
Handling Continuous Space Security Games with Neural Networks

Nitin Kamra1∗, Fei Fang2†, Debarun Kar1, Yan Liu1, Milind Tambe1
University of Southern California1, Harvard University2

{nkamra, dkar, yanliu.cs, tambe}@usc.edu1, fangf07@seas.harvard.edu2

Abstract
Despite significant research in Security Games,
limited efforts have been made to handle game do-
mains with continuous space. Addressing such lim-
itations, in this paper we propose: (i) a continuous
space security game model that considers infinite-
size action spaces for players; (ii) OptGradFP, a
novel and general algorithm that searches for the
optimal defender strategy in a parametrized search
space; (iii) OptGradFP-NN, a convolutional neural
network based implementation of OptGradFP for
continuous space security games; (iv) experiments
and analysis with OptGradFP-NN. This is the first
time that neural networks have been used for se-
curity games, and it shows the promise of apply-
ing deep learning to complex security games which
previous approaches fail to handle.

1 Introduction
Stackelberg Security Games (SSGs) have been extensively
used to model defender-adversary interaction in protecting
important infrastructure targets such as airports, ports, and
flights [Tambe, 2011]. In SSGs, the defender (referred to as
“she”) perpetually defends a set of targets with a limited num-
ber of resources, and the adversary (referred to as “he”) is
able to surveil and learn the defender’s strategy and then plan
an attack based on this information. Exact and approximate
approaches have been proposed to find the optimal defender
strategy in SSGs, which maximizes her expected utility given
that the attacker will best respond to the defender’s strategy
[Kiekintveld et al., 2009; Amin et al., 2016].

Recently, there has been an increasing interest in SSGs
for green security domains such as protecting wildlife [Yang
et al., 2014; Kar et al., 2015; Fang et al., 2015], fish-
eries [Haskell et al., 2014] and forests [Johnson et al., 2012].
Unlike infrastructure protection domains which have discrete
locations, green security domains are categorized by continu-
ous spaces (e.g., a whole conservation area needs protection).
∗This work was partially supported by USC Viterbi Graduate

PhD fellowship.
†This work was partially supported by Harvard Center for Re-

search on Computation and Society fellowship.

Most previous works discretize the area into grid cells and re-
strict the players’ actions to discrete sets [Yang et al., 2014;
Haskell et al., 2014]. However, a coarse discretization may
lead to low solution quality, and a fine-grained discretiza-
tion would make it intractable to compute the optimal de-
fender strategy, especially when there are multiple defender
resources. While [Johnson et al., 2012] addresses continuous
space in security games in the domain of forest protection,
it focuses on a special case: the objective of the defender is
to compute a strategy to minimize the trespassing distance of
the adversaries who are located at the boundary of the for-
est area and therefore the problem can be reduced to a one-
dimensional problem.
Our major contributions are as follows:

• a continuous space security game model which consid-
ers infinite action spaces over two-dimensional continu-
ous areas with asymmetric target distribution.

• OptGradFP, a novel and general algorithm which lever-
ages recent advances in policy learning and game theo-
retic fictitious play to optimize parametrized policies in
continuous spaces.

• OptGradFP-NN, an application of OptGradFP using
convolutional neural networks (CNNs) to represent the
players’ mixed strategies.

Finally, we conduct experiments and analysis with
OptGradFP-NN and demonstrate the superiority of our
approach against comparable approaches such as Stack-
Grad [Amin et al., 2016] and Cournot Adjustment (CA) [Fu-
denberg and Levine, 1998]. Our analysis shows that standard
approaches either (i) take very aggressive steps for both play-
ers and never settle to a good strategy (CA), or (ii) makes ag-
gressive best response updates for the opponent and only soft
steps for the defender, thus leading to poor average defender
rewards (StackGrad). In contrast, our approach effectively al-
lows both players to take soft steps and takes past strategies
into account through a replay memory, thereby eventually
converging to a good average response for both players. We
show for the first time, the promise of applying deep learning
to complex continuous domain security games which previ-
ous approaches fail to handle.

