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The security game is a basic model for resource allocation in adversarial environments. Here there are
two players, a defender and an attacker. The defender wants to allocate her limited resources to defend
critical targets and the attacker seeks his most favorable target to attack. In the past decade, there has been
a surge of research interest in analyzing and solving security games that are motivated by applications
from various domains. Remarkably, these models and their game-theoretic solutions have led to real-world
deployments in use by major security agencies like the LAX airport, the US Coast Guard and Federal Air
Marshal Service, as well as non-governmental organizations. Among all these research and applications,
equilibrium computation serves as a foundation.

This paper examines security games from a theoretical perspective and provides a unified view of vari-
ous security game models. In particular, each security game can be characterized by a set system E which
consists of the defender’s pure strategies; The defender’s best response problem can be viewed as a combina-
torial optimization problem over E . Our framework captures most of the basic security game models in the
literature, including all the deployed systems; The set system E arising from various domains encodes stan-
dard combinatorial problems like bipartite matching, maximum coverage, min-cost flow, packing problems,
etc. Our main result shows that equilibrium computation in security games is essentially a combinatorial
problem. In particular, we prove that, for any set system E , the following problems can be reduced to each
other in polynomial time: (0) combinatorial optimization over E ; (1) computing the minimax equilibrium for
zero-sum security games over E ; (2) computing the strong Stackelberg equilibrium for security games over
E ; (3) computing the best or worst (for the defender) Nash equilibrium for security games over E . Therefore,
the hardness [polynomial solvability] of any of these problems implies the hardness [polynomial solvability]
of all the others. Here, by “games over E” we mean the class of security games with arbitrary payoff struc-
tures, but a fixed set E of defender pure strategies. This shows that the complexity of a security game is
essentially determined by the set system E . We view drawing these connections as an important conceptual
contribution of this paper.
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1. INTRODUCTION
The security of critical infrastructures and areas is an important concern around the
world, especially given the increasing threats of terrorism. Limited security resources
cannot provide full security coverage at all places all the time, leaving potential at-
tackers the chance to explore patrolling patterns and attack the weakness. How can
we make use of the limited resources to build the most effective defense against strate-
gic attackers? The past decade has seen an explosion of research in attempt to address
this fundamental question, which has led to the development of the well-known model
of security games. A security game is a two-player game played between a defender and
an attacker. The defender allocates (possibly randomly) limited security resources, sub-
ject to various domain constraints, to protect a set of targets; The attacker chooses one
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target to attack. This is a basic model for resource allocation in adversarial environ-
ments, and naturally captures the strategic interaction between security agencies and
potential adversaries. Indeed, these models and their game-theoretic solutions have
led to real-world deployments in use today by major security agencies. For example,
they are used by LAX airport for checkpoint placement, the US Coast Guard for port
patrolling and the Federal Air Marshal Service for scheduling air marshals [Tambe
2011]; Recently, new models and algorithms have been tested by the Transportation
Security Administration for airport passenger screening [Brown et al. 2016] and by
non-governmental organizations in Malaysia for wildlife protection [Fang et al. 2016].

Equilibrium computation is perhaps the most basic problem in security games. In-
deed, there have been numerous algorithms developed for solving various security
games motivated by different real-world applications (we refer the reader to [Tambe
2011] for a review). However, many of these algorithms are based on integer linear
programs and heuristics, which may run in exponential time or output non-optimal so-
lutions. The computational complexity of solving these games is not well-understood.
Moreover, most of the literature has focused on the computation of the strong Stack-
elberg equilibrium (minimax equilibrium when the game is zero-sum), which may be
inappropriate when the players move simultaneously (see Section 3.2 for a more de-
tailed discussion). In this paper, we systematically study the computational complexity
of the three main equilibrium concepts adopted in security games, namely, the mini-
max equilibrium, strong Stackelberg equilibrium, and Nash equilibrium. However, in-
stead of examining all the models one by one, we provide a unified view of security
games that captures most of the basic models in the literature, and prove our results
in this general framework. Interestingly, it turns out that none of these equilibrium
concepts is computationally harder than the others in any security game captured by
our framework.

1.1. Our Results
We start with a unified formulation of security games. In particular, we show that
security games are essentially bilinear games, in which each player’s payoff has the
form xTAy + α · y; the defender’s mixed strategy x lies in a polytope P ⊆ Rn and the
attacker’s mixed strategy y is in the n-dimensional simplex ∆n. Interestingly, the ver-
tices of P, i.e., all the defender pure strategies, form a set system E , and the defender’s
best response problem can be viewed as a combinatorial optimization problem over E .
This general framework captures most of the basic security game models in the lit-
erature, including all the deployed security systems. We show that, the set system E
arising from various security domains encodes many standard combinatorial problems
like bipartite matching, maximum coverage, min-cost flow, packing problems, etc.

We are interested in solving the class of security games over E , by which we mean
all security games with arbitrary payoff structures, but a fixed set E of defender pure
strategies. Our main theoretical results build connections between combinatorial opti-
mization over E and equilibrium computation for security games over E . In particular,
we prove that, for any set system E , the following problems can be reduced to each other
in polynomial time: (0) combinatorial optimization over E ; (1) computing the minimax
equilibrium for zero-sum security games over E ; (2) computing the strong Stackelberg
equilibrium for security games over E ; (3) computing the best or worst (for the de-
fender) Nash equilibrium for security games over E . Therefore, the hardness [polyno-
mial solvability] of any of these problems implies the hardness [polynomial solvability]
of all the others. This shows that the complexity of a security game is essentially de-
termined by the set system E . As applications of these results, we also show how to
use them to easily recover and strengthen some known complexity results in the liter-
ature, as well as to resolve some open problems from previous work. We remark that



though these results are primarily theoretical, our reductions from equilibrium com-
putation to combinatorial optimization can be practically implemented via well-known
engineering approaches, e.g., the column generation technique.

1.2. Related Work
Several papers have examined the computational complexity of security games in par-
ticular settings. The most relevant are the following two papers: [Korzhyk et al. 2010]
consider the security settings where each security resource can be allocated to protect
a subset of targets; [Letchford and Conitzer 2013] consider security games on graphs
where targets are nodes and security resources patrol along paths. They show polyno-
mial solvability or NP-hardness under different conditions. To the best of our knowl-
edge, there is no other work which specifically focuses on a complexity study of security
games. Nevertheless, some hardness results are provided separately in different work
for different models, e.g., [Brown et al. 2016; Gan et al. 2015]. We note that our frame-
work only concerns the basic security game models. There are various refinements of
the basic models, e.g., the Bayesian setting, repeated setting, stochastic setting, etc.
Examining the complexity of these settings is an interesting avenue for future work,
but is not the focus of this paper.

