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ABSTRACT
This paper focuses on new challenges in influence maximization
inspired by non-profits’ use of social networks to effect behavioral
change in their target populations. Influence maximization is a mul-
tiagent problem where the challenge is to select the most influential
agents from a population connected by a social network. Specifi-
cally, our work is motivated by the problem of spreading messages
about HIV prevention among homeless youth using their social net-
work. We show how to compute solutions which are provably close
to optimal when the parameters of the influence process are un-
known. We then extend our algorithm to a dynamic setting where
information about the network is revealed at each stage. Simulation
experiments using real world networks collected by the homeless
shelter show the advantages of our approach.
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1. INTRODUCTION
Many behaviors are mediated by social influences, so a popula-

tion’s social network is essential to spreading a desired behavior.
The influence maximization problem models a multi-agent setting
over a social network where a population of agents can influence
each other via the links of the network. The challenge is to select
the most influential nodes, a task with many applications. For in-
stance, nonprofit organizations harness social networks to improve
health in disadvantaged groups by conducting in-person social in-
terventions. Such interventions have proven successful in many
domains [24], including reducing HIV spread [18], improving nu-
trition [12], and reducing smoking [22]. In this paper, we use as
an example the problem of spreading messages about HIV preven-
tion among homeless youth. HIV/AIDS kills 10,000 people each
year just in the U.S. [3], and the proportion of homeless youth who
are HIV positive is over ten times that for populations with stable
housing [17]. However, as is typical of nonprofits, homeless shel-
ters only have sufficient resources to accommodate a few youth in
each intervention [19]. They depend on word of mouth to expand
the reach of their message.

While influence maximization has been well studied in online
social networks [11, 5, 8], many domains (e.g., HIV prevention in
homeless youth) raise three new challenges. First, organizations
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face parameter uncertainty. Models of influence spread [11] re-
quire numerous parameters which give the probability that influ-
ence will propagate along each edge. However, organizations ac-
quire only a partial picture of the network from field observations,
Facebook contacts, etc., and there will inevitably be many links of
uncertain strength [18]. Thus, we require algorithms which per-
form well with large uncertainty about the model parameters.

Second, the problem is dynamic. The organization (e.g., the
homeless shelter) can ask participants about their immediate so-
cial circle during each intervention. Hence, updates about the true
parameters are given at each stage, informing node selections for
future interventions. We discuss the shortcomings of some related
work which uses POMDPs for dynamic influence maximization in
Section 3 [27, 26], but this related work has certainly failed to ad-
dress the challenges of parameter and execution uncertainty.

Third, organizations face execution uncertainty because they can-
not be sure that the youth (i.e., nodes in the social network) they se-
lect for an intervention will actually show up. This problem is par-
ticularly acute in our example domain because a number of events
could prevent a youth’s participation. For instance, a youth might
have been arrested or gone to stay with relatives.

While we illustrate these issues through health-related interven-
tions, the underlying principles apply to many influence maximiza-
tion domains. Take, for instance, a viral marketer who generates
word of mouth by giving away a limited number of discounts. While
the marketer likely will not know how influence propagates ahead
of time, they can learn more during the campaign by surveying their
users (e.g. “name five friends to receive this coupon").

Overview of our approach: We start by addressing parameter
uncertainty in the nondynamic setting by showing how to compute
solutions whose value under any parameter setting is close to the
optimum if the true parameters were known. We view the problem
as a zero sum game between the influencer and an adversary who
chooses the worst case parameters, and present techniques which
provably approximate the minimax strategies. The key challenge
is that the algorithm’s strategy space is exponentially large, while
the adversary’s is infinite. We give a polynomial time primal-dual
algorithm, as well as DOSIM, a more practical algorithm based on
a double oracle approach. DOSIM uses a greedy algorithm as the
inner oracle for the influencer. DOSIM also handles execution un-
certainty. We then extend these techniques to the dynamic setting
by showing that DOSIM’s greedy oracle still gives excellent empir-
ical performance. Our approach is evaluated on real world social
networks of homeless youth in a large U.S. city. We show that it
produces policies which perform near optimally regardless of the
unknown parameters, while failing to consider this uncertainty re-
sults in substantially worse performance.

Our algorithm has been piloted by a homeless shelter in a ma-



jor US city. A companion paper [28] shows results and detailed
analysis from a pilot test of this and other algorithms at homeless
shelters in a major US city, and shows the benefits of DOSIM in
practical settings. A large-scale deployment of our algorithm with
approximately 300 youth is scheduled to begin in Spring 2017.

2. DYNAMIC INFLUENCE MAXIMIZATION
Problem overview: A social network is a directed graph G =

(V,E), with |V | = n and |E| = m. Each node u ∈ V represents
an agent and a directed edge from u to v indicates that u is a friend
of v. While friendships are typically reciprocal, G is directed be-
cause influence is often asymmetric [20]. An influencer does the
following for T stages (where T is the total number of interven-
tions). First, she selects a set of K nodes (participants) to attend
the intervention and be influenced. Each node actually attends with
an independent probability. Then, the influencer receives obser-
vations about the propagation probability on each edge outgoing
from nodes that did attend, clarifying those nodes’ immediate so-
cial circle. Finally, the influencer selects the next K nodes and the
process repeats. The objective is to maximize the expected number
of influenced nodes at the end of stage T .

Influence model: Influence propagates according to a variant of
the standard independent cascade model [11]. In the independent
cascade model, each edge e = (u, v) is labeled with a probability
pe. The vector p contains pe for each e ∈ E. If u is influenced, it
makes one attempt to influence v which succeeds with probability
pe. Each influenced node remains influenced for all stages. We use
a variant where a node tries to influence its neighbor at each stage
(until it succeeds), instead of just the first. This has been shown to
better match empirical diffusion patterns [6].

