
Towards a Game-theoretic Framework for Intelligent
Cyber-security Alert Allocation?

Aaron Schlenker1, Haifeng Xu1, Chris Kiekintveld2, Arunesh Sinha3, Milind Tambe1,
Mina Guirguis4, Solomon Sonya5, Darryl Balderas4, and Noah Dunstatter4??

1 University of Southern California
2 Texas State University

3 University at Texas El Paso
4 University of Michigan

5 United States Air Force Academy

Abstract. In recent years, there have been a number of successful cyber attacks
on enterprise networks by malicious actors. These attacks generate alerts which
must be investigated by cyber analysts to determine if they are an attack. Unfor-
tunately, there are magnitude more alerts than cyber analysts - a trend expected
to continue into the future creating a need to find optimal assignments of the
incoming alerts to analysts in the presence of a strategic adversary. We address
this challenge with the four following contributions: (1) a cyber allocation game
(CAG) model for the cyber network protection domain, (2) an NP-hardness proof
for computing the optimal strategy for the defender, (3) techniques to find the
optimal allocation of experts to alerts in CAG in the general case and key special
cases, and (4) heuristics to achieve significant scale-up in CAGs with minimal
loss in solution quality.

1 Introduction

Automated intrusion detection and prevention systems (IDPS) and security information
and event management tools (SIEM) are important for computer network security. The
alerts generated by these systems must be investigated by human cybersecurity analysts
to assess whether they were generated by malicious activity, and if so, how to respond.
Unfortunately, these automated systems are notorious for generating high rates of false
positives [16]. Expert analysts are in short supply, so organizations face a key chal-
lenge in managing the enormous volume of alerts they receive using the limited time
of analysts. Failing to solve this problem can render the entire system insecure, e.g., in

? A different version of this paper is accepted for publication in the IJCAI main track. This
submission has the following new material: (1) We present an algorithm which gives a 1

2

approximation of the defender’s optimal utility. (2) We add a geometric interpretation of the
main algorithm to provide more intuition to the reader. (3) More experimental results have
been added to show scalability of our algorithms. (4) We have added discussion of future work
to be completed to apply our model to the real world.

?? 1{aschlenk, haifengx, tambe}@usc.edu, 2cdkiekintveld@utep.edu, 3arunesh@umich.edu,
4{msg, d b118, nfd8}@txstate.edu, 5solomon.sonya@usafa.edu

the 2013 attack on Target, IDPS raised alarms, but they were missed in the deluge of
alerts [14].

There are many approaches for mitigating this problem by reducing the number of
alerts. IDPS can be carefully configured, alert thresholds can be tuned, and the clas-
sification methods underlying the detections can be improved [15, 4, 11]. Other tech-
niques include aggregating alerts [19], and visualizing alerts for faster analysis [13].
Even when using all of these techniques, there are still too many alerts for the analysts
to investigate all of them in depth. Our work focuses on the remaining problem of as-
signing limited analysts to investigate alerts after automated pre-processing methods
have been applied.

The typical approach to managing alerts is either ad-hoc or uses the obvious strat-
egy of looking only at the alerts with the highest priority (e.g., risk). A recent work [7]
used decision theory to optimize the scheduling of cyber-security analysts for screen-
ing alerts over multiple time periods. However, the heuristic approaches and [7] fail to
account for the adversarial nature of the cyber security setting. An attacker who can
guess or learn about a predictable alert management policy can exploit this knowledge
to launch a successful attack. For example, if we had a policy that only inspects alerts
from high valued assets for our organization, an attacker who can learn this will evade
detection indefinitely by only conducting activities on lower valued assets.

To address this shortcoming of the previous method, our first contribution is a
Cyber-alert Allocation Game (CAG), a game-theoretic model for optimizing the as-
signment of cyber alerts to a limited group of cyber analysts. Using game theory allows
us to explicitly model the strategies an attacker with knowledge of the assignment pol-
icy could take to avoid detection. By following a randomized, unpredictable assignment
strategy the defender can improve the effectiveness of alert assignments against strate-
gic attackers. Our model considers the characteristics of the alerts (e.g., criticality of
origin system), as well as the capabilities of the analysts in formulating the optimal
policy for the defender. Our approach draws on the principles and modeling techniques
of a large body of work that applies game theory to security problems [17]. However,
CAG significantly differs from traditional security games [17, 9] due to the absence of
an explicit set of targets, a large number of benign alerts and varying time requirements
for inspections.6

Our second contribution in this paper is to show that finding the optimal strategy
for a CAG is NP-hard, posing a major computational challenge. Third, we present an
algorithm for finding optimal, implementable CAG policies. Fourth, we devise novel
heuristics to solve large CAGs, and we provide empirical evaluation of our algorithms
and model.

2 Motivating Domain

While many organizations face the challenge of cyber alert allocation, we highlight a
scenario developed in consultation with experts at the United States Air Force (USAF).
The Air Force Cyber defense unit (AFCYBER) is responsible investigating and resolv-

6 A more thorough discussion of related work is provided in the IJCAI main track paper.

ing alerts generated by IDPS which prevent attacks on their cyber systems [2]. Pre-
screening of the alerts eliminates a large fraction of insignificant events, but thousands
remain to be investigated. Any of these remaining alerts could indicate a malicious
attack, but a large fraction are false positives.

