
Staying Ahead of the Game: Adaptive Robust Optimization for
Dynamic Allocation of Threat Screening Resources

Sara Marie Mc Carthy, Phebe Vayanos, Milind Tambe
University of Southern California

{saramarm,phebe.vayanos,tambe}@usc.edu

Abstract
We consider the problem of dynamically allocat-
ing screening resources of different efficacies (e.g.,
magnetic or X-ray imaging) at checkpoints (e.g., at
airports or ports) to successfully avert an attack by
one of the screenees. Previously, the Threat Screen-
ing Game model was introduced to address this
problem under the assumption that screenee arrival
times are perfectly known. In reality, arrival times
are uncertain, which severely impedes the imple-
mentability and performance of this approach. We
thus propose a novel framework for dynamic al-
location of threat screening resources that explic-
itly accounts for uncertainty in the screenee arrival
times. We model the problem as a multistage robust
optimization problem and propose a tractable solu-
tion approach using compact linear decision rules
combined with robust reformulation and constraint
randomization. We perform extensive numerical
experiments which showcase that our approach out-
performs (a) exact solution methods in terms of
tractability, while incurring only a very minor loss
in optimality, and (b) methods that ignore uncer-
tainty in terms of both feasibility and optimality.

1 Introduction
Screening for threats is an important security challenge, be
it inspecting cargo at ports, passengers at airports, or fans
entering a stadium. Given a strategic adversary capable of
exploiting gaps in security measures, along with a large num-
ber of screenees, it becomes critical to optimize the alloca-
tion of limited screening resources. Indeed, to improve air-
port screening efficiency and effectiveness, the US Trans-
portation Security Administration (TSA) recently launched
the Dynamic Aviation Risk Management Solution (DARMS)
initiative [AAAE, 2014] to incorporate adaptive screening.

Threat Screening Games (TSGs) [Brown et al., 2016;
Schlenker et al., 2016] have been previously introduced to
model screening domains as bayesian Stackelberg games.
These games model situations, wherein a strategic attacker
attempts to penetrate a secure area, while the screener has
the opportunity to screen for threats using limited resources.
Optimizing the defender (mixed) strategy by means of the

TSG captures the strategic behavior of attackers and thus
yields more effective screening strategies. TSGs are in-
spired by previous research in security games [Tambe, 2011;
Korzhyk et al., 2010; Yin et al., 2015; Balcan et al., 2015;
Basilico et al., 2009], where a defender protects a set of tar-
gets from a strategic adversary. However, TSGs differ sig-
nificantly because they (i) do not have an explicitly modeled
set of targets; (ii) include a large number of non-player scree-
nees that must be screened while a single adversary attempts
to pass through undetected; and (iii) encompass screening re-
sources with differing efficacies and capacities that are com-
bined to work in teams. These key differences make TSGs
more appropriate for screening settings.

Despite promising results, previous work in TSG fails in its
mission to realistically model real-world settings. Its funda-
mental limitation is its assumption of perfect fore-knowledge
of screenee arrival times (e.g., arrival times of passengers at
airports). However, in the real-world there is significant un-
certainty in arrival times. Addressing this challenge is dif-
ficult, as it requires reasoning about all the possible realiza-
tions of the uncertainty and coming up with an optimal plan
for each of those scenarios. When dealing with a large num-
ber of screenees, this result in millions of possible scenarios,
making the planning problem extremely difficult.

To address this shortcoming, our first contribution is a new
model Robust Threat Screening Games (RTSG), which ex-
presses the required uncertainty in screenee arrival times. In
RTSG, we model the problem faced by a screener as a ro-
bust multistage optimization problem. We present a tractable
solution approach with three key novelties that contribute to
its efficiency: (i) compact linear decision rules; (ii) robust re-
formulation; and (iii) constraint randomization. We present
extensive empirical results that show that our approach out-
performs the original TSG methods that ignore uncertainty,
and the exact solution methods that account for uncertainty.

