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Abstract 

Wildlife species such as tigers and elephants are under the threat of poaching. To combat 

poaching, conservation agencies (“defenders”) need to (1) anticipate where the poachers are 

likely to poach and (2) plan effective patrols. We propose an anti-poaching tool CAPTURE 

(Comprehensive Anti-Poaching tool with Temporal and observation Uncertainty REasoning), 

which helps the defenders achieve both goals. CAPTURE builds a novel hierarchical model for 

poacher-patroller interaction. It considers the patroller’s imperfect detection of signs of 

poaching, the complex temporal dependencies in the poacher's behaviors and the defender’s lack 

of knowledge of the number of poachers. Further, CAPTURE uses a new game-theoretic 

algorithm to compute the optimal patrolling strategies and plan effective patrols. This paper 

investigates the computational challenges that CAPTURE faces. First, we present a detailed 

analysis of parameter separation and target abstraction, two novel approaches used by 

CAPTURE to efficiently learn the parameters in the hierarchical model. Second, we propose two 

heuristics – piece-wise linear approximation and greedy planning – to speed up the computation 

of the optimal patrolling strategies. We discuss in this paper the lessons learned from using 

CAPTURE to analyze real-world poaching data collected over 12 years in Queen Elizabeth 

National Park in Uganda. 

Introduction 
Wildlife poaching presents a significant threat to large-bodied animal species. It is one major 

driver of the population declines of key wildlife species such as tigers, elephants, and rhinos, 

which are crucial to the functioning of natural ecosystems as well as local and national 

economies [1, 2]. Poachers illegally catch wildlife by placing snares or hunting. To combat 

poaching, both government and non-government agencies send well-trained patrollers to wildlife 

conservation areas. In this work, we focus on snare poaching. The patrollers conduct patrols with 

the aim of preventing poachers from poaching animals either by catching the poachers or by 

removing animal traps set by the poachers. Signs of poaching are collected and recorded during 

the patrols, including snares, traps and other signs such as poacher tracks, which can be used 

together with other domain features such as animal density or slope of the terrain to analyze and 

predict the poachers' behavior [3, 4]. It is critical to learn the poachers' behavior, anticipate 

where the poachers would go for poaching, and further use such information to guide future 

patrols and make them more effective.  

Poachers’ behavior is adaptive to patrols as evidenced by multiple studies [5, 6, 7]. Instead of 

falling into a static pattern, the distribution of poaching activities can be affected by ranger 

patrols as the poachers will take the patrol locations into account when making decisions. As a 

result, the rangers should also consider such dynamics when planning the patrols. Such strategic 

interaction between the conservation agencies and the poachers make game theory an appropriate 

framework for the problem. Stackelberg Security Games (SSGs) in computational game theory 

have been successfully applied to various infrastructure security problems in which the defender 
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(e.g., security agencies) attempts to protect critical infrastructure such as airports and ports from 

attacks by adversaries such as terrorists [8, 9, 10]. Inspired by the success, previous work have 

applied SSGs for wildlife protection and leveraged existing behavioral models of the adversary 

in security games such as Quantal Response (QR) [11, 12] and Subjective Utility Quantal 

Response (SUQR) [13] to capture the behaviors of the poachers [14, 15, 4].  

However, existing behavioral models in security games have several limitations. First, while 

these models assume all (or most) attack data is known for learning the models' parameters, the 

rangers are unable to track all poaching activities within the conservation area (referred to as 

“park”). Since animals are silent victims of poaching, the dataset contains only the signs of 

poaching collected by the rangers during their patrols. The large area of the park does not allow 

for thorough patrolling of the whole area. This imperfectly observed data can result in learning 

inaccurate behavioral models of poachers which would mislead the rangers into conducting 

ineffective patrols. Second, existing behavioral models such as QR and SUQR assume a known 

number of attackers beforehand. However, in wildlife protection, there are multiple attackers 

(poachers), and it is not possible to attribute an attack (a poaching activity) to any particular 

attacker. Finally, these models were mainly applied for one-shot security games in which the 

temporal effect is not considered. In wildlife protection, the poachers repeatedly poach animals 

in the park. Hence it is important to take past activities into account when modeling the poachers' 

future behaviors. As a result, previous algorithms proposed for computing optimal defender 

strategies based on these behavioral models cannot be directly used to plan effective patrols in 

the anti-poaching domain. 