Two primary features are used to prioritize the most critical alerts to investigate.
First, each alert has a risk classification (e.g., high, medium, low) based on the type
of event detected by the IDPS. Second, each alert has an origin location within the
global network (e.g., a specific host, system); some locations (e.g., headquarters) are
more critical to operations. The AFCYBER has a limited number of Incident Response
Team (IRT) cyber analysts who investigate significant alerts after prescreening [1]. Each
analyst has different areas of expertise, and may therefore be more effective and/or
faster at investigating certain types of incidents. The USAF also must protect against an
adaptive adversary who can observe strategies through beaconing and other techniques.
The problem AFCYBER faces is an excellent example of our central analyst assignment
problem in the real world.

3 Cyber-alert Allocation Games

We model the Cyber-alert Allocation Game (CAG) as a (zero-sum) Stackelberg game
played between the defender (e.g., AFCYBER) and an adversary (e.g., hacker). The
defender commits to a mixed strategy to assign alerts to cyber analysts. We make the
worst-case assumption that the attacker moves with complete knowledge of the de-
fender’s strategy and plays a best-response attack strategy [10]. However, in a zero-sum
game the optimal strategy for the defender is the same as the Nash equilibrium (i.e.,
when the attacker moves simultaneous) [18], so the order of the moves is not conse-
quential in the model.

Systems and Alerts: The defender responds to alerts originating from a set of sys-
tems k ∈ K. A “system” in our model could represent any level of abstraction, ranging
from a specific server to a complete network.IDPS for each system generate alerts of dif-
ferent types, a ∈ A. The alert types correspond to levels of severity (e.g., high, medium,
and low), reflecting the likelihood of a malicious event. We represent the combination
of the alert type and the origin system as an alert category, c ∈ C, where c = (k, a).
The alerts in a given category are not differentiable, so the defender must investigate all
alerts within a category with the same probability. The total number of alerts for a given
category c is denoted by Nc. We assume that the both the defender and attack know the
typical value of Nc from historical averages (similar to [7]).

Attack Methodologies: Attackers can choose from many attack methodologies. These
fall into high-level categories such as denial of service attacks, malware, web exploita-
tion, or social engineering. We represent these broad classes of attacks as attack meth-
ods m ∈ M . For every attack method there is a corresponding probability distribution
βma which represents the probability that the IDPS generates an alert of type a for an
attack method m. For example, if the attacker chooses m = DoS the corresponding
alert probabilities could be βDoSHigh = .8, βDoSMedium = .15 and βDoSLow = .05.

Cybersecurity Analysts: Cybersecurity analysts R are assigned to investigate alerts.
The time required for an analyst to resolve an alert type a varies, and is represented

by T ra . Intuitively, T ra represents the portion of a time period that an analyst needs to
resolve an alert of type a. A time period may be a shift, an hour or other fixed scheduling
period. For example, if an analyst needs half a time period to resolve a, then T ra = 0.5.
In our model: T ra ≤ 1, ∀ a ∈ A, i.e., an analyst can address multiple alerts within a time
period. In addition to T ra , we allow modeling of the effectiveness of an analyst against
an attack method, representing her expertise, via a parameter Erm.
Defender Strategies: A pure strategy P for the defender is a non-negative matrix of
integers of size |C| × |R|. Each c,r entry is the number of alerts in category c assigned
to be investigated by cyber analyst r, denoted by Pc,r. The set of all pure strategies P̂ is
all allocations that satisfy the following constraints; Ca denotes all categories with the
alert type a:

∑
a∈A

∑
c∈Ca

T raPc,r ≤ 1 ∀r ∈ R (1)

∑
r∈R

Pc,r ≤ Nc ∀c ∈ C (2)

Pc,r are integers (3)

Inequality (1) ensures that each analyst is assigned a valid number of alerts, while
inequality 2 ensures we do not assign more alerts than the total in a category.

(a) Pure Strategy (b) Marginal Strategy

Fig. 1. CAG Strategies for the defender.

Example CAG. Consider a CAG with two systems K = {k1, k2}, two alert levels
A = {a1, a2}, and two analysts r = {r1, r2}. There are four alert categories C =
{c1, c2, c3, c4}, where c1 = (k1, a1), c2 = (k1, a2), c3 = (k2, a1) and c4 = (k2, a2).
For the alert categories we have Nc1 = 3, Nc2 = 2, Nc3 = 0, and Nc4 = 1. For r1,
assume T r1a1 = 1 and T r1a2 = 0.5; For r2, assume T r2a1 = 0.4 and T r2a2 = 0.2. The analyst
capacity constraint (Inequality (1)) for r1 is instantiated as follows (the other columns
are similar):

Pc1,r1 + 0.5 · Pc2,r1 + Pc3,r1 + 0.5 · Pc4,r1 ≤ 1

For c1 the alert capacity constraint (Inequality (2)) we have (the other rows are similar):

Pc1,r1 + Pc1,r2 ≤ 3

An example of a pure strategy P is given in Figure 1(a). The dashed boxes in Fig-
ure 1(a) represent the set of variables in the analyst capacity constraints, i.e. constraints
of type (1). We show an example marginal strategy in Figure 1(b). This drops con-
straint (3), but satisfies constraints (1) and (2).