Also related to our work is the rich literature on equilibrium computation for suc-
cinctly represented games. The most fundamental problem along this line is to com-
pute one Nash equilibrium for a two-player normal-form game. This is proven to be
PPAD-hard [Chen et al. 2009; Daskalakis et al. 2009]. In the same setting, computing
the Nash equilibrium that maximizes one player’s utility is NP-hard [Conitzer and
Sandholm 2008; Gilboa and Zemel 1989], but the strong Stackelberg equilibrium can
be computed in polynomial time by solving linear programs [Conitzer and Sandholm
2006]. [Immorlica et al. 2011] consider the computation of bilinear zero-sum games,
and show how to compute the minimax equilibrium when both players’ action poly-
topes have explicit polynomial-size representations. They also reduce computing an
ε-minimax equilibrium to an additive FPTAS for the player’s best response problem,
using the no regret learning framework. However, they do not consider the reverse
direction, namely, the reduction from best response to equilibrium computation. [Garg
et al. 2011] consider bilinear general-sum games, and show that such games are gen-
eral enough to capture many interesting classes of games, hence are hard to solve in
general. They propose polynomial time algorithms for computing approximate equilib-
ria when the payoff matrices have low rank.

2. PRELIMINARIES
Bilinear Game Basics. A bilinear game is given by a pair of matrices (A,B) and
polytopes (P,Q). Given that player 1 plays x ∈ P and player 2 plays y ∈ Q, the
utilities for player 1 and 2 are xTAy and xTBy respectively. As we will show later,
security games are essentially bilinear games with slightly richer structure of the form
xTAy+α·y and xTBy+β·y. Note that each vertex of the polytope is a pure strategy, and
a player may have exponentially many pure strategies even though her action polytope
(e.g., a hypercube) can be compactly represented. When A = −B, the game is zero-
sum. The definition of minimax equilibrium, Nash equilibrium, and strong Stackelberg
equilibrium (SSE) for two-player normal-form games naturally generalize here.

Linear Optimization and Convex Decomposition via Oracles. Any linear opti-
mization problem can be implicitly described as maxx∈P c

Tx where P ⊆ RN is a poly-
tope. By “(linear) optimization over P” we mean solving the problem maxx∈P c

Tx for
any c ∈ RN . A membership oracle for P is an algorithm that, on input x0 ∈ RN , cor-
rectly asserts whether x0 is in P or not. A separation oracle for P is an algorithm that,



on input x0 ∈ RN , either asserts x0 ∈ P or finds a hyperplane aTx = b that separates
x0 from P in the following sense: aTx0 > b and aTx ≤ b for any x ∈ P. The membership
[separation] problem for polytope P is to compute a membership [separation] oracle
for P. In the following theorems, by “polynomial running time” we mean polynomial in
the dimension N and the description length of the instance; Solving an LP means re-
turning the optimal objective value as well as a vertex optimal solution. The following
celebrated results are due to Grötschel, Lovász and Schrijver [Grötschel et al. 2012].

THEOREM 2.1. Let P ⊆ RN be a polytope. If there is a polynomial time algorithm to
solve the separation problem for P, then there is a polynomial time algorithm to solve
any linear program over P as well as its dual program.

THEOREM 2.2. Let P ⊆ RN be a polytope, and let x0 ∈ P be a point known to any
algorithm. There is a polynomial time algorithm for the optimization problem over P if
and only if there is a polynomial time algorithm for the membership problem for P.

To implement a mixed strategy x ∈ P, we need to decompose x into a linear com-
bination of pure strategies, i.e., vertices of P. This can also be done efficiently given
access to an efficient separation oracle.

THEOREM 2.3. Let P ⊆ RN be a polytope. If the separation problem for P can be
solved in polynomial time, then there is a polynomial time algorithm that, on any input
x ∈ P, computes N + 1 vertices x1, ..., xN+1 ∈ P and convex coefficients λ1, ..., λN+1 such
that x =

∑N+1
i=1 λixi.

3. THE MODEL OF SECURITY GAMES
3.1. Strategies and Payoff Structures
A security game is a two-player game played between a defender and an attacker. The
defender possesses multiple security resources and aims to allocate these resources
to protect n targets (e.g., physical facilities, critical locations, etc.) from the attacker’s
attack. We use [n] to denote the set of these targets. A defender pure strategy is a subset
of targets that is protected (a.k.a., covered) in a feasible allocation of these resources.
For example, the defender may have k(< n) security resources, each of which can be
assigned to protect any target. In this simple example, any subset of [n] with size at
most k is a defender pure strategy. However, in practice, there are usually resource
allocation constraints, thus not all such subsets correspond to feasible allocations. We
will provide more examples in Section 3.3.

A more convenient representation of a pure strategy, as will be used throughout the
paper, is a binary vector e ∈ {0, 1}n, in which the entries of value 1 specify the covered
targets. Let E ⊆ {0, 1}n denote the set of all defender pure strategies. Notice that E also
represents a set system. The size of E is very large, usually exponential in the number of
security resources. In the example mentioned above, |E| = Ω(nk) which is exponential
in k. Therefore, computational efficiency in security games means time polynomial in
n, not |E|. A defender mixed strategy is a distribution p over the elements in E . The
attacker chooses one target to attack, thus an attacker pure strategy is a target i ∈ [n].
We use y ∈ ∆n to denote an attacker mixed strategy where yi is the probability of
attacking target i.

The payoff structure of the game is as follows: given that the attacker attacks target
i, the defender gets a reward ri if target i is covered or a cost ci if i is uncovered; while
the attacker gets a cost ζi if target i is covered or a reward ρi if i is uncovered. Both
players have utility 0 on the other n − 1 unattacked targets. A crucial structure of
security games is summarized in the following assumption: ri > ci and ρi > ζi for all
i ∈ [n]. That is, covering a target is strictly beneficial to the defender than uncovering



it; and the attacker prefers to attack a target when it is uncovered.1 We formalize the
model of security games in the following definition.

Definition 3.1. [Security Game] A security game G with n targets is given by the
following tuple (r, c, ρ, ζ, E) and satisfies ri > ci and ρi > ζi for all i ∈ [n]. The security
game is zero-sum if ri + ζi = 0 and ci + ρi = 0 for all i ∈ [n].