2 Problem Formulation
2.1 The Case when Screenee Arrivals are Known
We consider a finite planning horizon consisting of W time
windows (periods)W := {1, . . . ,W}. During each period, a
known number of screenees arrive, each from a known cat-
egory κ := (ρ, φ), ρ ∈ P := {1, . . . , P}, φ ∈ F :=
{1, . . . , F}. The first (second) component of their category,



ρ (φ), represents the uncontrollable (resp. controllable) part
of the screenee’s category. Thus, each screenee can decide
the controllable part of their category, however, they can-
not decide the uncontrollable part of their category, which
stems from their inherent characteristics. For notational con-
venience, we let K := P ×F . We assume that each screenee
knows their own category. As an example, in the context of
passenger screening at airports, ρ can represent the risk cate-
gory of the passenger (e.g., normal boarding versus TSA pre-
check), while φ can represent a flight type (e.g., international
with given departure time) – note that both these components
are known to the passenger. We let Nw

κ denote the number
of screenees in category κ to arrive in time window w. Since
the category and arrival time of each screenee is known, the
quantities Nw

κ are perfectly known. Without loss of general-
ity, we assume that Nw

κ > 0 for all w and κ.
One of the screenees is planning on conducting an attack

using an attack method m of his choosing from the set M.
For this reason, the screener is operating a checkpoint com-
prised of T teams indexed by t ∈ T and can decide which
team should screen each screenee based on their category.
Each of these teams consists of various resource types. The
set of all available resource types is denoted by R. The sub-
set of resources composing team t is denoted by R(t) ⊆ R.
If a screenee is assigned to team t, then he must be screened
by all resource types allocated to that team. Unfortunately,
not all screenees can be screened by the most effective re-
sources as each resource has a capacity Cr on the number of
screenees that it can process in each time window. The attack
will be averted if the attack method is identified by any one
of the resources screening the attacker. We let Et,m denote
the effectiveness (ie. probability of interception) of team t at
detecting attack method m, determined by the effectiveness
of each resource, see Example 1.

Example 1. Assuming independence of the effectiveness of
the resources that make up each team and letting Er

r,m de-
note the probability of detecting an attack of type m using
resource r, we have Et,m = 1−

∏
r∈R(t)(1− Er

r,m).

Following the (by now standard) approach in the litera-
ture, we formalize this problem as a Threat Screening Game,
i.e., a Stackelberg game in which the screener, as the leader,
commits to mixed strategies, and the attacker acts as the fol-
lower [Brown et al., 2016; Schlenker et al., 2016]. The ra-
tionale is that the screener acts first by selecting a (random-
ized) screening strategy, i.e., a feasible assignment of scree-
nees to teams. In response to the choice of screening strategy,
the attacker (after observing the screenee allocation) selects:
a) his attack method m, b) his attack window w, and c) the
components of his category that he can control in κ, so as to
cause maximum harm. We refer to such a choice as an at-
tack (m,w, κ). If the attack is caught, the screener receives
a utility U+

κ , which depends on the category of the adversary.
Accordingly, if the screener is unsuccessful at preventing the
attack, he receives the (negative) utility U−κ . The attacker’s
utilities are assumed to be negative of the screener’s utilities,
so that the game is zero-sum. We assume that the defender
knows the probability that the attacker’s uncontrollable cat-
egory is ρ, denoted by Pρ and we have

∑
ρ∈P Pρ = 1.The

objective of the screener is then to select the best random-
ized allocation (i.e., mixed strategy), in anticipation of the
attacker’s best response.

We are now ready to provide a mathematical formulation
of the problem in the spirit of [Brown et al., 2016].
Defender Pure Strategy Set. An assignment of screenees
to teams occurs at the beginning of each period w ∈ W , and
corresponds to a decision on the number of screenees from
each category κ to allocate to each team t out of the Nw

κ
screenees that arrive in that time window. Letting νwκ,t de-
note this assignment, the defender pure strategy set is given
by

S :=

{
ν : νwκ,t ∈ N+ ∀t ∈ T ,

∑
t∈T

νwκ,t = Nw
κ ∀κ ∈ K,

∑
t:r∈R(t)

∑
κ∈K

νwκ,t ≤ Cr ∀r ∈ R, w ∈ W

 .

