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Abstract. Research on security games has focused on settings where the de-
fender must protect against either a single adversary or multiple, independent
adversaries. However, there are a variety of real-world security domains where
adversaries may benefit from colluding in their actions against the defender, e.g.,
wildlife poaching, urban crime and drug trafficking. Given such adversary col-
lusion may be more detrimental for the defender, she has an incentive to break
up collusion by playing off the self-interest of individual adversaries. As we show
in this paper, breaking up such collusion is difficult given bounded rationality of
human adversaries; we therefore investigate algorithms for the defender assum-
ing both rational and boundedly rational adversaries. The contributions of this
paper include (i) collusive security games (COSGs), a model for security games
involving potential collusion among adversaries, (ii) SPECTRE-R, an algorithm
to solve COSGs and break collusion assuming rational adversaries, (iii) obser-
vations and analyses of adversary behavior and the underlying factors includ-
ing bounded rationality, imbalanced- resource-allocation effect, coverage per-
ception, and individualism / collectivism attitudes within COSGs with data from
700 human subjects, (iv) a learned human behavioral model that incorporates
these factors to predict when collusion will occur, (v) SPECTRE-BR, an enhanced
algorithm which optimizes against the learned behavior model to provide demon-
strably better performing defender strategies against human subjects compared
to SPECTRE-R.

Keywords: Stackelberg Security Game, Collusion, Human Behavior Model, Ama-
zon Mechanical Turk

1 Introduction

Models and algorithms based on Stackelberg security games have been deployed by
many security agencies including the US Coast Guard, the Federal Air Marshal Ser-
vice, and Los Angeles International Airport [23] in order to protect against attacks by
strategic adversaries in counter-terrorism settings. Recently, security games research
has explored new domains such as wildlife protection, where effective strategies are
needed to tackle sustainability problems such as illegal poaching and fishing [4].

Crucially, though, most previous work on security games assumes that different
adversaries can be modeled independently [10, 18, 11]. However, there are many real-
world security domains in which adversaries may collude in order to more effectively
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evade the defender. One example domain is wildlife protection. Trade in illicit wildlife
products is growing rapidly, and poachers often collude both with fellow poachers and
with middlemen who help move the product to customers [26]. These groups may co-
ordinate to gain better access to information, reduce transportation costs, or reach new
markets. This coordination can result in higher levels of poaching and damage to the en-
vironment. Additionally, connections have been observed between illicit wildlife trade
and organized crime as well as terrorist organizations, and thus activities such as poach-
ing can serve to indirectly threaten national security [27].

Another example domain is the illegal drug trade where international crime syn-
dicates have increased collusive actions in order to facilitate drug trafficking, expand
to distant markets, and evade local law enforcement [1]. In some cases, drug traders
must collude with terrorist organizations to send drugs through particular areas. More
broadly, expansion of global transportation networks and free trade has motivated collu-
sion between criminal organizations across different countries [20]. A third example of
a domain with collusive actions is the “rent-a-tribe” model in the payday lending indus-
try. Authorities in the US attempt to regulate payday lenders which offer extremely high
interest rates to low-income borrowers who cannot obtain loans from traditional banks.
Recently, payday lenders have begun to operate in partnership with Native American
tribes, which are exempt from state regulations. Thus, regulators seek policies which
prevent collusion between payday lenders and Native American tribes [8].

Despite mounting evidence of the destructive influence of collusive behavior, strate-
gies for preventing collusion have not been explored in the security games literature
(there are some recent exceptions, which we discuss in Section 2). Furthermore, analy-
sis of collusive adversary behaviors is complicated by the bounded rationality of human
adversaries; such analysis with data from human players is also missing in the security
games literature. To address these limitations and improve defender performance by
combating collusion between adversaries, this paper (i) introduces the COllusive Secu-
rity Game (COSG) model with three players: one defender and two adversaries with the
potential to collude against the defender, (ii) provides a baseline algorithm, SPECTRE-
R, which optimizes against collusive adversaries assuming them to be perfectly rational,
(iii) analyzes data from an experiment involving 700 human subjects, (iv) proposes a
data driven human behavioral model based on these factors to predict the level of col-
lusion between human adversaries, and (v) develops a novel algorithm, SPECTRE-BR,
which optimizes against the learned behavior model to better prevent collusion between
adversaries (and as a result, outperforms SPECTRE-R). Indeed, we find that human ad-
versaries are far from perfectly rational when deciding whether or not to collude. Our
experiments show that defenders can improve their utility by modeling the subjective
perceptions and attitudes which shape this decision and crafting strategies tuned to pre-
vent collusion.

2 Background and Related Work

The Stackelberg Security Game model, introduced almost a decade ago, has led to a
large number of applications and has been discussed widely in the literature [12, 23,
17]. All of these works consider adversaries as independent entities and the goal is for
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a defender (leader) to protect a set of targets with a limited set of resources from a
set of adversaries (followers)1. The defender commits to a strategy and the adversaries
observe this strategy and each select a target to attack. The defender’s pure strategy is
an assignment of her limited resources to a subset of targets and her mixed strategy
refers to a probability distribution over all possible pure strategies. This mixed strategy
is equivalently expressed as a set of coverage probabilities, 0 ≤ ct ≤ 1, that defender
will protect each target, t [12]. Defender’s utility is denoted by UuΘ(t) when target t
is uncovered and attacked by the adversary and by U cΘ(t) if t is covered and attacked
by the adversary. The payoffs for the attacker are analogously written by UuΨ (t) and
U cΨ (t). The expected utilities of the defender, UΘ(t, C), and attacker, UΘ(t, C) for the
defender coverage vector C, are then computed as follows:

UΘ(t, C) = ct · U cΘ(t) + (1− ct)UuΘ(t) (1)
UΨ (t, C) = ct · U cΨ (t) + (1− ct)UuΨ (t) (2)

The solution concept for security games involves computing a strong Stackelberg equi-
librium (SSE) which assumes that the adversaries maximize their own expected utility
and break ties in favor of the defender [11, 23].