We propose a new tool CAPTURE (Comprehensive Anti-Poaching tool with Temporal and 

observation Uncertainty REasoning) that can anticipate where the poachers are likely to poach 

and plan effective patrols. CAPTURE introduces a new hierarchical behavioral model that 

addresses the aforementioned limitations. The model consists of two layers: the first layer 

accounts for the poachers' behaviors and the second layer models the rangers' detectability of the 

signs of poaching. In the first layer, we incorporate the dependence of the poachers' behaviors on 

their activities in the past. For animals, we only use animal density as a key domain feature that 

describes the importance of an area. We do not account for individual animal behavior in out 

model. The second layer focuses on detectability, the probability that the rangers can actually 

observe or detect any poaching signs. This layer directly addresses the challenge of rangers' 

imperfect observations. In both layers, we adopt logistic models so that we can capture the 

aggregate behavior without knowing the total number of poachers. Also, CAPTURE uses a 

richer set of domain features compared to previous behavioral models in security games. 

CAPTURE learns the parameters of this hierarchical behavioral model from available data using 

the Expectation Maximization (EM) algorithm and two heuristics, namely parameter separation 

and target abstraction. Once the behavioral model is learned, CAPTURE computes the optimal 

patrolling strategy for the defender. Specifically, CAPTURE uses a new game-theoretic 

algorithm for single or multiple-step patrol planning wherein the poachers' actions are 

recursively explored in multiple time steps. 

This paper investigates the computational challenge that CAPTURE faces when learning the 

behavioral model and computing the optimal patrol strategy. First, we present a detailed analysis 

of parameter separation and target abstraction, two novel approaches used by CAPTURE to 

efficiently learn the parameters in the hierarchical model. We provide theorems and detailed 



3 

 

proofs to show the rationale behind using parameter separation. In parameter separation, we 

divide the set of model parameters into separate subsets and then iteratively learn these subsets 

of parameters separately while fixing the values of the other subsets. This heuristic decomposes 

the learning process into less complex learning components which help in speeding up the 

learning process. We prove that it does not lead to any loss in solution quality. We present the 

algorithm used for target abstraction. Second, we provide a detailed description of two heuristics, 

namely piece-wise linear approximation and greedy planning for speeding up the planning of 

single or multiple-step patrols. In addition, we use CAPTURE to analyze real-world poaching 

data collected over 12 years in Queen Elizabeth National Park (QENP) in Uganda and report 

how different domain features affects poaching activity.  

Related Work 
We discuss three lines of related work, Stackelberg Security Games, behavioral models of 

adversaries, and ecological modeling and wildlife protection. 

Stackelberg Security Games 
In an SSG, a defender allocates her limited security resources to protect a set of targets against an 

attacker who chooses a target to attack after observing the defender’s strategy [8]. The 

defender’s strategy is often a mixed strategy, i.e., a probability distribution over all possible 

assignments of her limited resources to a subset of targets. It can be represented as a marginal 

coverage vector, 〈𝑐1, … , 𝑐𝑁〉 [16], where N is the number of targets and 0 ≤ 𝑐𝑖 ≤ 1, i=1…N is the 

probability that target i is protected by any security resources. The value of 𝑐𝑖 does not change 

over time. The attacker obtains a reward 𝑅𝑖
a if he succeeded in attacking target i (i.e., the attacker 

attacks the target and the defender is not protecting that target) while the defender gets a penalty, 

𝑃𝑖
d. On the other hand, if the target is protected, the attacker receives a penalty 𝑃𝑖

a while the 

defender achieves a reward, 𝑅𝑖
d. The expected utility of the defender is 𝑈𝑖

d = 𝑐𝑖𝑅𝑖
d + (1 − 𝑐𝑖)𝑃𝑖

d, 

and the expected utility of the attacker is 𝑈𝑖
a = 𝑐𝑖𝑃𝑖

a + (1 − 𝑐𝑖)𝑅𝑖
a. 