The first constraint in the set stipulates that the number of
screenees must be a non-negative integer. The second ensures
that all the screenees are allocated to a team. The third guar-
antees that resource capacities are not exceeded. Note that S
has finite cardinality, i.e., there are finitely many pure strate-
gies available to the screener. The probability of detecting an
attack (m,w, κ) given defender strategy s is given by

Dw,s
κ,m :=

∑
t∈T

Et,mν
w,s
κ,t /N

w
κ ,

where νw,sκ,t denotes the number of screenees in category κ
screened by team t in window w according to pure strategy s.
Defender Mixed Strategies. A mixed strategy corresponds
to a distribution over pure strategies, i.e., to a choice

q ∈ Q :=

{
(qs)s∈S :

∑
s∈S

qs = 1, qs ≥ 0

}
.

The probability of detecting an attack (m,w, κ) is given by∑
s∈S qsD

w,s
κ,m.

Robust Linear Programming Formulation. Since the at-
tacker can select his attack (m,w, κ), but cannot select the
uncontrollable aspect of his category, the problem faced by
the screener is expressible as the following robust optimiza-
tion problem in variables z and q

maximize min
w,m,φ

∑
ρ∈P

Pρ[z
w
κ,mU

+
κ + (1− zwκ,m)U−κ ]

subject to zwκ,m =
∑
s∈S

qsD
w,s
κ,m ∀κ, m, w

q ∈ Q.

(1)

We have omitted the sets of the variables κ, m, w and φ to
minimize notational overhead. The variable zwκ,m is the prob-
ability of detecting an attack (m,w, κ). Accordingly, the ob-
jective function corresponds to the worst-case expected util-
ity of the screener. The expectation is taken with respect to
the uncontrollable component of the attacker’s category. The
minimum is taken across all choices available to the attacker.



The cardinality of the strategy set S (and accordingly the
number of decision variables in Problem (1)) is exponential
in the number of time windows and Problem (1) is NP-
hard [Brown et al., 2016]. We thus consider a relaxation to
Problem (1) obtained by performing the change of variables
πwκ,t :=

∑
s∈S qsn

w,s
κ,t /N

w
κ . The variable πwκ,t can be inter-

preted as the (marginal) probability of allocating a screenee
in category κ to team t in window w. We obtain the follow-
ing robust linear problem in variables z and π whose size is
polynomial in the number of time windows

maximize min
w,m.φ

∑
ρ∈P

Pρ[z
w
κ,mU

+
κ + (1− zwκ,m)U−κ ]

subject to zwκ,m =
∑
t∈T

Et,mπ
w
κ,t ∀κ,m,w

π ∈ Π.

(2)

The first constraint is a direct consequence of the first con-
straint in Problem (1) combined with the change of variables,
and

Π :=


π :

∑
t:r∈R(t)

∑
κ∈K

πwκ,tN
w
κ ≤ Cr ∀r, w∑

t∈T
πwκ,t = 1

0 ≤ πwκ,t ≤ 1 ∀t

 ∀w, κ.


denotes the set of all marginal strategies. We note that Prob-
lem (2) is equivalent to a moderately sized linear program
obtained by linearizing the piecewise linear concave objective
function using the standard epigraph reformulation approach.