Given this basic information about SSG, we next start a discussion of related work.
Security game models where an adversary is capable of attacking multiple targets simul-
taneously have been explored in [29, 13]. To address cooperation between adversaries,
[7] introduced a communication network based approach for adversaries to share their
skills and form coalitions in order to execute more attacks. However, no previous work
on security games has conducted behavioral analysis or considered the bounded ratio-
nality of human adversaries in deciding whether to collude in the first place.

Another area of related work, as well as one that provides concepts that we will
use in this paper for modeling and analyzing adversary behaviors in COSGs is that
of behavioral models in game theory [3]. This area is particularly relevant given our
focus on modeling human adversaries in this paper. In real-world settings, it is useful
to model human adversaries as not strictly maximizing their expected utility, but rather,
as their choosing strategies stochastically [14]. Quantal response equilibrium (QRE) is
a solution concept based on the assumption of bounded rationality [15]. The intuition
behind the QR model is that the higher the expected utility for an action, the higher the
probability of the adversary selecting that action. SUQR [19] has been proposed as an
extension of QR and seen to outperform QR in modeling human adversaries [28]. This
model is used in this paper to predict the probability of attack at each target. The logit
function shown in Equation 3 is the most common specification for QR and SUQR
functional form where qt is the probability of choosing strategy t among all possible
strategies in set of T .

qt =
eÛΨ (t,C)∑

t∈T
eÛΨ (t,C)

(3)

1 We use the convention in the security game literature where the defender is referred as “she”
and an adversary is referred to as “he”.
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In SUQR model, ÛΨ (t, C) refers to subjective utility, and it replaces expected utility.
Subjective utility in SUQR is defined as a linear combination of key domain features
including the defender’s coverage probability and the adversary’s reward and penalty at
each target which are respectively weighted by ω1, ω2 and ω3.These are assumed to be
the most salient features in the adversary’s decision-making process.

ÛΨ (t, C) =ω1 · ct + ω2 · UuΨ (t) + ω3 · U cΨ (t) (4)

Another relevant aspect of bounded rationality is how humans weight probabili-
ties. Prospect Theory (PT) proposes that individuals overweight low probabilities and
underweight high probabilities; essentially, probabilities are transformed by an inverse
S-shaped function[9, 25]. Various functional forms have been proposed to capture this
relationship [9, 25]. Later work, specific to security games, has found the opposite of
what Prospect Theory suggests: human players underweight low probabilities and over-
weight high probabilities[10]. This corresponds to an S-shaped weighting function. In
either case, incorporating a model of probability perception allows the defender to ex-
ploit inaccuracies in the adversary’s reasoning. Human subject experiments have been
conducted for security games to test both bounded rationality and probability weighting
[10], but have never included the collusive actions investigated in this paper.

Additionally, humans’ decisions in strategic settings can be influenced by the rela-
tive advantage of participants. According to Inequity Aversion (IA) theory humans are
sensitive to inequity of outcome regardless of whether they are in the advantaged or
disadvantaged situation and they make decisions in a way that minimizes inequity [5].
Inequity aversion has been widely studied in economics and psychology and is consis-
tent with observations of human behavior in standard economic experiments such as
the dictator game and ultimatum game in which the most common choice is to split
the reward 50-50 [2]. Along these lines and contrary to the theoretical predictions, IA
theory also supports our analyses in the security game domain.

Finally, the personal attitudes and attributes of participants can also influence their
interactions in strategic settings. A key characteristic is the well-established individualism-
collectivism paradigm, which describes cultural differences in the likelihood of people
to prioritize themselves versus their in-group [22]. This paper is the first to provide anal-
ysis of human adversary behavior in security games using individualism-collectivism
paradigm. Specifically, those who identify as part of collectivistic cultures, compared
to people in individualistic cultures, tend to identify as part of their in-groups, priori-
tize group-level goals, define most relationships with in-group members as communal,
and are more self-effacing. Individualism-collectivism can be reliably measured using
psychometrically-validated survey instruments [24].

3 Illustrative Motivating Domain: Wildlife Poaching Game

As an illustrative motivating domain for the work reported in this paper, we focus on
the challenge of wildlife poaching. Wildlife poaching poses a serious threat to the envi-
ronment as well as national security in numerous countries around the world and is now
estimated to be worth $5 billion annually. The most common types of illicitly poached
and traded wildlife products include elephant ivory, rhino horn, tiger parts, and caviar
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[16]. Biodiversity loss, invasive species introduction, and disease transmission resulting
from illicit wildlife trade can all have disastrous impacts on the environment. Evidence
[26] confirms that collusive actions (e.g., cost sharing for storage, handling, and trans-
portation of goods) among adversaries can increase the rate of poaching and cause
further damage to the environment. Modeling this as a security game, the defender is
a ranger whose goal is to allocate patrolling resources optimally over the targets. The
adversaries are poachers or illegal traders who execute attacks, possibly in collusion
with one another. To better understand collusion in the wildlife poaching domain, we
designed a game for human subjects to play on Amazon Mechanical Turk (AMT). Par-
ticipants were asked to play our game in different settings and answer survey questions.
Afterwards, their actions were analyzed using the theories explained above, allowing us
to test assumptions about the rationality of human adversaries.

3.1 Game Overview

In our game, human subjects are asked to play the role of a poacher in a national park
in Africa. The entire park area (see Figure 1) is divided into two sections (right and left)
and each human subject can only attack in one section (either right or left); however,
they can explore the whole park to obtain information about the other player’s situation.
To ensure repeatability of the experiments, the other side is played by a computer, not a
real player. Since our goal is to study human adversaries, we do not reveal the identity
of the other player to the human subjects. This creates a more realistic environment
since the subjects believe that they are playing against another human. Each section of
the park is divided into a 3× 3 grid, giving each player nine potential targets to attack.