Behavioral Models of Adversaries 
It is often assumed that players are perfectly rational and expected utility maximizer in game 

theory. However, human players can be boundedly rational and different behavioral models have 

been proposed to capture the attacker's behavior in security games. One popular behavioral 

model, the QR model, predicts the probability that the attacker will choose to attack each target 

with the intuition that the higher expected utility of a target, the more likely that the attacker will 

choose that target [11, 12]. SUQR [13] is a more recent model that was shown to outperform QR 

in the context of both infrastructure security and wildlife protection. SUQR builds upon QR and 

considers the subjective utility function, �̂�𝑖
a = 𝑤1𝑐𝑖 + 𝑤2𝑅𝑖

a + 𝑤3𝑃𝑖
a. �̂�𝑖

a is a linear combination 

of all features that can influence the attacker's behaviors. (𝑤1, 𝑤2, 𝑤3) are the key model 

parameters which measure the importance of the defender's coverage, the attacker's reward and 

penalty with respect to the attacker's action. These parameters can potentially be learned from 

data. Note that �̂�𝑖
a is not a generalization of 𝑈𝑖

a, i.e., there does not exist a set of parameters 

(𝑤1, 𝑤2, 𝑤3) such that �̂�𝑖
a = 𝑈𝑖

a. �̂�𝑖
a simply depicts an alternative way that the attacker evaluates 

a target, and a higher value of �̂�𝑖
a means target 𝑖 is more attractive to the attacker. In SUQR 

model, the attacker does not always attack the most attractive target, but he is more likely to 

attack highly attractive targets. For an attacker whose subjective utility of the targets is described 
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by �̂�a, the probability he will attack target i is described by the softmax function (or normalized 

exponential function): 

𝑞𝑖 =
𝑒�̂�𝑖

a

∑ 𝑒
�̂�𝑗
a

𝑗

 (1) 

This model has the limitation that it only describes the probability of attack when there is only 

one attacker. But it serves as a basis of the new attacker behavior model described later in the 

article. 

Other lines of research on building models of criminal behavior in urban crime [17, 18, 19, 20] 

or opponent behavior in poker [21, 22] focus on these specific domains, and the proposed models 

rely on the complete past crime and game data as well as intrinsic domain characteristics. In 

contrast, CAPTURE focuses on modeling the poachers' behavior in wildlife protection which 

exhibits unique challenges that existing behavioral models cannot handle. 

There exist social science literature that discusses poacher and ranger behavior [23, 24, 25, 26, 

27, 28, 29]. However, these works do not provide a quantitative model that directly takes into 

account the probability of the poachers being caught by patrollers as well as the domain features. 

Ecological Modeling and Wildlife Protection 
In the wildlife protection domain, the poachers aim at catching animals by setting trapping tools 

such as snares and the rangers try to combat the poachers by confiscating these tools. Previous 

work in security games has modeled the problem of wildlife protection as an SSG in which the 

rangers play the role of the defender while the poachers are the attacker [4, 14, 15, 30]. The park 

area is divided into a grid where each grid cell corresponds to a target in a security game. The 

rewards and penalties of each cell are determined by domain features such as animal density (i.e., 

the average number of animals in each grid cell) and terrain slope. These works focus on 

computing the optimal patrolling strategy for the defender, given an existing behavioral model 

with fixed parameters or parameters learned from data. However, these models suffer from 

several limitations as mentioned in the introduction.  

Much work in ecological research has focused on estimating animal density [31]. Some studies 

have attempted to model the spatial distribution of the economic costs and benefits of illegal 

hunting activities such as in the Serengeti national park [32]. Another work has focused on 

modeling the threats to wildlife and how these change over time in QENP [3]. However, these 

models do not predict poaching in the future or provide any solution for generating the rangers' 

patrolling strategies with a behavioral model of the poachers. In [33], the authors proposes an 

algorithm for planning patrol route of drones and patrollers to maximize the expected number of 

animals protected, but the strategic behavior of the poachers are not considered in the model. A 

recent piece of work has focused on modeling rhino poaching given incomplete data [34], but it 

mainly focuses on an expert-driven causal model. There has been some work in ecology research 

that introduces game theoretic framework [35, 36] for problems such as multi-national 

conservation cooperation, management of common-pool resources, games against nature, and 

dehorning rhinos. However, these models do not focus on the strategic interaction between 

patrollers and poachers in the problem of wildlife protection. 
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Predicting Poacher Behavior 
Many conservation agencies for wildlife protection have collected large amounts of data related 

to interactions between patrollers and poachers [3]. They are in great need of tools that can 

exploit the data. CAPTURE is a tool that can analyze real-world data in the wildlife protection 

domain, learn the behavioral model of the patroller-ranger interaction, and predict unobserved 

poaching activities, and anticipate poaching activities in the future. 