2 Preliminaries and Related Work
We use small letters (x) to denote scalars, bold small letters
(x) to denote vectors, capitals (X) to denote matrices and
bold capitals (X) to denote random vectors. R represents the
set of real numbers. 0n and 1n are vectors of size n of zeros
and ones respectively (we will sometimes skip n if the size is
evident from context). In is the identity matrix of size n× n.
Saying x ∈ [a, b] implies that all corresponding elements of
x are ≥ those of a and ≤ those of b. The notation [n] is the
set of natural numbers uptil n i.e. {1, 2, . . . , n}. N (µ, ν2) is
the normal distribution with mean µ and variance ν2.

The sigmoid function 1
1+exp (−z) is denoted by σ(z). The

logit function is defined as: logit(x) , log x
1−x ∀x ∈ [0,1].

Note that the sigmoid and logit functions are inverses of each
other i.e. σ(logit(x)) = x.

2.1 Stackelberg Security Games
A Stackelberg Security Game (SSG) [Kiekintveld et al.,
2009; Korzhyk et al., 2011] is a leader-follower game be-
tween a defender and an adversary (a.k.a. opponent). An
action or a pure strategy of the defender is to allocate the re-
sources to protect a subset of targets in a feasible way (e.g.,
assign each resource to protect one target). A pure strategy
of the adversary is to attack a target. The mixed strategy of
a player is a probability distribution over the pure strategies.
We use the term mixed strategy and policy interchangeably in
the rest of the paper.

The payoff for a player is decided by the joint action of
both players, and the expected utility function is defined as
the expected payoff over all possible joint actions given the
players’ (mixed) strategies. In this paper, we restrict our-
selves to zero-sum games while defering investigation of
general-sum games to future work.

An attacker best responds to a defender strategy if he
chooses a strategy that maximizes his expected utility. The
optimal defender strategy in SSGs is the (mixed) strategy that
maximizes her expected utility, given that the attacker best
responds to it and breaks ties in favor of the defender. In
zero-sum SSGs, the optimal defender strategy is the same as
the strategy for the defender in any Nash equilibrium (NE).
In most previous work on SSGs, discrete actions for the play-
ers are considered, even if the game setting is over continu-
ous space [Amin et al., 2016; Gan et al., 2017]. There are
a few exceptions [Johnson et al., 2012; Fang et al., 2013;
Yin et al., 2014], but the solution techniques often rely on ex-
ploitable spatio-temporal structures of the problem and can-
not be generalized to handle continuous spaces as has been
handled in this paper.

2.2 Fictitious play in normal form games
Fictitious play (FP) is a learning rule where each player plays
best response to the empirical frequency of their opponent’s
play. It converges to a NE under various settings including
two-player zero-sum games [Fudenberg and Levine, 1998].

2.3 Policy Gradient Theorem
According to the policy gradient theorem [Sutton et al.,
1999], given a function f(·) and a random variable X ∼

p(x|θ), the gradient of the expected value of f(·) with re-
spect to a policy parameters can be computed as

∇θEX [f(X)] = EX [f(X)∇θ log p(X|θ)] (1)

We can approximate the gradient on the right-hand side by
sampling xi ∼ p(X|θ), and computing ∇θEX [f(X)] ≈
f(xi)∇θ log p(xi|θ). The only requirement for this to work
is that the density p(xi|θ) should be computable and differ-
entiable w.r.t. θ for all x. We will use the policy gradient
theorem to compute the gradients of the defender and oppo-
nent utilities w.r.t. their policy parameters in our algorithm.

2.4 Logit-normal distribution
Logit-normal is a continuous distribution with a bounded sup-
port. A vector random variable X ∈ [0, 1] is said to be dis-
tributed according to a logit-normal distribution if logit(X)
is distributed according to a normal distribution. The density
function is given by:

pln(X;µ, ν) =
1√
2πν

1

x(1− x)
e−

(logit(x)−µ)2

2ν2 (2)

Unlike the normal distribution, logit-normal distribution does
not have analytical expressions for its mean and standard de-
viation. But we can still parametrize the distribution by using
the mean (µ) and standard deviation (ν) of the underlying
normal distribution. If X ∼ pln(X;µ, ν), a sample of X
can be drawn by sampling ε ∼ N (0, 1) and then outputting
x = σ(νε+ µ).