We define a mixed strategy q over pure strategies P ∈ P̂ (
∑
P∈P̂ qP = 1, 0 ≤ qP ≤

1). From the mixed strategy we can calculate the marginal (expected) number of alerts
of category c assigned to each analyst r, denoted by nc,r =

∑
P qPPc,r. The marginal

allocation is denoted by n with component nc,r representing the expected number of
alerts in category c assigned to analyst r. The adversary plays a best response to the
defender’s marginal strategy n which amounts to choosing a system k to attack and an
attack method m.
Utilities Since the alerts in a category are indistinguishable they are all investigated
with the same probability nc,r/Nc, which is the probability that an alert in category
c is investigated by analyst r. The probability of detecting an attack of type m that
results in an alert of type c is calculated as: xc,m =

∑
r∈RE

r
mnc,r/Nc. The payoffs

for the defender depend on the system k that is attacked, the attack method m, and
if the adversary is detected (or undetected) during investigation. This is denoted by
Udδ,c and Uuδ,c, respectively, where c refers to the category (k, a) and δ is the defender.
We formulate a CAG as a zero-sum game, hence the payoffs for the adversary (θ) are
Udθ,c = −Udδ,c and Uuθ,c = −Uuδ,c. If the adversary chooses k, m, and given βma , the
defender’s utility is:

Us =
∑
a∈A

βma [xc,m ∗ Udδ,c + (1− xc,m)Uuδ,c] (4)

4 Defender’s Optimal Strategy

We start with a linear program, denoted as MixedStrategyLP , that computes the
defender’s optimal mixed strategy (as the maximin strategy):

max
n,v

v (5)

s.t. v ≤ Us ∀k,m (6)
xc,m =

∑
r∈RE

r
m
nc,r

Nc
∀c,m (7)

nc,r =
∑
P∈P̂

qPPc,r ∀c, r (8)

∑
P∈P̂

qP = 1, qP ≥ 0 (9)

This LP requires exponentially many pure strategies P ∈ P̂ . The objective function
in Equation 5 maximizes the defender’s utility, v. Equation 6, which uses Equation 4,
ensures the adversary selects a best response over all choices of m ∈ M and k ∈ K.
Equation 7 calculates the detection probabilities x from the marginal strategy n, which
is computed by Equation 8. Equation 9 ensures the mixed strategy is valid.

Computing the maximin mixed strategy for the defender was shown to be NP-hard
in the case of TSGs [5]. The computational hardness arises from the underlying team
formation of applying a group of screening resources to screen incoming passengers.
However, in CAGs we do not have teams of analysts, we only need to assign the alerts
to individual analysts. Thus, one might hope that this could simplify the problem and
admit a polynomial time algorithm. Unfortunately, this turns out not to be the case.
Specifically, we show in Theorem 1 that the problem is still NP-hard, where the hard-
ness arises from a different domain feature, i.e., the time values, T ra , for the analysts.
All proofs can be found in the on-line appendix7.

Theorem 1 Computing the defender maximin strategy is weakly NP-hard when there
is only one resource, and is strongly NP-hard with multiple resources.

In some special cases, it is possible to compute the optimal marginal strategy in
polynomial time. Specifically, if all T ra for a given analyst r are identical ∀a ∈ A, then
the optimal marginal strategy can be found with an LP which is stated in Proposition 1.
This result is discussed further in Section 5.

Proposition 1. When T rai = T raj ∀ai, aj ∈ A for each resource, then there is a polyno-
mial time algorithm for computing the maximin strategy.

Defender’s Optimal Marginal Strategy

In the security games literature, two approaches are commonly used to handle scale-up:
marginal strategies [10, 12] and column generation [8]. We adopt a marginal strategy
based approach which finds the defender’s marginal strategy n and does not need to
explicitly enumerate the exponential number of pure strategies. The use of the marginal
approach was motivated in part by results in [5] where it was shown column gen-
eration does not scale for TSGs, which is a related model to CAGs. We now intro-
duce a relaxed version of LP (5)∼(9) in LP (10)∼(14). LP (10)∼(14) is similar to LP
(5)∼(9) except that we replace equations (8) and (9) with equations (13) and (14) to
model relaxed the relaxed marginal space. Recall that marginal strategies satisfy con-
straints (1)∼(2) (which lead to Equations 13 and 14) but drop constraint (3). The op-
timal marginal strategy n for the defender can then be found by solving the following
MarginalStrategyLP (MSLP):

max
n,v

v (10)

v ≤ Us ∀k,m (11)
xc,m =

∑
r∈RE

r
m
nc,r

Nc
∀c,m (12)∑

a∈A
∑
c∈Ca

T ranc,r ≤ 1 ∀r (13)∑
r∈R nc,r ≤ Nc, nc,r ≥ 0 ∀r, c (14)

7 https://teamcore.usc.edu/papers/2017/ars17.Appendix.pdf

Though MarginalStrategyLP computes the optimal marginal strategy n, it may
not correspond to any valid mixed strategy q, i.e., there may not exist a corresponding
mixed strategy q such that n =

∑
P∈P̂ qPP ,

∑
p∈P̂ qP = 1. Marginal strategies of this

type are called non-implementable. However, when T ra have a particular structure, we
can show the marginal strategy returned is the optimal for the defender. In these cases,
we can efficiently compute the defender’s optimal implementable marginal strategy us-
ing the MSLP.