It has been observed in many domains [1, 13] that the likelihood
of influence spread depends largely on the kind of relationship. To
model this phenomenon, each edge e ∈ E has a type θe drawn from
a set Θ. In our example, homeless shelter officials can annotate the
edges as being either strong or weak ties. Each type θ ∈ Θ is asso-
ciated with a prior distribution over propagation probabilities and
each edge e independently samples pe from the prior for θe. This is
a natural framework for our domain because organizations cannot
accurately estimate each pe, but they may classify the edges into
types. We focus on uniform priors but our work can be extended
to other distributions. We will assume a fixed width w for each
uniform prior and overload notation to let θe give the center of the
distribution. Hence, each edge samples pe ∼ U [θe − w

2
, θe + w

2
],

where U denotes a uniform distribution. Figure 1 provides an ex-
ample. The vector θ contains θe for each e ∈ E.

Observation model: The influencer receives observations at each
stage as she asks participants (nodes) about their immediate social
circle. Importantly, it is not possible to ask participants for the exact
pe. Instead, the influencer only learns proxies for this probability,
such as how frequently the participant interacts with the other per-
son. We abstract this feedback as updates relative to the prior. For
example, if e = (u, v) and u and v interact more often than typical
acquaintances, then we would infer that pe is on the upper end of
the prior θe. Accordingly, for each outgoing edge e, we assume
that the algorithm observes the quantile of pe relative to θe.

Example 1: If θe = 0.3 and w = 0.4, then our prior dis-
tribution would be pe ∼ U [0.1, 0.5]. If frequent interaction was
observed, then the influencer would infer that pe lies in the upper
quantile of the prior, and the updated posterior distribution would
be U [0.3, 0.5].

Objective formalization: Our algorithm starts with an input
consisting of a graph G (with all nodes uninfluenced) and prior
parameters θ. Unknown to the algorithm, the vector of edge prop-
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Figure 1: Sampling propagation probabilities from the prior. Each
edge e with the “strong" type has θe = 0.7. Since w = 0.4, pe
is drawn from the uniform distribution U [0.5, 0.9]. Analogously,
weak edges have θe = 0.2 and hence pe ∼ U [0.0, 0.4].

agation probabilities p is drawn from the factorized prior described
by θ. At each stage t ∈ [1, T ] the algorithm picks an action St from
the set A = {S ⊂ V s.t. |S| = K}. Each node v ∈ St attends
with an independent probability qv , which is known in advance.
qv models execution uncertainty. The algorithm then receives an
observation Ot containing each outgoing edge from the subset of
St that attended, which allows it to update its posterior distribution
over the edge probabilities. The algorithm’s state is given by the ac-
tions taken and observations received so far, {(S1, O1)...(St, Ot)}.
A policy π is a mapping from states to actions, and hence specifies
the action to take in each stage of the problem. Let f(π,p) be the
expected number of nodes influenced by π by the end of stage T
when the propagation probabilities are p1. f can be evaluated by
averaging over random samples of the influence process [11, 23].
Our goal is to find a policy which maximizes Ep∼θ[f(π,p)].

3. UNCERTAINTY
Thus far, our model contains uncertainty about the realized value

of the probability pe given its expectation θe. This reflects variance
in the distribution, and is captured via w (the width of the support
of the prior over pe). This uncertainty is important in the dynamic
setting, becausew controls the amount of information which can be
gained via observations. For instance, if w = 0, then the prior for
any edge is a point distribution and subsequent observations cannot
reveal anything new. However, if w = 0.4, then the posterior mean
on a given edge will shift by 0.1 if the algorithm observes whether
pe for that edge lies in the top or bottom quantile.

On its own, though, placing a distribution over pe is inadequate
in the following sense. As noted by He and Kempe [9], distri-
butional uncertainty does not impact the average behavior of the
model. This is because the following processes are analytically
equivalent: (1) draw pe ∼ U [θe − w

2
, θe + w

2
] and then propagate

influence with probability pe (2) propagate influence with proba-
bility θe. That is, in the classical influence maximization problem,
placing a distribution over pe is no different from setting pe deter-
ministically to its mean θe. Simply increasing the width w does
not change this: the priors pe ∼ U [0.4, 0.6] and pe ∼ U [0.2, 0.8]
both imply that edge e will propagate influence with probability
E[pe] = 0.5. While distributional uncertainty does have a role
1All of our techniques also apply to an infinite time horizon with
discounted rewards.



in our dynamic problem because we allow the influencer to learn
more about the realized values, it is not sufficient to capture uncer-
tainty about the average likelihood that influence will spread. For
instance, the influencer may know that pe is drawn from the “strong
tie" prior, but this will mean entirely different things if a strong tie
has θe = 0.1 than if θe = 0.9. In domains such as HIV preven-
tion, we will not know what θe should be set to because, e.g., we
do not know the average probability that one friend will be able to
convince another to get tested for HIV.

We thus consider a second, higher-order uncertainty over the
value of θ. We assume interval uncertainty, that is, θ ∈ [aθ, bθ] ∀θ ∈
Θ. Since the influencer never learns the true value of θ, our goal
is to produce an algorithm which simultaneously performs well for
all possible values of θ. Robustness to this second kind of uncer-
tainty is what was considered by Chen et al. [4] and He and Kempe
[9]. The key difference from the first level of uncertainty is that
we do not have a distribution over [aθ, bθ]. This leads to an ad-
versarial model, requiring robustness to a worst-case choice of θ
[9]. A worst-case approach is further motivated by the fact that or-
ganizations may not be able to quantify higher-order uncertainty,
i.e., provide a prior over the prior parameters. In short, we have a
more expressive model to represent two levels of uncertainty. The
following example shows how the entire model works together, in-
corporating both levels of uncertainty and our observation model.