One key challenge in the wildlife protection domain is that the rangers' capability of making 

observations over a large geographical area is limited. The rangers usually follow certain paths to 

patrol; they may not be able to make observations in areas that are not around their paths. In 

addition, in areas such as dense woodland, it is difficult for the rangers to detect snares because 

of a thick understory of vegetation. As a result, there may still be poaching activities happening 

in areas where rangers did not find any poaching sign. There are other challenges in this domain, 

such as movement patterns of animals, and in this paper, we use an animal density distribution 

instead of considering the animals’ movement patterns, and focus on the problem of lack of 

observational capacity. 

CAPTURE uses a new hierarchical model to predict the poachers' behavior in the wildlife 

domain. Figure 1 illustrates the model. The model consists of two layers. The first layer models 

the probability the poachers attack each cell. The second layer addresses the challenge of rangers' 

imperfect observation and models the conditional probability of the rangers detecting any 

poaching sign at a cell given that the poachers attack that cell. A ranger can observe an attack on 

a cell only when the poacher attacks the cell and the ranger detects the attack. So these two 

layers are then integrated to predict the rangers' final observations. 

In our model, we incorporate the effect of the rangers' patrols on both layers, i.e., how the 

poachers adapt their behaviors according to rangers' patrols and how the rangers' patrols 

determine the rangers' detectability of signs of poaching. Furthermore, we consider the poachers' 

past activity in reasoning about future actions of the poachers. We also include different domain 

features such as animal density, distance to rivers or roads or villages, as well as area habitat and 

slope. These features may have a direct impact on the attacking probabilities [38] or detection 

probabilities [38] or both. In this work, we consider the total animal density for multiple species 

of non-commercial animals. 

We denote by T the number of time steps, N the number of cells, and K the number of domain 

features. A time step often indicates a period of time, e.g., a month or a year. At each time step t, 

each cell i is associated with a set of feature values 𝐱𝑡,𝑖 = {𝑥𝑡,𝑖
𝑘 } where k = 1 … K and 𝑥𝑡,𝑖

𝑘  is the 

value of the kth feature at (t, i). The model is described in this general form so that it can 

incorporate features varying over time. In the analysis of QENP, all the domain features are 

treated as time-invariant. In addition, 𝑐𝑡,𝑖 is defined as the coverage probability of the rangers at 

(t, i). For each cell i and time step t, 𝑜𝑡,𝑖 represents the ranger’s observation which takes an 

integer value in {-1, 0, 1}. Specifically, 𝑜𝑡,𝑖 = 1 indicates that the rangers observe a poaching 

sign at (t, i), 𝑜𝑡,𝑖 = 0 means that the rangers have no observation and 𝑜𝑡,𝑖 = −1 when the rangers 

did not patrol at (t, i). Furthermore, we define 𝑎𝑡,𝑖 ∈{0,1} as the actual action of poachers at (t, i) 
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which is hidden from the rangers. Specifically, 𝑎𝑡,𝑖 = 1 indicates the poachers attack at (t, i); 

otherwise, 𝑎𝑡,𝑖 = 0 means the poachers did not attack at (t, i). Since there may still exist 

poaching activity at locations where the rangers found no sign of poaching, we make the 

reasonable assumption that if the rangers found any poaching sign in a cell, the poachers did 

attack that cell, i.e., 𝑝(𝑎𝑡,𝑖 = 1|𝑜𝑡,𝑖 = 1) = 1, 𝑝(𝑜𝑡,𝑖 = 1|𝑎𝑡,𝑖 = 0) = 0. 

Attacking Probabilities 
The first layer focuses on poachers’ attacking probability. It takes into account the temporal 

effect on the poachers' behaviors. Temporal effect refers to the correlations between poachers 

behavior across time steps. We assume that the poachers' actions 𝑎𝑡,𝑖 depends on the poachers' 

activities in the previous time step 𝑎𝑡−1,𝑖 and the rangers' patrolling strategies 𝑐𝑡,𝑖 as well as the 

domain features 𝐱𝑡,𝑖. Intuitively, poachers may tend to come back to the areas they have attacked 

before, and previous results from human subject experiments [30] also provide evidence of this 

claim. Poachers may lean towards attacking cells with high animal density and low coverage of 

rangers. Other domains features can also affect their decision making. 𝐱𝑡,𝑖 includes all relevant 

features that are available. We model the probability that poachers attack (t, i) as follows: 