We denote a security game by G(r, c, ρ, ζ, E). When the game is zero-sum, we also use
G(r, c, E) for short. We are interested in solving security games over E , by which we
mean security games with arbitrary payoff structures, but a fixed set E of defender
pure strategies. The defender’s utility, as a function of the defender pure strategy e
and attacker pure strategy i, can be formally expressed as

Ud(e, i) = ri · ei + ci · (1− ei),
where ei is the i’th entry of e. Given a defender mixed strategy p ∈ ∆|E| and attacker
mixed strategy y ∈ ∆n, we use Ud(p,y) to denote the defender’s expected utility, which
can be expressed as

Ud(p,y) =
∑

e∈E
∑n
i=1 peyiU

d(e, i)
=
∑

e∈E
∑n
i=1 peyi

(
ri · ei + ci · (1− ei)

)
=
∑n
i=1 yi

(
ri ·
∑

e∈E peei + ci · (1−
∑

e∈E peei)
)

=
∑n
i=1 yi

(
ri · xi + ci · [1− xi]

) (1)

where

xi =
∑

e∈E peei ∈ [0, 1] (2)

is the marginal coverage probability of target i. Let x = (x1, ..., xn)T denote the
marginal probability for all targets induced by the mixed strategy p. Notice that the
marginal probability induced by a pure strategy e is precisely e itself.2 Equation (1)
shows that the defender’s expected utility can be compactly expressed as the bilinear
form xTAy + α · y for some non-negative diagonal matrix A, where x is the marginal
probability induced by the defender mixed strategy. We note that the convex hull of E
forms a polytope P = {x : x =

∑
e∈E pe · e, ∀p ∈ ∆|E|} which consists of all the feasible

(i.e., implementable by a defender mixed strategy) marginal probabilities.3
For the rest of this paper, we will simply interpret a point x ∈ P as a mixed strategy,

and instead write the defender’s utility as Ud(x,y). Similarly, the attacker’s expected
utility can be compactly represented in the following form. We note that Ua(x,y) also
has the bilinear form xTBy + β · y for some non-positive diagonal matrix B.

Ua(x,y) =
∑n
i=1 yi

(
ρi · [1− xi] + ζi · xi

)
. (3)

1In practice, the attacker can also choose to not attack. This can be incorporated into the current model by
adding a dummy target. Therefore, we will not explicitly consider the case here.
2Here we assume security forces have perfect protection effectiveness. That is, once a target is covered,
regardless by one or multiple resources, it is fully protected with probability 1. Generalization to nonperfect
effectiveness is straightforward.
3One type of security games that is not captured by this model is the network interdiction game [Tsai et al.
2010; Washburn and Wood 1995], in which the defender chooses edges to defend and the attacker chooses a
path to attack. The task of the defender is to interdict the attacker at a certain edge. The utility functions
in this game do not have the bilinear structure, and are non-convex in general. This belongs to the more
general class of succinctly represented games with non-linear payoffs, which is EXP-hard to solve even in
zero-sum cases [Feigenbaum et al. 1995].



3.2. Equilibrium Concepts
Many security games, including some deployed systems [An et al. 2012; Yin et al.
2012], are modeled as zero-sum games. That is, the defender’s reward [cost] is the
negative of the attacker’s cost [reward]. For example, in the deployed security system
for patrolling proof-of-payment metro-systems [Yin et al. 2012], the defender aims to
catch fare evaders at metro stations. This game is naturally zero-sum: the evader’s cost
of paying a fine is the defender’s reward of catching the evader, while the ticket price
is the evader’s reward and the defender’s cost if failing to catch the evader. In zero-
sum games, all standard equilibrium concepts are payoff-equivalent to the minimax
equilibrium, and our goal is to compute the minimax equilibrium in poly(n) time.

When the game is not zero-sum, the main solution concept adopted in the literature
of security games is the strong Stackelberg equilibrium (SSE) [von Stackelberg 1934;
von Stengel and Zamir 2004]. In particular, the defender plays the role of the leader
and can commit to a mixed strategy before the attacker moves. The attacker observes
the defender’s mixed strategy and best responds. This is motivated by the considera-
tion that the attacker usually does surveillance before committing an attack, thus is
able to observe the empirical distribution of the defender’s patrolling strategy [Tambe
2011]. In this case, our goal is to compute the optimal mixed strategy for the defender
to commit to (the attacker’s best response problem is usually trivial). Notice that, the
attacker is not able to observe the defender’s real-time deployment (i.e., the sampled
pure strategy) since he has to plan the attack before the defender’s real-time pure
strategy is sampled.

The strong Stackelberg equilibrium (SSE) is appropriate only when the attacker
does surveillance and can indeed observe the defender’s past actions. However, in
many cases the attacker does little surveillance. In fact, even if the attacker intends to
do surveillance, sometimes he cannot observe the defender’s strategies due to limited
resources and confidentiality of the defender’s resource allocation (e.g., plainclothes
police). In these settings, the defender cannot commit to a strategy, thus Nash equilib-
rium (NE) serves as a more appropriate solution concept. Simultaneous-move security
game models are particularly common for modeling interactions with terrorism, par-
tially due to the fact that the defender’s actions are confidential in such settings (see,
e.g., [Bier et al. 2007; Major 2002; Sandler et al. 2003, 2005]). In networked infor-
mation systems, the interaction between the defender (system protector) and attacker
(malware) is usually modeled as a simultaneous-move security game as well since mal-
wares typically do not analyze past system behaviors. The goal is usually to compute
some particular (e.g., best or worst) Nash equilibrium [Mavronicolas et al. 2006, 2005].

3.3. Security Games & Combinatorial Optimization
The main theme of this paper is to build connections between combinatorial optimiza-
tion and equilibrium computation in security games. In particular, we consider the
following combinatorial problem.

PROBLEM 3.2 (DEFENDER BEST RESPONSE (DBR)). For any non-negative
weight vector w ∈ Rn+, compute

e∗ = arg max
e∈E

[w · e].

The DBR problem over E is to compute arg maxe∈E [w · e] for any input w ∈ Rn+.

In other words, the DBR problem is to compute a defender pure strategy that max-
imizes the total weight it “collects”. We claim that Problem 3.2 is precisely the de-
fender’s best response problem to an arbitrary attacker mixed strategy. To see this,
given any attacker mixed strategy y, we have Ud(x,y) =

∑n
i=1 xi

(
yi[ri−ci]

)
+
∑n
i=1 yici



for any x ∈ P. Let wi = yi[ri − ci] ≥ 0, then the defender’s best response to y is
arg maxx∈P x · w = arg maxe∈E e · w. Conversely, given any w ∈ Rn+, it is easy to find
an attacker mixed strategy y ∈ ∆n such that yi(ri − ci) is proportional to wi for all
i ∈ [n], making Problem 3.2 equivalent to the defender’s best response to y. Notice that
the DBR problem is a combinatorial optimization problem over the set system E . The
difference among various security game models essentially lies in the structure of E .
Next, we illustrate how some typical DBR problems relate to standard combinatorial
problems.

Uniform Matroid. In simple security settings, the defender has a certain number
of security resources, say k resources; each resource can be assigned to protect any
(one) target – i.e., no allocation constraints. Therefore, any subset of [n] of size at most
k is a defender pure strategy. In this case, E is a uniform matroid and the DBR problem
is simply to find the largest k weights. The deployed security system for LAX airport
checkpoint placement – one of the earliest applications of security games – is captured
by this model [Pita et al. 2008].