Example 2: Suppose that for some edge e, our interval uncer-
tainty on θ gives θe ∈ [0.2, 0.8] and w = 0.4. If the actual value
is θe = 0.2, then this would imply that pe ∼ U [0.0, 0.4]. If in-
stead the value is θe = 0.6, then we would have pe ∼ U [0.4, 0.8].
Similar distributions are implied for every θe contained in our un-
certainty interval [0.2, 0.8]. The influencer does not know which
distribution is the true one. However, suppose she observes that pe
is in the upper quantile of the prior. Then in the case that θe = 0.2,
the updated posterior would be pe ∼ U [0.2, 0.4], and in the case
θe = 0.6, the posterior would be pe ∼ U [0.6, 0.8] (and so on).
The influencer still does not know the true value of θe. But she
now knows that (whatever it is) pe lies in U [θe, θe + w

2
].

When our problem contains only the first level of uncertainty
(about the realized value of pe), we call this the known parameter
case (as the key parameters θ are known). When the second level
of uncertainty is also present, and we are hence uncertain about θ,
we call this the robust case. Our objective for the robust case is
formalized in Section 5.

4. RELATED WORK
We discuss work on three related topics. First is work which

deals with parameter uncertainty in classical influence maximiza-
tion. Two recent papers [9, 4] analyze a similar model of parameter
uncertainty, where the parameter for each edge is chosen adversar-
ially within an interval. In their model, the edge parameters are
totally independent. However, due to the domains we consider,
we assume that edges belong to a small number of types. There-
fore, our models are not directly comparable, and in particular the
hardness result proved by He and Kempe [9] does not apply (we
elaborate in Section 5). Further, neither of [9, 4] have a dynamic
component, which is a key feature of our domain. Independently,
several recent papers deal with learning either the structure [7, 16]
or parameters [15] of a network. All of these papers assume that the
algorithm observes many independent influence cascades, so our
contributions are largely orthogonal to learning based approaches.
Similarly, Vaswani et al. [25] introduce a bandit-inspired setting
where the algorithm learns the reward it obtained after each influ-
ence campaign. In our case, an organization will never observe the
hundreds of campaigns required by such approaches since each one

takes several months.
Second is work by Yadav et al. [27, 26] on applying dynamic in-

fluence maximization to HIV prevention. This is the most closely
related work to ours, and hence Section 7 empirically compares
our algorithm and theirs. Yadav et al. formulate the problem as a
POMDP. Our contributions extend their work in two ways. First,
unlike their work, we address the robust case by giving an algo-
rithm which is provably robust to parameter and execution uncer-
tainty. Second, for known parameters, we show that dynamic influ-
ence maximization can be solved by a greedy algorithm instead of
POMDP and that only greedy scales beyond small networks.

Lastly, Seeman and Singer [21] also consider an adaptive influ-
ence maximization problem but our settings are very different. In
their work, the goal is to select an initial seed set so that we may
then recruit a second set from the friends of the first. In contrast,
our problem is adaptive since the algorithm learns more about the
network in each stage.

5. ROBUSTNESS TO PARAMETER UNCER-
TAINTY

We start by showing how to obtain robust results under parameter
uncertainty. For ease of explanation, we focus first on the nondy-
namic setting where the algorithm picks a single seed set in the first
stage instead of a multistage policy. We also defer consideration of
execution uncertainty and assume qv = 1 ∀v ∈ V . When there
is no parameter uncertainty, Kempe, Kleinberg and Tardos [11]
showed that a greedy algorithm obtains a (1 − 1/e) approxima-
tion to the optimal value because the objective function is submod-
ular. We now show how to extend this approximation to a robust
optimization over uncertain parameters.

Recall that we assumed interval uncertainty over the key param-
eters θ, that is, θ ∈ [aθ, bθ] ∀θ ∈ Θ. The influencer’s goal is to
find a seed set S ∈ A which leads to near-optimal influence spread
no matter where each entry in θ lies within its interval. Our full
model also includes lower-order uncertainty concerning the real-
ized value of p given θ. Since we focus for now on a single stage,
the influencer does not receive observations about the realized p.
Thus (as noted in Section 3), the lower-order uncertainty is irrele-
vant because distributional uncertainty over p can can be removed
via setting p to its mean. This lower order uncertainty becomes
relevant when we extend our algorithm to the dynamic setting in
Section 6.

First, we formally define our objective. For each S ∈ A, let
gS(θ) give the expected influence spread of seed set S with priors
θ. Let the set of possible θ be P = {θ |θe ∈ [aθe , bθe ] ∀e ∈
E}. P is the m-dimensional box where each θe may lie anywhere
within the interval for that type. Let the optimal influence spread
for each θ be gOPT (θ) = maxS gS(θ). The influencer’s utility
for choosing seed set S when the parameters are θ is

R(S,θ) =
gS(θ)

gOPT (θ)
,

which quantifies the value that the influencer received compared
to the optimum. This objective was also discussed by He and
Kempe [9] and Chen et al. [4]. Since gOPT is NP-hard to com-
pute exactly, R cannot be efficiently evaluated. However, we can
compute a greedy approximation gG to the optimal value. Hence,
we follow [4, 9] and instead optimize

RG(S,θ) =
gS(θ)

gG(θ)
.