𝑝(𝑎𝑡,𝑖 = 1|𝑎𝑡−1,𝑖, 𝑐𝑡,𝑖, 𝐱𝑡,𝑖) =
𝑒
𝛌T[𝑎𝑡−1,𝑖,𝑐𝑡,𝑖,𝐱𝑡,𝑖,1]

1+𝑒
𝛌T[𝑎𝑡−1,𝑖,𝑐𝑡,𝑖,𝐱𝑡,𝑖,1]

 (2) 

𝛌 is a K + 3 by 1 parameter vector which measures the importance of all features towards the 

poachers' decisions. 𝜆𝐾+3 is the free parameter, and 𝛌T is the transpose vector of 𝛌. So 

𝛌T[𝑎𝑡−1,𝑖, 𝑐𝑡,𝑖, 𝐱𝑡,𝑖, 1] = 𝜆1𝑎𝑡−1,𝑖 + 𝜆2𝑐𝑡,𝑖 + 𝜆3𝑥𝑡,𝑖
1 +⋯+ 𝜆𝐾+2𝑥𝑡,𝑖

𝐾 + 𝜆𝐾+3. The value of 

𝛌T[𝑎𝑡−1,𝑖, 𝑐𝑡,𝑖, 𝐱𝑡,𝑖, 1] can be seen as a generalization of �̂�𝑖
a in SUQR model. It essentially 

evaluates how promising a cell is based on a weighted sum of a much larger number of features 

compared to SUQR, as is appropriate in our wildlife domain. Our model does not have any 

assumption on the correlation between the features. We adopt the logistic model instead of using 

the softmax function shown in Equation (1) so that we don’t need to assume a known number of 

attacks. 

 

Detection Probabilities 
The second layer focuses on patroller’s detection probability. We expect that the rangers' 

observations 𝑜𝑡,𝑖 depend on the actual actions of the poachers 𝑎𝑡,𝑖, the rangers' coverage 

probabilities 𝑐𝑡,𝑖 and domain features {𝑥𝑡,𝑖
𝑘 }. Formally, we model the probability that the rangers 

can detect any signs of poaching as follows: 

𝑝(𝑜𝑡,𝑖 = 1|𝑎𝑡,𝑖 = 1, 𝑐𝑡,𝑖, 𝐱𝑡,𝑖) = 𝑐𝑡,𝑖 ×
𝑒
𝐰T[𝐱𝑡,𝑖,1]

1+𝑒
𝐰T[𝐱𝑡,𝑖,1]

 (3) 

The logistic function on the right-hand side of Equation (3) indicates the probability that the 

patroller can detect any poaching sign when she fully covers (t, i), i.e., always patrols cell i in 

time step t. Additionally, 𝐰 is a K + 1 by 1 vector of parameters which indicates the significance 

of domain features in affecting the rangers' probability of detecting signs of poaching. 𝐰T is 
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transpose of 𝐰. So 𝐰T[𝐱𝑡,𝑖, 1] = 𝑤1𝑥𝑡,𝑖
1 +⋯+𝑤𝐾𝑥𝑡,𝑖

𝐾 + 𝑤𝐾+1. Here, we may use domain 

knowledge to exclude some domain features by setting 𝑤𝑘=0 since the feature sets that influence 

the attacking probability and detection probability may be different. For example, the distances 

to rivers or villages may have an impact on the poachers' behaviors but not the rangers' 

detectability. We treat 𝑐𝑡,𝑖 separately to capture the fact that when 𝑐𝑡,𝑖 = 0, the detection 

probability is zero. 

Learning Parameters Efficiently 
Since the variables 𝑎𝑡,𝑖 are unobservable, we learn the values of the parameters 𝛌 and 𝐰 using 

standard Expectation Maximization (EM) algorithm [39] based on 𝑜𝑡,𝑖. In general, EM attempts 

to maximize the log-likelihood that the rangers can have observations o given domain features x 

and the rangers’ coverage probabilities c. The resulting optimization problem is intractable since 

there are 2𝑁𝑇 different combinations for the value of variables 𝑎𝑡,𝑖. To overcome this 

computational challenge, EM decomposes the log-likelihood and adapt the Baum-Welch 

algorithm (for Hidden Markov Model) to solve the problem. Specifically, EM algorithm runs 

multiple rounds, each with an initial estimate of 𝛌 and 𝐰. Given the initial estimate, the EM 

algorithm executes the E step and M step repeatedly to update the value of 𝛌 and 𝐰 until the 

value of parameters converges to a local optimal point (𝛌∗, 𝐰∗).  