There are different numbers of hippopotamus distributed over the area which indi-
cate the animal density at each target. The adversary’s reward at each target is equal
to the animal density at that target; hereafter, reward and animal density are used in-
terchangeably. Players are able to view the probability of success and failure, as well
as the reward and penalty, at any target on either section of the park as shown on the
sides of the Figure 1. To help the human subjects better visualize the success/failure
percentages (i.e., defender coverage) for each sub-regions, we overlaid a heat-map of
the success probability on Google Maps imagery of the park. Also, to help the players
understand the collusion mechanism, we provided a table that summarizes all possible
payoffs for both colluding and not colluding. The human subjects may decide to at-
tack “individually and independently” or “in collusion” with the other player. In both
situations, they will attack different sections separately but if both agree to attack in
collusion, they will share all of their payoffs with each other equally.

3.2 Experimental Procedure

To enhance understanding of the game, participants were provided with a background
story and detailed instructions about the game and then asked to play one trial game
to become familiar with the game interface and procedures. After the trial game, par-
ticipants played a validation game to ensure that had they read the instructions and
were fully aware of the rules and options of the game. For our analysis, we included
only players whose performance in the validation game passed a set of baseline criteria.
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Fig. 1. Poachers vs. Rangers game: Right side of the park is assigned to the player and the left
side is assigned to Bob who is the other fellow poacher. Payoffs for each marked target are shown.

Lastly, subjects played the main game for the analysis. After finishing all of the games,
participants answered a set of survey questions.

In each individual game, the human player is given a set amount of time to explore
the park and make decisions about: (i) whether to collude with the other player or not
and (ii) which region of the park to place their snare. While the other player is a com-
puter, it is suggested that they are actually another human. To make the first decision,
a question appears on the screen which asks whether the human player is inclined to
collude or not. After answering this question, a message appears on the screen that in-
dicates whether collusion was preferred by both players or not. Collusion occurs only if
it is preferred by both players. It is worth noting that the human participant has no op-
portunity to communicate with or learn about the other player. Next, players are asked
to choose a target in their own region to attack. As before, players cannot communicate
about which target to attack.

We analyze two situations: one where the human attacker is placed in an advan-
taged situation, with fewer defender resources protecting his side of the park than the
other; and a disadvantaged situation, which is the reverse. In each situation, as we men-
tioned, we first check if the player is inclined to collude. Next, we designed a computer
agent with rational behavior to play as the second adversary; thus there is an algorithm
generating defender strategies, and two adversaries (one a human and one a computer
agent). This computer agent seeks collusion when it is placed on the disadvantaged side
and refuses collusion when it is in advantaged situation (Choosing a computer agent
as a second player let us to avoid requiring coordination between two human players
in the experiments). To simplify the analysis, we assume that the second stage of de-
cision making (where each adversary chooses a target to attack) depends on his own
inclination for collusion and does not depend on the attitude of the other adversary.

Consequently, there are four possible types of human adversaries in this game: (i)
a disadvantaged attacker who decides to collude, DA-C, (ii) a disadvantaged attacker
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(a) RS1 (b) RS2

Fig. 2. Reward (animal density) structures deployed on AMT. Darker green shows higher reward.

who decides not to collude, DA-NC, (iii) an advantaged attacker who decides to collude,
A-C, and (iv) an advantaged attacker who decides not to collude, A-NC.

We tested different defender mixed strategies based on both the assumption of ra-
tionality and bounded rationality given by a behavioral model introduced in Section 6.
For each strategy deployed on AMT, we recruited a new set of participants ( 50 people
per setup) to remove any learning bias and to test against a wider population. Using
the rational model for adversaries, four different defender strategies were deployed for
each reward structure. The data sets collected from rational model deployments were
used to learn the parameters of the bounded rationality model. This learning mimics the
fact that in the real world, often data about past poaching incidents is available to build
models of poacher behavior [18]. Players were given a base compensation of $0.50 for
participating in the experiment. In order to incentivize the players to perform well, we
paid each player a performance bonus based on the utility that they obtained in each
game. This bonus had a maximum total value of $1.32 and a minimum of $0.04.

3.3 Game Payoff Design

This “Poachers vs Rangers” game is a three-player security game with 9 targets avail-
able to each adversary. There is one defender withm resources to cover all the 18 targets
(sub-regions in the park) and there are two adversaries that can attack a side of the park.
An adversary’s reward at each cell for an uncovered attack is equal to the animal density
at that cell and the penalty at each cell for a covered attack is equal to −1. We deployed
two different reward structures, RS1 and RS2, shown in Figures 2(a) and 2(b). In both
of these symmetric structures, both players have an identical 3× 3 reward distribution.
In RS1 animal density is concentrated along the central axis of the park and is covered
by 3 defender resources and in RS2 animal density is concentrated toward the center of
each half of the park and is covered by 4 defender resources. We assumed a bonus of 1
for collusion in both set-ups; this bonus is added to the payoff for each successful attack
if both attackers decide to collude. Section 4 gives further mathematical description and
motivates the introduction of this bonus. This game is zero-sum, i.e., at each target the
uncovered payoffs for the attacker and defender sum to zero.

4 Collusive security game model

In the collusive security game which we study in this paper, there is one defender, Θ,
and multiple adversaries, Ψ1,...,ΨN , where N is the total number of attackers. Similarly
to standard Stackelberg Security Games [23], the defender is the leader and the attackers
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are the followers. In this subsection, we focus on the games with one defender and two
adversaries, such that adversaries can attack separate targets, but they have two options:
i) attack their own targets individually and earn payoffs independently or ii) attack their
own targets individually but collude with each other and share all of the payoffs equally.
If the attackers decide to collude, the utility for a successful attack increases by ε. This
reward models many of the example domains where adversaries operate in different
geographic areas or portions of a supply chain, and so do not directly compete over the
same targets. Instead, they choose to combine their operations or share information in
some way which produces extra utility exogenous to the targets themselves.