Bipartite Matching. A natural generalization of the uniform matroid case is that
the resource allocation is constrained. In this case, the defender has k heterogeneous
resources, and each resource can only be assigned to some particular targets associated
with that resource. This naturally models several types of scheduling constraints in
practice. For example, due to geographic constraints, policemen from a certain police
station can only patrol the area around that station. Also, different types of security
forces specialize in protecting different types of targets. Here, feasible assignments
can be modeled as edges of a bipartite graph with security resources on one side and
targets on another side. A defender pure strategy corresponds to a bipartite matching,
and the DBR problem is to compute the maximum weighted bipartite matching.

Coverage Problems. In some domains, one security resource can cover several tar-
gets. One deployed real-world example is the federal air marshal scheduling problem,
where one air marshal is assigned to protect several flights, but constrained on that the
arrival destination of any former flight should be the starting point of the next flight
[Tsai et al. 2009]. In other words, each security resource (i.e., air marshal) can protect
a subset of targets (i.e., flights). Therefore, each pure strategy is the union of targets
covered by each security resource. The DBR problem in this case is the maximum
weighted coverage problem. Another natural example is to protect targets distributed
on the plane and each security guard can cover a region of certain size. The DBR prob-
lem here is a 2-dimensional geometric maximum coverage problem.4 Other examples
include patrolling on a graph (e.g., street map or network systems) in which a patroller
at a node can protect all adjacent edges or a patroller on an edge can protect its two
end nodes. The DBR problem here is the vertex or edge coverage problem.

Min-Cost Flow. Many security games are played out in spatio-temporal spaces. For
example, the deployed security system in [Fang et al. 2013] helps to schedule the pa-
trol boats of the US Coast Guard to protect the (moving) Staten Island ferries every
day. Wildlife protection is another example [Fang et al. 2016]. One common way to
handle such settings is to discretize the space and build a 2-D – spatial and temporal
dimension – grid, and patrol the discrete (space, time) points (see Figure 1). However,
starting from a position at time t, the positions that a security resource can possibly
reach at time t + 1 are restricted due to various constraints like speed limit, terrain
barriers, etc. For example, the move highlighted by red in Figure 1 may be infeasible
since a patroller can not move that far within a small time period due to speed limit,
while the blue-colored moves are feasible. This can be modeled by adding edges be-
tween time layers to indicate feasible moves. The patrolling schedule for each security

4For more information about geometric coverage, see the thesis [Leeuwen et al. 2009] and references therein.
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Fig. 1: Feasible (blue) and infeasible (red) moves in spatio-temporal spaces.

resource corresponds to a path across all time layers, which specifies the position this
resource covers at each time point (see the blue path in Figure 1). The DBR problem
is, for any given non-negative weights at each (space, time) point, computing k paths
for the k resources to maximize the total weights they cover. This can be converted to
a min-cost max flow problem (with negative costs).

Packing Problems. Our last example is motivated by recent work on optimizing
the allocation of security resources for passenger screening for the Transportation Se-
curity Administration (TSA) [Brown et al. 2016]. Consider an airport with n flights
and flight i has mi passengers. The TSA has several screening tools, e.g., x-ray, walk-
through metal detector, chemicals, etc., and each screening tool has a capacity of the
maximum number of passengers it can check. In contrast to the case of coverage prob-
lems where each resource can protect several targets, here several tools are required
to screen one passenger. More precisely, each passenger is screened by a screening
team which is a combination of several screening tools. By protecting the flight from
a certain passenger we mean a passenger of that flight is screened, and identified as
an attacker if he is, by a screening team.5 The DBR problem is to, given non-negative
weight wi for passengers in flight i, allocate as many passengers as possible to teams
for screening, subject to each screening tool’s capacity constraint, so that the total
weight of screened passengers are maximized. This is a very general packing problem.
In fact, the reader may easily verify that even when wi = 1 and mi = 1 for any flight i,
the problem encodes the independent set problem.

Remark 3.3. We note that the list of examples above is by no means complete –
there are various other security settings with other combinatorial structures. For ex-
ample, there is also study on budget constraints for acquiring security resources (e.g.,
[Bhattacharya et al. 2011]), which induces the budgeted version of the above combina-
torial problems. In fact, real domains are usually more complicated with various types
of constraints, involving intersections of these combinatorial structures.

4. SOLVING ZERO-SUM SECURITY GAMES IS A COMBINATORIAL PROBLEM
In this section, we focus on zero-sum security games. Recall that we use n to denote
the total number of targets, and reward ri [cost ci] to denote the defender’s utility of
covering [uncovering] target i when it is attacked. The defender seeks to maximize her
utility while the attacker seeks to minimize the defender’s utility. We are interested in
computing the minimax equilibrium for security games over E in poly(n) time. More

5In [Brown et al. 2016], each screening team has an effectiveness factor denoting the probability a team can
identify an attacker. The setting here is slightly simplified with perfect effectiveness factor 1. Nevertheless,
it still captures the core difficulty of the problem.



max u
s.t. xiri + (1− xi)ci ≥ u, for i = 1, 2, ..., n.∑

e∈E pe · e = x∑
e∈E pe = 1

pe ≥ 0, for e ∈ E .
Fig. 2: The defender’s maximin strategy

min
∑n
i=1 ciyi + r

s.t. r − e ·w ≥ 0, for e ∈ E .
(ri − ci)yi = wi, for i = 1, 2, ..., n.∑n
i=1 yi = 1

yi ≥ 0, for i = 1, 2, ..., n.

Fig. 3: The attacker’s minimax strategy

specifically, we seek to understand how the computational complexity of the minimax
equilibrium relates to the complexity of the DBR problem. By convention, we some-
times call an algorithm for solving the DBR problem a DBR oracle. We prove the fol-
lowing equivalence theorem.

THEOREM 4.1. There is a poly(n) time algorithm to compute the minimax equilib-
rium for zero-sum security games over E , if and only if there is a poly(n) time algorithm
to solve the DBR problem over E .

Since security games are bilinear games, it is not hard to see that the minimax
equilibrium can be computed in polynomial time with access to an efficient DBR oracle.
The reduction follows a standard primal-dual argument. In particular, Figure 2 and 3
exhibit the linear programs for computing the defender’s maximin strategy and the
attacker’s minimax strategy. They are primal and dual of each other. Moreover, the
separation oracle for the attacker’s linear program is precisely the DBR problem, thus
both programs can be solved efficiently with access to an efficient DBR oracle (Theorem
2.1). We omit the details here.

