑠)
𝑘

 

where λ is his degree of rationality and 𝐸𝑈𝑖,𝑗(𝑠) is the expected utility (EU) of the attacker in 

this specific situation.  

Previously, in the Opportunistic Security Game domain, Quantal Biased Random Movement 

(QBRM) has been proposed, but not evaluated, to model opportunistic attacker’s behavior in a 

defender-attacker interaction (Zhang et al. 2014).  QBRM is categorized as a Quantal Response 

model, and its performance is evaluated in the next chapter.  

2.3.2. Subjective Utility Quantal Response 

Subjective Utility Quantal Response or LensQR (Karelaia et al. 2008, Kaufmann et al. 2009, 

Grove et al. 1996) model is an integration of the Lens utility function and Quantal Response.  More 

specifically, SUQR combined two key notions of decision making: Subjective Utility (SU) 

(Fischhoff, Goitein, and Shapira 1981) and Quantal Response (McKelvey and Palfrey 1995), and 

proposed the SUQR model. The SUQR model is mathematically equivalent to the conditional logit 

model in discrete choice theory.  

In Subjective Utility (SU) - as suggested in behavioral decision-making (Savage 1972; 

Fischhoff et al. 1981) - the key idea is that individuals have their own evaluations of different 

factors during the decision-making process. In SSG, the factors considered by an adversary in 

choosing the target to attack include the marginal coverage on target 𝑡 (𝑥𝑡) and the subject’s reward 

and penalty for the attacker (𝑅𝑡
𝑎, 𝑃𝑡

𝑎). Inspired by the idea of SU, a subjective utility function for 

the adversary in an SSG setting is as follows: 

𝑆𝑈 =  𝑤1𝑥𝑡 + 𝑤2𝑅𝑡
𝑎 + 𝑤3𝑃𝑡

𝑎 
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where the weights, 𝑤𝑖, denote the relative importance given to these factors by the adversary. 

While unconventional at first glance, this model leads to higher prediction accuracy than the classic 

expected value function (Nguyen et al. 2013). This might be due to the fact that human decision 

making process may be based on simple heuristics. 

The SUQR model replaces the expected value function in logit QR model with the SU function. 

In the SUQR model, the probability that the adversary chooses target 𝑡 while the defender strategy 

is 𝑥 is given by: 

𝑞𝑡(𝑥) =  
𝑒𝑤1𝑥𝑡+𝑤2𝑅𝑡

𝑎+𝑤3𝑃𝑡
𝑎

∑ 𝑒𝑤1𝑥𝑡′+𝑤2𝑅𝑡′
𝑎 +𝑤3𝑃𝑡′

𝑎

𝑡′∈𝑇

 

2.3.3. Prospect Theory  

Prospect theory (PT) is an alternative model to expected utility theory that models decision 

making under risk. It is one of the most successful theories of decision making under risk and has 

been applied in a wide variety of contexts (Tversky and Kahneman 1992).  

There are two functions in prospect theory: the probability weighting function and the value 

function.  The probability weighting function models human interpretation of probability and 

suggests that people weight probability non-uniformly. More specifically, the original PT suggests 

that people tend to overweight low probabilities and underweight high probabilities, capturing the 

idea that people tend to overreact to small probability events, but underreact to large probabilities. 

Some works in this domain propose and experiment with parametric models that capture a broad 

range of probability weighting functions (Gonzalez and Wu 1999) given by the following formula: 

𝑓(𝑝) =
𝛿𝑝𝛾

(𝛿𝑝𝛾 + (1 − 𝑝)𝛾)
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Figure 4: Prospect Theory Weighting Function 

Another aspect of prospect theory is the value function, which passes through a reference point, c, 

and is S-shaped and asymmetrical and given by the following formula: 

𝑉(𝑈) = {
𝑈𝛼                   𝑈 ≥ 𝑐
−𝜃(−𝑈)𝛽      𝑈 < 𝑐

 
 

The interpretation of this equation is that, contrasting a rational agent who uses expected utility 

and cares about the absolute value, an agent with bounded rationality cares about relative value to 

𝑐, while unit losses hurt more than unit gains feel good.  

 

Figure 5: Prospect Theory Value function 
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Finally, the model assumes that humans evaluate each target by the following equation:  

𝑈(𝑡, 𝑥) = 𝑓(𝑥𝑡) ∗ 𝑉(𝑈𝑎
𝑐(𝑡)) + 𝑓(1 − 𝑥𝑡)𝑉(𝑈𝑎

𝑢(𝑡))  

where 𝑈(𝑡, 𝑥) is the overall or expected prospect of the outcomes to the individual, with respect 

to potential outcomes and their respective probabilities. 

2.4. Instance-Based Learning Theory  

Instance-Based Learning Theory (IBLT) has been a prominent approach to explain learning, 

and decisions from experience in a wide diversity of tasks where decisions are made from 

experience (Gonzalez, Lerch & Lebiiere, 2003; Gonzalez & Dutt, 2011; Hertwig, 2015). This 

model has demonstrated to be a general process and globally account for multiple variations of the 

dual choice paradigms commonly used to study decisions from experience (e.g., Gonzalez & Dutt, 

2011; Lejarraga et al., 2012).   

IBLT was developed to explain human decision-making behavior in dynamic tasks (Gonzalez 

et al., 2003), where individuals make repeated decisions attempting to maximize gains over the 

long run (Edwards, 1961; 1962; Rapoport, 1975). IBLT proposed that decisions in dynamic tasks 

were made by referencing past similar experiences and applying the decisions that worked in the 

past. IBLT’s most important development was the description of the learning process and 

mechanisms by which experiences may be built, retrieved, evaluated, and reinforced during the 

interaction with a dynamic environment. 

The model makes a choice by selecting the choice option with the highest blended value. An 

option's blended value is a weighted average of all observed payoffs on that option in previous 

trials. Formally, the model works as follows: 

Select an option with the highest blended value. The blended value V of option j is: 
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𝑉𝑗 = ∑ 𝑝𝑖𝑗𝑥𝑖𝑗

𝑛

𝑖=1

 

where 𝑥𝑖𝑗 is the observed payoff (utility) in instance i for the option j, and 𝑝𝑖𝑗 is the probability of 

retrieving that instance for blending from memory (Gonzalez & Dutt, 2011; Lejarraga et al., 2012). 

The blended value of an option 𝑗 is the sum of all 𝑥𝑖𝑗 stored in instances in memory, weighted by 

their probability of retrieval 𝑝𝑖𝑗. The n value is the number of different instances containing 

observed payoffs on option 𝑗 up to the last trial. For example, if by trial t = 2, option j revealed 

two different payoffs stored in two instances, then n = 2 for option 𝑗. If the two observed payoffs 

on option 𝑗 are the same in the previous two trials, then only one instance is created in memory 

and n = 1. 

In any trial, the probability of retrieving from memory an instance 𝑖 containing a payoff 

observed for option 𝑗 is a function of that instance’s activation relative to the activation of all other 

instances that contain observed payoffs 𝑙 occurring within the same option. This probability is 

given by: 

𝑝𝑖𝑗 =
𝑒

𝐴𝑖
𝜏

∑ 𝑒
𝐴𝑙
𝜏𝑙

 

where 𝑙 refers to the total number of payoffs observed for option 𝑗 up to the last trial, and 𝜏 is a 

noise value defined as 𝜎 ∙ √2. The 𝜎 variable is a free noise parameter expected to capture the 

imprecision of recalling instances from memory from one trial to the next. 

The activation of each instance in memory depends on upon the activation mechanism 

originally proposed in the ACT-R architecture (Anderson & Lebiere, 1998). The IBL model uses 

a simplified version of that activation mechanism. In each trial t, activation 𝐴 of an instance 𝑖 is 
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𝐴𝑖 = ln [∑ (𝑡 − 𝑡𝑖)
−𝑑

𝑡𝑖 ∈{1,…,𝑡−1}
] + 𝜎 ∙ ln (

1 − 𝛾𝑖

𝛾𝑖
) 

where 𝑑 is a free decay parameter, and 𝑡𝑖 refers to previous trials when payoff contained in the 

instance 𝑖 was observed (if a payoff occurs for the first time in a trial, a new instance containing 

this payoff is created in memory). The summation will include a number of terms that coincides 

with the number of times that a payoff has been observed after it was created (the time of creation 

of instance itself is the first timestamp). Therefore, an instance’s activation containing a payoff 

increases with the frequency of observing that payoff (i.e., by increasing the number of terms in 

the summation) and with the recency of observing that payoff (i.e., by small differences in 𝑡 − 𝑡𝑖). 

The decay parameter 𝑑 affects the activation of the instances directly, as it captures the rate of 

forgetting. The higher the value of the 𝑑 parameter, the faster the decay of instances’ activations 

in memory is. 

The 𝛾𝑖 term is a random draw from a uniform distribution defined between 0 and 1, and 𝜎 ∙

ln (
1−𝛾𝑖

𝛾𝑖
) represents the Gaussian noise that is important for capturing variability in behavior from 

one trial to the next. The 𝜎 variable is the same noise parameter defined in equation 3 above. A 

high 𝜎 implies a high noise in activation. 

2.5. Heterogeneous Adversary  

In behavioral game theory models, adversaries are often considered as one homogenous 

population, and therefore, one model is used to explain all adversaries’ decision-making process. 

Recently, some researches have considered the heterogeneity of human adversarial behavior. 

These studies have achieved it by either assuming a smooth distribution of the model parameters 

for the entire adversary population (Yang et al., 2014), such as a normal distribution, or by utilizing 
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a single behavioral model for each adversary (Haskell et al., 2014; Yang et al., 2014). ). However, 

these researches have not categorized the adversaries into distinct groups based on their attack 

patterns. In Chapter 4, we show that adversaries can be categorized into multiple distinct groups, 

and each such group can be represented by distinct degrees of rationality.  

2.6. Human Subject Experiment   

In my thesis, the primary focus is modeling adversaries’ behavior via conducting experiments 

with human subjects, so it is crucial to evaluate the effectiveness of the proposed approach. For 

evaluating different human behavioral models, I designed an online experiment with human 

subjects and launched it on Amazon Mechanical Turk (AMT). Many behavioral researchers have 

been using AMT as a tool to collect data (Mason and Suri, 2012). Using AMT for conducting 

experiment provides many advantages including subject pool access, subject pool diversity and 

low cost (Reips, 2002; Mason and Suri, 2012). Although there are advantages of conducting 

experiments with a real criminal, in reality, it is often infeasible and expensive, and experimental 

analysis with the general population still points to the right direction.  