To precisely define the model, let T = {t1, ..., tn} be a set of targets. T is partitioned
into disjoint sets T1 and T2 which give the targets accessible to the first (resp. second)
attacker. The defender has m resources, each of which can be assigned to cover one
target. Since we consider games with no scheduling constraints [29], the set of defender
pure strategies is all mappings from each of them resources to a target. A mixed strategy
is a probability distribution over such schedules, and can be compactly represented by a
coverage vector C which gives the probability that each target is covered. Each attacker
pure strategy is the combination of a choice of target to attack and the decision of
whether or not to collude. Since the attackers choose their strategies after the defender,
there is always an equilibrium in which they play only pure strategies [11]. Hence, we
encapsulate the targets which are attacked in a set of binary variables at, t ∈ T , where
the variables corresponding to the targets which are attacked are set to 1.

We denote the utility that the defender receives when target t is attacked by UuΘ(t) if
t is uncovered, andU cΘ(t) if t is covered. The payoffs for the ith attacker are analogously
written UuΨi(t) and U cΨi(t). Suppose that the attackers select target t1 ∈ T1 and t2 ∈
T2. Since each may be covered or uncovered, four different outcomes are possible.
Table 1 summarizes the players’ payoffs in all possible cases when the attackers do
not collude (the first two columns) and collude (the last two columns). In this table the
first row indicates the payoffs when both targets are uncovered and both adversaries
are successful. The second and third rows show the payoffs when only one attacker
succeeds and the last row indicates the case of failure for both attackers.

Table 1. Payoffs table for individual and collusive attacks

Payoffs for individual attacks Payoffs for collusive attacks
Attackers: Ψ1, Ψ2 Defender: Θ Each attacker: Ψ1 or Ψ2 Defender: Θ
UuΨ1

(t1), UuΨ2
(t2) UuΘ(t1)+U

u
Θ(t2) (UuΨ1

(t1) + UuΨ2
(t2) + 2ε)/2 UuΘ(t1)+U

u
Θ(t2)− 2ε

UuΨ1
(t1), UcΨ2

(t2) UuΘ(t1)+U
c
Θ(t2) (UuΨ1

(t1) + UcΨ2
(t2) + ε)/2 UuΘ(t1)+U

c
Θ(t2)− ε

UcΨ1
(t1), UuΨ2

(t2) UcΘ(t1)+ U
u
Θ(t2) (UcΨ1

(t1) + UuΨ2
(t2) + ε)/2 UcΘ(t1)+ U

u
Θ(t2)− ε

UcΨ1
(t1), UcΨ2

(t2) UcΘ(t1)+U
c
Θ(t2) (UcΨ1

(t1) + UcΨ2
(t2))/2 UcΘ(t1)+U

c
Θ(t2)

If the attackers collude with each other, they share all of their utility equally. Ad-
ditionally, they receive a bonus reward, ε, for any successful attack. As we focus on
zero-sum games for the experiments, this bonus value is deducted from the defender’s
payoff. Further, while we assume that adversaries who choose to collude split their
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combined payoff equally, it is important to note that the algorithms we present are eas-
ily generalized to accommodate arbitrary payoff splits. There are two principal reasons
as to why we specify a 50-50 split in this work. First, this division is motivated by
inequity aversion theory, as outlined earlier. Second, our focus here is on the factors
which lead individuals to collude in the first place, not on the bargaining process which
decides their allocation of the rewards (a topic which is itself the subject of a great deal
of work in game theory and psychology). Since the reward structures we consider are
symmetric between the players, an equal distribution of rewards is a natural assump-
tion. Thus, we can isolate the factors which lead subjects to enter into collusion instead
of confounding the decision to collude with an additional bargaining process.

For a given coverage vector C defender’s utility at each target ti attacked individu-
ally by attacker i is defined by Equation 5. By replacing Θ with Ψ , the same notation
applies for the expected utility of the attacker.

UΘ(ti, C) = cti · U cΘ(ti) + (1− cti)UuΘ(ti) (5)

Now we introduce our solution concept for COSGs, the Collusive Security Equilibrium
(CSE), which generalizes the SSE to the case of multiple attackers. Let the defender’s
strategy be a coverage vector C, and the attackers’ strategies g1 and g2 be functions
from coverage vectors to T × {collude, not collude}. Recall that a strategy profile
forms an SSE if (1) the attacker and defender play mutual best responses and (2) the
attacker breaks ties in favor of the defender. In COSGs, each attacker’s best response
depends on the other, since the decision of whether or not to collude depends on the
utility the other attacker will obtain. Essentially, any fixed C induces a game between
the attackers; the defender sets the attackers’ payoff at each target via their resource
allocation. The following conditions define a CSE:

1. C is a best response to g1 and g2.
2. g1(C) and g2(C) form a Nash equilibrium in the game where each target’s utility

is UΨ (t, C).
3. Both attackers play collude if they obtain strictly greater utility in a (collude, col-

lude) equilibrium than (not collude, not collude) equilibrium.
4. The attackers break ties between equilibria which satisfy (1)-(3) in favor of the

defender.

The first two conditions are analogous to the best response conditions for SSE. In
particular, when the followers play a Nash equilibrium (Condition 2), each is playing a
best response to the fixed strategies of the other two players. Condition 3 removes the
trivial equilibrium where neither attacker chooses to collude because they cannot gain
unless the other attacker also decides to collude. Condition 4 enforces the normal SSE
condition that remaining ties are broken in favor of the defender.

5 SPECTRE-R: Optimal defender strategy for rational
adversaries

SPECTRE-R (Strategic Patrolling to Extinguish Collaborative ThREats from Rational
adversaries) takes a COSG as input and solves for an optimal defender coverage vector
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corresponding to a CSE strategy through a mixed integer linear program (MILP). This
MILP is based on the ERASER formulation introduced by Kiekintveld et al. [11]. The
original formulation was developed for SSGs with one defender and one adversary.
We extend these ideas to handle collusion between two adversaries via the MILP in
Equations 6-20. It is important to note that while the rewards structures we consider
in the experiments are zero sum, the MILP we give applies to general sum games.
Additionally, our methods are not restricted to the case of two adversaries. In the online
appendix2, we provide a generalization of this MILP to COSGs with N adversaries.
Since a naive extension would entail a number of constraints which is exponential in
N , we conduct more detailed analysis of the structure of the game, which allows us to
formulate a MILP with only O(N3) constraints. However, this analysis is also deferred
to the appendix as our experimental focus is on COSGs with two adversaries.