This compares the influence spread of S to the value which would



have been obtained by greedy. Note that R(S,θ) ≤ RG(S,θ) ≤
e
e−1

R(S,θ), so RG is always within a constant factor of R. A
randomized algorithm for the influencer is a vector x ∈ ∆|A|

(where ∆n denotes the n-dimensional probability simplex) giving
the probability of selecting each seed set. As explained in Section
3, we take a worst-case approach to maximizing RG. Hence, we
seek the strategy x∗ which maximizes the minimum value:

x∗ = arg max
x∈∆|A|

min
θ∈P

∑
S

xSRG(S,θ). (1)

This problem can be viewed as a zero-sum game between an
influencer, who chooses the seed set S ∈ A, and an adversary (na-
ture), who chooses the parameters θ ∈ P . The influencer’s payoff
is given by RG(S,θ). Since we solve for a mixed strategy for the
influencer, our algorithm is randomized: the influencer samples a
pure strategy each time she wishes to choose a seed set. Random-
ization is necessary to guard against weakness to a particular set of
parameters (a player in a game may be exploited if they commit to
a deterministic strategy). However, it is possible that an influencer
might prefer a pure strategy with a lower but “guaranteed" pay-
off to a probabilistic strategy which has a small chance of yielding
very bad utility. In this case, it suffices to express the payoffs of
our game through a risk aversion function and then solve the game
normally using the algorithms described below; this will yield a de-
sired guaranteed payoff. In practice, our proposed algorithm pro-
duces strategies with very sparse support; the few non-zero com-
ponents all have comparable worst-case value so this problem does
not arise.

We now introduce our techniques for solving the game. Normal
methods do not apply because A (the set of all sets of K nodes)
is exponentially large, while P (the set of all allowable parame-
ter values) is infinite. However, we demonstrate that both sources
of intractability can be overcome and present a constant-factor ap-
proximation to the minimax robust solution in polynomial time.
Recall that a mixed strategy x is a vector giving the probability of
choosing each seed set. Our approximation notion is as follows:

DEFINITION 1. An algorithm produces an (α, ε)-minimax ro-
bust solution if it always returns a mixed strategy x satisfying

min
θ

∑
S

xSRG(S,θ) ≥ αmax
x′

min
θ

∑
S

x′SRG(S,θ)− ε.

We first tackle the adversary’s infinite strategy space by show-
ing that this space can be reduced to a discrete set P∗ such that
the adversary loses only an arbitrarily small ε by choosing from P∗
instead of P . Recall that P has infinite size because it is the contin-
uous set of all allowable parameter values. For example, if we have
types corresponding to strong and weak edges, P could be the set
of parameters which places the θe for strong edges anywhere in the
continuous interval [0.4, 0.8] and the θe for the weak edges any-
where in the interval [0.2, 0.4]. There are no general approaches
for solving games with infinite strategy spaces, so we show how
to reduce our original game to one with a finite set of adversary
strategies. The challenge is to ensure that only a small amount
of approximation error is incurred in the reduction. Towards this
goal, the main technical step is to prove that each gS is sufficiently
smooth for such a discretization to be possible. It is not immedi-
ately clear that gS should always be smooth. For instance, in a
complete graph, gS rapidly increases from 0 to n even at a very
small propagation probability because of the combinatorial num-
ber of potential paths (this is related to the emergence of a giant
connected component in Erdős-Rényi graphs). However, Lemma
1, stated below, shows that gS is smooth for any fixed size graph.

Lemma 2 will then use Lemma 1 to show that there is a discretiza-
tion P∗ where |P∗| scales reasonably with the problem size.

LEMMA 1. For any gS , S ∈ A, (or gG) and any θ1,θ2 ∈ P ,
|gS(θ1)− gS(θ2)| ≤ nT ||θ1 − θ2||1.

The proof of Lemma 1 is fairly long and technical, and so is
deferred to the supplemental material (along with the proof of all
other lemmas). In Lemma 2, we use Lemma 1 to construct a P∗
which ensures that the loss incurred by discretizing is at most ε.
The idea is as follows. Suppose we cover the hyperrectangle of
allowable type values ×θ[aθ, bθ] with a regular grid. Let our dis-
cretization P∗ ⊂ P be the set of θ which correspond to the grid
points (by setting each θe to its value at the point). Then we have:

LEMMA 2. Fix ε > 0, and construct P∗ using a grid with(
2nmT
ε

)|Θ| points. Then for any seed set S ∈ A and any point
θ ∈ P there is a θ∗ ∈ P∗ satisfying |RG(S,θ)−RG(S,θ∗)| ≤ ε.

Although |P∗| is exponential in |Θ|, we assume that |Θ| is a
small constant because organizations can only provide a small num-
ber of edge types. Moreover, this exponential dependence is likely
unavoidable since when |Θ| = m, we recover a model for which
He and Kempe [9] showed even approximating the minimax robust
strategy is NP-hard.

By reducing the adversary’s pure strategy space to a finite setP∗,
Lemma 2 allows us to formulate the minimax robustness problem
as the following LP:

Primal: Dual:
max
x∈R|A|

U s.t. min
y∈R|P∗|

W s.t.∑
S∈A

xS = 1
∑
θ∈P∗

yθ = 1

xS ≥ 0 ∀S ∈ A yθ ≥ 0 ∀θ ∈ P∗

U ≤
∑
S∈A

xSRG(S,θ) ∀θ W ≥
∑
θ∈P∗

yθRG(S,θ) ∀S (2)

The primal is intractable due to the exponential number of vari-
ables. However, since P∗ has size poly(n,m, 1

ε
), we can instead

work with the dual. Although the dual has exponentially many con-
straints, all that we need to ensure polynomial time solvability is a
separation oracle which checks if Constraint 2 is violated for any
S. This reduces to finding the "tightest" constraint; i.e., the seed set
S which maximizes the expected value of RG under the adversary
mixed strategy y. We want to compute

max
S∈A

∑
θ∈P∗

yθRG(S,θ) = max
S∈A

∑
θ∈P∗

yθ
gG(θ)

gS(θ)

Note that the term yθ
gG(θ)

is independent of the seed set S which
we choose; it is just a nonnegative coefficient. Further, computing
maxS∈A gS(θ) is the problem of finding the most influential seed
set for the fixed parameters θ, which is a submodular maximiza-
tion problem. Since a nonnegative linear combination of submod-
ular functions is itself submodular, greedy can be used to find an
approximately tightest constraint:

LEMMA 3. For any adversary mixed strategy y ∈ ∆|P
∗|, run-

ning greedy with the objective maxS∈A
∑
θ∈P∗

yθ
gG(θ)

Ep∼θ[f(·,p)]

produces a (1− 1/e)-approximate best response to y.