In fact, as criminals are so different, using human subject experiment deployed on AMT and 

accessing pool diversity can provide us great insight about criminal’s behavior. Specifically, in 

urban crime domain such as ticket-less travelers or thefts in the metro train system, the criminals 

are close to the general population and the data gathered from Amazon Mechanical Turk can be a 

great source to model adversarial behavior. 
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Chapter 3. Modeling human adversary 

3.1. Opportunistic Security Experiment  

Experimental Procedure: We conducted online experiments with human subjects to evaluate 

the performance of various models of human behavior in OSG settings. To simulate urban crimes, 

we deployed an online game, set in a metro transportation system, in which human subjects, 

recruited from Amazon Mechanical Turk (AMT), played the role of a treasure hunter. To reduce 

potential bias that could arise from asking participants to engage in illegal behavior, we created a 

familiar gaming scenario of treasure hunting to simulate opportunistic theft. These players attempt 

to maximize the rewards they receive by accumulating stars from metro stations in a limited time. 

Each participant played eight games in total: two practice games, two validation games, and four 

main games. Before playing the game, players were provided with detailed instructions explaining 

the game mechanics (which were also available for review at any time during the game). To ensure 

that players understood instructions, each player first played two practice games. After each player 

action in these practice games, we provided them with feedback on their choices. Players then 

played two simple validation games, but they were not informed that these were validation games. 

The results of players who did not score a set threshold in the validation rounds were discarded, in 

order to eliminate invalid data 

 After the game, a brief survey was used to gather data about the players’ perception of the 

game, and risk seeking tendencies. 

Main Games Description: In the main games, human subjects collect rewards by visiting any 

of the six stations (see an example in Figure 6), while avoiding officers on patrol. Each station has 

a known reward, indicated by the number of stars (e.g., as shown in Figure 6, Station 2 has four 
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stars). These stars are guarded by two officers, and each officer patrols three stations. If a player 

(human) arrives at a station when there is no officer present, his total reward increases by the 

number of stars of that station; if the officer is present at the station, he does not gain any reward, 

but does not pay any penalty either, nor get arrested.  The player’s objective is to maximize the 

total reward. Players must carefully choose which stations to visit, consider the available 

information about rewards and officers’ coverage distribution on stations.  Players can travel to 

any station (including the current one) from their current station by train (the dotted lines in Figure 

6).  

Sub-windows contain additional information including total reward, remaining game time, link 

to full instructions, and the message board. The message board provides information about future 

available actions, warning messages in case of illegal moves, and also descriptions of the current 

situation.  

The officers patrol (move around) stations according to a pre-determined strategy which is 

calculated offline using an optimization algorithm similar to the one presented in (Zhang et al. 

2014). Given the topology of the metro system and the stars at each station, a randomized patrolling 

strategy is generated, which can be used to determine the stationary coverage. The stationary 

coverage probabilities of each station and trains are revealed to the players, but the definite 

transition matrix is hidden. This means that players can see the percentage of the time that officers 

spend on average at each station and on the trains (e.g., 64% of the time on Station 1 in Figure 6), 

and determine their probability of encountering an officer at a station. During the game, players 

cannot observe where officers are located unless they encounter the officer at a station. 

Each player starts each main game at a random station and is given a limited amount of game 

time (100 units) to play each game. For both the player and the officer, visiting a station takes one 
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unit of time, and traveling to a new station takes a number of time units equal to the minimum 

distance between source and destination station along train routes. A connected line between two 

stations in the graph (called an edge) illustrates a path between the two stations with unit distance.   

The game can finish in one of three ways: (1) the player exceeds 45 minutes limit to read the 

instruction and play all the games or (2) uses up all 100 units of time for each game, and finally 

(3) each game is randomly terminated after a station visit, which happens with a 10% probability 

after each such visit. The random termination encourages the players to choose each action 

carefully, as there is a chance the game may terminate after each visit. The termination randomizer 

is also used to model attackers exiting the metro system (Zhang et al. 2014).  

 

Figure 6. Game interface 

Pilot Study: We ran pilot studies to help design the game and prepare the instructions in order 

to avoid future confusion for AMT players. We interviewed subject matter experts to create an 

initial prototype. Then, we recruited 21 undergraduate students from the University of Southern 

California’s subject pool to serve as research participants in a set of pilot experiments. Participants 

played the game and were then interviewed by me to determine how well they understood the 

game. I asked participants a set of questions about the instructions, their decisions in playing the 

game (such as staying at any station or moving to other stations), as well as their understanding of 
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the coverage probability of a selected station. Based on the feedback, we improved the game 

interface in multiple ways, such as adding animated cartoons, graphic representation of coverage 

probabilities with red bars, etc.  

Main Games Design: Recall that our study has practice games, validation games, and main 

games. In all main games, there were six stations, but each game had different layouts, different 

distributions of rewards at each station, and different stationary coverage probabilities. Figure 7, 

Figure 8, Figure 9 and Figure 10 show the layout for the four main games; two are based on real-

world transportation systems, and the other two are random topologies. In the experiments, these 

four games were shown in random order.  

To factor out the influence of range and summation of stars, the number of stars at each station 

is a random integer between 2 and 10; additionally, the summation of stars present at all six stations 

is kept constant and equal to 40 for all games.  

The text along the edges in Figure 6 shows the partitioning of the stations covered by two 

officers. This 2-way partitioning is determined offline based on the following requirements: (i) 

each officer must patrol half of the total stations, (ii) each station is patrolled by one and only one 

officer, (iii) the nodes patrolled by an officer must form a connected graph, and (iv) an officer can 

get to any of his covered stations without passing any stations covered by the other officer 
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Figure 8: Main Game- Graph 2 

 

Figure 9: Main Game- Graph 3 
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Figure 10: Main Game- Graph4 

Participants: To be eligible to participate, AMT participants must have played more than 500 

games on AMT with at least 95% acceptance rate. The games were played in three sets of 

experiments. 218 AMT participants played the game with the average age of 35 years old where 

46% were female, and 54% were male, and the majority of participants were White and Asian 

(65% and 22% respectively). In total, 167 unique human subjects successfully passed the 

validation games, and their data were used for evaluation. 

Compensation: To motivate the subjects to participate in the study, they were compensated 

based on their total reward on top of a base compensation. We paid AMT users per the following 

policy: $1 for participating in the study, plus $0.01 per reward unit (star). 

3.2. Optimal Defender Strategy Against Opportunistic Crime 

As mentioned in the previous section, the defenders’ patrolling strategies were extracted from 

(Zhang et al., 2014). In that work, given the defender and criminal models and specific 

characteristics of opportunistic criminals, the Exact Opportunistic Security Game (EOSG) 

algorithm were used to compute the optimal defender strategy by modeling the OSG as a finite 
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state Markov chain. Each state of the EOSG Markov chain is a combination of the criminal’s 

station and the defender’s location. To model opportunistic criminals’ behavior, Zhang et al. 

(2014) have used Quantal Based Random Movement, which can be considered as Power Quantal 

Response.   

3.3. Models for Predicting Attacker Behaviors 

It has been shown that addressing adversaries’ bounded rationality is an essential factor in the 

successful performance of SSG algorithms. In previous work on opportunistic crime, QBRM was 

used to describe human behavior. However, to the best of my knowledge, no research has been 

done to descriptively study how well human behavior models capture opportunistic attacker 

behavior and their choices. Here, I propose ten different models and compare them using different 

metrics computed on the experimental data. These models are based on variations of Prospect 

Theory, Logit Quantal Response, and Subjective Utility Quantal Response. These models are listed 

in Table 1.  
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Table 1: Summary of models used for human bounded rationality in OSG 

Category Model Abbrev. Mathematical Formulation 

Quantal 

Response 

Logit Quantal Response Equilibrium QR 𝑞𝑡(𝑖) =
𝑒𝜆𝐸𝑈 (𝑖)

∑ 𝑒𝜆𝐸𝑈 (𝑗)
𝑗

 

Quantal Biased Random Movement QBRM 𝑞𝑡(𝑖) =
𝐸𝑈(𝑖)𝜆

∑ 𝐸𝑈(𝑗)𝜆
𝑗

 

Subjective 

Utility 

Quantal 

Response 

SUQR with Stationary Probability (SP) SUQR-SP 𝑞𝑡(𝑖) =
𝑒∑ 𝑤𝑘𝑓𝑘(𝑖)𝑘

∑ 𝑒∑ 𝑤𝑘𝑓𝑘(𝑗)𝑘𝑗

 

SUQR with Projected Probability (PP) SUQR-PP 

Same as above except using PP 

instead of SP 

SUQR with Stationary Probability with conditional 

weights for observed (o) and not observed (n) case 

SUQR-SP-C 

Same as SUQR-SP, except two 

different set of weights 

SUQR with Projected Probability with conditional 

weights 

SUQR-PP-C 

Same as above except using PP 

instead of SP 

 QBRM with PT weighting function  PT-QBRM Use 𝑓(𝑝) instead of 𝑝 in QBRM. 
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Prospect 

Theory 

SUQR-SP-C with weighting function for stationary 

probability 

PT-SUQR-C 

Use 𝑓(𝑝) instead of 𝑝 in SUQR-

SP.  

SUQR-SP-C with weighting function  & value 

function on Absolute Attractiveness 

PT-SUQR-C-VA 

Use 𝑓(𝑝) instead of𝑝, 𝑉(𝑎𝑡𝑡) 

instead of 𝑎𝑡𝑡 in SUQR-SP.  