3 Continuous Space Security Game
We begin by describing the forest protection game model.
Though we consider it as an example domain, the game
model is general and can also represent other domains such
as wildlife and fishery protection.

Game model: We assume a circular forest with radius 1.0
(i.e. all lengths are normalized with respect to the forest ra-
dius), with a prespecified but arbitrary tree distribution. All
locations are represented in cylindrical coordinates with the
forest center as origin. We assume n lumberjacks who can
collaborate to plan their wood chopping locations. We will
use the word adversary or opponent interchangeably to refer
to the lumberjacks as a group. The defender has m forest
guards, which can be allocated to various forest locations to
ambush the trespassing lumberjacks.

State representation: One way of specifying the game
state (S) is via locations of all trees. This leads to a vari-
able state-size, dependent on the number of trees in the for-
est. Since a variable length representation is hard to process
and we are mostly concerned with the relative density of trees
over the forest, we instead summarize the forest state S as a
120× 120 matrix containing a grayscale image of the forest.
This makes the input representation for the defender and op-
ponent policies invariant to the number of trees in the forest
and also allows our approach to be used for planning strate-
gies by using satellite images of a forest as input. An example
input in RGB is shown in figure 1a (input to the players is a
grayscale version).

Defender action: The defender picks m locations, one
for each guard to remain hidden, and ambush lumberjacks

(a) (b)

Figure 1: (a) State representation of the forest as a 120 ×
120 image (converted to grayscale for players), and (b) Forest
game with 5 guards and 5 lumberjacks visualized. Trees are
green dots, guards are blue dots (blue circles show radiusRg)
and lumberjacks are red dots (red circles show radius Rl).

with wood. The defender’s action aD is a set of m distances
d ∈ [0, 1]m and angles θ ∈ [0, 2π]m i.e. aD ∈ Rm×2. The
cylindrical coordinates (d,θ) specify the guards’ positions in
the forest.

Adversary action: Following [Johnson et al., 2012], we
assume that lumberjacks trespass the forest boundary and
move straight towards the forest center. They can stop at any
point along this straight line, cut wood in a radius Rl around
the stopping point and come back to their starting location.
The model is justified because lumberjacks generally wish to
avoid one another as much as possible [Johnson et al., 2012].
Since the lumberjack trajectories are fully specified by their
stopping coordinates, the adversary’s action is to decide all
stopping points. The opponent’s action aO is a set of n dis-
tances ρ ∈ [0, 1]n and angles φ ∈ [0, 2π]n i.e. aO ∈ Rn×2.
The cylindrical coordinates (ρ,φ) define the wood chopping
locations of all lumberjacks.

Rewards: A lumberjack is considered ambushed if his
path comes within Rg distance from any guard’s location.
If a lumberjack gets ambushed, he fails in cutting the trees
and gets a penalty −rpen. The total utility for the opponent
(rO ∈ R) equals to the total number of trees cut by the lum-
berjacks. The total utility for the defender is rD = −rO.

Game play: Given prespecified tree locations, a single run
of the game proceeds as follows: (1) The defender gives m
guard locations and the adversary gives n wood chopping
locations, (2) The game simulator computes and returns re-
wards for the defender and opponent. By playing the game
multiple times, the defender gets rewards and uses this infor-
mation to optimize her strategy. A full game has been visual-
ized in figure 1b.

4 Policies and Utilities
Policies: A player’s policy (or mixed strategy) is a probability
distribution over the player’s actions given the game state (S).
The defender maintains a learnable policy πD parametrized
by weights wD, from which she can sample the guards’ po-
sitions. She also maintains an estimate of the adversary’s
policy πO parametrized by wO, which helps her learn her

own optimal policy. Note that the opponent’s real policy is
the best response to the defender’s deployed policy (not the
same as πO). We use the symbols πD, πO to denote the poli-
cies, and expressions πD(aD|S;wD), πO(aO|S;wO) to de-
note the probability of a certain action (aD or aO) drawn from
the policy (πD or πO).