This is exactly what we need to check Constraint 2 since a par-
ticular setting of y corresponds to an adversary mixed strategy, so
Constraint 2 is violated if and only if the best response to y has
expected RG higher than W . Although greedy may not always de-
tect violated constraints, we show that the ellipsoid algorithm can
still be used to approximately solve the dual, and that we can then
recover an approximate solution to the primal.

THEOREM 1. There is an algorithm which obtains an (1−1/e, ε)-
minimax robust solution to the robust influence maximization prob-
lem in time poly(m,n, 1

ε
).

PROOF. The dual exchanges an exponential number of variables
for an exponential number of constraints. Thus, we can solve it us-
ing the ellipsoid algorithm as long as we have an efficient separa-
tion oracle for Constraint 2. By Lemma 3, using greedy as a sepa-
ration oracle will detect if W ≤ (1− 1/e) maxS

∑
θ yθRG(S,θ)

(and explicitly return an S which gives a violated constraint). The
challenge is that greedy may or may not report a violation when
(1−1/e) maxS

∑
θ yθRG(S,θ) < W < maxS

∑
θ yθRG(S,θ).

We handle this approximation using an argument similar to that em-
ployed by Jain, Mahdian, and Salavatipour in the context of a prob-
lem related to Steiner trees [10]. Suppose that we solve the dual by
adding an additional constraint W ≤W ∗ and binary searching for
the smallest W ∗ which makes the dual feasible. It is known that
the ellipsoid algorithm will still terminate in polynomial time even
using an approximate separation oracle [2]. If the ellipsoid algo-
rithm claims that (W ∗, y) is dual feasible when using greedy as a
separation oracle, we know via the approximation guarantee for the
separation oracle that ( e

e−1
W ∗, y) must be feasible in truth. That

is, the optimal solution of the dual lies between W ∗ and e
e−1

W ∗.
This portion of the algorithm runs in time poly(n,m, 1

ε
) since at

most a polynomial number of calls are made to the separation ora-
cle, which itself runs in polynomial time.

Now we show how to use the dual solution to recover a solution
to the primal with polynomial size. When the ellipsoid algorithm
is run on the dual, it makes a polynomial number of calls to the
separation oracle. Checking only the constraints which correspond
to the actions returned by the oracle is sufficient to certify that the
optimal solution to the dual is at leastW ∗. Hence by strong duality,
we know that there is a solution to the primal which uses only the
variables corresponding to those actions and achieves value W ∗.
If we solve a polynomially-sized version of the primal which uses
only those variables, then we obtain such a solution, x∗. Also by
strong duality, we know that the optimal solution to the primal can-
not have value better than e

e−1
W ∗, so

min
θ∈P∗

∑
S

x∗SRG(S,θ) ≥W ∗

=

(
1− 1

e

)(
e

e− 1
W ∗
)

≥
(

1− 1

e

)
max
x′

min
θ∈P∗

∑
S

x′SRG(S,θ).

Note that by Lemma 2 the value of this solution can decrease by
at most ε if the adversary chooses from P instead of P∗, which
establishes the claim.

A practical algorithm: Theorem 1 accomplishes our goal of
providing a polynomial time approximation algorithm. However,
this algorithm is likely impractical since the ellipsoid algorithm is
known to perform poorly. Moreover, the strategy returned could be
quite large (although polynomial). While we view the construction

of a polynomial time approximation algorithm as an important the-
oretical contribution, we also present a practical algorithm using a
double oracle approach [14]. DOSIM (Double Oracle for Social In-
fluence Maximization) solves the game using best response oracles
for each player. Initially, both players choose only from a small set
of arbitrarily chosen pure strategies (lines 1-2 of Algorithm 1). At

Algorithm 1 DOSIM

1: A0 = arbitrary seed set
2: P0 = {( 1

2
, 1

2
..., 1

2
)}

3: i = 0
4: while Ai 6= Ai−1 or Pi 6= Pi−1 do
5: xi, yi = SolveLP(Ai,Pi) //Solve restricted game
6: Ai+1 = Ai ∪ {INFLUENCERBESTRESPONSE(yi)}
7: Pi+1 = Pi ∪ {ADVERSARYBESTRESPONSE(xi, ε)}
8: i = i+ 1
9: end while

10: return SolveLP(Ai,Pi)

each iteration, we compute the minimax mixed strategies assuming
the game is restricted to just the current strategy set (line 5). The
payoff matrix of this restricted game is given byRG(S,θ) for each
pair of strategies S ∈ Ai,θ ∈ Pi contained in the current strat-
egy sets. Then, we find the best response of each player to their
opponent’s mixed strategy (lines 6-7). If either of these responses
is not in the corresponding strategy set, the new entry is added and
the algorithm proceeds. If both strategies are present, the algorithm
terminates with a provably optimal solution. While double oracle is
well known [14], it is not an out-of-the-box approach. Our contri-
bution is constructing appropriate oracles for robust influence max-
imization. Both oracles follow naturally from our earlier results:

Influencer oracle: Run the greedy algorithm on the objective
given by the current adversary strategy y. Lemma 3 shows that
greedy is a (1− 1/e)-approximate oracle.