SUQR-SP-C with weighting function for stationary 

coverage and value function on relative 

attractiveness 

PT-SUQR-C-VRA 

Same as above except using 𝑉 

on relative 𝑎𝑡𝑡 
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3.3.1. Quantal Response 

In this category, the Quantal Response model refers to the logit quantal response formulation 

presented in section 2.3.1. The utility is computed as the expected reward of the adversary 

(expectation over the randomness in defender’s strategy) in choosing a particular move (details are 

in (Zhang et al. 2014). In the context of OSG, given the defender’s strategy 𝑠 (e.g., stationary 

coverage probability at station 𝑖 is 𝑠𝑖), the probability of the adversary choosing to attack target 𝑖 

when in target𝑗 ,𝑞𝑖,𝑗(𝑠), is given by the following equation: 

𝑞𝑖,𝑗(𝑠) =  
𝑒𝜆 ∗ 𝐸𝑈𝑖,𝑗(𝑠)

∑ 𝑒𝜆 ∗ 𝐸𝑈(𝑘,𝑗)(𝑠)
1≤𝑘≤6

 

where 𝜆 is his degree of rationality and 𝐸𝑈𝑖,𝑗(𝑠) is the expected utility (EU) of the adversary when 

the defender strategy is 𝑠 and is given by: 

𝐸𝑈𝑖,𝑗(𝑠) =
𝑟𝑖

𝑡𝑖𝑚𝑒 (𝑖, 𝑗)
∗ (1 − 𝑠𝑖) 

Where 𝑟𝑖 is the number of stars at station 𝑖, 𝑡𝑖𝑚𝑒 (𝑖, 𝑗) refers to time taken to attack station 𝑖 when 

a player is in station 𝑗.  

Quantal Biased Random Movement is the other model in this category which uses the power 

function form of quantal response. Here 𝑞𝑖,𝑗(𝑠), is given by the following equation: 

𝑞𝑖,𝑗(𝑠) =
𝐸𝑈𝑖,𝑗(𝑠)𝜆

∑ 𝐸𝑈𝑖,𝑗(𝑠)𝜆
𝑗

 

3.3.2. Subjective Quantal Response 

In this category, instead of expected utility, the subjective utility is used. Subjective utility 

(SU) is the combination of the key factor. In the OSG experiment, the key factors I found to be the 
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most important are number of stars at destination station or stations 𝑖 (also called the reward, or r), 

stationary coverage probability (referred to as SP or s) or projected coverage probability (referred 

to PP or proj) of destination station, and time taken to visit station 𝑖 from station 𝑗 (𝑡𝑖𝑚𝑒𝑖,𝑗), and 

the connectivity degree of the destination station (con). Thus, for examples in the SU in SUQR-

SP is defined as  

𝑆𝑈𝑖,𝑗(𝑠) =  ∑ 𝑤𝑘𝑓𝑘
(𝑖, 𝑗)

𝑘

=  𝑤𝑎𝑡𝑡𝑎𝑡𝑡𝑖 + 𝑤𝑠𝑡𝑎𝑠𝑡𝑎𝑖+ 𝑤𝑑𝑖𝑠𝑡𝑖𝑚𝑒𝑖,𝑗 + 𝑤𝑐𝑜𝑛𝑐𝑜𝑛𝑖 

Moreover, the probability of attacking/visiting target 𝑖 when the the attacker/player is at station 𝑗 

and the defender patrolling strategy is 𝑠 is formulated as: 

𝑞𝑖,𝑗(𝑠) =  
𝑒  𝑆𝑈𝑖,𝑗(𝑠)

∑ 𝑒𝑆𝑈(𝑘,𝑗)(𝑠)
𝑘

 

 In this thesis, I considered three variations of non-Bayesian SUQR models.  The first uses a 

single set of weights whether the attacker currently observes the officer or not. The second SUQR, 

SUQR-C, uses two sets (conditional or C) of weights, one when the officer is observed and the 

other when not. 

The third SUQR (SUQR-S&F) model has two additional indicator features which refer to an 

attacker’s preference to stay at (leave) the current station when he successfully (unsuccessfully) 

attacked the station. This is to test the hypothesis that if the player successfully attacked a station, 

he gives additional positive weight to that station and boosts his probability of attack at the same 

station in the next round. On the other hand, if the player failed to attack his current station, he 

gives negative weight to the current station which boosts his probability of attacking other stations.  

This phenomenon, often referred to as “repeat-victimization”, is well-known in criminology (Short 

et al., 2009), making it of interest in the OSG domain. 
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3.3.3. Prospect Theory  

In this category, we developed models based on combinations of SUQR/QR with Prospect 

Theory. In PT-QBRM, PT-SUQR-C, and PT-SUQR-C-VA, instead of using the actual 

projected/stationary coverage probability, we used the weighted probability obtained through 

weighting function in section 2.3.3. In PT-SUQR-C-VA, in addition to the weighting function for 

coverage probability, the value function was also used for the number of stars at each station 

(rewards).  In PT-SUQR-C-VRA, instead of using the absolute value of the rewards in the value 

function, I used its relative value given the current and destination station, i.e. if the player moves 

from a station with 10 stars to a station with 2 stars, he loses 8 stars and if he moves from a station 

with 6 stars to a station with 8 stars, he gains 2 stars.  

3.4. Model Prediction Accuracy  

We used four metrics to evaluate how well different models predict human decision-making 

process compared to the actual responses of participants in our experiments. 

Root-Mean-Square-Error (RMSE): RMSE represents the deviation between model’s 

prediction of attacker’s movement (𝑝̂) and the actual proportion movements of AMT players from 

each station to others (𝑝). The prediction probability (𝑝̂) and proportion movements (𝑝) both 

distinguish between the situations that the attacker observes and not observer the officer.  

𝑅𝑀𝑆𝐸(𝑝̂) =√𝑀𝑆𝐸(𝑝̂) where MSE (𝑝̂) = 
1

𝑛
∑(𝑝̂ − 𝑝)

2
 

Weighted Absolute Percentage Error (WAPE): Although RMSE is often used in statistical 

modeling, it is more sensitive toward outliers, and WAPE can provide a more accurate measure of 

model fit in these situations 
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𝑊𝐴𝑃𝐸 =
∑ |𝑝̂ − 𝑝|

∑ 𝑃
 

Akaike information criterion (AIC): AIC provides a measure of the relative quality of 

statistical models; the lower the value, the better the model. The metric rewards goodness of fit (as 

assessed by the likelihood function), and penalizes overfitting (based on the number of estimation 

parameters).  

𝐴𝐼𝐶 = 2𝑘 − 2 ln(𝐿𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑) where 𝑘 is the number of parameters in the model 

Student's t-test: I used Student's t-test to evaluate the prediction accuracy of the proposed 

models. Student's t-test was used to study if one model is significantly better than another model. 

3.5. Experimental Results  

3.5.1. Extraction of Model Parameters 

We divided the participants into training (70%) and testing (30%) groups. To extract various 

models’ parameters, data belongs to the participants in training group was used. On the other hand, 

the data belongs to the participants in test group data kept aside for evaluation of different models.  

To learn the Prospect Theory parameters, the training data set was randomly divided (80/20% 

split) 10 times to obtain ten training and validation sets. For each combination of PT parameters, 

the average error on the validation sets was calculated. Then the PT parameters combination which 

results in the least average error were selected and used further to estimate the QBRM or SUQR 

parameters. To estimate the 𝜆 in QBRM, QR, and weights (w’s) in SUQR, Maximum Likelihood 

Estimation Method (MLE) was used. The models’ parameter are presented in Table 2.  
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Table 2: Model parameters and their values 

Model Parameters 

Logit Quantal Response Equilibrium 𝜆 =0.3645 

Quantal Biased Random Movement 𝜆 =1.1955 

SUQR with SP  < 𝑤𝑎𝑡𝑡, 𝑤𝑠𝑡𝑎, 𝑤𝑑𝑖𝑠, 𝑤𝑐𝑜𝑛 > = <0.3853,-4.6033,-0.7031,0.145> 

SUQR with PP  < 𝑤𝑎𝑡𝑡, 𝑤𝑝𝑟𝑜𝑗, 𝑤𝑑𝑖𝑠, 𝑤𝑐𝑜𝑛 > = <0.2136,-2.5495,-0.6937,0.0327> 

SUQR with Stationary Probability  with conditional 

weights 

< 𝑤𝑎𝑡𝑡
𝑜 , 𝑤𝑠𝑡𝑎

𝑜 , 𝑤𝑑𝑖𝑠
𝑜 , 𝑤𝑐𝑜𝑛

𝑜  , 𝑤𝑎𝑡𝑡
𝑛 , 𝑤𝑠𝑡𝑎

𝑛 , 𝑤𝑑𝑖𝑠
𝑛 , 𝑤𝑐𝑜𝑛

𝑛 > = 

<0.4206,-4.2065,-0.4281,0.2451,0.4106,-4.9489,-0.7634,0.0427> 

SUQR with Projected Probability with conditional 

weights 

< 𝑤𝑎𝑡𝑡
𝑜 , 𝑤𝑝𝑟𝑜𝑗

𝑜 , 𝑤𝑑𝑖𝑠
𝑜 , 𝑤𝑐𝑜𝑛

𝑜 , 𝑤𝑎𝑡𝑡
𝑛 , 𝑤𝑝𝑟𝑜𝑗

𝑛 , 𝑤𝑑𝑖𝑠
𝑛 , 𝑤𝑐𝑜𝑛

𝑛 > = 

<0.1915,-1.8435,-0.7485,0.0834,0.2584,-3.3138,-0.6021,0.0418> 

QBRM with PT weighting function on PP λ=1.2351 , δ=1.8,  γ=0.6 

SUQR-SP-C with weighting function for stationary 

probability 

< 𝑤𝑎𝑡𝑡
𝑜 , 𝑤𝑝𝑟𝑜𝑗

𝑜 , 𝑤𝑑𝑖𝑠
𝑜 , 𝑤𝑐𝑜𝑛

𝑜 , 𝑤𝑎𝑡𝑡
𝑛 , 𝑤𝑝𝑟𝑜𝑗

𝑛 , 𝑤𝑑𝑖𝑠
𝑛 , 𝑤𝑐𝑜𝑛

𝑛 > = 

<0.4159,-2.8093,-0.4286,0.2505,0.4085,-3.1953,-0.7479,0.0903 

< 𝛿, 𝛾 > = <3.4, 1.6> 
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SUQR-SP-C with weighting function & value function 

on Absolute Attractiveness 

< 𝑤𝑎𝑡𝑡
𝑜 , 𝑤𝑝𝑟𝑜𝑗

𝑜 , 𝑤𝑑𝑖𝑠
𝑜 , 𝑤𝑐𝑜𝑛

𝑜 , 𝑤𝑎𝑡𝑡
𝑛 , 𝑤𝑝𝑟𝑜𝑗

𝑛 , 𝑤𝑑𝑖𝑠
𝑛 , 𝑤𝑐𝑜𝑛

𝑛 > = 

<0.4159,-2.8093,-0.4286,0.2505,0.4085,-3.1953,-0.7479,0.0903> 

< 𝛿, 𝛾, 𝛼 > = <3.4, 1.6,1> 

SUQR-SP-C with weighting function for stationary 

coverage and value function on relative attractiveness 

< 𝑤𝑎𝑡𝑡
𝑜 , 𝑤𝑝𝑟𝑜𝑗

𝑜 , 𝑤𝑑𝑖𝑠
𝑜 , 𝑤𝑐𝑜𝑛

𝑜 , 𝑤𝑎𝑡𝑡
𝑛 , 𝑤𝑝𝑟𝑜𝑗

𝑛 , 𝑤𝑑𝑖𝑠
𝑛 , 𝑤𝑐𝑜𝑛

𝑛 > = 

<0.6676,-2.8474,-0.5193,0.221,0.6114,-3.2045,-0.8618,0.0648> 

< 𝛿, 𝛾, 𝛼, 𝜃, 𝛽 > = <3.2, 1.6, 0.8, 0.4, 1.2> 
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The best 𝛼 parameter for model PT-SUQR-C-VA was equal to 1, which makes the model PT-

SUQR-C-VA equivalent to model PT-SUQR-C; i.e. introduction of the value function on the 

absolute reward does not provide any improvement over PT-SUQR-C. Hence, we did not consider 

PT-SUQR-C-VA in our evaluation further on.  