Utilities: The utilities of the defender and the opponent
(JD and JO = −JD respectively) are the expected rewards
obtained:

JD(wD,wO) = ES,aD,aO [rD(S, aD, aO)]

=

∫
S

∫
aD

∫
aO

P (S)πD(aD|S;wD)πO(aO|S;wO)

rD(S, aD, aO) dS daD daO (3)

Note that the integral over S can be removed if we only re-
quire strategies over a specific state (forest), but our method
allows learning policies over multiple states if needed.

Both the defender and the opponent want to maximize their
utility functions. Yet, their approaches differ since the de-
fender has to deploy her policy first, without knowing the op-
ponent’s policy. The opponent gets to observe the defender’s
policy and he can use this information to react with a best re-
sponse to the defender’s deployed policy. Hence the problem
faced by the defender is essentially as follows:

w∗
D = argmax

wD

min
wO

JD(wD,wO) (4)

The opponent’s problem is simpler:

w∗
O = argmin

wO

JD(w
∗
D,wO) (5)

We approach these problems by taking a gradient optimiza-
tion based approach. The gradient of JD w.r.t. the defender
parameters wD can be found using the policy gradient theo-
rem (see section 2.3) as:

∇wDJD = ES,aD,aO [∇wDπD(aD|S;wD) rD] (6)

The exact computation of the above integral is prohibitive, but
it can be approximated from a batch of B on-policy samples
(w.r.t. πD) using the following unbiased estimator:

∇wDJD ≈
1

B

B∑
i=1

∇wDπD(aiD|Si;wD) riD (7)

The gradient for the opponent objective w.r.t. wO can be
similarly estimated as:

∇wOJO ≈
1

B

B∑
i=1

∇wOπO(aiO|Si;wO) riO (8)

Ideally one can use even a single sample to get an unbiased
estimate of the gradients, but such an estimate has a very high
variance. Hence, we use a small batch of i.i.d. samples to
compute the gradient estimate.

5 OptGradFP: Optimization with policy
gradients and fictitious play

We propose our algorithm OptGradFP to solve security game
models. Our algorithm leverages the recent advances in

Algorithm 1: OptGradFP
Data: Learning rates (αD, αO), decays (βD, βO),

training rates (fD, fO)
Result: Parameters wD
Initialize policy parameters wD and wO randomly;
Fill replay memories memD, memO of size E with
randomly played games;

for ep in {0, . . . , epmax} do
Get game state S;
Sample aD = (d, θ) ∼ πD(·|S;wD)m, aO =
(ρ, φ) ∼ πO(·|S;wO);

Execute actions (aD, aO) and get rewards (rD, rO);
Store sample {S, aD, aO, rD, rO} in memD, memO;
if ep% fD == 0 then

Get samples {Si, aiD, aiO, riD, riO}i∈[E] from
memD;

Replay all E games Si, ãiD, a
i
O with

ãiD ∼ πD(·|S;wD) to obtain rewards r̃iD, r̃
i
O;

∇wDJD = 1
E

∑E
i=1∇wDπD(ã

i
D|Si;wD) r̃iD;

wD := wD + αD
1+ep βD

∇wDJD;

if ep% fO == 0 then
Get samples {Si, aiD, aiO, riD, riO}i∈[E] from
memO;

Replay all E games Si, aiD, ã
i
O with

ãiO ∼ πO(·|S;wD) to obtain rewards r̃iD, r̃
i
O;

∇wOJO = 1
E

∑E
i=1∇wOπO(ã

i
O|Si;wO) r̃iO;

wO := wO + αO
1+ep βO

∇wOJO;

policy gradient learning [Sutton et al., 1999] and those
from game theoretic fictitious play [Heinrich et al., 2015;
Heinrich and Silver, 2016], to find the optimal defender pa-
rameters wD which maximize her utility.

The pseudocode for OptGradFP has been provided in al-
gorithm 1. The algorithm computes the optimal policy from
the defender side. It essentially gets a game state S and
it generates responses from the player’s current policy es-
timates πD, πO to receive rewards rD, rO. It keeps storing
all these game samples in separate replay memories memD
and memO for the defender and the opponent. The replay
memories are circular buffers of length E and once full, they
overwrite the least recently stored sample in order to accom-
modate new incoming samples.