E step: compute 𝑝(𝐚|𝐨, 𝐜, (𝛌,𝐰)old) 

M step: max
𝛌,𝐰

∑ 𝑝(𝐚|𝐨, 𝐜, (𝛌,𝐰)old) log 𝑝(𝐨, 𝐚|𝐜, (𝛌,𝐰)old)𝐚   

After sufficiently many rounds, each with a random initial estimate, the EM algorithm picks the 

best-converged parameter that can lead to the highest log-likelihood log 𝑝(𝐨|𝐜, 𝛌,𝐰). 

However, one main computational challenge faced by CAPTURE is that EM algorithm is time-

consuming due to the large number of cells. CAPTURE uses two heuristics to speed up the 

algorithm: parameter separation for accelerating the convergence of EM and cell abstraction for 

reducing the number of cells.  

Parameter Separation 

In parameter separation, we divide the set of model parameters into two separate subsets (𝛌 and 

𝐰) and then iteratively learn 𝛌 and 𝐰 separately. This heuristic decomposes the learning process 

into less complex learning components which help in speeding up the learning process. In this 

paper, we provide a detailed analysis of the theoretical properties of parameter separation.  

Formally, instead of following the E step and M step in the EM algorithm directly, we 

decompose the E step and M step each into two phases and update the value of parameters 𝛌 and 

𝐰 through the following four steps: 

E1 step: compute total probability 𝑝(𝑎𝑡,𝑖|𝐨, 𝐜, (𝛌,𝐰)
old) 

M1 step: update 𝐰 by solving max
𝐰

𝐹d(𝐰) where  
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𝐹d(𝐰) = ∑ ∑ 𝑝(𝑎𝑡,𝑖|𝐨, 𝐜, (𝛌,𝐰)
old) log 𝑝(𝑜𝑡,𝑖 |𝑎𝑡,𝑖, 𝑐𝑡,𝑖, 𝐰)𝑎𝑡,𝑖𝑡,𝑖  (4) 

E2 step: compute 2-step probability 𝑝(𝑎𝑡,𝑖, 𝑎𝑡−1,𝑖|𝐨, 𝐜, (𝛌,𝐰)
old) 

M2 step: update 𝛌 by solving max
𝛌

𝐹a(𝛌) where  

𝐹a(𝛌) = ∑ ∑ ∑ 𝑝(𝑎𝑡,𝑖, 𝑎𝑡−1,𝑖|𝐨, 𝐜, (𝛌,𝐰)
old) log 𝑝(𝑎𝑡,𝑖 |𝑎𝑡−1,𝑖, 𝑐𝑡,𝑖, 𝛌)𝑎𝑡−1,𝑖𝑎𝑡,𝑖𝑡,𝑖  (5) 

We can validate that the objective in the M-step can be split into two additive parts, 𝐹d(𝐰) and 

𝐹a(𝛌), i.e., ∑ 𝑝(𝐚|𝐨, 𝐜, (𝛌,𝐰)old) log 𝑝(𝐨, 𝐚|𝐜, (𝛌,𝐰)old)𝐚 = 𝐹d(𝐰) + 𝐹a(𝛌). The first 

component is the detection component, which is obtained as a result of decomposing w.r.t the 

detection probabilities of the rangers at every (t,i). The second one is the attack component, 

which results from decomposing according to the attacking probabilities at every (t, i). 

Importantly, the first component is only a function of 𝐰 and the second component is only a 

function of 𝛌. Therefore, instead of maximizing 𝐹d(𝐰) + 𝐹a(𝛌) we can decompose each 

iteration of EM into two E steps and two M steps that enable maximizing 𝐹𝑑(𝐰) and 𝐹𝑎(𝛌) 
separately as shown by E1, M1, E2 and M2. 

Following this split, for our problem, the E step reduces to computing the total probability and 

the 2-step probability, which can be computed by adapting the Baum-Welch algorithm [41] to 

account for missing observations. 