max d s.t. (6)
anct , a

c
t , α1, α2, β ∈ {0, 1} (7)

ct ∈ [0, 1] (8)∑
t∈T

ct ≤ m
∑
ti∈Ti

ancti = 1
∑
ti∈Ti

acti = 1 (9)

U cΘ(t1, t2, C) = UΘ(t1, C) + UΘ(t2, C)−
(1− ct1)ε− (1− ct2)ε (10)

UncΘ (t1, t2, C) = UΘ(t1, C) + UΘ(t2, C) (11)
d− U cΘ(t1, t2, C) ≤ (1− act1)Z + (1− act2)Z + (1− β)Z (12)
d− UncΘ (t1, t2, C) ≤ (1− anct1 )Z + (1− anct2 )Z + βZ (13)
U cΨi(ti, C) = UΨi(ti, C) + (1− cti)ε (14)
UncΨi (ti, C) = UΨi(ti, C) (15)
0 ≤ kci − U cΨi(ti, C) ≤ (1− acti)Z (16)
0 ≤ knci − UncΨi (ti, C) ≤ (1− ancti )Z (17)

− αiZ ≤ knci −
1

2
(kc1 + kc2) ≤ (1− αi)Z (18)

β ≤ αi (19)
(α1 + α2) ≤ β + 1 (20)

We now proceed to an explanation of the above MILP which is named as SPECTRE-R
algorithm in this paper and optimizes defender utility, d, against collusive adversaries.
In all equations, nc stands for not colluding cases and c stands for colluding cases, and
Z is a large constant. Additionally, constraints with free indices are repeated across all
possible values, e.g. i = 1, 2 or t ∈ T . Equation 7 defines the binary decision vari-
ables. act and anct whether each target would be attacked if the corresponding adversary
chooses to collude or not collude, respectively. α1 and α2 indicate each adversary’s de-
cision of whether to collude. β is indicates whether collusion actually occurs; it is one if
and only if both α1 and α2 are one. ct, introduced in Equation 8 is the defender cover-

2 https://www.dropbox.com/s/kou5w6b8nbvm25o/nPlayerAppendix.pdf?dl=0
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age probability at target t. Equation 9 enforces the defender resource constraint, and that
the attackers each select exactly one target. Equations 10 and 11 calculate the defender
expected utilities at each target in the case of collusion and no collusion. Equations 12
and 13 define the defender’s final expected payoff based on which target is attacked in
each case.

Equations 14 and 15 define the expected utility of the attackers in colluding and non-
colluding situations. Equations 16 and 17 constrain the attackers to select a strategy in
attack set ofC in each situation. Equation 18 requires each attacker to collude whenever
they obtain higher utility from doing so. Lastly, Equations 19 and 20 set β = α1 ∧ α2.

Proposition 1. Any solution to the above MILP is a CSE.

Proof. We start by showing that the followers play a Nash equilibrium as required by
condition (2). Let (a∗ti , α

∗
i ) be the action of one of the followers produced by the MILP

where ti is the target to attack and αi is the decision of whether to collude. Let (ati , αi)
be an alternative action. We need to show that the follower cannot obtain strictly higher
utility by switching from (a∗ti , α

∗
i ) to (ati , αi). If α∗i = αi, then Equations 16 and

17 imply that ati already maximizes the follower’s utility. If α∗i 6= αi then Equation
18 implies that (a∗ti , α

∗
i ) yields at least as much utility as (ati , 1 − α∗i ), for the ati

which maximizes the follower’s utility given that they make the opposite decision about
collusion. So, (a∗ti , α

∗
i ) yields at least as much utility as (ati , αi), and condition (2) is

satisfied. For condition (3), note that in Equation 18, both followers compute the utility
for collusion assuming that the other will also collude. So, if follower i would be best
off with β = 1, the MILP requires that αi = 1. Thus, if both followers receive strictly
highest utility in an equilibrium with β = 1, both will set α = 1. In all other cases, the
objective is simply maximizing d, which satisfies conditions (1) and (4) by construction.

The following observations and propositions hold for the games with symmetric
reward distribution between the two adversaries.

OBSERVATION 1. The defender optimizes against rational adversaries by enforc-
ing an imbalance in resource allocation between the sides and preventing collusion.

In SPECTRE-R, the key idea for preventing collusion between two adversaries is to
impose a resource imbalance between their situations. This places one adversary in an
advantaged condition and the other in a disadvantaged condition. Assuming perfectly
rational adversaries, we expect that the disadvantaged adversary will always seek to
collude, and the advantaged attacker will always refuse (provided the imbalance out-
weighs the bonus ε). In other words, the optimal solution provided by SPECTRE-R
satisfies θ 6= 0 where θ = |x1 − x2|, xi =

∑
ti∈Ti cti is difference in total resource

allocation to the two sides. This approach incentivizes one attacker to refuse to collude
by putting them in a better position than the other.

To analyze the effect of the imbalance in resource allocation on defender expected
payoff, we added another constraint to the MILP formulation shown in Equation 21
forces a resource imbalance at an arbitrary level, δ. For the case of symmetric reward
distribution, WLOG, we can fix the first attacker to be the one who receives higher
payoff and simply linearize the following equation; however generally, we can divide
the equation into two separate linear constraints.

|knc1 − knc2 | =δ (21)
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OBSERVATION 2. By varying δ, the following cases can occur:

1. For δ < δ∗, knci −
1

2
(kc1 + kc2) < 0 for both attackers and consequently αi = 1 for

i = 1, 2. In other words, the defender is not able to prevent collusion between the
attackers and β = 1.

2. For δ = δ∗, knc1 −
1

2
(kc1+kc2) = 0 for one of the attackers and knc2 −

1

2
(kc1+kc2) < 0

for the other one, so consequently α1 can be either 0 or 1 and α2 = 1. In this case,
the followers break ties in favor of the leader, so α1 = 0 and β = 0.