After normalizing the weights by their maximum value (multiplying 𝑤𝑟 by 10, 𝑤𝑡𝑖𝑚𝑒 with 5 

and 𝑤𝑐𝑜𝑛 by 4), it can be seen that attractiveness, coverage probabilities, and time are the most 

important factors. In the following chapters, these three factors are included for different variations 

of SUQR model.  

3.5.2. Results  

After determining the parameters of the models, we used the resulting models and test data set 

to predict human decisions and compared models to actual decisions on the test data set. The 

following are our most important observations from the experiment results, starting with 

significant deviation from perfectly rational play by human subjects. 

 Human decision-making does not conform to the traditional game-theoretic assumption of 

perfect rationality. The traditional game theory assumes perfect rationality on the part of all 

players. While an enormous body of work in behavioral game theory has questioned this 

assumption, research in adversary behavior models in Stackelberg security games (Yang et al. 

2013) have further illustrated that human behavior is far from perfectly rational. In this chapter, 

we confirm these findings in the context of opportunistic crime settings. Table 2 shows that the 

rationality factor (𝜆) for QR model is 0.3 which is extremely low considering the fact that 𝜆 = 0 

corresponds to complete irrationality level (uniform decision making for all targets) and 𝜆 = ∞  

corresponds to perfect rationality level.   
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QR is a well-established model of human decision making tracing its origins to (McFadden 

1973), and with significant support over the past several decades (McKelvey and Palfrey 1995). 

The following observation conveys an important finding that an alternative model provides 

superior performance to QR. 

 SUQR outperforms QR model. Previously, (Cui et al. 2014) performed a comparison 

between QR and SUQR models in the SSG domain. My work provides a comprehensive 

comparison between QR and SUQR in OSG domain; in particular, it compares QR with four 

different versions of SUQR examining over 167 human decision instances.  Table 3 shows the p-

value of student’s t-test for absolute error on the test data set between QR and SUQR models. As 

seen in the table, all P-values are smaller than 0.1, which supports the claim that SUQR models 

result in a better fit compared to QR at 90% confidence level.  

Indeed, the fact that SUQR outperforms QR provides support to the claim that human subjects 

are not making their decision rationally; since QR is based on expected utility (an entirely rational 

decision maker seeks to maximize the expected utility) while SUQR is a linear combination of 

different factors.  

Table 3: Student’s t-test comparing QR with SUQR models 

p-value SUQR-SP SUQR-SP-C PT-SUQR-C PT-SUQR-C-VRA 

QR    0.07     0.04 0.005 0.000 

 

Prospect Theory is a landmark theory, and the following four observations relate to the 

incorporation of elements of this theory to improve our model prediction accuracy.  

 Considering human non-linear weighting of probability improves model prediction 

accuracy. Past research in human behavior models in the context of Stackelberg security games, 
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including research focused on SUQR (Nguyen et al. 2013), has not comprehensively addressed 

human (non-linear) weighting of probability. This weighting of probability is an important aspect 

of PT. Table 4 presents a summary of model performance on test data illustrating the importance 

of probability weighting. As shown in the table, the models that use the PT weighting function 

perform better than their counterparts without the PT weighting function: PT-QBRM vs. QBRM 

and PT-SUQR-C vs. SUQR-SP-C (these models only have the probability weighting function and 

not the value function). More specifically, in PT-QBRM and PT-SUQR-C models, instead of using 

the actual coverage probability, the players’ weighting of coverage probability were considered. 

Furthermore, PT-SUQR-C performs better than PT-QBRM, which further supports the claim that 

SUQR provides better performance compared to the Quantal Response models. 

Table 4: Model prediction accuracy 

Model AIC RMSE WAPE 

Perfectly Rational - 0.1964 0.8562 

QR 8801.0 0.1868 0.7944 

QBRM 8748.2 0.18 0.7494 

SUQR-SP 8461.0 0.1748 0.7211 

SUQR-PP 8572.3 0.17669 0.7385 

SUQR-SP-C 8442.6 0.17019 0.7138 

SUQR-PP-C 8554.7 0.17490 0.7324 

PT-QBRM 8623.4 0.17831 0.7372 

PT-SUQR-C 8363.9 0.16422 0.6843 

PT-SUQR-C-VRA 8361.8 0.16388 0.6841 
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 Considering human perception of relative attractiveness results in further improvement of 

the SUQR model. Table 4 shows that PT-SUQR-C-VRA model has the best values among all the 

models across all prediction accuracy metrics. This model deploys the perception of the relative 

attractiveness as well as the perception of coverage probability. As stated before, addressing the 

human perception of absolute attractiveness provides no improvement over PT-SUQR-C model.  

 

 PT-SUQR-C and PT-SUQR-C-VRA perform better than others. PT-SUQR-C and PT-

SUQR-C-VRA have the least RMSE and WAPE errors among all models. Moreover, these two 

models have the smallest AIC values which mean they do not overfit the data since AIC 

compensates for the greater number of parameters in these models compared to others. Between 

these two models, PT-SUQR-C-VRA has the lowest values with respect to all three error metrics; 

however the difference is not statistically significant.  

In order to achieve high accuracy, one of these two models can be deployed depending on 

complexity requirements; PT-SUQR-C provides a relatively less complex model, but it still 

performs better than other models. Table 5 also provides the p-value of Students’ t-test for 

comparing PT-SUQR-C-VRA with other models.  

Table 5: P-value for Student's t-test for comparing models 

p-value 
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PT-SUQR-C-

VRA 

0.005 0.097 0.3411 0.1613 0.4348 0.2111 0.1764 0.9948 
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 Players’ probability weighting function is S-shaped, exactly opposite of the PT standard 

model of human weighting of probability: Figure 11 demonstrates the weighing probability 

functions which indicates that human subjects’ perception of small probabilities (less than 

0.13) is below the actual values while their perception of high probabilities is above the real 

value. For both of these models, the weighting function is S-shaped, which is opposite of the 

inverse S-shaped function proposed by Prospect Theory. Previous works such as (Alarie, 

Dionne 2001) also found S-shaped weighing functions for probability.  Figure 12 illustrates 

the value function. for players’ perception of relative attractiveness. It appears that the human 

subjects value gains more than they dislike losses, which is also the opposite of what is usually 

found in PT.  
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Figure 11: Extracted Prospect Theory Weighting Function 
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 Adding additional weights for player success/failure results in further improvement of 

SUQR model. In (Kar et al., 2015), the authors investigate a human behavior model in the green 

security domain and reveal that the attacker adapts his future action based on past success and 

failure. They show that adversaries who have succeeded in attacking a target in one round tend to 

attack the target with “similar” features in the next round. Figure 13, Figure 14, and Figure 15 

reveal similar results in our urban crime experiment. We used the data for three experiments that 

each include four graphs. The y-axis in the graph denotes the percentage of (i) attacks on the same 

station out of the total successful attacks in the previous step and (ii) attacks on the same station 

out of the total failed attacks in the last step. As shown in Figure 13, when the data for all the 

stations is aggregated, we get similar results as in (Kar et al., 2015); the players who have attacked 

a station successfully tend to stay at that station more than those who failed in their attack. 

Moreover, when the aggregated data is used, differences between the percent of successful people 

who stayed at the current stations and the percent of participants who failed and remained at the 
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Figure 12: Extracted Prospect Theory Value function 
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current station is statistically significant (using Student’ t-test with 95% CI). This difference 

motivates the addition of two further weights to SUQR-C (the winner of six previously used 

model) and results in SUQR-S&F: 𝑤_𝑓𝑎𝑖𝑙 and 𝑤_𝑠𝑢𝑐𝑐. 𝑤_𝑓𝑎𝑖𝑙 (𝑤_𝑠𝑢𝑐𝑐) refers to the additional 

weight to staying at the same station when the player failed (succeeded). As expected, 𝑤_𝑓𝑎𝑖𝑙 is 

negative (-0.9666) and 𝑤_𝑠𝑢𝑐𝑐 is positive (0.1452). Table 3 also shows that the SUQR-S&F results 

in better prediction accuracy in all four categories. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 13: Attacking at the same stations 

Figure 14: Attacking the same station- high reward stations 
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3.6. Summary  

With the growing number of automated decision aids based on game-theoretic algorithms in 

daily use by security agencies, investigations of bounded rationality models of human adversary 

decision making are now critical, in order to ensure effective security resource allocation and 

scheduling. In this chapter, for the first time, I provide an empirical investigation of adversary 

bounded rationality in opportunistic crime settings, where modeling bounded rationality is 

particularly crucial. Based on data from extensive human subject experiments, we compare ten 

different bounded rationality models, and illustrate that: (a) while previous research proposed the 

use of the quantal response model of human adversary, this model is significantly outperformed 

by the SUQR model which uses linear combination of target features (b) combinations of the well-

known prospect theory model SUQR leads to an even better performance in modeling human 

adversary behavior; (c) while it is important to model the non-linear human weighting of 

probability, as advocated by prospect theory, our data suggests that human weighting of probability 

is “S-shaped” as opposed to the “inverse S-shape” advocated in prospect theory; (d) models based 

on relative weighting of values, i.e., gain and loss from current state, provide better modeling 

accuracy than absolute weighting. (e) SUQR-S&F model significantly outperformed quantal 

Figure 15: Attacking the same stations - Stations with Low Rewards 
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response in predicting player behavior, thus further indicating that human decision making is not 

based on maximizing expected utility. These and other findings outlined in this chapter provide 

valuable advice for practical implementations of decision-aids. Indeed, as police departments 

begin to adopt these decision aids, modeling and testing these findings in practice in the real-world 

provides an important next step for future work.   
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Chapter 4. Heterogeneity in Adversary  

In the previous chapter, I focused on bounded rationality models from behavioral game theory 

(such as Quantal Response and Subjective Utility Quantal Response) while a homogeneous 

adversary population is assumed, and a single adversary behavior model is prescribed. Actually, 

in security games, mostly homogenous adversary models have been studied, but some recent 

research has considered the heterogeneity of human adversarial behavior. So in contrast to the 

previous chapter, this chapter focuses on the heterogeneity in adversary behavior.  