What is interesting, however, is the reverse direction – i.e., solving the DBR prob-
lem is no harder than solving zero-sum security games. The minimax equilibrium, as
an optimization problem, has a special objective function. It is not clear that such a
special objective can be as hard as optimizing an arbitrary non-negative objective over
E . Moreover, security games are very special bilinear games: (i) the attacker’s mixed
strategy set is a simplex; (ii) the defender’s payoff matrix is non-negative and diago-
nal; (iii) the attacker’s payoff matrix is non-positive and diagonal. Thus unsurprisingly,
there have been attempts in the literature on solving security games without going
through the DBR problem. Indeed, various other techniques have been employed to
tackle security games, e.g., generalized Birkhoff-von Neumann theorem [Budish et al.
2013], techniques from convex and non-convex optimization, etc. However, the mes-
sage conveyed in Theorem 4.1 is that, to solve security games in polynomial time, it is
not only sufficient, but also necessary, to solve the DBR problem in polynomial time.
We now provide a formal reduction from the DBR problem to minimax equilibrium
computation.

Reducing DBR to Minimax Equilibrium
Recall that all the feasible marginal coverage probabilities form the polytope P, and
the vertices of P form the set E of defender pure strategies. We start with a simple
fact of linear programing, which states that any linear program achieves optimality at
some vertex of its feasible region (if non-empty).

FACT 4.2. maxe∈E [w · e] = maxx∈P [w · x], where P is the convex hull of E .

By Fact 4.2, solving the DBR problem is equivalent to solving the linear program
maxx∈P [w ·x]. The main technical step of our proof is to reduce the membership check-
ing problem for polytope P to the computation of minimax equilibrium. Therefore,
computing the minimax equilibrium will allow us to find a poly(n) time membership



oracle for P. By the polynomial-time equivalence between membership checking and
optimization (Theorem 2.2), we can conclude that the DBR problem can also be solved
in poly(n) time. Unfortunately, it turns out that membership checking for polytope P
cannot be easily reduced to the computation of minimax equilibrium because some
x ∈ P are entry-wise dominated by (i.e., entry-wise less than) other x′ ∈ P, so that x
can never be a defender equilibrium strategy. To overcome this barrier, we first relax
the polytope P and work on a broader set P̂ of marginal probabilities. We then make
use of the non-negativity of weights in the DBR problem to transfer linear optimization
over P̂ back to linear optimization over P.

We first introduce some notations. We call ê ∈ {0, 1}n a sub pure strategy (of e) if
there exists an e ∈ E such that êi ≤ ei for all i ∈ [n]. Equivalently, the covered targets
of a sub pure strategy ê is a subset of the covered targets of some real pure strategy
e. For example, the all zero vector 0 is always a sub pure strategy; any pure strategy
e ∈ E is also a sub pure strategy (of itself). Notice that sub pure strategies are not
necessarily feasible. For example, in the air marshal scheduling problem, a feasible
schedule for an air marshal has to be a round trip, not a one-way flight. We now define
the relaxed set of pure strategies

Ê = { all e ∈ E and all their sub pure strategies }
to be the set of E augmented with all sub pure strategies. The following lemma shows
that, when considering the DBR problem, relaxing E to Ê is without loss.

LEMMA 4.3. maxe∈E [e ·w] = maxê∈Ê [ê ·w] for any w ∈ Rn+.

PROOF. Since E ⊆ Ê , we have maxe∈E [e · w] ≤ maxê∈Ê [ê · w]. To prove another di-
rection, let ê∗ = arg maxê∈Ê [ê · w]. By definition, there exists e∗ ∈ E such that ê∗ is a
sub pure strategy of e∗. Since w ∈ Rn+ is non-negative, we must have e∗ · w ≥ ê∗ · w.
Therefore, maxe∈E [e ·w] ≥ e∗ ·w ≥ ê∗ ·w = maxê∈Ê [ê ·w], which concludes the proof.

We now define the relaxed polytope of marginal probabilities as follows.

P̂ = {x : x =
∑
ê∈Ê

pê · ê, ∀p ∈ ∆|Ê|}.

We next show that the DBR problem over E can be reduced to linear optimization (or
equivalently, membership checking, due to Theorem 2.2) of this relaxed polytope P̂.
It is easy to show that the optimal objective value of the DBR problem is equal to
maxx∈P̂ [x ·w]. However, the problem is that the optimal (vertex) solution to maxx∈P̂ [x ·
w], i.e., some ê∗ ∈ Ê , is a sub pure strategy, which may not be a feasible real pure
strategy (since w may have zero-valued entries), but an algorithm for the DBR problem
must return a feasible optimal solution. Nevertheless, this can be handled by properly
regularizing the linear program maxx∈P̂ [x · w] to make sure that its optimal vertex
solution is always feasible for the DBR problem over E . We refer the reader to the full
version for a formal argument.

LEMMA 4.4. The DBR problem over E reduces to membership checking for polytope
P̂ in poly(n) time.

We are now ready to complete the reduction by reducing membership checking for
polytope P̂ to solving zero-sum security games over E . Before that, we first show the
following down-monotone property of the relaxed polytope P̂, which turns out to be



crucial for the reduction. Lemma 4.5 follows from our construction of Ê which is a
downward closed set system.

LEMMA 4.5. Polytope P̂ is down-monotone in Rn+. That is, for any x ∈ P̂ and 0 ≤
x′ ≤ x (entry-wise), we have x′ ∈ P̂.

LEMMA 4.6. Membership checking for polytope P̂ reduces in poly(n) time to com-
puting the game value of zero-sum security games over E .

PROOF. Given any x ∈ Rn, we show how to check whether x ∈ P̂ by solving properly
constructed zero-sum security games. We assume x lies in Rn+ since otherwise x 6∈ P̂.
Given any x ∈ Rn+, we construct the following security game instance:

— For any i ∈ [n] such that xi = 0, let ci = 1 and ri = 2. Therefore, xiri + (1− xi)ci = 1.
— For any i ∈ [n] such that xi > 0, let ci = 0 and ri = 1

xi
. Therefore, xiri+(1−xi)ci = 1.

Note that in both cases, the condition ri > ci is satisfied. We claim that the defender’s
optimal utility, i.e., the game value, in the above zero-sum security game is at least 1

if and only if x ∈ P̂.
⇒ direction: Let (p∗,x∗, u∗) be the optimal solution to the LP in Figure 2. If the

defender’s optimal utility is at least 1, i.e., u∗ ≥ 1. We have

x∗i ri + (1− x∗i )ci ≥ u∗ ≥ 1 = xiri + (1− xi)ci, ∀i ∈ [n].