Adversary oracle: Search P∗ and choose the parameters θ ∈
P∗ which minimize

∑
S∈Ai−1

xSRG(S,θ). By Lemma 2, this
approximates the adversary’s best response to within an additive ε.

Hence, we can provide an approximation guarantee for the best
response oracle for both players. McMahan et al. [14] showed
that when double oracle is given an optimal best response oracle
for each player, the strategies it returns form an equilibrium of the
game. We now generalize this reasoning to show that approximate
best response oracles yield an approximate equilibrium. We say
that a mixed strategy x is a c-approximate minimax strategy if it
obtains worst case utility within a factor c of the optimum:

min
θ∈P∗

∑
S∈A

xSRG(S,θ) ≥ c max
x′∈∆|A|

min
θ∈P∗

∑
S∈A

x′SRG(S,θ)

Likewise, a mixed strategy y for the adversary (the minimizing
player) is a c-approximate minimax strategy if the influencer can
obtain utility at most a factor 1

c
greater than the value of the game

in response to it. We prove the following guarantee on the output
of the double oracle algorithm:

THEOREM 2. If double oracle is given an α-approximation to
the best response of Player 1 and a β-approximation to the best re-
sponse of Player 2, on termination it returns αβ-approximate min-
imax strategies for both players.

PROOF. Consider a zero sum game. We will retain our earlier
notation, letting A be the pure strategy space for Player 1 and P∗
be the pure strategy space for Player 2, with payoff function RG.
However, all of our reasoning applies to any zero sum game. Sup-



pose that the double oracle algorithm terminates with mixed strate-
gies x and y. We will prove the theorem for the maximizing player
(assumed to be Player 1). The proof for the minimizing player is
analogous. Since x is an α-best response to y, for any alternate
strategy S′ ∈ A,∑

θ∈P∗
yθRG(S′,θ) ≤ 1

α

∑
S∈A

∑
θ∈P∗

xSyθRG(S,θ).

Similarly, for any alternate adversary strategy θ′,∑
S∈A

xSRG(S,θ′) ≥ β
∑
S∈A

∑
θ∈P∗

xSyθRG(S,θ).

Combining these inequalities yields that:

max
x′∈∆|A|

min
θ′∈P∗

∑
S∈A

x′SRG(S,θ′) ≤ max
x′

∑
S∈A

∑
θ∈P∗

xSyθRG(S,θ)

≤ 1

α

∑
S∈A

∑
θ∈P∗

xSyθRG(S,θ)

≤ 1

αβ
min
θ′∈P∗

∑
S∈A

xSRG(S,θ′)

which completes the proof.

By taking β = 1 and accounting for the additive loss of ε intro-
duced by discretizing the adversary’s strategy space, we get:

COROLLARY 1. DOSIM obtains a (1−1/e, ε)-minimax robust
solution to the robust influence maximization problem.

DOSIM may require an exponential number of steps to converge
(since it may need to add all pure strategies in the worst case). How-
ever, we see in Section 7 that it converges quickly in practice and
so Corollary 1 provides guaranteed solution quality.

Robustness to execution uncertainty: Recall that each node v
is present with probability qv . To illustrate the implication for the
optimal strategy, suppose that there are two very influential nodes
u and v with qu = qv = q whose neighborhoods entirely overlap.
Clearly, we should only select one of the two if q is high. How-
ever, if q is low, we might select both to ensure that we reach their
large set of neighbors. We create a new graph G′ to represent this
tradeoff as follows. For each node v ∈ V , add a new “designer"
node v′, which has a single edge (v′, v). This edge has a new type
θd whose prior outputs pv′,v = 1 with probability θd = qv and
pv′,v = 0 otherwise. If actions are restricted to the designer nodes,
i.e., A = {{v′1, v′2, ...v′K}|vi ∈ V }, then maximizing influence in
G′ exactly corresponds to maximizing influence under execution
errors in G. We can also incorporate our higher-level uncertainty
by allowing θd to be adversarially chosen within an interval. There-
fore, we can compute a seed set which is robust to an adversarially
chosen θd by running DOSIM on G′.

6. DOSIM IN THE DYNAMIC SETTING
We now extend DOSIM to the dynamic setting, where we seek a

multistage policy instead of a seed set. Recall that a policy selects
a set of nodes at each stage conditioned on observations received
from intervention participants in earlier stages. We will show how
to find a policy which is robust to uncertainty over the prior θ.
When we seek a robust policy, observations give a quantile of the
prior but do not fully specify the posterior since the exact prior is
unknown. E.g., if θe ∈ [0.2, 0.7] and w = 0.2, the prior could be
either U [0.2, 0.4] or U [0.5, 0.7] and an observation of “top half"

implies a posterior of either U [0.3, 0.4] or U [0.6, 0.7]. Our algo-
rithm uses this information while remaining robust to the higher-
level uncertainty over θ. Recall that the lower-level uncertainty
cannot be replaced by setting pe = θe anymore because the al-
gorithm receives observations about the realized value. Thus, our
algorithm must simultaneously handle both levels of uncertainty.

DOSIM translates naturally into the dynamic setting. Specif-
ically, our scheme for discretizing the adversary’s strategy space
(Lemmas 1 and 2) generalizes to the case where the influencer
chooses a multistage policy instead of a single seed set (see sup-
plemental material for proof). Thus, our adversary oracle, and its
theoretical guarantees, are unchanged. Theorem 2 applies to any
zero-sum game, and hence implies that if we can supply an influ-
encer oracle for the dynamic setting, then running DOSIM with this
oracle will produce robust policies.