Every few episodes (fD for defender, fO for opponent), the
algorithm retrieves all samples stored in the replay memory
for a player, replays all the games by resampling that player’s
actions for those samples from his/her current policy (while
keeping the other player’s actions the same), and improves
the player’s policy using the policy gradient update.

Note that the policy gradient update is essentially a soft up-
date towards the best response by changing the player’s pol-
icy parameters (wD or wO) in a way that increases their ex-
pected reward. We employ learning rate decay to take larger
steps initially and obtain a finer convergence towards the end.
Yet, it is not a soft update towards a best response to the other

player’s current policy, but rather towards a best response to
an average of the other player’s current and previous poli-
cies. This is because we compute the policy gradient for a
player using all E samples in the player’s replay memory,
out of which only fD (or fO) samples are drawn from the
other player’s current policy and the rest are from the other
player’s previous policies (E � fD, fO). But all E samples
employ the player’s current policy, since the player replays all
games with his/her current policy before using them to make
the policy gradient update. This is an approximation to fic-
titious play where both players react with a best response to
the other player’s average strategy.

Note that replaying all games with the player’s current pol-
icy before the policy gradient step is required since policy
gradients require on-policy sampling. If a game simulator,
which allows playing games by restoring arbitrary previous
states is not available, importance sampling can be a viable
substitute for this step.

6 OptGradFP-NN: OptGradFP with neural
networks

For our OptGradFP implementation, we assume each ele-
ment of the defender’s and opponent’s actions (aD, aO) to
be distributed independently according to logit-normal dis-
tributions. Our choice of logit-normal distribution meets the
requirement of a continuous distribution, differentiable w.r.t.
its parameters and having bounded support (since our action
spaces are bounded and continuous).

To represent these distributions we need to generate the
means and standard deviations of the underlying normal dis-
tributions for each element of aD = (d,θ) and aO = (ρ, φ).
Though any function approximators can be used for this pur-
pose, we use two convolutional neural networks to generate
the means and standard deviations for each player, owing to
their recent success in image processing and computer vi-
sion applications [Krizhevsky et al., 2012; Zeiler and Fergus,
2014].

Defender policy representation: The defender neural
network parametrized by weights wD takes as input an
image S of the forest tree locations and outputs means
(µd(S;wD) ∈ Rm,µθ(S;wD) ∈ Rm) and standard de-
viations (νd(S;wD) ∈ Rm,νθ(S;wD) ∈ Rm) for two
m-dimensional gaussians. For clarity we will skip writing
(S;wD) with these parameters. Each defender action coor-
dinate is then a logit-normal distribution and the joint proba-
bility of taking action aD = (d,θ) is given by:

πD(d,θ|S;wD) =
∏
i∈[m]

pln(di;µd,i, νd,i)

pln

(
θi
2π

;µθ,i, νθ,i

)
(9)

where the product is over all m elements of the vector.
The defender neural network takes an image of size 120×

120 as input. First hidden layer is a convolutional layer with
32 filters of size 16×16 and strides 8×8. The second hidden
layer is convolutional with 16 filters of size 4× 4 and strides
2 × 2. Both convolutional layers have relu activations and

no pooling. Next layer is a fully-connected dense layer with
32m units (where m = number of guards) and tanh activa-
tion. Lastly we have four parallel fully-connected dense out-
put layers one each for µd,νd,µθ and νθ. These four layers
havem units each, with the layers for means having linear
activations and those for standard deviations having relu ac-
tivations. We add a fixed small bias of 0.1 to the outputs of
the standard deviation layers to avoid highly concentrated or
close to singular distributions. We also clip all gradients to
stay in the range [−0.5, 0.5] to avoid large weight updates
and potential divergence [Mnih et al., 2015].