Since ri > ci, this induces x∗i ≥ xi for any i. Notice that the optimal (feasible) marginal
probability x∗ is in P by definition and P ⊆ P̂, therefore x∗ ∈ P̂. However, xi ≤ x∗i for
any i and P̂ is down monotone, so x ∈ P̂, as desired.
⇐ direction: Let x ∈ P̂. So there exists p ∈ ∆|Ê| such that

x =
∑
ê∈Ê

pê · ê. (4)

Notice that each ê is a sub pure strategy of some real pure strategy e(ê) ∈ E . By
substituting the ê in Equation (4) by e(ê), we have

x =
∑
ê∈Ê

pê · ê ≤
∑
ê∈Ê

pê · e(ê).

Since x′ =
∑

ê∈Ê pê ·e(ê) is a convex combination of pure strategies in E , we have x′ ∈ P.
Moreover, by playing the mixed strategy with marginal probability x′, the defender’s
expected utility is at least 1 since x′i ≥ xi for any i ∈ [n]. As a result, the optimal
defender utility in this zero-sum game is at least 1, completing the proof.

Lemma 4.4 and 4.6 forms a reduction from the DBR problem to the mimimax equi-
librium. This together with the reduction from the minimax equilibrum to the DBR
problem conclude the proof of Theorem 4.1.

4.1. When Gaming is Easier than Best Response
Security games are special bilinear games. Theorem 4.1 shows that the particular
problem of computing the minimax equilibrium for zero-sum security games is as hard
as the general DBR problem. A natural question is whether there are instances such
that the hardness of gaming and best response are strictly separated. Notice, however,
that the best response problem is essentially more general, thus no easier, than solving
the game. Therefore, the question really is, whether there are instances where gaming



is easier than best response. The following proposition answers this in the affirmative
for security games. Notice that this proposition does not contradict Theorem 4.1, since
the constructed security game instances here have further restricted payoffs, which
make solving the game easy but still maintain the hardness of the best response.

PROPOSITION 4.7. There exist zero-sum security games such that the minimax equi-
librium can be computed in polynomial time but the DBR problem is NP-hard.

5. GENERAL-SUM SECURITY GAMES
In this section, we consider general-sum security games. Recall that such a game G
is given by a tuple (r, c, ρ, ζ, E) where ri [ci] is the defender’s reward [cost] and ρi [ζi]
is the attacker’s reward [cost], if target i is attacked. We consider the computation of
the two mostly adopted equilibrium concepts in the security game literature, namely,
the strong Stackelberg equilibrium (SSE) and Nash equilibrium (NE). For each equi-
librium concept, we prove analogous equivalence theorem as the zero-sum case.

THEOREM 5.1. There is a poly(n) time algorithm to compute the strong Stackelberg
equilibrium for security games over E , if and only if there is a poly(n) time algorithm to
solve the DBR problem over E .

PROOF. The “only if” direction follows from Theorem 4.1, the fact that the minimax
equilibrium is payoff-equivalent to the strong Stackelberg equilibrium (SSE) in zero-
sum games, and that zero-sum games are special cases of general-sum games. We
prove the “if” direction. It is known that in normal-form two player games, the SSE
can be computed by solving multiple linear programs [Conitzer and Sandholm 2006].
A similar linear program (LP) formulation can be derived for security games, except
that each LP now has poly(|E|, n) many variables. Nevertheless, it can be shown that
the separation problem for their dual programs is precisely the DBR problem, thus we
can still solve each linear program efficiently with access to an efficient DBR oracle.
We refer the reader to the full version for more details.

We now turn to the computation of Nash equilibria. As widely known in the lit-
erature of algorithmic game theory, computing one Nash equilibrium for two-player
normal-form games is PPAD-hard [Chen et al. 2009; Daskalakis et al. 2009], and is
only harder for general bilinear games [Garg et al. 2011]. Interestingly, it turns out
that computing one Nash equilibrium in security games is relatively easy. This is due
to the following characterization of Nash equilibria in security games by [Korzhyk
et al. 2011b].

LEMMA 5.2. [Korzhyk et al. 2011b] Consider a security game G(r, c, ρ, ζ, E). Let
G(−ζ,−ρ, ρ, ζ, E) be the corresponding zero-sum security game by re-setting the de-
fender’s utilities. Then (x,y) is a Nash equilibrium of G if and only if (x, f(y)) is a
minimax equilibrium of the zero-sum game G, where the one-to-one transform function
f : Rn → Rn is defined as follows:

fi(y) =
1

λ

ri − ci
ρi − ζi

yi, ∀i ∈ [n], where λ =

n∑
i=1

ri − ci
ρi − ζi

yi is the normalization factor. (5)

Moreover, Nash equilibria of G are interchangeable. That is, if (x,y) and (x′,y′) are
both Nash equilibria, so are (x,y′) and (x′,y). The attacker derives the same utility in
any Nash equilibrium of G.

Notice that the transform function defined in Equation (5) is non-linear due to the
normalization factor. We sketch the intuition of Lemma 5.2 here, while refer the reader
to [Korzhyk et al. 2011b] for a formal proof. Note that the mapping f only re-weights



those non-zero yi’s whose indexes correspond to attacker best responses, so f(y) is also
a best response to x in G, thus also in G, since the defender strategy and attacker payoff
structure in both games are the same. On the other hand, x is a best response to y in
G. From G to G, the defender’s utility on each target is changed. The idea here is to
properly rescale the attacker’s attacking probability to compensate for the defender’s
utility change so that the defender’s best response does not change. The transform
function f exactly does this. The interchangeability follows from the interchangeability
of minimax equilibria of G. It is easy to see that the attacker’s utility in any NE equals
his (unique) utility in the zero-sum game G.

As a corollary of Lemma 5.2 and Theorem 4.1, there is a polynomial time algorithm
to compute one Nash equilibrium for security games if and only if there is a polynomial
time DBR oracle. However, it is widely known that the Nash equilibrium is not unique,
so there are issues of equilibrium selection. In many security settings (e.g., [Mavroni-
colas et al. 2006, 2005]), the NE that maximizes or minimizes the defender’s utility is
a natural choice for analyzing the game. Though Lemma 5.2 shows that the attacker
will derive the same utility in any NE, the defender’s utilities are generally different
in different NEs (examples are given in [Korzhyk et al. 2011b]).

As widely known, maximizing a player’s utility over Nash equilibria is NP-hard even
in two-player normal-form games [Conitzer and Sandholm 2008; Gilboa and Zemel
1989]. It will be appealing if the optimal NE can be efficiently computed in the secu-
rity game, which is widely recognized as a successful application of game theory. Our
next result shows that this is indeed the case! We prove that though the defender’s
equilibrium utility is generally a convex function of the attacker’s mixed strategy, it
becomes linear when restricted to the domain of the attacker equilibrium strategies.
Therefore, maximizing or minimizing the defender’s Nash equilibrium utility can both
be efficiently handled.