Unfortunately, supplying an influencer oracle with guaranteed
approximation ratio is difficult; there are no known theoretical guar-
antees for dynamic influence maximization because the objective
function is not adaptive submodular. Yadav et al. [26] proved this
for their DIME model, which our model generalizes. Our approach
is to use a heuristic oracle and show experimentally that it produces
good influence spread. This is sufficient to ensure that we obtain
robust results on real world problems since DOSIM performs well
on a particular network so long as its influencer oracle does:

LEMMA 4. If the influencer oracle achieves anα-approximation
for any θ ∈ P∗ on a specific graph G, then DOSIM provides an
(α, ε)-minimax robust solution on G.

Essentially, we can be sure that DOSIM’s solution is robust if
the oracle performs well on our particular network since DOSIM
preserves the quality of its input oracle.

We now turn to finding an appropriate heuristic for the influencer
oracle. One natural idea would be to use the current state of the art
for dynamic influence maximization, the POMDP based heuristic
algorithm HEAL [26]. However, HEAL is unsuitable for two rea-
sons. First, our model is more general than HEAL’s. Specifically,
HEAL cannot represent the pe as being drawn from an interval.
Second, we show experimentally that HEAL is not scalable and is
hence unsuitable as a subroutine which will be called many times
by DOSIM. Hence, we use an alternative heuristic oracle, presented
below.

When examining Algorithm 1, our extension of DOSIM to the
dynamic setting only needs to supply an influencer oracle (line 6).
The rest of DOSIM is completely unchanged because we can use
the same adversary oracle. For the influencer oracle, which best
responds to an adversary mixed strategy y, we will use a dynamic
version of the greedy influence maximization algorithm, described
in Algorithm 2. The dynamic greedy algorithm operates greedily
on two layers. In each stage (line 3), it chooses the set of K nodes
which maximize the immediate gain in influence spread, condi-
tioned on the observations gathered thus far. However, since find-
ing this set is essentially a classical influence maximization prob-
lem (and hence NP-hard), we use a further greedy selection process
to approximate the optimal set of K nodes for each stage. Line 5
selects the node v∗ which maximizes the expected marginal gain.
The expectation is over parameters θ sampled from the adversary
mixed strategy y, and propagation probabilities p sampled accord-
ing to θ. After identifying these K nodes, the algorithm marks
them as influenced and simulates new observations (lines 10-11).
We can repeatedly simulate different sets of observations (repeat-
ing line 10) to build up the best response policy. Thus, we can
construct an influencer oracle.

Explicitly representing the entire policy is infeasible because a



Algorithm 2 Dynamic greedy

1: Sprev = ∅ //nodes selected in previous stages
2: O = ∅ //set of all observations
3: for t← 1 to T do
4: St = ∅ //nodes selected in this stage
5: for i← 1 to K do
6: v∗ = arg maxEp[f(Sprev ∪ St ∪ {v},p)
7: −f(Sprev ∪ St,p)|O]
8: St = St ∪ {v∗}
9: end for

10: Influence St; Update Sprev = Sprev ∪ St
11: Receive observation Ot; Update O = O ∪Ot
12: end for
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Figure 2: Influence with varying K on Network A (left) and Net-
work B (right).

policy specifies the action to take in response to any possible set
of observations; even storing it would require exponential space.
However, the oracle simulates a sample of random observations,
which is sufficient to implement DOSIM. Suppose we store only
the adversary mixed strategy yt that the oracle best responds to on
each iteration t. In future iterations, we can run the oracle with in-
put yt and sample from the policy generated in iteration t as needed.

7. EXPERIMENTS
We present experimental results for our example domain, pre-

venting HIV spread in homeless youth via dynamic influence max-
imization under parameter uncertainty. We use two datasets (Net-
work A and Network B) collected by homeless shelters using sur-
veys and interviews [26]. Both have 140-170 nodes and 300-400
edges. We also show results on artificial Watts-Strogatz networks
(model parameters p = 0.1, k = 7, all results averaged over 30
networks), since these mirror our datasets’ small diameter.

Dynamic influence maximization with known parameters:
The most closely related work to ours is HEAL algorithm [26],

so we begin by setting up a comparison between DOSIM and HEAL.
HEAL only handles the known parameter case, where only the
lower order uncertainty over the realized value of p is present.
Thus, we run DOSIM assuming that the adversary strategy is fixed
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Figure 3: Runtime with varying T on Network A (left) and Net-
work B (right).
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Figure 4: Additional influence spread results

p \u 0.1 0.2 0.3
0.5 -0.1 15.0 6.0
0.6 6.4 13.3 24.9
0.7 8.9 21.0 -3.4

(a) Network A

p\u 0.1 0.2 0.3
0.5 23.1 -1.8 10.5
0.6 0.6 18.7 18.3
0.7 -0.4 2.5 6.7

(b) Network B

Table 1: % gain over HEAL with varying parameters

to a single, known θ. Our results validate that even when only
lower-level uncertainty is present, the approach used by DOSIM
still outperforms the closest competitor.

Our model is more general than HEAL’s, so we align the models
as follows. There is one type of "certain" edges with fixed pe = p,
and one type of "uncertain" edges which have pe = p with proba-
bility u and pe = 0 with probability 1 − u. We give DOSIM the
same observations as HEAL by revealing whether an edge is in the
top 100·u% of the prior or bottom 100 · (1− u)%. Figure 2 shows
the influence spread of both algorithms on the two real networks as
we vary the intervention size K (fixing T = 5, p = 0.6, u = 0.1
as in [26]). We also compare to picking nodes with the highest
degree centrality (DC), since this is standard in health policy [24].
The maximum intervention size is K = 6 since the shelter cannot
accommodate more participants.