2.2 The Case of Uncertain Screenee Arrivals
Insofar, we have assumed that screenee arrival times are per-
fectly known. Unfortunately, this assumption fails to hold in
most threat screening problems. Moreover, ignoring uncer-
tainty in the screenee arrivals during optimization may yield
severely suboptimal or even infeasible allocations, see Sec-
tion 4. We thus develop a novel modeling and solution frame-
work for threat screening that is robust to uncertainty in scree-
nee arrival times. Our framework builds upon formulation (2)
which enjoys better tractability properties than Problem (1).
Model of Uncertainty. We model the number of screenees
from each category to arrive in each time window as random
variables that are defined on the probability space (Ξ,F ,P),
which consists of the sample space Ξ, the Borel σ-algebra F
and the probability measure P. The elements of the sample
space are denoted by ξ := (ξ0, ξ1, . . . , ξW ) where the sub-
vector ξw := (ξw,κ)κ∈K is observed at the end of period w
and ξw,κ represents the number of people from category κ
that arrive in window w. We also let ξw := (ξ0, . . . , ξw) de-
note the portion of ξ that has been observed by the end of time
window w. We assume that Ξ is a bounded set expressible as

Ξ := {ξ : ξw,k ∈ N, V ξ ≤ h} (3)

for some matrix V ∈ R`×WK and vector h ∈ R`, where `
corresponds to the number of constraints in the uncertainty
set. Thus Ξ corresponds to the intersection of the set of all

non-negative integers with a polyhedral set. Without loss of
generality, we assume that Ξ ⊂ {ξ : ξ0 = 1} (since w = 0 is
not a valid time period, we let ξ0 be a constant, so that affine
functions of (ξw)w∈W can be represented compactly as lin-
ear functions of ξ). We assume that Ξ is bounded. In the
spirit of robust optimization, we refer to Ξ as the uncertainty
set. We note that polyhedral uncertainty sets allow for a lot
of modeling flexibility and enable us to capture a wide vari-
ety of constraints of practical relevance such as in the airport
screening domain.
Example 2 (Airport Screening). In the context of security
screening at airports, the total number of people to travel in
category κ on a given day, denoted by Nκ is known from the
flight manifests. At the same time, passenger arrival times
are conditioned by the time of their flight category φ. It is
thus natural to assume that all passengers in category κ will
arrive in some window w ∈ ∆κ ⊆ W (covering e.g., a cou-
ple of hours before their flight time). A suitable choice of
uncertainty set is then given by

ΞAS :=

{
ξ : ξw,k ∈ N+,

∑
w∈∆κ

ξκ,w = Nκ ∀κ

}
,

which we denote by AS for Airport Screening.
In this paper, we take the view of a risk-averse screener

that wishes to be immunized against all possible realizations
of ξ ∈ Ξ. This view point is very natural for the set of applica-
tions under consideration that fall under the realm of security.
This implies that the attacker can in some sense “strategize
with nature” to devise a maximally harmful attack. Equiv-
alently, it can be interpreted as the desire to be immunized
against an attacker who would, by his own fortune, select the
maximally harmful attack relative to uncertainty in arrivals.
Adaptive Screening. As information about screenee ar-
rivals is revealed sequentially over time, the screener has the
opportunity to adjust his screening policy in an adaptive fash-
ion, at the beginning of each time window, in response to
these observations. In particular, at the beginning of time
window w, the screenee has observed the sequence of past
arrivals ξw−1 and can use that information to reason about
uncertainty in remaining time windows and adjust his screen-
ing strategy accordingly. Mathematically, the screening deci-
sions made at the beginning of time window w (i.e., πw) in
Problem (2) must be modeled as functions of the history of
screenee arrivals ξw−1. Given a realization ξ̃w−1 of ξw−1,
the screener will allocate πwκ,t(ξ̃

w−1) percent of screenees of
category κ to team t in window w. Accordingly, the proba-
bility of intercepting an attacker from category κ using attack
method m in time window w (i.e., zwκ,m) also depends on the
realization of ξw−1 and must be modeled as a function of the
history of observations, i.e., we have zwκ,m(ξw−1).
Resource Overflow. When arrivals are uncertain, the re-
source capacity constraint in (2) reads∑
t:r∈R(t)

∑
κ∈K

πwκ,t(ξ
w−1)ξw,κ ≤ Cr ∀r ∈ R, w ∈ W, ξ ∈ Ξ.