THEOREM 5.3. There is a poly(n) time algorithm to compute the best and worst
(for the defender) Nash equilibrium for security games over E , if and only if there is a
poly(n) time algorithm to solve the DBR problem over E . Here, by “best/worst” we mean
the NE that maximizes/minimizes the defender’s utility.

PROOF. The “only if” direction follows from Theorem 4.1, the fact that all Nash
equilibria are payoff equivalent to the minimax equilibrium in zero-sum games, and
that zero-sum games are special cases of general-sum games. For the “if” direction, we
only prove this for the case of computing the best Nash equilibrium since computing
the worst Nash equilibrium is similar.

The defender’s equilibrium utility is a function of the attacker’s strategy, which we
denote as UNE(y). We first derive the function form of UNE(y), as follows:

UNE(y) = max
e∈E

Ud(e,y)

= max
e∈E

[ n∑
i=1

eiyi(ri − ci)
]

+

n∑
i=1

yici.

UNE(y) is a convex function since maxe∈E [
∑n
i=1 eiyi(ri − ci)] is convex. To com-

pute the best equilibrium, we need to maximize this convex function over feasi-
ble y which is generally difficult to handle. Interestingly, we show that the term
maxe∈E

[∑n
i=1 eiyi(ri − ci)

]
becomes linear in y when y is restricted to be an attacker

equilibrium strategy. Let (x,y) be an NE of G. Recall from Lemma 5.2 that (x, f(y)) is
the minimax equilibrium of the zero-sum game G(−ζ,−ρ, ρ, ζ, E). Therefore,

V al(G) = Ud(x, f(y)) = maxe∈E
[∑n

i=1 fi(y)ei
(
ρi − ζi

)]
−
∑n
i=1 fi(y)ρi (6)



is the game value of G. Recalling the transform fi(y) = 1
λ
ri−ci
ρi−ζi yi and utilizing Equation

(6), we have

max
e∈E

[ n∑
i=1

eiyi(ri − ci)
]

= max
e∈E

[ n∑
i=1

eiλfi(y)(ρi − ζi)
]

By definition of fi(y)

= λ ·max
e∈E

[ n∑
i=1

eifi(y)(ρi − ζi)
]

= λ ·
[
V al(G) +

n∑
i=1

fi(y)ρi
]

By Equation (6)

= λ · V al(G) +

n∑
i=1

ri − ci
ρi − ζi

yiρi By definition of fi(y)

Crucially, V al(G) is a constant and does not depend on y. Since λ =
∑n
i=1

ri−ci
ρi−ζi yi is

linear in y, so is maxe∈E
[∑n

i=1 eiyi(ri − ci)
]
. Therefor, UNE(y) is linear in y. We note

again that this is true only when y is restricted to be an attacker NE strategy since
the above derivation is not valid otherwise. Fortunately, we only need to optimize over
Nash equilibria. Notice that V al(G) can be computed in poly(n) time if the DBR admits
a poly(n) time algorithm (by Theorem 4.1). As a result, UNE(y) is a linear function of
y which can be evaluated efficiently. Therefore, computing the best Nash equilibrium
reduces to a linear optimization over the set of all the attacker’s Nash equilibrium
strategies, denoted as YNE . To complete the proof, we now show that YNE is a polytope,
and admits a poly(n) time separation oracle. Therefore, by Theorem 2.1, we conclude
that the best (for the defender) Nash equilibrium can be computed in poly(n) time.

LEMMA 5.4. The set of the attacker’s Nash equilibrium strategies YNE is a polytope,
and admits a poly(n) time separation oracle if the DBR problem over E can be solved in
poly(n) time.

Proof of Lemma 5.4. First, compute an arbitrary Nash equilibrium (x̃, ỹ) of G. By
Lemma 5.2 and Theorem 4.1, this can be done in poly(n) time. We claim that the set of
attacker’s Nash equilibrium strategies YNE is characterized precisely by the following
three sets of linear constraints on y ∈ Rn:

n∑
i=1

yi
(
ρi · [1− x̃i] + ζi · x̃i

)
≥ ρk · [1− x̃k] + ζk · x̃k, ∀k ∈ [n]. (7)

n∑
i=1

yi
(
ri · x̃i + ci · [1− x̃i]

)
≥

n∑
i=1

yi
(
ri · ei + ci · [1− ei]

)
, ∀e ∈ E . (8)

n∑
i=1

yi = 1 and yi ≥ 0, ∀i ∈ [n]. (9)

Inequality (7) restricts y to be an attacker best response to the defender equilibrium
strategy x̃; Inequality (8) means that x̃ should be a defender best response to the at-
tacker mixed strategy y.

We first show that these constraints are necessary. By Lemma 5.2, Nash equilibria in
security games are interchangeable. Therefore if y is an attacker equilibrium strategy,
(x̃,y) is a Nash equilibrium. Thus y and x̃ are best responses to each other, as described
by Inequality (7) and (8). Since y is a mixed strategy, thus Constraint (9) holds.



To show that these constraints are also sufficient, let y be any vector that satisfies
these constraints. Constraint (9) restricts y to be a valid mixed strategy; Inequality
(7) and (8) induce that (x̃,y) is a Nash equilibrium. To sum up, Constraints (7) ∼ (9)
precisely characterize the set YNE .

We now show that YNE admits a poly(n) time separation oracle. Notice that Con-
straints (7) and (9) can be explicitly checked in poly(n) time. Constraint (8) can be
simplified as follows:

n∑
i=1

yi
(
ri · x̃i + ci · [1− x̃i]

)
≥

n∑
i=1

yi
(
ri · ei + ci · [1− ei]

)
, ∀e ∈ E .

⇔
n∑
i=1

yi
(
ri − ci

)
· x̃i ≥

n∑
i=1

yi
(
ri − ci

)
· ei, ∀e ∈ E .

The inequality can be checked by feeding wi = yi
(
ri − ci

)
into the DBR problem over E

and examining whether the optimal objective value is at most
∑n
i=1 yi

(
ri − ci

)
· x̃i, and

if not, returning the optimal e from the DBR problem as a certificate of the violated
constraint. Therefore, a poly(n) time DBR oracle yields a poly(n) time separation oracle
for YNE . This completes our proof of Lemma 5.2, as well as the proof of the theorem.

The following is a simple corollary of Theorem 5.3. It follows from the fact proved in
Theorem 5.3 that the defender’s equilibrium utility is a linear function over the set YNE
of attacker equilibrium strategies and YNE is a polytope. Therefore, we can convert
the computation of an NE with particular defender equilibrium utility to feasibility
checking of a linear system.

COROLLARY 5.5. Let G be any security game, Umax [Umin] be the best [worst] defender
utility among all Nash equilibria. Then for any U ∈ [Umin, Umax], there exists an NE of
G with defender utility U . Moreover, such an NE can be computed in polynomial time if
the DBR problem over E can be solved in polynomial time.