Theorem 2 For any feasible marginal strategy n to MSLP, there is a corresponding
mixed strategy q that implements n whenever T ra = 1

wa
where wa ∈ Z+, ∀r ∈ R,∀a ∈

A and Nc ≥
∑
r∈R

1
T r
a

, ∀c ∈ C for a given CAG.

The intuition behind Theorem 2 is that when the T ra = 1
wa

and wa ∈ Z+, the
extreme points of the defender’s strategy space become integer. This can be seen from
the maximum number of alerts each resource is able to resolve. Whenever, T ra = 1

wa

the number of alerts of a given type a resource can solve will be wa, which corresponds
to an integer assignment. Hence, the defender’s marginal strategy space is the same as
the defender’s pure strategy space when these conditions are true and the MSLP returns
the optimal marginal strategy for the defender.

5 CAG Algorithmic Approach

The problem of non-implementability of marginals in security games has been stud-
ied in previous research [12, 5], but the non-implementability arose because of spatio-
temporal resource constraints and constraints from combining resources into teams. For
our problem, non-implementability arises from the presence of the T ra coefficients (we
discuss an example later). In this section, we present an algorithm that takes the initial
constraints on a CAG and converts them to ensure the implementability of the marginal
strategy. To that end, [6] presents a useful approach, as they define a special condition on
the constraints on the marginals called a bihierarchy. A bihierarchy captures a sufficient
condition needed to guarantee the implementability of the defender’s marginal strategy
n. Unfortunately, constraints on CAGs rarely satisfy the conditions for a bihierarchy
and must be converted to achieve the bihierarchy condition.

Definitions and Notation The marginal assignments n for the defender form a |C|×
|R| matrix. The assignment constraints on the defender’s marginal strategy, namely
Equations 13 and 14, are a summation of nc,r over a set S ⊂ |C| × |R| with an in-
tegral upper bound. For example, based on Equation 14, {{c1, r1}, {c1, r2}} forms a
constraint subset for the example CAG. The collection of all such S form a constraint
structure H when all coefficients in the constraints are unitary, as they are in Equa-
tion 14.

A marginal strategy n is said to be implementable with respect to H if there exists a
distribution (a.k.a., mixed strategy) q such that n =

∑
P∈P̂ qPP . A constraint structure

H is said to be a hierarchy if, for any two constraint sets in H , we have that either one
is a subset of the other or they are disjoint. More concretely, we have the following:
∀S1, S2 ∈ H , S1 ⊂ S2, S2 ⊂ S1 or S1 ∩ S2 = ∅. H is said to be a bihierarchy if there
exists hierarchies H1 and H2, such that H = H1 ∪H2 and H1 ∩H2 = ∅.

For any CAG, the row constraints
∑
r∈R nc,r ≤ Nc form a hierarchy H1. How-

ever, the column constraints, one for each resource r ∈ R, do not form a hierarchy:∑
a∈A

∑
c∈Ca

T ranc,r ≤ 1. As mentioned earlier, the culprit lies in the T ra coefficients,
as they can be non-unitary, and to achieve a hierarchy H2 on the column constraints,
and thus give us a bihierarchy, all T ra coefficients must be removed.

Constraint Conversion The T ra coefficients admits possibly non-implementable
marginal strategies. For instance, in Figure 1(b) the marginal strategy is non-implementable,
because it is impossible to get nc1,r2 = 2.5 by mixing pure assignments. This is because
constraints (1) and (3), force the relevant pure strategy Pc1,r2 ≤ b1/0.4c = 2. We aim
to convert the column constraints, namely:

∑
a∈A

∑
c∈Ca

T ranc,r ≤ 1 into a hierarchy
by removing the T ra coefficients. The conversion can be completed by grouping together
all nc,r which have the same T ra and introducing a new constraint on these sets of nc,r.
Specifically, each column constraint (equation 13) is replaced with |A| constraints:∑

c∈Ca

nc,r ≤ LCa
r (15)

This conversion must be done for all analysts r ∈ R for the column constraints to
form a hierarchy H2. LCa

r gives an upper bound on the number of alerts of type a that
an analyst can solve. The choices of LCa

r must satisfy the original capacity constraint,
namely:

∑
a∈A T

r
aL

Ca
r ≤ 1 and LCa

r ∈ Z.

Fig. 2. Conversion of Column Constraints on CAG

Conversion Example We refer to the example CAG where the marginal strategy is
given in Figure 2. We must convert the column constraints to a hierarchy. We highlight
how this conversion is done for r1 (as r2 is converted in the same manner). Initially, for
r1 we have the following constraint:

T r1a1nc1,r1 + T r1a2nc2,r1 + T r1a1nc3,r1 + T r1a2nc4,r1 ≤ 1

We remove the T ra coefficients by grouping together all nc,r which share T ra and intro-
ducing two new constraints like (15). This leads to two new constraints:

nc1,r1 + nc3,r1 ≤ L
Ca1
r1 nc2,r1 + nc4,r1 ≤ L

Ca2
r1

These new constraints are shown for r1 in Figure 2 on the right of the arrow. Next,
we must set the LCa

r variables. One possible combination is H2 = {nc1,r1 + nc3,r1 ≤

0, nc2,r1 + nc4,r1 ≤ 2} (H2 also includes constraints on r2 which are not shown). This
satisfies the original the original analyst capacity constraints as: LCa1

r1 +0.5 ·LCa2
r1 ≤ 1.