Note that the detection and attack components are simpler functions compared to the original 

objective since these components only depend on the detection and attack parameters 

respectively. Furthermore, at each EM iteration, the parameters get closer to the optimal solution 

due to the decomposition since the attack parameter is now updated based on the new detection 

parameters from the E1 and M1 steps instead of the old detection parameters from the previous 

iteration. Thus, by decomposing each iteration of EM according to attack and detection 

parameters, EM will converge more quickly without loss of solution quality. The convergence 

and solution quality of the separation can be analyzed similarly to the analysis of multi-cycle 

expected conditional maximization [40].  

Furthermore, the attack function 𝐹a(𝛌) concave (Proposition 1), allowing us to easily obtain the 

globally optimal solution of the attacking parameters 𝛌 at each iteration of EM. 

Proposition 1. 𝐹a(𝛌) is concave in the attack parameters 𝛌. 

Proof: According to Equation 5, 𝐹a(𝛌) is the expectation of the logarithm of the attacking 

probability, log 𝑝(𝑎𝑡,𝑖 |𝑎𝑡−1,𝑖, 𝑐𝑡,𝑖, 𝛌), at (t,i). This logarithm function has the following 

formulations: 

log 𝑝(𝑎𝑡,𝑖 = 1|𝑎𝑡−1,𝑖, 𝑐𝑡,𝑖, 𝛌) = 𝛌T[𝑎𝑡−1,𝑖, 𝑐𝑡,𝑖, 𝐱𝑡,𝑖, 1] − log⁡(1 + 𝑒𝛌
T[𝑎𝑡−1,𝑖,𝑐𝑡,𝑖,𝐱𝑡,𝑖,1]) (6) 

log 𝑝(𝑎𝑡,𝑖 = 0|𝑎𝑡−1,𝑖, 𝑐𝑡,𝑖, 𝛌) = −log⁡(1 + 𝑒𝛌
T[𝑎𝑡−1,𝑖,𝑐𝑡,𝑖,𝐱𝑡,𝑖,1]) (7) 

which are concave functions in 𝛌 (its Hessian matrix is semi-negative definite). Since a linear 
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combination (with positive weights) of concave functions is also a concave function, the attack 

function, 𝐹𝑎(𝛌), is concave in the attack parameters 𝛌.      

 

Target Abstraction 

Target abstraction works by leveraging the continuous spatial structure of the wildlife domain, 

starting the learning process with a coarse discretization of habitat area and gradually using finer 

discretization instead of directly starting with the most detailed representation, leading to 

improved runtime overall. Abstraction has been used in network security and poker games to 

reduce the complexity of solving these games, often through the exploitation of intrinsic 

properties of the games [41, 42]. CAPTURE exploits the spatial connectivity between grid cells 

of the conservation area, and divides the area into a smaller number of grid cells by merging each 

cell in the original grid with its neighbors into a single bigger cell. The corresponding domain 

features are aggregated accordingly. We take the average feature value of 2 by 2 cells in the 

original grid as the feature value of the bigger cell. Intuitively, neighboring cells tend to have 

similar domain features. Therefore, we expect that the parameters learned in both the original 

and abstracted grid would expose similar characteristics. Hence, the model parameters estimated 

based on the abstracted grid could be effectively used to derive the parameter values in the 

original one.  

Algorithm 1 shows how we use the target abstraction to learn the parameters efficiently. We first 

compute the aggregated observations, patrol coverage and domain features using function 

TargetAbstraction (Step 1). We then estimate the values of 𝛌 and 𝐰 in two stages. At the first 

stage, we estimate the parameter values in the abstracted grid (Step 3). We run a large number of 

rounds (R), each with a randomly selected starting point (initial estimates 𝛌𝟎 and 𝐰𝟎) and a large 

number of EM iterations (𝑀1). Each round will converge to a locally optimal solution of EM in 

the abstracted grid, and we only keep the best K resulting parameters sets in 𝐵𝑒𝑠𝑡𝐾. Then at the 

second stage, we use the learned parameters in 𝐵𝑒𝑠𝑡𝐾 to estimate the model parameters in the 

original grid as the following: (i) we run K rounds with starting points defined by the parameter 

sets in BestK, i.e., we use the top locally optimal solutions in the abstracted grid as initial guesses 

of parameters in the original grid; and (ii) instead of running 𝑀1 EM iterations again, we only 

proceed with 𝑀2 ≪ 𝑀1 iterations in EM since we expect that these selected parameter values are 

already well learned in the abstracted grid and thus could be considered as warm restarts in the 

original grid. To summarize, we leverage the values of parameters learned in the abstracted grid 

in two ways: (i) reduce the number of restarting points (i.e., initial values of parameters) for 

reaching different locally optimal solutions in EM; and (ii) reduce the number of iterations in 

each round of EM.  