There are two strands of previous work related to this study. First, in behavioral game theory 

models, they have achieved it by either assuming a smooth distribution of the model parameters 

for the entire adversary population (Yang et al., 2014), such as a normal distribution or by utilizing 

a single behavioral model for each adversary (Haskell et al., 2014; Yang et al., 2014). However, 

they have not categorized the adversaries into distinct groups based on their attack patterns. In this 

chapter, we show that adversaries can be categorized into multiple distinct groups, and each such 

group can be represented by distinct degrees of rationality.  

The second strand of related work is with respect to the exploration of available options, which 

is an important aspect of decision making in many naturalistic situations (Pirolli & Card, 1999; 

Todd, Penke, Fasolo, & Lenton, 2007; Gonzalez & Dutt, 2011). In line with previous work (Hills 

& Hertwig, 2010; Gonzalez & Dutt, 2012), in this chapter, we show that there is a negative 

relationship between exploration behavior and maximization of rewards. However, in their work, 

they did not contrast behavioral models with cognitive models and did not provide insights for 

behavioral game theory models which we provide. In particular, we study the relationship between 

exploration and human reward maximization behavior by parameters of bounded rationality 
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models of human adversaries. Our observations are also on the security games domain where this 

kind of relationship between exploration behavior and maximization of rewards has not been 

studied before. Furthermore, in our work participants were shown all relevant information, such 

as rewards about all the alternative choices, while in earlier work participants had to explore and 

collect information about various alternatives. 

In this chapter, I focus on the heterogeneity in adversary behavior. The results are based on the 

OSG experiment explained in Chapter 3. The results show that adversaries can be naturally 

categorized into distinct groups based on their attack patterns. For instance, while one group of 

participants (about 20% of the population) is seen to be highly rational and taking reward 

maximizing action, another group (almost 50%) is seen to act in an entirely random fashion. In 

this chapter, I show that considering distinct groups of adversaries lead to interesting insights about 

their behavioral model, including the defender strategies being generated based on the learned 

model. 

To model the different categories of human behavior, I used previously presented behavioral 

game theory model and cognitive models. In behavioral game theory models, we have explored 

models such as the popular Quantal Response (McKelvey & Palfrey 1995) and the Subjective 

Utility Quantal Response models (Nguyen et al., 2013). In addition, based on the tradition of 

Cognitive Science, we use a model derived from a well-known cognitive theory, the Instance-

Based Learning Theory (IBLT) (Gonzalez, Lerch, & Lebiere, 2003), developed to explain human 

decision making behavior in dynamic tasks and used to detect adversarial behaviors (Ben-Asher, 

Oltramari, Erbacher & Gonzalez, 2015). This is the first such use of cognitive models in security 

games.  
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In summary, in this chapter we build on the existent literature of security games and adversary 

behavior modeling by: (i) investigating the heterogeneity of adversarial behavior in an 

experimental study designed for OSGs, by categorizing adversaries into groups based on their 

exploration patterns; (ii) comparing computational models and showing the impact of 

heterogeneity on future behavior prediction; and (iii) indicating the effect of considering 

heterogeneity on the defender strategies generated. 

4.1. Human Adversarial Behavior 

Using data from all the main games, Figure 16 illustrates the distribution of attacks (i.e., 

moves) from all participants (black bars) on stations ranked by the participants’ expected utility 

(average earning per time)1, as well as attacks of five randomly selected individuals (P1 to P5). To 

normalize the utility scores among graphs, we have used the ranking of stations’ utility (utility 

rank) instead of its absolute value (the highest utility in a graph is ranked 1). The figure illustrates 

significant heterogeneity behavior among individuals (line charts), and comparison to the average 

behavior (bar chart). 

                                                      
1 𝐸𝑈 =  (1 − 𝑠𝑡𝑎𝑡𝑖𝑜𝑛𝑎𝑟𝑦 𝑐𝑜𝑣𝑒𝑟𝑎𝑔𝑒) ∗ 𝑟𝑒𝑤𝑎𝑟𝑑/  𝑡𝑖𝑚𝑒 
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Figure 16: Percentage of Attacks on utility rank 

 

Figure 17: Clustering Distribution 
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                                   Clusters 

 

Given this heterogeneous behavior, we have applied the Hierarchical Clustering algorithm 

(Johnson, 1967) on different features related to an individuals’ exploration behavior and found that 

mobility score was the best feature to cluster the participants. The mobility score is a measure of 

exploration: it is a ratio of the number of movements between stations over the number of trials 

(total number of movements) by a participant in the game. Figure 19 shows the distribution of 

participants based on their mobility score for each graph. The mobility score varied widely (0% to 

100%) with a significant proportion of participants at the two extremes. Informally, the exploration 

behavior seems to fall into three categories: (i) those who did no exploration; (ii) those who always 

explored and (iii) those who engaged in a middling level of exploration. Indeed, the clustering 

algorithm resulted in three groups of participants: participants whose mobility score is less than 
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Figure 18: Utility Rank by Cluster 
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10% belong to Cluster1, participants with 10% to 80% mobility score belong to Cluster2, and 

participants whose mobility score is greater than 80% belong to Cluster3 

 

Figure 19: % of participants based on the Mobility Score 

Figure 17 shows the percentage of participants belonging to each cluster for four different 

graphs (Graph 1 to Graph 4). The percentage of participants belonging to each cluster is nearly 

consistent across all graphs: approximately, 20% in Cluster1, 30% in Cluster2 and 50% in 

Cluster3.  

In Figure 18, using the data from all the graphs per cluster, we show the distribution of utility 

ranks for each of the three clusters. Interestingly, mobility scores were highly correlated with the 

utility ranks of the attacked stations (𝑅2 = .85 & 𝑝 < .01). We observe that participants in Cluster1 

(the lowest mobility scores), attacked stations with the highest utility (average utility rank of 1.04). 

In contrast, participants in Cluster3 (the highest mobility score), attacked stations that varied more 

widely in the utility rank (average utility rank of 3.3). Participants in Cluster2 also attacked a 

variety of stations but were leaning (on average) towards higher utility rank stations (average 
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utility rank of 1.7). These observations provide interesting insights for building defender strategies, 

as illustrated in Section Model Results. 

Following, I will provide a brief description of Instance-Based Learning Model and 

comparison between human bounded rationality models and IBL model in each category and 

overall.  

4.2. Instance-Based Learning Model 

In what follows, we present a well-known cognitive science named Instance-Based Learning 

Model. The IBL model of an adversary in the OSG makes a choice about the station to go to, by 

first applying a randomization rule at each time step: 

If drawn from U(0,1) >= Satisficing threshold  

 Make a random choice 

Else;  

 Make a choice with the highest Blended value. 

This rule aims at separating highly exploratory choices from those made by the satisficing 

mechanism of the IBL, the Blended Value. Satisficing is a parameter of this model. The Blended 

value V represents value of attacking each station (option j ): 

𝑉𝑗 = ∑ 𝑝𝑖𝑗𝑥𝑖𝑗

𝑛

𝑖=1

 

where 𝑥𝑖𝑗 refers to the value (payoff) of each station (the number of stars divided by time taken) 

stored in memory as instance i for the station j, and 𝑝𝑖𝑗 is the probability of retrieving that instance 

for blending from memory (Gonzalez & Dutt, 2011; Lejarraga et al., 2012) defined as: 
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𝑝𝑖𝑗 = 𝑒
𝐴𝑖
𝜏 ∑ 𝑒

𝐴𝑙
𝜏

𝑙
⁄  

where 𝑙 refers to the total number of payoffs observed for station 𝑗 up to the last trial, and 𝜏 is a 

noise value defined as 𝜎 ∙ √2. The 𝜎 variable is a free noise parameter. The activation of instance 

i represents how readily available the information is in memory: 

𝐴𝑖 = 𝑙𝑛 ∑ (𝑡 − 𝑡𝑝)−𝑑

𝑡𝑝

𝜖 𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑

+ ∑ 𝑃(𝑀𝐴𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒 − 1)
𝐴𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒 

𝜖 𝑆𝑖𝑡𝑢𝑎𝑡𝑖𝑜𝑛

+ 𝜎ln (
1 − 𝛾𝑖,𝑡

𝛾𝑖,𝑡
) 

Please refer to (Anderson & Lebiere, 1998) for a detailed explanation of the different 

components of this equation. The Activation is higher when instances are observed frequently and 

more recently. For example, if an unguarded nearby station with many starts (reward) is observed 

many times, the activation of this instance will increase, and the probability of selecting that station 

in the next round will be higher. However, if this instance is not observed often, the memory of 

such station will decay with the passage of time (the parameter d, the decay, is a non-negative free 

reflects noisy memory retrieval. 