However, there is another choice for LCa
r ,H2 = {nc1,r1 +nc3,r1 ≤ 1, nc2,r1 +nc4,r1 ≤

0}. Given either of the two hierarchies H2, we now have a bihierarchy. The original
marginals shown in Figure 2 do not satisfy these new constraints; but solving the MSLP
with these additional constraints inH2 is guaranteed to give an implementable marginal.

Rounding T ra Values In the conversion process, we create a hierarchy H2 on the
column constraints by introducing |A| LCa

r values for each resource. The conversion
process then allows for combinatorially many configurations of the LCa

r values which
satisfy the original capacity constraints for a resource, i.e. Constraint (13). To alleviate
this search, an algorithm could take advantage of Theorem 2 and round each T ra to the
nearest 1

wa
value which is greater than T ra where wa ∈ Z+. The marginal strategy n

returned for this modified CAG is then guaranteed to be implementable. However, as
we show next this can lead to a 1

2 loss for the defender in the worst case.
Counter Example Consider a CAG with one system K = {k1}, two alert levels

A = {a1, a2}, and one analyst r = {r1}. There are two alert categories C = {c1, c2},
where c1 = (k1, a1) and c2 = (k1, a2). For the alert categories we have Nc1 = 1 and
Nc2 = 1. For r1, assume T r1a1 = 0.5 + ε and T r1a2 = 0.5− ε. If we round the T ra values
up to the nearest 1

wa
we would have the following: T r1a1 = 1 and T r1a2 = 0.5.

Now we assume the adversary has one attack method m1 with Er1m1
= 1 and where

βm1
a1 = 0.5 + ε and βm1

a2 = 0.5 − ε. Assume Udδ,c1 = Udδ,c2 and Uuδ,c1 = Uuδ,c2 where
Udδ,c1 > Uuδ,c1 ≥ 0. The adversary has one choice and hence, chooses to usem1 to attack
system k1. The modified CAG would then assign the alert in c1 to r1 and receive a utility
of v

′
= (0.5 − ε)Uuδ + (0.5 + ε)Udδ . In the unmodified CAG, however, the defender

would be able to assign both alerts to r1 and therefore, achieve a utility v∗ = Udδ . In this
case, the worst possible loss from the modification of the CAG happens when Uuδ = 0.
We then get the following:

v
′

v∗
=

(0.5− ε)Uuδ + (0.5 + ε)Udδ
Udδ

≤ (0.5 + ε)Udδ
Udδ

This results in v
′
= (0.5+ε)v∗ in the worst case. Hence, rounding the T ra values means

the defender can lose up to 1
2 of the optimal utility. This amount of loss is not acceptable

in cyber security domains which have highly sensitive targets and therefore, we must
devise algorithms which provide better solutions that mitigate this loss.

Branch-and-Bound Search

So far, we have seen that a marginal strategy n for a CAG output from the MSLP may be
non-implementable. Our goal is to ensure that the marginal strategy output by MSLP
is implementable by adding new column constraints, i.e., by realizing a bihierarchy.
The addition of new constraints as outlined above gives us a bihierarchy, but there are
multiple ways to set the values of LCa

r variables (as shown in the above example),
creating a choice of what bihierarchy to create. Indeed, we may need to search through
the combinatorially many ways to convert the constraints of CAG to a bihierarchy.

Previous work [5] proposed the MGA algorithm for creating bihierarchies, but MGA
does not apply to CAGs as it does not deal with the non-unitary coefficients present in
CAGs.

Here we propose a novel branch-and-bound search: out of the set of constraints that
could be added to MSLP, find the best that would give the defender the optimal utility
v∗. At the root node, we have the original constraints (13) and (14); running MSLP
potentially yields a non-implementable marginal strategy n. Then we branch from this
root, where at each level in the tree, we add new constraints for an analyst r, and the
children are expanded with the following rules:

1. Substitute
∑
a∈A

∑
c∈Ca

T ranc,r ≤ 1 with |A| constraints:
∑
c∈Ca

nc,r ≤ LCa
r for

all a ∈ A. The |A| new constraints form a set H2(r). A branch is created for all
combinations of LCa

r which satisfy
∑
a∈A T

r
a ∗ LCa

r ≤ 1.
2. Solve the MarginalStrategyLP at each node with the modified constraints.

Thus, at each level of the tree, we have substituted the capacity constraint of some
analysts, and for these, we have constraints of type (15), but for others, we still have
constraint (13). This set of constraints does not form a hierarchy H2 as T ra coefficients
are present in some analyst constraints. Still, at an intermediate node we have upper
bound on the defender’s utility v which is stated in Proposition 2, as each conversion
from (13) to (15) introduces new constraints on the defender’s strategy space.

Proposition 2. Each intermediate node in the tree gives an upper bound on the de-
fender’s utility v for all subsequent conversions for the remaining analyst capacity con-
straints.

A leaf in the search tree has column constraints only of the form:
∑
a∈A nc,r ≤

LCa
r . Hence, they form a hierarchy H2 as all nc,r have unitary coefficients and an inte-

ger upper bound. At a leaf, we can then solve the MSLP with the resulting bihierarchical
constraints to find a lower bound on the defender’s utility v. Combining this with Propo-
sition 2 gives the components needed for a branch-and-bound search tree which returns
the optimal bihierarchy for the defender.