It requires that for all possible realizations of screenee ar-
rivals, the allocation must be such that all screenees be



screened by available resources in the window in which they
arrive. This may lead to highly conservative strategies that al-
locate most (if not all) screenees to the team with the highest
capacity. To mitigate such over-conservatism, we propose to
allow each resource r ∈ R to overflow from one time win-
dow to the next at a cost Fr per screenee that is delayed.
Thus, each screenee is allocated to a team in the window in
which they arrive. However, screening by some (or all) of the
resources in that team may take place in a future time win-
dow if that resource is over-capacity. The higher the overflow
fine Fr, the least likely that resource r will be overcapacity.
We note that similarly to the screening policy, the number of
screenees to overflow in each resource from time window w
to time window w + 1, denoted ow+1

r , must be modeled as
functions of the history of screenee arrivals, ξw. Under these
considerations, the resource capacity constraint becomes∑
t:r∈R(t)

∑
κ∈K

πwκ,t(ξ
w−1)ξw,κ ≤ Cr−owr (ξw−1)+ow+1

r (ξw)

(4)

and is enforced for all r ∈ R, w ∈ W , and ξ ∈ Ξ.
Adaptive Robust Optimization Formulation. We now
formulate the screener’s problem as a multi-stage robust op-
timization problem. We note that if the attacker chooses cat-
egory κ and time window w for his attack, at least one scree-
nee in category κ (corresponding to the attacker) must arrive
in that time window, i.e., it must hold that ξw,κ > 0. The
screener’s problem may be formulated in epigraph form as

maximize θ

subject to θ ≤
∑
ρ∈P

Pρuρ −
∑
w∈W

∑
r∈R

Fro
w
r ∀ξ

uρ ≤ zwκ,mU+
κ + (1− zwκ,m)U−κ ∀ξ : ξw,κ > 0

zwκ,m =
∑
t∈T

Et,mπ
w
κ,t ∀ξ, κ,m,w

π ∈ Πo.

(P)

The decision variables of Problem (P) are θ ∈ R, uρ(ξ),
owr (ξw−1), zwκ,m(ξw−1), πwκ,t(ξ

w−1) ∈ R, and

Πo :=

 π :

∃o with owr ≥ 0 : Constraint (4) ∀ξ, r, w∑
t∈T

πwκ,t = 1

0 ≤ πwκ,t ≤ 1 ∀t

 ∀ξ, w, κ

 .

We omit the dependence on ξ to minimize notational over-
heard. The variables uρ(ξ) express the utility of the screener
in scenario ξ when the uncontrollable category of the screener
is ρ. The remaining variables admit the same interpretation as
in Section 2.1. In the present setting they are however adap-
tive. The first set of constraints is used to linearize the piece-
wise linear concave objective function. The second set of
constraints determines the worst-case value of uρ(ξ) for each
scenario ξ. For any given choice of (κ,w,m) by the attacker,

this constraint is only enforced over those ξ ∈ Ξ for which
ξw,κ > 0 since at least one screenee must arrive in the at-
tacker’s chosen category and attack window. The following
Proposition establishes correctness of the above formulation
by showing equivalence of Problem (P) and an appropriately
constructed robust dynamic program.

Proposition 1. The multi-stage robust optimization prob-
lem (P) computes the optimal defender screening strategy,
which maximizes his worst-case expected utility when scree-
nee arrivals are uncertain. It is always feasible.

Complexity. Since Ξ is discrete and bounded, Prob-
lem (P) is equivalent to a deterministic linear program ob-
tained by enumerating all possible realizations of ξ ∈ Ξ
and imposing appropriate non-anticipativity constraints, in
the spirit of scenario-based stochastic programming [Birge
and Louveaux, 1997]. While the numbers of decision vari-
ables and constraints in that problem is linear in the number
of scenarios, the number of scenarios (cardinality of Ξ) can
grow very large, as illustrated by the following example.