Opponent policy representation: The oppo-
nent neural network similarly parametrized by
weights wO takes as S as input and outputs means
(µρ(S;wO) ∈ Rn,µφ(S;wO) ∈ Rn) and standard de-
viations (νρ(S;wO) ∈ Rn,νφ(S;wO) ∈ Rn) for two
n-dimensional gaussians. For clarity we will skip writing
(S;wO) with these parameters. Each opponent action
coordinate is then a logit-normal distribution and the joint
probability of taking action aO = (ρ,φ) is:

πO(ρ,φ|S;wO) =
∏
i∈[n]

pln(ρi;µρ,i, νρ,i)

pln

(
φi
2π

;µφ,i, νφ,i

)
(10)

where the product is over all n elements of the vector.
The opponent neural network is similar to the defender

network, with the only difference being the number of hid-
den units in the fully-connected dense layers. The fully-
connected hidden layer has 32n units (where n = number of
lumberjacks) and the four output layers for µρ,νρ,µφ and
νφ have n units each.

Finally, note that even though we assumed all elements of
aD (resp. aO) to be independent logit-normal distributions,
the means and standard deviations for the underlying normal
distributions are computed jointly via the convolutional neu-
ral networks and are dependent on each other. This allows the
defender and the opponent to plan coordinated moves.

Hyperparameters: Our OptGradFP implementation uses
a replay memory size of E = 1000 samples, maximum
episodes epmax = 10000, learning rates αD = αO = 10−5,
training rates fD = fO = 50 and decays βD = βO = 0.045.
The architectures of all neural networks involved and all al-
gorithm hyperparameters were chosen by doing informal grid
searches within appropriate intervals. For more information
on choosing convolutional neural network architectures, refer
to [Ullah and Petrosino, 2016].

7 Experiments and Results
We now present experiments against several baselines.
Cournot Adjustment (CA), one of the early techniques used
to optimize players’ policies, makes the defender and the
opponent sequentially respond to each other’s policy with
their best response policies. This method can converge to
the nash equilibrium for certain classes of games [Fudenberg
and Levine, 1998]. Another method called StackGrad was re-
cently proposed [Amin et al., 2016]. It uses a best response

computation for the opponent’s updates, and a policy gradient
update similar to ours for the defender (but no fictitious play).
We compare our results against those from CA and also with
a version of StackGrad in our experiments.

Note that StackGrad uses a best response computation
for the opponent in the original paper (approximated by a
parametrized softmax distribution). Since it is hard to com-
pute the best response to any policy analytically for our forest
domain, we use the following approximation to emulate the
opponent’s best response: we play multiple games with ran-
dom actions for the opponent while drawing the defender’s
actions from its current policy. The random action which gets
the highest reward against the defender’s policy is chosen as
the best response action for the opponent.

We present our results for m = 8 guards and n = 8
lumberjacks where the numbers have been chosen to pro-
vide appropriate coverage of the forest (since fewer guards
leave too much open space). We set the ambush penalty
rpen = 10, guard radius Rg = 0.1 and lumberjack radius
Rl = 0.04 < Rg (since guards can scout lumberjacks from
long distances). These are just representative values and our
algorithm works well for any values of these parameters.

7.1 Reward curves
Figure 2 shows a plot of the average reward achieved by the
defender on the E replayed games before every training it-
eration. In OptGradFP, these average rewards measure the
utility of the defender’s current policy against the opponent’s
average policy. For CA and StackGrad, the average rewards
measure the defender’s utility against the opponent’s current
policy (no stored history for CA and StackGrad). We observe
that StackGrad starts with a random value of average reward
for the defender (due to random initialization) and thereafter
goes down. The curve mostly stays around the same aver-
age reward while displaying consistent oscillations. CA on
the other hand, jumps up to a higher average reward value
than random and oscillates around it. Finally, OptGradFP
smoothly rises and saturates at an average reward value higher
than all other baselines.

7.2 Opponent’s final utility
Another indicator of performance is the utility achieved by
opponent’s final policy after the defender has fixed her own
policy. The opponent’s maximum utility was computed ap-
proximately (computing the actual value is extremely pro-
hibitive), by sampling 100 random opponent actions and 100
actions from the defender’s final policy. 10000 games were
played with each combination of the defender’s and oppo-
nent’s actions and the opponent action which led to the maxi-
mum reward for the opponent (averaged over all 100 defender
actions) was assumed to be the opponent’s final action.