3. For δ > δ∗, knc1 −
1

2
(kc1 + kc2) > 0 for one of the attackers and consequently

α1 = 0. For the other attacker knc2 −
1

2
(kc1 + kc2) < 0 and α2 = 1. In other words,

the defender is able to prevent collusion between the attackers and β = 0.

Proposition 2. The switch-over point, δ∗, introduced in the observation 2 is lower
bounded by 0 and upper bounded by 2ε.

Proof. Using Equation 17, we know that at any target ti, knci ≥ UncΨi (ti, C). If we
assume that the attacker attacks target tci with coverage ccti by adding and subtracting
a term as ε(1 − ccti), we can conclude that knci ≥ kci − ε(1 − ccti). Consequently,
kc1 + kc2 ≤ knc1 + knc2 + ε(1 − cct1) + ε(1 − cct2). On the other hand, according to

observation 2.2, at δ = δ∗, we have knc1 −
1

2
(kc1 + kc2) = 0. Combining these last two

equations, we will get (knc1 − knc2 ) ≤ ε(1− cct1) + ε(1− cct2) . The LHS is equal to δ∗

and the RHS can be rearranged as 2ε− ε(cct1 + cct2), so we will have δ∗ ≤ 2ε− ε(cct1 +
cct2). Given the fact that coverage at each target is in range [0, 1], the upper bound for
−(cct1 + cct2) will be zero. Finally, by aggregating these results, we can conclude that
δ∗ ≤ 2ε. Following the same analysis, the lower bound for δ∗ can be found starting
from kc1 + kc2 ≥ knc1 + knc2 + ε(1− cnct1 ) + ε(1− cnct2 ) and as a result, 0 ≤ δ∗.

Given the facts presented in Proposition 2, by enforcing an imbalance of maximum
2ε, the defender will be able to prevent collusion. These bounds can be tighter, if we
have more information about the distribution of reward at targets. For instance, if re-
ward distribution over targets is close enough to uniform distribution, then the average
coverage on each side will be c̄t1 = 2x1

n and c̄t2 = 2x2

n , where x1 and x2 are fraction
of resources assigned to each side and there are n

2 targets on each side. As a result,
−(cct1 + cct2) ≈ −(c̄t1 + c̄t2). So we will be able to find an approximate upper bound
of 2ε(1− m

n ), where m = x1 + x2. This implies that when the ratio of mn is large, less
imbalance in resource allocation is needed to prevent collusion. In the human subject
experiments that will be discussed in the next section, we also observed that with a
wider range of rewards (RS2 compared to RS1 in Figure 5(a) in OBSERVATION A)
over targets, it becomes harder to prevent collusion between attackers.

SIMULATION 1. Simulation results of SPECTRE-R algorithm for the two games
introduced in Section 3 are shown in Figure 3(a) and 3(b) for different values of the
bonus ε. We vary δ along the x axis, and show the defender loss on the y axis. In all of
the plots, for each epsilon value, there is a δ value (indicated with gray vertical lines) at
which collusion breaks and also a δ∗ value (which corresponds to an optimal resource
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imbalance θ∗) at which collusion is broken and defender loss is minimized (indicated
with solid black vertical lines). The higher the benefit of collusion, the larger the loss
of the defender. Note that before collusion is broken, imposing a resource imbalance
sometimes increases the defender’s loss (see plots for ε = 3) because the defender
deviates from the optimal coverage probabilities for a traditional SSG without reaping
the benefit of reduced cooperation. Similarly, note that defender loss increases for δ >
δ∗ since cooperation is already broken, so the defender only suffers by further reducing
coverage on the advantaged player. This emphasizes the importance of precision in
modeling and recognizing the optimal δ for allocating resources in real-world settings.

(a) RS1: Def. Exp. Loss vs. δ vs. ε (b) RS2: Def. Exp. Loss vs. δ vs. ε

Fig. 3. Simulation results of SPECTRE-R: Defender Expected Loss vs. resource imbalance

6 Human Behavioral Approach

6.1 COSG model for bounded rational adversaries

While for perfectly rational adversaries the calculations shown in Figure 3 would hold,
our observations from human subject experiments did not match this expectation; the
probability of collusion varied continuously with the level of asymmetry in the adver-
sary’s’ situations. To address this problem, we propose a two layered model which is
able to predict (i) the probability of collusion between the adversaries and (ii) the prob-
ability of attack over each target for each type of adversary. These layers account for
ways in which human behavior experimentally differed from perfect rationality. We
then use this model to generate the corresponding optimal patrol schedule.

Probability of attack over targets: We use a separate set of SUQR parameters
for each adversary introduced in Section 3.1 to reflect differences in decision mak-
ing. A generalized form of subjective expected utility is defined in Equation 22 which
is a linear function of the modified defender coverage, ĉti at target ti, the uncovered
payoff of the attacker, UuΨi(ti), the bonus for collusion ε and the covered payoff of
the attacker U cΨi(ti). β is the attackers’ decision variable about collusion. A vector of
ωβi = (ωβi,1, ω

β
i,2, ω

β
i,3) is assigned to each adversary. Each component of ωβi indicates

the relative weights that the adversary gives to each feature.

ÛΨi(ti, β) =ωβi,1.ĉti + ωβi,2.(U
u
Ψi(ti) + β.ε) + ωβi,3.U

c
Ψi(ti) (22)
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The modified coverage probability, ĉti , is defined based on Prospect Theory mentioned
in Section 2 and is related to the actual probability, cti , via Equation 23, where γ and η
determine the elevation and curvature of the S-shaped function [6], respectively. These
functions are plotted in Section 7.3.

ĉti =
ηcγti

ηcγti + (1− cti)γ
(23)

By the SUQR model mentioned in Section 2, the probability (conditioned on the deci-
sion about collusion) that the adversary, i, will attack target ti is given by:

qti(Ĉ | β) =
eÛΨi (ti,Ĉ,β)∑

ti∈Ti

eÛΨi (ti,Ĉ,β)
(24)

For each attacker, the SUQR weight vector ωβi , and the probability perception param-
eters γβi and ηβi are estimated via maximum likelihood (MLE) using data collected
from the human subject experiments. This resembles obtaining past data on poaching
as mentioned in Section 3.2 to learn these parameters.