Example 3 (Airport Screening). Consider the uncertainty set
ΞAS from Example 2. For any fixed screenee category κ, the
number of possible ways in which these screenees may arrive
is

g :=
(
Nκ+|∆κ|−1

Nκ

)
.

For fixed |∆κ| this quantity is O(N
|∆κ|
κ ); and for fixed Nκ,

it is O(|∆κ|Nκ). Since passenger arrivals are independent
across different categories, the cardinality of ΞAS is given by
g|K| and is thus exponential in the number of categories. In
the context airport screening, the number of scenarios is thus
exponential in the number of flight categories. In addition,
both the number of flight categories and corresponding num-
ber of passengers are generally linear in the number of time
windows. This implies that the size of the corresponding sce-
nario problem is exponential in the number of time windows.

3 Proposed Solution Approach
Problem (P) can become computationally expensive to solve
for realistic size instances where the cardinality of Ξ is expo-
nential in the number of time windows, see Example 3. We
thus propose a solution approach that results in a tractable
problem even when Ξ has exponentially many scenarios. In
what follows, we describe our approach and main results. The
proofs can be found in the Appendix.1

3.1 Linear Decision Rule Approximation
Information Aggregation. In Problem (P), the decision
variables πw are modeled as functions of the entire vector
of past arrival realizations ξw−1. As a first step to obtain a
tractable problem we propose to reduce information avail-
able to the screener and only allow his screening policy to
adapt to the aggregate number of screenees that have arrived
in past windows. Thus, we model the screening policy πw
for time window w as a function of the aggregate information

1http://teamcore.usc.edu/papers/2017/smc17.Appendix.pdf



ζw−1 := {ζw−1,κ}κ∈K, where ζw,κ :=
∑w
w′=1 ξw′,κ. The

following proposition shows that this results in a conserva-
tive approximation to the optimal screening policy, since the
restricted policy lies within the space of feasible policies.
Proposition 2. Restricting the adaptive decision variables
πw and zw for each time window w ∈ W to be functions
of the aggregate information vector ζw−1 provides a lower
bound on the optimal objective value of Problem (P).

However, even when restricting π to be functions of the
aggregate arrival ζ, ow and uρ are still functions of the full
passenger arrival ξw−1. The overflow in time window w is
a function of not only ξw but all ξi ∀i ≤ w since ow ≥∑w
i=1(πiκ,tξi,κ − Cr). Additionally, uρ depends on ζw for

all w, which is equivalent to knowing the actual passenger
arrival ξ. Since restricting ow and uρ to be functions of ζw−1

would result in further loss of optimality we avoid it here.
Linear Decision Rule. In Problem (P), the decision vari-
ables of the problem are arbitrary (bounded) functions of the
uncertain parameter realizations. As a second step to obtain a
tractable problem, we propose to restrict the space of feasible
adaptive decisions to those that exhibit affine dependence on
the data in the spirit of [Ben-Tal et al., 2004]. Thus, we let

πwκ,t(ξ
w−1) = (πwκ,t)

>ζw−1 ∀κ, t, w, ξ
zwκ,m(ξw−1) = (zwκ,m)>ζw−1 ∀κ,m,w, ξ
owr (ξw−1) = (owr )>ξw−1 ∀r, w, ξ

uρ(ξ) = u>ρ ξ ∀ρ, ξ

where the vectors πwκ,t, z
w
κ,m ∈ RK , owr ∈ RK(w−1) and

uρ ∈ RKW represent the new decision variables of the prob-
lem. Following the decision rule approximation, the number
of decision variables of the problem is polynomial in the num-
ber of time windows, categories, resources, and teams. Also,
it is independent of the number of scenarios. Since the linear
functions lie in the space of all feasible functions the decision
rule results in a conservative approximation. We denote the
resulting conservative approximation by (Pl).
Proposition 3. Problem (Pl) provides a lower bound on the
optimal objective value of problem (P).