4.3. Model Results  

We aggregated the human data and divided the data set into two groups: training and test 

datasets. The data from the first three graphs played by the participants were used for training and 

the last graph played was used for testing the models. This resulted in 1322 instances in the training 

set and 500 instances in the test data set. For comparison of different models, we use Root Mean 

Squared Error (RMSE) and Akaike Information Criterion (AIC) metrics. 
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Table 6 shows the results on the full data set. The model parameters obtained from the training 

dataset were used to make predictions on the test dataset. The prediction errors from all the models 

are relatively similar, even though they provide different perspectives. QR and SUQR predict the 

stable state transition probabilities of the attacker while the IBL is a process model that captures 

learning and decision dynamics over time. We also examine the performance of different models 

for each cluster (Table 7). 

Table 6: Metrics and Parameter on the full data set 

Model Parameters RMSE2 AIC 

QR 0.4188 0.25 3962 

SUQR <3.97,-2.51,-2.55>3 0.23  3685 

IBL <1.4, 3.2,0.3>4 0.24 4359 

 

The value of λ (higher value of λ corresponds to higher rationality level) in the QR model 

decreases significantly from Cluster1 (high value of λ=1.81) to Cluster3 (λ=0). These findings are 

consistent with our observation of the utility ranks of targets chosen by adversaries in each cluster, 

as shown in Figure 18.  

This is significant because past research has assumed that all participants either behave based 

on an average value of λ or that each individual's value of λ can be sampled from a smooth 

distribution. In this study, however, we show that a significant number of participants (70%: 20% 

in Cluster1 plus 50% in Cluster3) have values of λ which fall at two extreme ends of the spectrum. 

                                                      
2 the average is over 288 entries, representing moves from any of 6 stations to any other station, in four graphs, and 

for two cases where the player observes the officer or not 
3 𝑤 = < 𝑤𝑟𝑒 , 𝑤𝑠𝑡𝑎 , 𝑤𝑡𝑖𝑚𝑒 > 
4 <noise, decay, Satisficing threshold > 
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Thus their behavior should be modeled either as perfectly rational or completely random 

adversaries. 

Table 7: Metrics and Parameters on each Cluster 
 

Model Parameters RMSE AIC 

Cluster1 

QR 1.81 0.01 52 

SUQR <7.16,-4.53, -13.43>3 0.06 67 

IBL <2.3, 0.9, 0.9>4 0.27 238 

Cluster2 

QR 0.6582 0.28 1023 

SUQR <5.63,-3.14 ,-4.16>3 0.27 927 

IBL <0.9, 1.4, 0.8>4 0.30 1821 

Cluster3 

QR 0 0.26 2188 

SUQR < 1.9,-1.1,0.13>3 0.23 2007 

IBL <0.01, 1.8, 0.1>4 0.27 2529 

 

Moreover, because SUQR weights indicate the importance of each attribute to the decision 

maker, the results of SUQR parameter extraction for different clusters reveal some interesting 

points. First, the fact that Cluster1 has the largest weights for all attributes (in the absolute terms) 

implies that Cluster1 participants are very attracted to the stations with high rewards and highly 

repelled by high defender coverage; which conforms with the observed behavior of Cluster1 

participants in maximizing the expected utility.  

Second, although SUQR outperforms QR overall and in Cluster2 and 3, QR has lower 

prediction error (statistically significant for paired t-test at t (288) =  02.34, p<0.01) on data for 
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Cluster1. This is intuitive if participants are utility maximizers, this would be captured better when 

in the QR model. On the other hand, a model like SUQR which reasons based on different features 

of the game capture better the propensity of the participants to switch between stations, and hence 

perform better on Clusters 2 and Cluster 3 where participants do not have a clear movement 

pattern.  

Therefore, identifying different groups of adversaries (with various degree of rationality) gives 

us valuable insight into the types of behavioral models that can be used in various scenarios to 

generate accurate future predictions. 

The results from the IBL model suggest that the categories of adversaries found in this study 

do not emerge naturally from the learning process. Indeed, in this study participants had little 

opportunities to learn.  Instead, it appears that participants either use the information readily 

available to them in the OSG and attempt to maximize their gains, or they explore the choices 

randomly which may lead them to less optimal decisions.  

These two modes of behavior were captured in the IBL model by a meta-rule with a Satisficing 

parameter. This meta-rule is not part of the IBL model, but it helps to overpass the natural choice 

by Blending (similar to the Inertia meta-rule used in Gonzalez & Dutt, 2011). This meta-rule was 

added to explicitly account for random exploratory behavior observed in the OSG. Therefore, the 

Satisficing parameter helps in selecting between the two modes of behavior to form the different 

clusters. The Satisficing parameter is highest in Cluster1, lower in Cluster2, and lowest in Cluster3. 

Cluster1 results from most choices being made by the IBL’s Blending while Cluster3 results from 

a random choice.  However, this parameter interacts with the IBL model’s decay and noise 

parameters. For example, in Cluster1, most decisions are made for the station with highest Blended 

value, and there is a need for a high noise value to introduce the variability found in human 
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behavior. In contrast, choices in Cluster3 are mostly made randomly, but in the rare occasions 

when the model makes choices based on the highest Blended value, it attempts to benefit from 

recent past experiences (i.e., low decay) and with low noise to the decision processes. Therefore, 

identifying such meta-rules for accounting for explicit descriptive information in addition to the 

IBL model’s learning mechanisms is an important aspect of capturing adversary behavior in 

security games.  

It is interesting to observe that the behavioral game theory models provide a significantly better 

fit in Cluster1, compared to the IBL cognitive model, while the values of behavioral game theory 

models are comparable to those of the IBL model in Clusters 2 and 3. The IBL model, being a 

learning model, is poor at making highly accurate decisions with little or no experience as in the 

OSG study.  

Finally, to demonstrate the impact of considering distinct heterogeneous groups of adversaries, 

we consider one of the most recent works (Kar et al., 2015) which advocated the use of a 

homogeneous adversary model. Using their data, I show there is a significant difference between 

the defender strategies generated by a homogeneous (SUQR) and a heterogeneous model which 

considers three distinct clusters (Bayesian SUQR). For example, for target 16 in Figure 20, the 

change in coverage probability from defender strategy generated against a homogeneous to that 

against a heterogeneous model is 110%. 
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Figure 20: Strategy against homogeneous & heterogeneous 

4.4. Summary  

Significant research has been conducted towards understanding human adversary behavior in 

security games, which has led to several deployed real-world applications (Tambe 2011), such as 

PROTECT for the protection of major ports in the US by the US Coast Guard (Shieh et al. 2012).  

Moreover, ARMOR for scheduling of police patrols at major airports such as LAX (Pita et al. 

2008).  

Although these researches in security games have relied on modeling adversaries via a single 

homogeneous model or a heterogeneous model with a smooth distribution over model parameters, 

in this chapter, I showed the heterogeneity in adversary behavior by clustering adversaries into 

distinct groups based on their exploration patterns.  

We found that three distinct clusters emerged based on the adversaries’ exploration patterns, 

two of which fall at two extreme ends of the spectrum, capturing perfectly rational and completely 

random adversarial behavior while people in the third cluster exhibit some behavior in between. 
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We also observed that in our OSG domain, exploration is negatively correlated with utility 

maximization. 

We demonstrate that accounting for the diversity of adversary behavior leads to very different 

model parameters and can provide more accurate predictions of future behavior. Specifically, we 

show on data collected based on an Opportunistic Security Game that (i) the QR model captures 

the behavior of utility maximizing adversaries better than the SUQR or IBL based models; (ii) the 

behavioral (QR, SUQR) and cognitive models (IBL) have similar prediction performance for 

adversaries who do not act in a perfectly rational fashion (iii) furthermore, we show that 

considering the heterogeneity in adversary behavior leads to different defender strategies being 

generated. The effectiveness of such strategies is an important area of future work.  
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Chapter 5. Adversary Dynamics of Behavior  

Despite the widespread use of Stackelberg Security Games, there has been little research on 

how adversaries adapt to defense strategies over time (i.e., dynamics of behavior). In this chapter, 

I advance the study of human behavior by showing how adversaries’ behavior changes as they 

learn the defenders’ behavior over time. Furthermore, I show how behavioral game theory models 

can be modified to capture learning dynamics using a Bayesian Updating modeling approach.  

More specifically, this chapter starts by addressing possible limitations in the previous chapter. 

In the previous experiment, participants’ exploration in their experiment was, to some extent, 

determined by a random termination rule in the game. That is, the number of decisions that 

participants could make was, at least in part, determined by chance. This particular effect may 

have contributed to the variability in exploration processes observed. This chapter presents a new 

experimental study using the same OSG setting employed in previous chapters but enforced a fixed 

number of decisions for all participants. Furthermore, the larger number of trials in the present 

study enables the study of human behavior over-time. This new study is the first to provide a 

systematic study of how adversary behavior changes over time in Security Game Setting. 

Moreover, building on the previous chapter and using distinct adversary categories, in this chapter, 

I show how adversary behavior shifts among these categories as adversaries learn over time.  

Furthermore, to account for adversary behavior change, I modified the traditional human 

bounded rationality models with a Bayesian update method, so that these models would also be 

able to predict behavior over time. These models are compared to an Instance-Based Learning 

(IBL) model that provides a cognitively-plausible account for overtime behavior in the OSG. 
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5.1. Modified OSG Experiment 

To collect data on adversarial behavior in the OSG domain, we adopted the experimental 

design used in previous (Figure 21).  

5.1.1. Experimental Procedure  

In the experiment, the players’ goal is to maximize their score by collecting rewards 

(represented by stars in Figure 21) in limited time while avoiding officers on patrol. Each player 

can travel to any station, including the current one, by train as represented by the dashed lines in 

Figure 21. By going to a station, the player attacks that station and collects the rewards.  

Two officers are protecting these six stations. Each officer protects three stations where his 

patrolling strategy (i.e. probability of officers’ presence at each station or route,) is determined by 

an optimization algorithm similar to the one presented in (Zhang et al. 2014). This algorithm 

utilizes opportunistic adversary behavior model to provide optimized defender strategies.  

The stationary coverage probabilities for each station and trains are provided to the players, so 

players can determine the chance of encountering an officer at a station by considering the 

percentage of the time that officers spend on average at each station and on a train. However, 

 
 

Figure 21: Experiment Game Interface 
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during the game, the players cannot observe the officers unless they encounter the officer at a 

station. 

The game can finish either if the player uses up all the 250 units of available time in each game, 

or the game is randomly terminated after the 50th attack with a 10% probability shown by the 

randomized terminator. To encourage the participants to make each decision responsibly, we have 

employed deception and the randomized terminator is shown to players from the 1st attack to 

encourage them to choose each action carefully, as they believe there is a chance the game may 

terminate after each attack.  