Table 1 gives the opponent’s maximum utility after epmax
episodes for each algorithm. OptGradFP clearly gives the
least utility to the opponent as opposed to other baselines.
Further, StackGrad dominates CA which suggests that though
CA quickly finds a best response to the opponent’s estimated
current strategy, it’s policy does not provide appropriate cov-
erage of the forest region. After the policy has been deployed,
the opponent can still find high utility places to attack.

Figure 2: Average reward for E replayed games before every
training iteration

CA StackGrad OptGradFP
Max Util 567.05 518.34 499.15

Table 1: Maximum average utility of the opponent.

7.3 Learned defender policy
We show a visualization of the defender’s final policy for each
algorithm in figure 3. Though [Johnson et al., 2012] pro-
posed circular bands as the optimal patrol policy for a uni-
form tree density, the same still holds for radially symmetric
tree densities. Our tree distribution is close to being radially
symmetric, and hence the optimal defender policy should be
in the form of circular bands centered at the origin. Figure
3c shows the OptGradFP defender policy, and as expected
it contains mostly circular bands centered around the origin.
The other algorithms find local regions to guard, and leave
the lumberjacks lots of space to chop wood without getting
ambushed. This is in agreement with the maximum average
utility values for the opponent in table 1. One important point
to note is the placement of the circular bands. It is easy to see
that placing the bands too close to the forest center would
leave a huge area to be chopped by the lumberjacks. Also,
placing the guards at the boundary would make them very
sparsely distributed and most lumberjacks would be able to
come and go unambushed. Our algorithm finds a reasonable
middle ground by inferring good radii to place the guards.

7.4 Replay memory
We also explored effects of not using fictitious play in Opt-
GradFP. To do this, we use a small replay memory of size
E = fD = fO, only containing games sampled from current
policies of both players. This is equivalent to making only
policy gradient updates for both players.

The utility achieved by opponent’s best response policy
was 555.58, which is only slightly better than CA and worse
than both StackGrad and OptGradFP. The resulting defender
distribution is shown in figure 3d. The defender policy is
not well spread out anymore, since the method does not have

(a) (b)

(c) (d)

Figure 3: Visualization of the defender’s policy. The blue
dots show sampled positions for the guards. The locations
with many blue dots are the regions where the distribution
is concentrated at: (a) Defender policy: CA, (b) Defender
policy: StackGrad, (c) Defender policy: OptGradFP and (d)
After removing replay memory.

memory of opponent’s previous steps. The results resemble
those of CA, since policy gradient update is a small step to-
wards the best response (like in CA). Hence we can approxi-
mate CA with OptGradFP using E = fD = fO.

In general, keeping a large replay memory (E � fD, fO)
gave us less fluctuation and smoother convergence proper-
ties, by allowing the policy gradient update to approximate
the best response to the other player’s average policy better.
At the same time, a large replay memory led to the replaying
time of games becoming a bottleneck for every training step.
Hence there exists a trade-off between smooth convergence
vs. computation time, which needs tuning to balance the two.

8 Conclusion and Future Work
In this paper, we present for the first time, a neural network
based approach to address continuous space security games
that previous approaches fail to handle. Our novel approach
OptGradFP represents the defender’s strategy by parametriz-
ing it in continuous space and training neural networks us-
ing fictitious play and policy gradients to learn the param-
eters. While we have only trained on a single state, note
that our approach OptGradFP-NN is generic enough to train
the defender’s policy over multiple distinct game states. Ex-
periments to evaluate this are a promising direction for fu-
ture work. Generalizing the model to handle arbitrary forest
shapes is also a challenge to be addressed in the future.

References
[Amin et al., 2016] Kareem Amin, Satinder Singh, and

Michael P Wellman. Gradient methods for stackelberg se-
curity games. In UAI, pages 2–11. AUAI Press, 2016.

[Fang et al., 2013] Fei Fang, Albert Xin Jiang, and Milind
Tambe. Optimal patrol strategy for protecting moving tar-
gets with multiple mobile resources. In AAMAS, pages
957–964, 2013.