3.2 Robust Counterpart
Problem (Pl) exhibits only a moderate number of decision
variables but still a very large number of constraints. In what
follows, we propose to mitigate the number of constraints by
using techniques inspired from modern robust optimization
[Ben-Tal et al., 2004]. The key observation is that under the
linear decision rule approximation, all constraints in the prob-
lem (except from (4)) are linear in ξ, thus being expressible in
the form a(x)>ξ ≤ 0 ∀ξ ∈ Ξ, for some linear function a that
maps the collection of all decision rule coefficients (denoted
by x) to coefficients of ξ. The following proposition enables
us to reformulate these constraints in a compact fashion.
Proposition 4. For any y ∈ Rk, define:

i) y>ξ ≤ 0 ∀ξ ∈ Ξ

ii) ∃λ ∈ R` with λ ≥ 0, V >λ ≥ y, and h>λ ≤ 0.

Then ii) implies i).

To represent these constraints efficiently, we apply the
above result to each constraint in Problem (Pl) (except
from (4)) and denote the resulting problem by (Pl−rc). For
general uncertainty sets, we obtain a conservative approxima-
tion to Problem (Pl) . The following Proposition establishes
that with uncertainty set ΞAS, as defined as in Example 2, the
reformulation of these constraints is exact.

Proposition 5. Suppose that we have the uncertainty set ΞAS

as defined in Example 2. Then, statements i) and ii) in Propo-
sition 4 are equivalent and Problems (Pl) and (Pl−rc) are
equivalent.

3.3 Constraint Randomization
Problem (Pl−rc) still involves constraint (4) enforced over
a set Ξ of potentially very large cardinality. We obtain a
tractable approximation to (Pl−rc) by replacing Ξ with sub-
sets ΞN ⊂ Ξ of cardinality N . We denote the resulting
problem by (PN

l−rc). The following theorem shows that a
randomly sampled subset ΞN of moderate cardinality N will
lead a good approximation.

Theorem 1 ([Campi and Garatti, 2008]). Suppose
that (Pl−rc) is feasible and accommodates n decision
variables. For a prespecified violation probability ε ∈ (0, 1)
and confidence β ∈ (0, 1), define

N(ε, β) := min

{
N ∈ N :

n−1∑
i=0

(
i

N

)
εi(1− ε)N−i ≤ β

}
Then, the probability mass of all ξ ∈ Ξ whose associated
constraints are violated by an optimal solution of (Pl−rc),
for N ≥ N(ε, β), does not exceed ε with confidence 1− β.

The parameter ε describes the probability that an optimal
solution to (Pl−rc) violates the overflow constraint. A vi-
olation of the overflow constraint implies that the overflows
are calculated incorrectly for some samples so that the part
of the objective associated with overflow is calculated incor-
rectly. The theorem states that such miscalculations are rare.
Moreover, the size of the resulting sampled problem is poly-
nomial in the number of time windows, categories, resources,
and teams, see [Vayanos et al., 2012]. In order to solve the
resulting problem more efficiently we employ a cutting plane
method, in the spirit of [Fischetti and Monaci, 2012].

4 Evaluation
We evaluate our framework on airport passenger screening
problems with uncertainty set ΞAS.

4.1 Solution Quality
The optimal objective of our solution gives us the perfor-
mance on the training set of samples we use. We evaluate
the solution quality out of sample (both on average and in the
worst case) by generating a large test set. We also use the
test set to compute an experimental violation probability. We
assume that the arrival of passengers is normally distributed
in the range ∆κ. Each data point is averaged over 30 trials,
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Figure 1: Utility improvement over averaged sample and random
uniform in (a) worst case and (b) average case.