We see that DOSIM and HEAL perform very similarly, while
DC performs poorly (and is omitted hereafter). Next, Figure 4a
shows influence spread on Network A as the time horizon T varies
(K = 2, p = 0.6, u = 0.1); again the algorithms perform very
similarly. Results for Network B are almost identical (see sup-
plemental material). Figure 4b shows influence spread on Watts-
Strogaz networks of varying size. DOSIM performs better as the
size increases. Lastly, Table 1 shows the percentage gain of DOSIM
over HEAL as the parameters u and p are varied (for K = 2,
T = 10). DOSIM performs no more than 4% worse, and up to
25% better. Overall, the influence obtained by DOSIM is compa-
rable to HEAL, and sometimes better.

However, only DOSIM is scalable. Figures 3 and 5 show run-
time on our two real-world networks and Watts-Strogatz networks

100 200 300 400 500

n

0

500

1000

1500

T
im

e
(s

)

DOSIM

HEAL

Figure 5: Runtime on Watts-Strogatz networks.
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Figure 7: DOSIM’s performance with different intervals for θ and
values of w.

respectively. DOSIM performs better as the problem size grows.
For T = 10 on Network A, it is roughly 2.5 times faster. On
Watts-Strogatz networks with 500 nodes, DOSIM finishes in about
8 minutes while we cut off HEAL’s execution after 5 hours. For
networks larger than 500 nodes, HEAL runs out of memory. We
do not attempt to run either algorithm on larger networks because
in the domains we are concerned with network sizes will typically
be in the small hundreds of nodes. Both algorithms were run on a
2.33 GHz Intel processor with 48 GB of RAM.

Robustness: We now investigate the performance of the full
DOSIM algorithm when we have interval uncertainty over θ. Shel-
ter officials annotated the edges as being either strong or weak ties,
so we have two corresponding types. We add a third type for the
designer edges reflecting execution uncertainty. A uniform prior is
adversarially chosen for the first two types, using width w = 0.4
(truncated if the support would exceed [0,1]). We allow any mean
θstrong ∈ [0.2, 0.8] and θweak ∈ [0, 0.4]. These ranges contain the
parameters used in previous work [26], but are large enough to rep-
resent our considerable uncertainty. We allow any θd ∈ [0.2, 0.8].
Observations specified whether outgoing edges were in the bottom
or top quantile of the prior. K = 4 nodes were selected in each of
T = 5 stages with ε = 0.1. We compare DOSIM to two bench-
marks. Since no previous work (including HEAL) handles both
levels of uncertainty simultaneously, our benchmarks run DOSIM
with a fixed adversary strategy. "DOSIM-fixed" uses fixed param-
eter settings reported previously (θstrong = 0.6, θweak = 0.05) with-
out considering execution uncertainty (θd = 1). "DOSIM-SE" uses
the same settings for θstrong and θweak, but also accounts for stochas-
tic execution uncertainty by setting θd = 0.5 (based on shelter
officials’ experience). These two algorithms assume a single al-
lowable point value for θ. Figure 6 shows the worst case ratio RG
(over all allowable parameter values) on the y axis for DOSIM and
the benchmarks. DOSIM obtains approximately 90% of the opti-
mal value across all parameter settings while using fixed param-
eters leads to substantially worse performance (about 72% in the
worst case). Incorporating execution uncertainty results in a value
roughly halfway in between.

Next, we examine the consequences when DOSIM’s uncertainty
intervals for θ might not contain the true value. Specifically, we run
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Figure 8: (a) Worst-case RG over larger intervals for θ when
DOSIM plans on smaller intervals. The dashed line givesRG when
DOSIM plans on larger intervals. (b) Convergence of DOSIM.

DOSIM with half-sized uncertainty intervals: θstrong ∈ [0.35, 0.65],
θweak ∈ [0.1, 0.3], θd ∈ [0.35, 0.65], and show the worst case value
ofRG when θ could lie anywhere in the larger intervals used above.
The first two bars of Figure 7 compare the performance of DOSIM
with half-sized intervals to its performance when given the true,
larger intervals with w = 0.4. DOSIM’s performance with half-
sized intervals is approximately 84% of the optimal value, com-
pared to 90% given the true intervals. Hence, DOSIM performs
fairly well even when its uncertainty intervals are misspecified.
However, we cannot make up this gap (which is caused by under-
estimating the higher-order uncertainty) by increasing our amount
of lower-level uncertainty. The last bar in Figure 7 shows that
DOSIM’s performance is essentially equivalent if w is increased
from 0.4 to 0.6.

Expanding on this point, Figure 8a shows the value ofRG which
DOSIM obtains on Network A when it plans on half-sized intervals
for θ, with each bar representing a differentw. The dashed horizon-
tal line gives DOSIM’s performance when it correctly planned on
the larger uncertainty intervals (θstrong, θd ∈ [0.2, 0.8] and θweak ∈
[0, 0.4]). We infer that increasing the amount of lower-order uncer-
tainty is not a substitute for incorporating higher-order uncertainty.
Results for Network B are similar and are shown in the supplemen-
tal material. This confirms that our more expressive model, rang-
ing over both levels of uncertainty, captures features of the problem
which cannot be represented using only lower-order uncertainty.

Lastly, Figure 8b shows DOSIM’s performance at each itera-
tion (for large uncertainty intervals). On both datasets, it converges
rapidly (within 13 iterations). Convergence is similar for half-sized
intervals, and given in the supplemental material. This confirms our
earlier claims that DOSIM only needs a small number of iterations
in practice and that the strategies it generates have sparse support.

8. CONCLUSION
We address dynamic influence maximization under uncertainty

about both the network parameters and the efficacy of interven-
tions. First, we give algorithms with provable guarantees for mini-
max robustness under unknown parameters. Second, our algorithm
handles execution uncertainties. Third, we extend these results to
the dynamic setting using an experimentally validated greedy algo-
rithm. Lastly, experiments on real world networks collected from
homeless youth demonstrate our approach’s advantages.
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