Thus, a players’ objective is to maximize his total reward in limited time. The player must 

carefully choose which stations to attack considering the available information about available 

time, rewards, and officers’ coverage distribution on stations and time spent to attack the station. 

If there is no officer at the station the player has attacked, his score will be increased by the number 

of stars at the station. If there is an officer at the station, his score remains the same.  

Each participant began by playing two practice rounds to become familiar with the game. Next, 

participants played [50+] trials on the main game from which data were used in analyses. We 

constructed four different graphs (i.e., layouts), each of which had six stations with a different 

route structure and patrolling strategy. Each participant played two practice rounds and was 

randomly assigned to the main game on one of the four graphs. 

5.1.2. Participants  

Participants were recruited from Amazon Mechanical Turk. They were eligible, if they were 

living in the United States, had previously played more than 500 games and had an acceptance rate 
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of a minimum of 95%. In total 246 participants played the game with the average age of 33.6 years 

old where 45% were female, and 54% were male, and 1% preferred not to identify their sex.  

To motivate the subjects to play games, they were compensated based on their total score 

($0.01 for each gained point) in addition to a base compensation ($1). In total, 215 participants 

passed the validation test (correctly answered all the questions about the game at the end of the 

instructions). Data from participants who did not pass validation were excluded from further 

analyses.  

5.2. Adversarial Attack pattern 

The previous chapter shows that attackers can be divided into distinct groups based on their 

exploration behavior (i.e., Mobility Score: the ratio of the number of movements between stations 

over the number of trials (total number of possible movements)) by a participant in the game. 

Therefore, attacking the same station in consecutive trials resulted in a low mobility score while 

attacking a different station in each trial resulted in a high mobility score. We define three attack 

patterns: (i) Low Mobility for attackers who did limited or no exploration; (ii) High Mobility for 

attackers who tended to explore and frequently move between stations and (iii) Medium Mobility 

for attackers who engaged in a middling level of exploration.  

In previous work where participants had different numbers of trials, it was possible that the 

different mobility patterns were due to variability in the number of decisions and subsequent 

feedback available. Alternatively, it was also possible that the participants’ mobility pattern 

represents their intentional different attack patterns that differ in the amount of exploration and 

their tendency to exploit.  
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So in this study, in contrast with the previous study, participants had the same number of trials, 

allowing us to factor out the “variability in the number of decisions” and test whether clusters still 

emerge.  

Following the previous chapter, we applied K-means (k=3) clustering analysis to the data. 

Participants naturally divided into three groups: participants whose mobility score is less than or 

equal to 10% or Low Mobility (i.e. Cluster 1), participants whose mobility score is greater than or 

equal to 70%: High Mobility (i.e. Cluster 3), and participants whose mobility score is greater than 

10% and less than 70%: Medium Mobility (i.e. Cluster 2).  

 

 

Figure 23: Utility Rank by Cluster 
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Figure 22: Expected Utility Rack for each Cluster 
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Figure 24: Percentage of attacks on the highest EU station 

Figure 22 shows the three clusters and their corresponding distribution of the utility5 of the 

choices they made (EU-rank6 distribution). Participants who belong to the Low Mobility Cluster 

focused on the stations with highest expected utility (mean=1.2, SD=0.5). On the other hand, 

participants who tended to move frequently between different stations (High Mobility) attacked 

average stations with lower utility (mean=3.0, SD=1.3). Participants in Medium Mobility Cluster 

also attacked a variety of stations but were leaning (on average) towards higher utility rank stations 

(mean=0.7, SD=1.15). These results replicated those in the previous chapter. The robustness of 

these observations is very important in designing defenders’ strategies as they show that attackers 

that belong to different clusters make decisions differently. 

The cluster results are reinforced by Figure 23 that illustrates the negative correlation between 

mobility scores and the average utility of the attacked stations by the participant (r= -0.9, p<.001).  

Similarly, there is a significant negative correlation (r = -0.36, p <0.001) between the final score 

                                                      
5 𝐸𝑈 =  (1 − 𝑠𝑡𝑎𝑡𝑖𝑜𝑛𝑎𝑟𝑦 𝑐𝑜𝑣𝑒𝑟𝑎𝑔𝑒) ∗ 𝑟𝑒𝑤𝑎𝑟𝑑/  𝑡𝑖𝑚𝑒 
6 To normalize the utility score among graphs, we have used the ranking of stations’ utility instead of its absolute 

value (the highest utility in the graph is ranked 1) 
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of the participant and his mobility score. In other words, the more participants moved between 

stations, the lower their score was, and the less money they earned in the experiment. The main 

question of interest in this chapter is the change of adversarial behavior over the course of the 50+ 

trials. We expect that as attackers play the game they will learn to discover the station with higher 

EU and the patterns of defense behavior, and therefore learn to concentrate in the most profitable 

stations. 

To test this hypothesis we analyzed participants’ behavior over the course of the 50 trials. 

Figure 24 demonstrates the percentage of attacks on the stations with the highest Expected Utility 

(EU) in each of 5 consecutive blocks of 10 trials each. For the participants who belong to Low 

Mobility and High Mobility Clusters, the percentage of attacks has small fluctuation over time. On 

the other hand, this percentage increase for the participants in the Medium Mobility Cluster. 

Moreover, the bar charts show the percentage of attacks on the highest EU stations by all the 

participants combined. Over the course of the 50 trials, the percentage increases significantly as 

the proportion of Low Mobility participants increases over time while the percentage of High 

Mobility participants decreases. In other words, participants shifts toward clusters with lower 

mobility score and higher rationality level over time.  
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Figure 25: Clustering Change over time 

Figure 25 demonstrates the percentage of participants belonging to each cluster, in each of 5 

consecutive blocks of 10 trials each. The percentage of Low Mobility participants increases from 

the first ten trials to the last ten trials, while the percentage of High Mobility participants decreases 

over the course of the 50 trials. In other words, participants became more “rational” over time. 

These observations provide us with further insights for designing defenders’ strategies, as we show 

that in addition to classifying attackers by their mobility behavior we also need to consider how 

adversaries become smarter and learn the defend strategy with more attack attempts.  

5.3. Models of Adversarial Behavior in OSGs 

In the following, we present competing models that represent adversarial behavior and focus 

on a modification to these models that capture changes in human behavior over time.   

5.3.1. Bayesian Update of Human Behavior Models 

In the previous chapter, the human behavior models did not have the power to predict how 

human behavior changed over time. On the other hand, our results in this chapter show participants 

(regardless of their classification based on mobility score) learn to take advantage of the defense 

algorithm, and they attack stations with higher utility over the course of the trials (becoming wiser). 
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Thus, it is important that models of adversarial behavior account for the change in participants’ 

behavior. Furthermore, in the previous chapters, the QR, and SUQR models were compared to a 

process model, a cognitive model that predicts individual choices over time (the IBL model). In 

some way, these comparisons did not demonstrate the most significant advantages of a cognitive 

model of learning: to predict individual choices at each point in time. For this reason and given 

our experimental results, we modified the traditional QR and SUQR models described above with 

a Bayesian update method (B-QR and B-SUQR), so that these models would make more similar 

predictions to the IBL model, with individual choices over time.  

To use the Bayesian update method, we focus on participants’ decision at each trial: each 

participant made a decision of selecting one out of the six stations to attack. We modeled this 

problem with a Multinomial distribution over six options with a probability vector < 𝑝1, … , 𝑝𝑘 > 

where 𝑝𝑖 refers to probability of choosing option 𝑖 in each trial.   

At first, before having any data, we assumed that participants can attack any of the six stations 

with uniform probability. Then, after each ten trials, we gathered data on the actual number of 

attacks at each station, yielding data on the actual probability of attacking each station. So <

𝑝1, … , 𝑝𝑘 > can be updated in the Multinomial Distribution. Luckily, Dirichlet distribution 

(Bernard, J. M., 2005) is a conjugate distribution for the Multinomial distribution which leads to 

generating a distribution for each of the probabilities in Multinomial distribution. So in Bayesian-

Quantal Response and Bayesian-SUQR, after each ten trials, the distribution over probabilities of 

attacks get updated and then 100 random samples generated out these probability distributions and 

100 human behavior models’ parameters were extracted using these samples of probability of 

attaching each target. 
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5.3.2. Instance-Based Learning Model 

The IBL model (Gonzalez & Dutt, 2011; Lejarraga, Dutt & Gonzalez, 2013) of an adversary 

makes a choice about the station to go to each trial by using the Blended Value. The Blended value 

𝑉 represents value of attacking each station (option 𝑗 ) in a particular trial: 

𝑉𝑗 = ∑ 𝑝𝑖𝑗𝑥𝑖𝑗

𝑛

𝑖=1

 

where 𝑥𝑖𝑗 refers to the value (payoff) of each station (the number of stars divided by time 

taken) stored in memory as instance i for the station j, and 𝑝𝑖𝑗 is the probability of retrieving that 

instance for blending from memory (Gonzalez & Dutt, 2011; Lejarraga et al., 2012) defined as: 

𝑝𝑖𝑗 = 𝑒
𝐴𝑖
𝜏 ∑ 𝑒

𝐴𝑙
𝜏

𝑙
⁄  

Where 𝑙 refers to the total number of payoffs observed for station 𝑗 up to the last trial, and 𝜏 is 

a noise value defined as 𝜎 ∙ √2. The 𝜎 variable is a free noise parameter. The activation of instance 

i represents how readily available the information is in memory: 

𝐴𝑖 = 𝑙𝑛 ∑ (𝑡 − 𝑡𝑝)−𝑑

𝑡𝑝

𝜖 𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑

+ ∑ 𝑃(𝑀𝐴𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒 − 1)
𝐴𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒 

𝜖 𝑆𝑖𝑡𝑢𝑎𝑡𝑖𝑜𝑛

+ 𝜎ln (
1 − 𝛾𝑖,𝑡

𝛾𝑖,𝑡
) 

The Activation is higher when instances are observed frequently and more recently. For 

example, if an unguarded, nearby station with many stars (high reward) is observed many times, 

the activation of this instance will increase, and the probability of selecting that station in the next 

round will be higher. However, if this instance is not observed often, the memory of this station 

will decay with the passage of time (the parameter d, the decay, is a non-negative free parameter 
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memory retrieval. 