Probability of offering to collude: We propose a model which is intuitively based
on SUQR to predict the probability of offering collusion by each adversary from a be-
havioral perspective. Different from the rational behavior model (see Figure 3) where
collusion is deterministic, this model assumes that the attackers make stochastic deci-
sions concerning collusion.

The probability of collusion for each adversary is calculated using Equation 25.
Here, Ū cΨi =

∑
i∈N

∑
ti∈Ti ÛΨi(ti, β = 1)/(N.|Ti|) is the average adversary utility

over all targets for a collusive attack and ŪncΨi =
∑
ti∈Ti ÛΨi(ti, β = 0)/|Ti| is the

average adversary utility over all targets for an individual attack.

qi(β = 1) =
eŪ

c
Ψi

e
ŪcΨi + e

ŪncΨi
(25)

The coefficients in ωβi are learned for advantaged and disadvantaged attackers and β =
0, 1 using MLE and data collected from human subject experiments.

6.2 SPECTRE-BR: Optimal defender strategy for bounded rational adversaries

The two above mentioned models are incorporated in SPECTRE-BR (Strategic Pa-
trolling to Extinguish Collaborative ThREats from Boundedly Rational adversaries)
to generate the defender optimal strategy by maximizing the expected utility of the
defender given in Equation 26 where the defender expected utility is computed as
UΘ(ti, C, β) = cti · U cΘ + (1 − cti)(U

u
Θ + βε) for target ti, mixed strategy C and

the collusion variable β. In this equation, C represents the set of all possible coverage
vectors. We define q(β=1) = min(q1(β=1), q2(β=1)) and q(β=0)=1−q(β=1).
This assumption is supported by the fact that collusive attacks happen only when both
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parties are sufficiently inclined to collude, and the advantaged player will always be
less inclined to offer collusion.

max
C∈C

 N∑
i=1

∑
ti∈Ti

1∑
β=0

UΘ(ti, C, β)qti(C | β)q(β)

 (26)

7 Human Subject Experiments

To determine how the behavior of human players differs from perfect rationality, we
recruited participants from Amazon Mechanical Turk to play the game described in
Section 3. Each experiment used 50 participants. Here we report on the results.

7.1 Resource imbalance effect on collusion

HYPOTHESIS A. There exists a switch-over δ∗ value, at which it is not rational for
the adversaries to collude. Consequently, collusion will be broken completely.

METHOD A. Given the intuition from the rational adversary model, the defender
achieves higher expected utility by breaking collusion between the two adversaries.
The main idea for preventing collusion was to place one adversary in the advantaged
condition so he will avoid collusion. The corresponding optimal strategy results in an
asymmetry between the maximum expected utilities on both sides which we referred to
as δ. This δ is correlated with the difference between aggregated defender coverage on
both sides, θ which is defined in OBSERVATION 2. Figure 4(a) illustrates this relation-
ship by plotting δ on the x axis against the total resource imbalance on the y axis for
RS2. As δ increases, the resource imbalance also increases. To see how deviating from
balanced resource allocation affects human adversaries’ decisions about collusion, we
ran human subjects experiments on AMT for various δ values for two reward structures
RS1 and RS2. Figures 4(b) and 4(c) illustrate two sample mixed strategy (defender
coverage over targets) that we deployed on AMT for RS2. In Figure 4(b), resources
are distributed symmetrically, while in Figure 4(c) δ was set equal to 1 and one side
is covered more than the other. Next, as shown in Figure 5(a), for each reward struc-
ture, we tested 4 different coverage distribution i.e., δ ∈ {0, 1, 2, 3}. For each defender
strategy we recruited 50 AMT workers. It is worth noting that the models introduced in
this paper are valid for both symmetric and asymmetric payoff structures; however, we
show the simulation results and experiments for the symmetric case to hold the effect
of other variables constant and focus mostly on the distribution of security resources.

OBSERVATION A. The experiments showed that for human adversaries, there
is no switch-over point or sharp change in behavior as predicted in Figure 3 when
assuming rational adversaries. Rather, the probability of offering collusion decreased
smoothly as δ increased for both RS1 and RS2. This completely contradicts the results
assuming a rational adversary as seen in Figure 3. These results are shown in Figure
5(a). δ varies on the x axis while the y axis shows the probability of collusion. For
advantaged attackers (denoted RS1-A and RS2-A in Figure 5(a)), we observe a smooth
decline in collusion as δ increases. However, for disadvantaged attackers (RS1-DA and
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(a) θ vs δ (b) δ = 0, RS2 (c) δ = 1, RS2

Fig. 4. Defender strategy deployed on AMT and resource imbalance

(a) Collusion level (b) Average defender loss. SPECTRE-
BR outperforms the rational model.

Fig. 5. Collusion level and average defender loss

RS2-DA), we did not observe a significant change in the level of collusion; the disad-
vantaged attacker always offered to collude with high probability.

ANALYSIS A. The previous observation has several implications: i) for small val-
ues of δ there were a considerable number of human players in advantaged situations
who refused to collude despite the fact that collusion was rational. ii) For large values
of δ, there were a considerable number of human players in advantaged situations who
chose to collude despite the fact that collusion was an irrational decision in that situa-
tion. This behavior might indicate that the bounded rationality model might be a better
fit than the model assuming full rationality when modeling collusive adversaries.

7.2 SPECTRE-BR outperforms model assuming perfectly rational adversaries

HYPOTHESIS B. A lower probability of collusion decreases defender loss.
METHOD B. See method A.
OBSERVATION B. Figure 5(b) shows the average defender loss obtained by dif-

ferent strategies for both reward structures, RS1 and RS2. Strategies generated based
on the human behavior model (SPECTRE-BR) are labeled ”HBM”, while the other bars
represent strategies generated by the MILP from Section 4 using the specified δ. Figure
5(b) shows the empirical utility obtained by each strategy. We calculated the average
loss from human players who were in the advantaged and disadvantaged position and
who decided to collude and not collude. Figure 5(b) plots the average of these losses
weighted according to the frequencies with which players decided to collude, observed
in the experiments. We see that the human behavior model obtains uniformly lower loss
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than the perfect rationality model. In nearly all populations, the difference in utility be-
tween the strategies generated by the human behavioral model and those generated by
the MILP is statistically significant (p < 0.05). Table 2 gives t-test results from com-
paring the utility obtained by the human behavioral model against each other strategy.