Heuristic Search The full branch-and-bound procedure struggles with large CAG.
To find good bihierarchies, we can take advantage of the optimal marginal strategy
n∗ returned from MSLP at an intermediate node to reduce the amount of branching
done. The intuition for this strategy, is that the optimal bihierarchy either contains, or is
near, n∗. For example, in the conversion done in Figure 2, we could set the LCa

r values
close to n. We set LCa1

r2 = b 1.4c = 2, while the leftover capacity for r2 is used to set

L
Ca2
r2 = 1. LCa1

r2 could be set to another value, but our choice must stay close to n∗.
For the heuristic search, we use the following rules to expand child nodes which

is done by setting the LCa
r for an analyst r: (1) LCa

r = dnCa,re, (2) LCa
r = bnCa,rc

or (3) LCa
r = b 1−

∑
a∈A T

r
a ∗L

Ca
r

T r
a

c, where nCa,r =
∑
c∈Ca

nc,r. The third rule is used
whenever the LCa

r value for an analyst r cannot be set to the roof or floor of n∗, and is
set to be the max value given the leftover analyst capacity. These choices are done in an
attempt to capture the optimal marginal strategy n∗. The set of all valid combinations
of the LCa

r values using the above rules which satisfy
∑
a∈A T

r
aL

Ca
r ≤ 1 constitute the

search space at each intermediate node. The main point is that cuts down the amount of
branching done at intermediate nodes from the original branch-and-bound search.

\

H1

H2

(a) Individual Bihierarchies

\

H1

H2

(b) Convex Hull

Fig. 3. Geometric view of the defender’s strategy space.

Convex Hull Extension The above searches return a set of good bihierarchies for
obtaining a high value of v∗ for the defender when solving MSLP, as each leaf con-
tains a bihierarchy Hi. Each bihierarchy Hi contains a portion of the defender’s mixed
strategy space (due to new constraints). Thus, taking a convex hull over these bihierar-
chies increases the size of the defender’s strategy space and hence, will only improve
the defender’s utility. In Figure 3 we show a geometric representation of the defender’s
strategy space. Individual points represent the defender’s pure strategies and the region
contained in the convex hull of these points is the defender’s mixed strategy space,
while the outer region represents the defender’s relaxed marginal strategy space. Fig-
ure 3(a) shows how individual bihierarchies capture portions of the defender’s mixed
strategy space represented by the shaded regions enclosed by the dashed lines. Fig-
ure 3(b) shows that by taking the convex hull of the two bihierarchies H1 and H2 we
can increase the size of the defender’s strategy space without generating any new bi-
hierarchies. Note, as each bihierarchy is implementable, the convex hull will also be
implementable [5].

To take the convex hull, first notice each bihierarchy Hi is a set of linear constraints
and can be written as Din ≤ bi for matrix Di and vector bi. Hence, by definition
n(Hi) = {n|Din ≤ bi}. Using a result from [3] that represents the convex hull us-
ing linear constraints, we can write: conv(n(H1), . . . ,n(Hl)) = {n|

∑
i ni, Dini ≤

λibi, λi ≥ 0,
∑
i λi = 1}. This allows for the convex hull of the bihierarchies to be

computed efficiently using an LP similar to MSLP.
In terms of the convex hull we have two options available: (1) Take the convex hull

of all bihierarchies or (2) build the convex hull iteratively. In some cases, the set of
bihierarchies available to the defender can be very large and hence, optimizing over all
bihierarchies is not feasible. To alleviate this issue, the convex hull can be built iter-
atively. This is done by first sorting the bihierarchies by the defender utility v. Next,
we take the convex hull of the top two bihierarchies which gives a utility v

′
to the de-

fender. We continue adding bihierarchies to the convex hull while the utility v
′

returned
increases by at least some ε, and stop otherwise.

6 Evaluation

We evaluate the CAG model and solution algorithms with experiments inspired by the
operations of the AFCYBER. The game payoffs are set to be zero-sum, i.e. Uuδ,c =
−Uuθ,c, and the defender’s payoffs are randomly generated with Uuδ,c uniformly dis-
tributed in [−1,−10]. The rest of the game payoffs, Udδ,c and Udθ,c, are set to be zero.
For each experiment we average over 30 randomly generated game instances.

Experimental Results

 Runtime Comparisons: Full 1, Full 2, Heur 1, Heur 2

1

0

50

100

150

200

250

300

2 3 4 5

R
u
n
ti

m
e
 (

s)

Number of Resources

Full-1 Full-2

Heur-2 Heur-1

(a) Runtime Comparison

Experimental Results

 Solution Comparison: Full 1, Full 2, Heur 1, Heur 2

2

-11

-9

-7

-5

-3

2 3 4 5

D
e
fe

n
d

e
r

U
ti

li
ty

Number of Resources

Full-1 Full-2

Heur-1 Heur-2

(b) Solution Comparison

Experimental Results

 Scale-up: Heuristic 1, Heuristic 2

3

0

10

20

30

40

50

60

70

6 8 10 12 14

R
u
n
ti

m
e
 (

s)

Number of Resources

Heur-1

Heur-2

(c) Runtime Comparison

Experimental Results

 Solution Comparison: Relaxed, Heur 1, Heur 2

4

-11

-9

-7

-5

-3

6 8 10 12 14

D
e
fe

n
d

e
r

U
ti

li
ty

Number of Resources

Relaxed Heur-1 Heur-2

(d) Solution Comparison

Fig. 4. Experimental Results for CAG instances.