Importantly, in addition to the kernel mechanisms of the IBL model described above, and used 

in a multitude of studies (see Gonzalez, 2013 for a summary), the previous chapter proposed a 

mechanism that would allow the IBL model to account for the various mobility clusters. This 

mechanism was a randomization rule applied at each time step, which resulted in making a random 

selection of a station instead of selecting the station with the highest Blended value. This 

randomization rule served the purpose of generating the clusters of participants with diverse 

mobility scores. In this chapter, this rule was removed given that each participant made exactly 50 

choices, and the process of learning over those should be captured by the kernel mechanisms of 

the IBL model without the additional randomization rule. 

5.4. Modeling Results  

To test the models, we divided the human data set into two groups: training and test datasets. 

For each cluster or block of trials, 70% of the participants were randomly selected, and their data 

were used to train the QR, SUQR, and their Bayesian versions (B-QR and B-SUQR) and to fit the 

d were used for testing the 

models.  

For comparison of different models, we use Root Mean Squared Error (RMSE). Table 8 shows 

the results on the full data set. Although models provide different perspectives, their prediction 

errors are similar. The IBL model captures learning and decision dynamics over time while QR 

and SUQR predict the stable state transition probabilities of the attacker while B-QR and B-SUQR7 

                                                      
7 For Bayesian-QR (B-QR) and Bayesian-SUQR (B-SUQR), the average values over 100 data have reported in the 

tables 
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update the transition probabilities of attacker after each ten trials.  Table 9 shows the performance 

of different models in different clusters. 

Table 8: Metrics and Parameter on the full data set 

Model Parameters RMSE 

QR 0.41 0.25 

SUQR <2.9,-2.1,-2.7>8 0.24 

Bayesian-QR (B-QR) 0.34 0.24 

Bayesian-SUQR (B-SUQR) <2.5.-1.9,-2.1> 0.23 

IBL <0.01,0.01>9 0.23 

 

In Low Mobility Cluster, human behavior models outperform IBL model, and the Bayesian 

update on these models results in a significant improvement over their counterparts’ models. For 

the Medium Mobility Cluster, the improvement is not significant, and all models’ prediction errors 

are similar for the High Mobility Cluster.  

Table 9: Metrics and Parameters on each Cluster 

Clusters Model Parameters RMSE 

Low Mobility 

Cluster 

QR 1.28 0. 33 

SUQR <5.6,-4.4,-8.9>8 0.35 

B-QR 0.69 0.20 

B-SUQR <2.8,-2.2,-5.1> 0.17 

IBL <0.46, 0.01>9 0.50 

                                                      
8 < 𝑤𝑟 , 𝑤𝑠𝑡𝑎 , 𝑤𝑡𝑖𝑚𝑒 > 
9 <𝑛𝑜𝑖𝑠𝑒, 𝑑𝑒𝑐𝑎𝑦> 
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Medium 

Mobility 

Cluster 

QR 0.69 0.27 

SUQR <4.5,-2.3,-5.1>8 0.28 

B-QR 0.49 0.17 

B-SUQR <3.0,-1.7,-2.5> 0.24 

IBL <3.64, 1.82>9 0.35 

High 

Mobility 

Cluster 

QR 0.07 0.25 

SUQR <2.1,-1.7,-0.5>8 0.25 

B-QR 0.14 0.27 

B-SUQR <1.9,-1.5,-1.5> 0.28 

IBL <0.1, 2.71>9 0.27 

 

 

Figure 26: lambda value over time 

For the Bayesian models, the reported parameters in the tables were averaged over extracted 

parameters from the samples. Further analyses over these parameters are shown in Figure 26 which 

shows the distribution of Quantal Response λ-value over time. As shown in the graph, the λ-value 

increases, which means the participants are becoming more rational.  

This observation is consistent with Figure 24, extracted from participants’ data, where the bar 

chart shows the percentage of attacks on the highest expected utility stations which increase over 

time. 
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Figure 27: Percentage of attack on the highest EU station predicted by IBL 

 

Figure 28: Percentage of attack on the highest EU station predicted by B-QR 

 

Figure 29: Percentage of Attack on the highest EU stations predicted by B-SUQR 

Figure 27, Figure 28, and Figure 29 all focus on the proportion of attacks on the highest EU 

stations over time, predicted by the IBL, B-QR, and B-SUQR models, respectively. As shown in 

the graphs, all models also predict the increasing rationality of the participants over time 

specifically for Low Mobility Cluster and Medium Mobility Cluster. 
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5.5. Summary 

In security game researches, understanding human adversary behavior has led to several 

deployed real-world applications (Tambe 2011). Although there are a significant amount of such 

researchers, there has been little research of heterogeneous adversary and how adversaries adapt 

to defense strategies over time. In this chapter, we focus on opportunistic adversaries and advance 

the prior research which suggested classifying adversary into distinct groups based on the ways 

humans explore their choice options.  

More specifically, we advance this work by showing how adversaries shift among the 

categories as they learn the defenders’ behavior over time; toward the end of the game, more 

participants belong to Cluster 1 (cluster with lower mobility score and higher score) and fewer 

participants belong to Cluster 3 (participants with higher mobility score). This might be because 

of the fact that toward the end of the game, participants learn more about the game, the 

consequences of their action and make a more rational decision and so more participants join the 

cluster with the higher rationality level. On the other hand, some participants did not change their 

behavior over the course of 50 trials and these may refer to criminals who do almost no planning 

before committing their crime.  

Furthermore, we show how behavioral game theory models can be modified to capture the 

learning dynamics using a Bayesian Updating modeling approach. These models perform similarly 

to a cognitive model known as Instance-Based Learning, to predict learning patterns.  

This chapter also provides interesting insights into building defense strategies. For example, 

current sophisticated defense algorithms often assume a homogeneous adversary population who 

behave the same over time. Given the significant impact of modeling adversarial behavior to 
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designing optimum patrolling strategies for the defenders, it is critical to account for this 

heterogeneity in behavior also we need to have defenders’ strategy which adapts to change in 

human behavior over time. 
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Chapter 6. Conclusion 

6.1. Contributions 

With the growing number of automated decision aids based on a game-theoretic algorithm, 

investigations of human bounded rationality models become crucial to ensure effective security 

resource allocation and scheduling. The findings outlined in this thesis provides valuable advice 

for modeling human behavior in Opportunistic Security domain 

This work for the first time provides an empirical investigation of adversary bounded 

rationality in opportunistic crime settings, where modeling bounded rationality is particularly 

crucial. Based on data collected by running extensive human subject experiments and comparing 

different bounded rationality models, I have illustrated that: (a) while previous research proposed 

the use of the Quantal Response model of human adversary, this model is significantly 

outperformed by the SUQR model; (b) combinations of the well-known prospect theory model 

and SUQR leads to an even better performance in modeling human adversary behavior; (c) while 

it is important to model the non-linear human weighting of probability, as advocated by prospect 

theory, our data suggests that human weighting of probability is “S-shaped” as opposed to the 

“inverse S-shape” advocated in prospect theory; and (d) models based on relative weighting of 

values, i.e., gain and loss from current state, provide better modeling accuracy than absolute 

weighting. These are some of the findings that provide valuable advice for practical 

implementations of decision-aids.  

In the second part of this thesis, I investigated the heterogeneity in adversary behavior by 

clustering adversaries into distinct groups based on their exploration patterns. We found that three 

distinct clusters emerged based on the adversaries’ exploration patterns, two of which fall at two 
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extreme ends of the spectrum, capturing perfectly rational and completely random adversarial 

behavior while people in the third cluster exhibit some behavior in between. It has also been 

observed that in our OSG domain, exploration is negatively correlated with utility maximization. 

I demonstrate that accounting for the diversity of adversary behavior leads to very different 

model parameters and can provide more accurate predictions of future behavior. Specifically, on 

the data collected from our OSG experiment, I show that (a) the QR model captures the behavior 

of utility maximizing adversaries better than SUQR or IBL based models; (b) the behavioral 

models (QR and SUQR) and cognitive models (IBL) have similar prediction performance for 

adversaries who do not act in a perfectly rational fashion, and (c) considering the heterogeneity in 

adversary behavior leads to different defender strategies. The effectiveness of strategies generated 

by adopting heterogeneous behavioral models is an important area of future work.  

And finally, in the third part of this thesis, I extend the previous chapter on classifying human 

adversaries into distinct groups and show (a) how adversaries shift among the categories as they 

learn the defenders’ behavior over time; toward the end of the 50 trials, more participants belong 

to Cluster 1(cluster with the lower mobility) and less to Cluster 3 (high mobility cluster). Or in 

other word, participants become more rational over time, and (b) how behavioral game theory 

models can be modified to capture the learning dynamics using a Bayesian Updat approach. 

6.2. Future Work  

In this thesis, I have shown how human behavior can be best predicted by human bounded 

rationality models as well as cognitively plausible models. I show how detailed analysis of our 

data can be used to categorize different types of the adversary and also show how human behavior 

changes over time. To that end, these results provide insight to design optimal patrolling strategy 
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for the defenders, and there are still many research opportunities, challenges and questions to be 

answered. 

One possible direction for future work is more detailed analyses of the data. First, extensive 

study of participants’ behavior can be done in regards to the complexity of the graph; initial results 

show participants’ rationality level highly correlates with the graph structure. Second, we can 

change the incentives (constant vs. bonus payments) in the AMT experiment and study how 

individual risk attitude change with respect to different incentives. One other possible future work 

would be an extensive study of human behavior over time. The results show that some participants 

changed their behavior over time while some perform invariably and remained in the same 

category. It would be insightful to study if there is any correlation between participant’ behavioral 

change pattern and the specific game the participant played.  

Additionally, it would be very helpful to perform a sensitivity analysis by running modified 

versions of the experiment. For example, by hiding the information on stationary coverage from 

the players, we can study the impact of partial information on different models’ performance. 

Designing the experiment with partial information would also provide the opportunity to expand 

the study from Opportunistic Security Game to Cyber Security.  

Moreover, the results show that defenders are facing heterogeneous adversaries whose 

behavior change over time. Therefore, designing defending strategies which can adopt with 

heterogeneous adversaries over time would be interesting.  

The mentioned directions are only some ideas out of many interesting research opportunities 

that could advance this field in many ways.  
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