each with randomized parameter settings, with error bars giv-
ing the 90% confidence intervals. For each of these trials we
generate 10,000 samples from the distribution of passenger
arrivals, and evaluate the computed strategy on each sample
so that each data point corresponds to 300,000 evaluations.
Uncertainty model vs Averaged Model. We compare our
solution method to the TSG model for problems with increas-
ing numbers of flights with W = 10. The TSG model opti-
mizes against only the average ξ, so there will be many sce-
narios where the strategy becomes infeasible. We consider
two heuristics to adjust an infeasible strategy: (1) Overflow
Heuristic: add excess passengers to the existing overflow
queue, or (2) Open-Team Heuristic: send excess passengers
to any team with available capacity. Figure 1 summarizes our
results. Against both heuristics, we outperform the TSG in
worst case (average) by more than 100% (50%). The average
violation probability was 98 ± 2% for the averaged sample
solutions and 0.5± 0.02% for the solution to (PN

l−rc).
Uncertainty Model vs Uniform Random. We compare to
a baseline where passengers are assigned to teams uniformly
at random. Figure 1 shows our results. In both the average
and worst cases, the solution quality of random screening can
be arbitrarily bad– we reach around 200% improvement.
Full Stochastic Program. We also compare the quality of
the solution of (PN

l−rc) to that of the optimal solution to
the full stochastic program associated with (P). Because the
full program is exponential in the number of categories, we
can only solve for very small problem instances. We fix the
number of time windows, with an arrival period of 2 time
windows for any flight, and show runtime and solution quality
for a small range of categories. The results are shown in Table
2 where near-optimal performance is exhibited.

4.2 Scalability
Figure 2 shows total solve and wall times for problems with
increasing number of flight categories. We are able to ef-
ficiently solve for a very large number of flight categories,
with polynomial growth with respect to flight categories. Ta-
ble 1 summarizes our findings. We see that even for very
large problems, where the cardinality of ΞAS is very large,
the computed strategies have very low violation probability.
Deployment to Saturation Ratio. In Figure 3 we explore
the space in which the decision problem becomes difficult by
comparing the linear decision rule to a constant decision rule,
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Figure 2: Solve & Wall time with
increasing number of flights.

φ Violation Decision
Prob (%) Vars (102)

10 0.27(0.03) 40(0.5)

12 0.18(0.03) 54(0.5)

14 0.14(0.02) 70(0.6)

16 0.19(0.04) 100(2)

Table 1: Experimental viola-
tion probability with increas-
ing problem size.

(φ, ρ) % Diff Solve Time Wall Time

Soln (ms) (ms)

(PN
l−rc) (P) (PN

l−rc) (P)

(1,2) 1.3(0.1) 7.4(0.1) 13.1(0.4) 22.8(0.2) 79(9)

(1,3) 0.29(0.1) 40(1) 320(10) 110(10) 2500(230)

(1,4) - 110(40) - 640(10) -

(2,1) 1.1(0.03) 2.5(0.07) 7(0.2) 10.9(0.4) 44.9(0.6)

(2,2) 0.8(0.01) 87(1) 2130(90) 260(10) 70500(90)

(2,3) - 340(50) - 2700(100) -

Table 2: Comparing the (PN
l−rc) to full stochastic program (P).

Blank entries correspond to instances where the full stochastic pro-
gram could not be held in memory.

where we make the same decisions regardless of the past ar-
rival of passengers. It is a known phenomenon in security
games, that the problem difficulty increases as the deploy-
ment to saturation ratio (ratio of defender resources to targets)
approaches 0.5 [Jain et al., 2012].
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Figure 3: Utility improve-
ment using adaptive decision
rules.

We measure the ratio by
comparing the number of
passengers to the capacity,
for a single flight, so that
the maximum number of
passengers which can be
screened in any time win-
dow is clearly defined. Fig-
ure 3 shows that as the prob-
lem difficulty increases, the
gap in solution quality be-
comes large and the adap-
tive screening greatly out-
performs the constant strategy.

5 Conclusion
We address a significant limitation in this area of work, where
the previous unrealistic assumption of complete certainty in
screenee arrival times, renders its solution unusable in real-
world settings by proposing a scalable framework that pro-
vides good solution quality and works for generalized models
of uncertainty.
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