Full vs Heuristic Search Whether the heuristic approach of staying close to n∗

would yield the right solution quality-speed tradeoff remains to be seen. To test this,
we compare the performance of the full branch-and-bound search (Full) to the heuristic
search (Heur). For this experiment we test four different variations of the algorithms.
For the full search we test two variations: Full-1 which uses the full convex hull and
Full-2 which uses the iterative convex hull. For the Heuristic search we test the same
two variations, labeled as Heur-1 and Heur-2. For these instances we have 20 systems,
3 attack methods, and 3 alert types.

In Figure 4(a) we vary the number of resources on the x-axis and we show the
runtime in seconds on the y-axis. As can be seen the runtime of the full search explodes

Resources Full Heuristic
2 152.56 9.53
3 1421.97 16.40
4 3567.70 23.23
5 6525.37 40.96

Table 1. Reduction in Nodes Searched

exponentially as the number of resources is increased. However, the average runtime of
the heuristic approach is under 1 second in all cases and provides up to a 100x runtime
improvement for 5 resources. The main reason for the speedup is due to the heuristic
approach exploring a small fraction of the nodes explored by the full search, as low as
0.7% for 5 resources. To gain more insight into the source of the speed-up from the
heuristic search we give the average number of nodes explored by each search method
in Table 1. This table shows the exponential speed-up is due to the heuristic search
exploring only a fraction of the total nodes explored by the Full-search, as low as 0.7%
for 5 resources.

0

2

4

6

8

10

20 30 40 50 60

R
un

tim
e

(s
)

Number of Systems

Heur-1

Heur-2

(a) Runtime Comparison

-11
-10
-9
-8
-7
-6
-5
-4
-3
-2

20 30 40 50 60

D
ef

en
de

r
U

til
ity

Number of Systems

Relaxed Heur-1 Heur-2

(b) Solution Comparison

Fig. 5. Scaling Number of Systems

In Figure 4(b) we again vary the number of resources on the x-axis while the y-axis
shows the defender’s expected utility. This graph shows that all variations perform sim-
ilarly, with the heuristic suffering less than 1% solution in defender utility compared to
the full search for all game sizes. Still, these results show that our heuristic significantly
improves runtime without sacrificing solution quality.

Solving large CAG Another important feature of real-world domains are the larger
number of cybersecurity analysts available to investigate alerts and the number of sys-
tems to protect. Accordingly, our next experiment tests the scalability of our heuristic
approach to large CAG instances. The parameters for the first experiment is 100 sys-
tems, 10 attack methods, and 3 alert levels.

In Figures 4(c) and 4(d) we show the runtime and solution quality results. In Fig-
ure 4(c) we vary the number of analysts on the x-axis and show the runtime in seconds
on the y-axis. For example, Heur-1 takes an average of 40 seconds to solve a CAG with

-11

-10

-9

-8

-7

-6

-5

-4

4 5 6 7 8

D
ef

en
de

r
U

til
ity

Number of Alert Types

Heur-1 Heur-2

Greedy Random

(a) Runtime Comparison

-7

-6

-5

-4

-3

-2

-1

0

D
ef

en
de

r
U

til
ity

Heur-1
Greedy
Random

(b) Solution Comparison

Fig. 6. Allocation Approach Comparison.

10 analysts. This graph shows the heuristic runs in under a minute, even as we increase
the analysts from 6 to 14. In Figure 4(d) we have the number of analysts on the x-axis
and show the defender’s expected utility on the y-axis. We compare the solution quality
to the (potentially non-implementable) MSLP solution. For example, with 8 analysts
the defender’s expected utility is -7.98 for the relaxed method while Heur-1 gives -8.04.
Therefore, this experiment shows that our heuristic approach scales to large CAG while
achieving a utility close to the theoretical optimal value.

In our next experiment, we vary the number of systems that have to be protected.
For this experiment the defender has 5 cyber experts to assign. Figure 5 shows the
runtime and solution quality results. In Figure 5(a) we vary the number of systems on
the x-axis and show the runtime in seconds on the y-axis. For instance, for 50 systems
Heur-1 takes an average of 1.78 seconds to finish running. This graph shows Heur-1
and Heur-2 show no issues in scaling to a larger number of systems. In Figure 5(b)
the x-axis shows the number of systems while the y-axis gives the defender’s expected
utility. We again compare the solution quality to the MSLP solution. In all cases, the
heuristic approaches suffer only a small loss in defender expected utility compared to
the MSLP value. As can be seen from this experiment, the heuristic approaches scale to
CAG with a larger number of systems without sacrificing much in the way of solution
quality.

Allocation Approach Our last experiment aim to show that our game theoretic ap-
porach for CAGs outperform approaches used in practice. In addition to our heuristic,
we compare against a greedy approach which investigates the highest priority alerts
from the most critical bases first and a random approach for the allocation. The parame-
ters for this experiment are 20 systems, 5 attack methods, and 10 analysts. In Figure 6(a)
we show the solution quality results. On the x-axis we vary the number of alert types
and on the y-axis we show the defender’s utility. For example, with 4 alert types the
heuristics achieve a utility of -7.52 while the greedy and randomized allocations give
-9.09 and -9.65, respectively. This difference is statistically significant (p < 0.05). In
Figure 6(b), we show a solution comparison for a specific CAG instance. This graph
gives intuition for why our approach performs so well. The greedy and random ap-
proaches tend to overprotect some systems (system 4) while leaving others without
adequate protection (system 2).