[Fang et al., 2015] Fei Fang, Peter Stone, and Milind Tambe.
When security games go green: Designing defender strate-
gies to prevent poaching and illegal fishing. In IJCAI,
2015.

[Fudenberg and Levine, 1998] Drew Fudenberg and
David K Levine. The theory of learning in games,
volume 2. MIT press, 1998.

[Gan et al., 2017] Jiarui Gan, Bo An, Yevgeniy Vorobey-
chik, and Brian Gauch. Security games on a plane. In
AAAI, pages 530–536, 2017.

[Haskell et al., 2014] William Haskell, Debarun Kar, Fei
Fang, Milind Tambe, Sam Cheung, and Elizabeth Deni-
cola. Robust protection of fisheries with compass. In IAAI,
2014.

[Heinrich and Silver, 2016] Johannes Heinrich and David
Silver. Deep reinforcement learning from self-play in
imperfect-information games. CoRR, abs/1603.01121,
2016.

[Heinrich et al., 2015] Johannes Heinrich, Marc Lanctot,
and David Silver. Fictitious self-play in extensive-form
games. In ICML, pages 805–813, 2015.

[Johnson et al., 2012] Matthew P. Johnson, Fei Fang, and
Milind Tambe. Patrol strategies to maximize pristine forest
area. In AAAI, 2012.

[Kar et al., 2015] Debarun Kar, Fei Fang, Francesco Delle
Fave, Nicole Sintov, and Milind Tambe. “a game of
thrones”: When human behavior models compete in re-
peated stackelberg security games. In AAMAS, 2015.

[Kiekintveld et al., 2009] Christopher Kiekintveld, Manish
Jain, Jason Tsai, James Pita, Fernando Ordóñez, and
Milind Tambe. Computing optimal randomized resource
allocations for massive security games. In AAMAS, pages
689–696, 2009.

[Korzhyk et al., 2011] Dmytro Korzhyk, Zhengyu Yin,
Christopher Kiekintveld, Vincent Conitzer, and Milind
Tambe. Stackelberg vs. nash in security games: An
extended investigation of interchangeability, equivalence,
and uniqueness. JAIR, 41:297–327, 2011.

[Krizhevsky et al., 2012] Alex Krizhevsky, Ilya Sutskever,
and Geoffrey E Hinton. Imagenet classification with deep
convolutional neural networks. In F. Pereira, C. J. C.
Burges, L. Bottou, and K. Q. Weinberger, editors, NIPS,
pages 1097–1105. 2012.

[Mnih et al., 2015] Volodymyr Mnih, Koray Kavukcuoglu,
David Silver, Andrei A Rusu, Joel Veness, Marc G Belle-
mare, Alex Graves, Martin Riedmiller, Andreas K Fidje-
land, Georg Ostrovski, et al. Human-level control through

deep reinforcement learning. Nature, 518(7540):529–533,
2015.

[Sutton et al., 1999] Richard S Sutton, David A McAllester,
Satinder P Singh, Yishay Mansour, et al. Policy gradient
methods for reinforcement learning with function approx-
imation. In NIPS, volume 99, pages 1057–1063, 1999.

[Tambe, 2011] Milind Tambe. Security and Game Theory:
Algorithms, Deployed Systems, Lessons Learned. Cam-
bridge University Press, New York, NY, 2011.

[Ullah and Petrosino, 2016] Ihsan Ullah and Alfredo Pet-
rosino. About pyramid structure in convolutional neural
networks. In IEEE 2016 International Joint Conference
on Neural Networks (IJCNN), pages 1318–1324, 2016.

[Yang et al., 2014] Rong Yang, Benjamin Ford, Milind
Tambe, and Andrew Lemieux. Adaptive resource alloca-
tion for wildlife protection against illegal poachers. In AA-
MAS, 2014.

[Yin et al., 2014] Yue Yin, Bo An, and Manish Jain. Game-
theoretic resource allocation for protecting large public
events. In AAAI, pages 826–833, 2014.

[Zeiler and Fergus, 2014] Matthew D Zeiler and Rob Fergus.
Visualizing and understanding convolutional networks. In
European conference on computer vision, pages 818–833.
Springer, 2014.