6. CONSEQUENCES OF THE EQUIVALENCE THEOREMS
In this section we discuss some implications of these equivalence theorems. The fol-
lowing corollary of Theorem 4.1, 5.1 and 5.3 shows that the complexity of a security
game is fully determined by the set system E .

COROLLARY 6.1. For any set system E , the following problems reduce to each other
in polynomial time:

(1) Combinatorial optimization over E for non-negative linear objectives;
(2) Solving zero-sum security games over E ;
(3) Computing the strong Stackelberg equilibrium for security games over E ;
(4) Computing the best or worst (for the defender) Nash equilibrium for security

games over E .

Corollary 6.1 provides a more convenient way to understand the computational com-
plexity of security games, since the complexity of the combinatorial optimization prob-
lem over E is much easier to study and analyze. In fact, Corollary 6.1 simultaneously
implies the computational complexity for solving various types of security games. For
example, when E is any matroid set system or when the optimization over E has a
min-cost max flow formulation, the equilibrium of the security game can be computed
efficiently. On the other hand, when the optimization over E is a packing problem, a
Knapsack problem or a coverage problem (even vertex coverage), the equilibrium com-
putation for these security games is NP-hard in general.



Finally, using the combinatorial characterization of security games, we can easily
recover and strengthen some known complexity results in the literature of security
games, as well as resolve some open problems from previous work. For example, [Xu
et al. 2014] considered the computation of the minimax equilibrium in zero-sum spatio-
temporal security games. They proved that the DBR problem there is NP-hard, but the
computation of the minimax equilibrium is left open. Theorem 4.1 resolves this open
question. [Brown et al. 2016] studied the airport passenger screening game (see Sec-
tion 3.3, the example of packing problems), and proved the NP-hardness to solve the
game. This also follows from Corollary 6.1 and the fact that the independent set prob-
lem is NP-hard. [Gan et al. 2015] considered security games on graphs where targets
are vertices. The defender chooses a subset of vertices to patrol, by which the patrolled
vertices as well as their adjacent vertices are covered. The DBR problem is to, given
a non-negative weight for each vertex, compute a subset of vertices so that the total
weight of the covered vertices is maximized. This is the optimization variant of the
dominating set problem, a well-known NP-hard problem. Therefore, not only comput-
ing the SSE is NP-hard (as shown by Gan et al.), our results imply that computing the
minimax equilibrium is also NP-hard. [Korzhyk et al. 2010] considered security games
in which the DBR problem is the coverage problem as discussed in Section 3.3. They
showed polynomial solvability of security games when each (homogeneous) resource
can protect a subset of at most 2 targets (e.g., a pair of round-trip flights). This also
follows from Theorem 4.1 and the fact that weighted 2-cover is polynomial time solv-
able. The NP-hardness for the case with sets of at most 3 targets follows from Theorem
4.1 and the fact that 3-cover is NP-hard. Finally, [Letchford and Conitzer 2013] proved
complexity results for security games played on graphs, where vertices are targets and
each security resource can patrol a set of vertices on a path of the graph. Some of their
results (e.g., the two positive results in the paper) can be easily recovered under our
framework as well. We omit further details here due to space limit.

7. CONCLUSIONS AND DISCUSSIONS
In this paper, we systematically studied the computational complexity of equilibrium
computation in security games. Our main result is the polynomial time equivalence
between computing the three mostly adopted equilibrium concepts in security games,
namely, the minimax equilibrium, strong Stackelberg equilibrium, best/worst Nash
equilibrium, and computing the defender’s best response. We believe that our results
form a theoretical basis for further algorithm design and complexity analysis in secu-
rity games.

Future research can take a number of directions. First, given that exactly solving the
DBR problem is NP-hard in many cases, it is interesting to examine the approximate
version of all our equivalence theorems. That is, how an approximate defender best
response oracle relates to the approximate computation of an equilibrium. We note
that using the no-regret learning framework, one can convert an FPTAS for the DBR
problem to an algorithm for computing an ε-minimax equilibrium (see [Immorlica et al.
2011]), but the reverse direction and other generalizations are open. Our results on
computing the best/worst Nash equilibrium are surprising. Since the security game
is a special class of bilinear games, we wonder whether similar results hold in other
special (and interpretable) class of bilinear games. Finally, there are several ways to
generalize our model. For example, the players’ utility functions may not be linear,
but can still by compactly represented and computed. One particular example is the
network interdiction game played on a graph [Tsai et al. 2010; Washburn and Wood
1995], in which the defender chooses edges to defend and the attacker chooses a path to
attack. The task of the defender is to interdict the attacker at a certain edge. This is not
captured by our (bilinear) framework. Another generalization is to allow the attacker



to attack multiple targets [Korzhyk et al. 2011a]. We wonder how the computational
complexity of the proposed four problems relates to each other in these generalized
settings.
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Martin Grötschel, László Lovász, and Alexander Schrijver. 2012. Geometric algorithms
and combinatorial optimization. Vol. 2. Springer Science & Business Media.

Nicole Immorlica, Adam Tauman Kalai, Brendan Lucier, Ankur Moitra, Andrew



Postlewaite, and Moshe Tennenholtz. 2011. Dueling algorithms. In Proceedings of
the forty-third annual ACM symposium on Theory of computing. ACM, 215–224.

Dmytro Korzhyk, Vincent Conitzer, and Ronald Parr. 2010. Complexity of Computing
Optimal Stackelberg Strategies in Security Resource Allocation Games.

Dmytro Korzhyk, Vincent Conitzer, and Ronald Parr. 2011a. Security games with
multiple attacker resources. In IJCAI.

Dmytro Korzhyk, Zhengyu Yin, Christopher Kiekintveld, Vincent Conitzer, and Milind
Tambe. 2011b. Stackelberg vs. Nash in Security Games: An Extended Investigation
of Interchangeability, Equivalence, and Uniqueness. J. Artif. Int. Res. (2011).

Van EJ Leeuwen and others. 2009. Optimization and approximation on systems of
geometric objects.

Joshua Letchford and Vincent Conitzer. 2013. Solving Security Games on Graphs via
Marginal Probabilities. In AAAI.

John A Major. 2002. Advanced techniques for modeling terrorism risk. The Journal of
Risk Finance 4, 1 (2002), 15–24.

M. Mavronicolas, L. Michael, V. Papadopoulou, A. Philippou, and P. Spirakis. 2006. The
price of defense. In Mathematical Foundations of Computer Science 2006. Springer.

Marios Mavronicolas, Vicky Papadopoulou, Anna Philippou, and Paul Spirakis. 2005.
A graph-theoretic network security game. In Internet and Network Economics.
Springer, 969–978.
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