7 Conclusion and Future Work

In this paper we address the pressing problem in cyber security operations of how to
allocate cyber alerts to a limited number of analysts. We introduce the Cyber-alert Allo-
cation Game (CAG) to analyze this problem and show computing optimal strategies for
the defender is NP-hard. To solve CAG, we present a novel approach to address imple-
mentability issues in computing the defender’s optimal marginal strategy. Finally, we
give heuristics to solve large CAGs, and give empirical evaluation of the CAG model
and solution algorithms.

Although this work is a crucial first step in applying game theory to real world
cyber security settings, there remain significant challenges which need to be addressed
in future work of which we highlight a few. Firstly, we assume the time to resolve an
alert is known exactly, but in the real world there is uncertainty for how long it would
take to resolve an alert. Second, the CAG model assumes that attacks shown up as
known alert categories, but it is possible that in the real-world some attacks may show
up as “unknown” categories. The question then is how to assign these alerts to analysts
given we do not know which expert may have an expertise in dealing with this type
of attack. Lastly, in CAG’s there is not an overflow of alerts from one time period to
the next. In the real-world, however, this could occur and resolving alerts in a timely
manner would be crucial to limit the possible damage from an attack.

Acknowledgments

This research was supported by the U.S. Army Research Office under award number
W911NF-15-1-0515.

References

1. 688th Cyberspace Wing (2016), http://www.24af.af.mil/Units/
688th-Cyberspace-Wing

2. 24th Air Force - AFCYBER (2017), http://www.24af.af.mil
3. Balas, E.: Disjunctive programming and a hierarchy of relaxations for discrete optimization

problems. SIAM Journal on Algebraic Discrete Methods 6(3), 466–486 (1985)
4. Barbara, D., Jajodia, S.: Applications of data mining in computer security, vol. 6. Springer

Science & Business Media (2002)
5. Brown, M., Sinha, A., Schlenker, A., Tambe, M.: One size does not fit all: A game-theoretic

approach for dynamically and effectively screening for threats. In: AAAI conference on Ar-
tificial Intelligence (AAAI) (2016)

6. Budish, E., Che, Y.K., Kojima, F., Milgrom, P.: Designing random allocation mechanisms:
Theory and applications. The American Economic Review 103(2), 585–623 (2013)

7. Ganesan, R., Jajodia, S., Shah, A., Cam, H.: Dynamic scheduling of cybersecurity analysts
for minimizing risk using reinforcement learning. ACM Transactions on Intelligent Systems
and Technology (TIST) 8(1), 4 (2016)

8. Jain, M., Kardes, E., Kiekintveld, C., Ordónez, F., Tambe, M.: Security games with arbitrary
schedules: A branch and price approach. In: AAAI (2010)

9. Jain, M., Tsai, J., Pita, J., Kiekintveld, C., Rathi, S., Tambe, M., Ordóñez, F.: Software as-
sistants for randomized patrol planning for the lax airport police and the federal air marshal
service. Interfaces 40(4), 267–290 (2010)

10. Kiekintveld, C., Jain, M., Tsai, J., Pita, J., Ordóñez, F., Tambe, M.: Computing optimal ran-
domized resource allocations for massive security games. AAMAS (2009)

11. Laszka, A., Lou, J., Vorobeychik, Y.: Multi-defender strategic filtering against spear-phishing
attacks. In: AAAI (2016)

12. Letchford, J., Conitzer, V.: Solving security games on graphs via marginal probabilities. In:
AAAI (2013)

13. Patton, R.M., Beaver, J.M., Steed, C.A., Potok, T.E., Treadwell, J.N.: Hierarchical clustering
and visualization of aggregate cyber data. In: 2011 7th International Wireless Communica-
tions and Mobile Computing Conference. pp. 1287–1291. IEEE (2011)

14. Riley, M., Elgin, B., Lawrence, D., Matlock, C.: Missed alarms and 40 million stolen
credit card numbers: How target blew it. http://www.zdnet.com/article/anatomy-
of-the-target-data-breach-missed-opportunities-and-lessons-learned/ (2014),
https://www.bloomberg.com/news/articles/2014-03-13/
target-missed-warnings-in-epic-hack-of-credit-card-data, ac-
cessed: 2016-11-10

15. Sommer, R., Paxson, V.: Outside the closed world: On using machine learning for network
intrusion detection. In: 2010 IEEE symposium on security and privacy. pp. 305–316. IEEE
(2010)

16. Spathoulas, G., Katsikas, S.: Methods for post-processing of alerts in intrusion detection: A
survey (2013)

17. Tambe, M.: Security and game theory: algorithms, deployed systems, lessons learned. Cam-
bridge University Press (2011)

18. Yin, Z., Korzhyk, D., Kiekintveld, C., Conitzer, V., Tambe, M.: Stackelberg vs. nash in se-
curity games: Interchangeability, equivalence, and uniqueness. In: AAMAS. pp. 1139–1146.
International Foundation for Autonomous Agents and Multiagent Systems (2010)

19. Zimmerman, C.: Ten strategies of a world-class cybersecurity operations center. MITRE
corporate communications and public affairs. Appendices (2014)