Table 2. Statistical Significance (t-Test p values for SPECTRE-BR and rational strategies)

RS Rational Strategies (δ)

δ = 0 δ = 1 δ = 2 δ = 3

1 3.8× 10−2 6.6× 10−4 4.0× 10−3 4.6× 10−3

2 3.5× 10−6 1.9× 10−3 2.6× 10−1 5.1× 10−2

ANALYSIS B. Importantly, Figure 5(b) shows that breaking collusion does not
always decrease defender loss. For example, in RS2, defender loss is lower at δ = 2
compared to δ = 3; however, the chance of collusion (as seen in Figure 5a) is higher
for δ = 2. Hence, simply decreasing the level of collusion (which is correlated with an
increase in δ per OBSERVATION A.) may not always be optimal for the defender.

7.3 Defender coverage perception

HYPOTHESIS C. Human adversaries’ probability weightings follow S-shaped curves
independent of their decision about collusion.

METHOD C. Parameters of S-curves, γ and η in Equation 23 are learned for the
data sets described in METHOD A using the techniques presented in Section 6.

OBSERVATION C. Figures 6(a) and 6(b) show the probability weighting func-
tions learned for the disadvantaged and advantaged adversaries for both groups who
are colluding and not colluding for RS1. In these figures the defender coverage varies
along the x axis, and the attackers’ perceptions of defender coverage are shown along
the y axis. Figures 6(c) and 6(d) show the same for RS2.

ANALYSIS C. There are two main points in these results: (i) probability weightings
followed S-shaped curves, contradicting prospect theory[25, 9], i.e., low probabilities
are underweighted and high probabilities are overweighted. (ii) Probability perceptions
differed between those who decided to collude and not to collude. This analysis supports
the use of SPECTRE-BR because humans’ probability weightings are indeed nonlinear.

7.4 Individualism vs. collectivism

HYPOTHESIS D. Human adversaries who are collectivists are more likely to collude
than individualists in nearly all cases.

METHOD D. All of the participants in our experiments were presented with a sur-
vey after playing the game. Eight questions were selected from the 16-item individualism-
collectivism scale. Questions with the highest factor loading were selected because prior
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research shows that these are the most accurate indicators of individualism vs collec-
tivism [21]. Players responded on a scale from 1 (strongly disagree) to 7 (strongly
agree). These responses were used to create a player’s OI:OC (overall individualism
to overall collectivism) ratio as follows. First, the sum of a player’s collectivism re-
sponses, c, from collectivism-oriented questions, qj and individualistic responses, i,
from individualism-oriented questions, mk were calculated as c =

∑4
j=1 qj ,

{
qj ∈

R+ : 1 ≤ qj ≤ 7
}

and i =
∑4
k=1mk,

{
mk ∈ R+ : 1 ≤ mk ≤ 7

}
. A player’s OI:OC

ratio is simply i/c. A player is called an individualist if his OI:OC ratio falls above
the median OI:OC score for all players, otherwise he is called a collectivist. We next
explore how decisions differ between the two groups. Also please note that the order
effect on individualism vs. collectivism analysis is discussed in the online appendix3

due to space consideration.

(a) RS1: DA (b) RS1: A (c) RS2: DA (d) RS2: A

Fig. 6. Probability perception curves learned based on PT

OBSERVATION D. The data confirmed that regardless of setting, collectivists are
more likely to collude than individualists. This principle was applicable regardless of a
player’s reward structure, the game’s δ value, and whether a player was predetermined
to play in an advantaged or disadvantaged state. Figure 7 shows the chance of collusion
on the y axis versus δ on the x axis for our two reward structures and in situations
where the human is in the advantaged and then disadvantaged situations; we see that the
chance of offering collusion for collectivists is always higher than individualists. There
is one exception in Figure 7(c), δ = 2, where the chance of collusion for collectivists
and individualists is approximately the same (a difference of less than 0.1 is observed).
This single case can be considered an exception to the general rule.

ANALYSIS D. Due to factors like morality, social systems, cultural patterns, per-
sonality, etc. collectivists may prefer working with a fellow player [24] regardless of
reward structure and delta value. However, the fact that collusion decreases as delta
value increases has valuable implications. In security games, this means that adopting
more rigorous defender strategies has the effect of dissolving collusion amongst at-
tacker groups regardless of their OI:OC ratio. However, it is important to notice that if
attackers have a relatively high OI:OC ratio (meaning they are individualists), the de-
fender strategies given here are even more effective at preventing collusion. Please see
the appendix for more individualism / collectivism analysis.

3 https://www.dropbox.com/s/uk9wqrdfq85vhk9/ICAppendix.pdf?dl=0
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(a) RS1: A (b) RS2: A

(c) RS1: DA (d) RS2: DA

Fig. 7. Cooperation level for collectivists and individualists. RS1 and RS2 indicate the reward
structure, while A and DA indicate that a player was on the advantaged or disadvantaged side.

8 Conclusion

This paper addresses the problem of collusion between adversaries in security domains
from a game-theoretic and human behavioral perspective. Our contributions include: (i)
the COSG model for security games with potential collusion among adversaries, (ii)
SPECTRE-R to solve COSGs and break collusion assuming rational adversaries, (iii)
observations and analyses of adversary behavior and the underlying factors including
bounded rationality, imbalanced-resource-allocation effect, coverage perception, and
individualism / collectivism attitudes within COSGs with data from 700 human sub-
jects, (iv) a human behavioral model learned from the data which incorporates these un-
derlying factors, and (v) SPECTRE-BR to optimize against the learned behavior model
to provide better defender strategies against human subjects than SPECTRE-R.
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