Planning Effective Patrols 
Analyzing and predicting poachers’ behavior is not the only goal of CAPTURE. CAPTURE 

aims to assist the defender (rangers) plan effective patrols in the future, by computing the 

optimal patrolling strategies for the rangers in next time steps while taking into account the 

learned hierarchical behavioral model. We consider two circumstances: 1) single step patrol 

planning in which the rangers only focus on generating the patrolling strategy at the next time 

step and 2) multiple step patrol planning for generating strategies for the next Δ𝑇⁡ > ⁡1 time 

steps, given the rangers' patrol and observation history and domain features. The key challenge 
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in designing strategies for the rangers given the CAPTURE model is that we need to take into 

account the rangers' detection uncertainty and the temporal dependency of the poachers' 

activities. This challenge leads to a complicated non-convex optimization problem to compute 

the optimal patrolling strategy for the rangers. 

We provide novel game-theoretic algorithms to solve the problem. Similar to standard SSGs, we 

assume the rangers receive a penalty 𝑃𝑡,𝑖
d  if the poachers successfully attack at (t, i) and if a 

reward 𝑅𝑡,𝑖
d  if the rangers successfully confiscate poaching tools at (t, i). Therefore, the rangers' 

expected utility if the poachers attack at (t, i) is  

𝑈𝑡,𝑖
d = 𝑝(𝑜𝑡,𝑖 = 1|𝑎𝑡,𝑖 = 1, 𝑐𝑡,𝑖) × (𝑅𝑡,𝑖

d − 𝑃𝑡,𝑖
d ) + 𝑃𝑡,𝑖

d   (8) 

where 𝑝(𝑜𝑡,𝑖 = 1|𝑎𝑡,𝑖 = 1, 𝑐𝑡,𝑖) is the rangers' detection probability at (t, i) and can be computed 

based on Equation 3.  

Efficient Single Step Patrol Planning 
Given the rangers' observation history 𝐨 for 𝑡 = 1…𝑇 and the model parameters (𝛌,𝐰), the 

problem of computing the optimal strategies at the next time step T + 1 can be formulated as the 

following mathematical program, denoted as MP1. 

max
𝑐𝑇+1,𝑖

∑ 𝑝(𝑎𝑇+1,𝑖 = 1|𝐨, 𝑐𝑇+1,𝑖) × 𝑈𝑇+1,𝑖
d

𝑖  (9) 

s.t. 0 ≤ 𝑐𝑇+1,𝑖 ≤ 1, i=1…N (10) 

∑ 𝑐𝑇+1,𝑖𝑖 ≤ 𝐵 (11) 

where B is the maximum number of ranger resources and 𝑝(𝑎𝑇+1,𝑖 = 1|𝐨, 𝑐𝑇+1,𝑖) is the 

probability that the poachers attack at (T+1,i) given the rangers' observation history 𝒐 and the 

rangers' coverage probability 𝑐𝑇+1,𝑖. According to Equation 2, the probability 

𝑝(𝑎𝑇+1,𝑖 = 1|𝐨, 𝑐𝑇+1,𝑖) essentially depends on the poacher’s action at time step T, 𝑎𝑇,𝑖, which is 

hidden to the rangers. Therefore, we need to examine all possible actions of the poachers in the 

time step T in order to predict the poachers' attacking probability at (T+1,i). Hence, the attacking 

probability can be computed as 

𝑝(𝑎𝑇+1,𝑖 = 1|𝐨, 𝑐𝑇+1,𝑖) =∑ 𝑝(𝑎𝑇+1,𝑖 = 1|𝑎𝑇,𝑖, 𝐨, 𝑐𝑇+1,𝑖)
𝑎𝑇,𝑖

 

= ∑ 𝑝(𝑎𝑇+1,𝑖 = 1|𝑎𝑇,𝑖, 𝑐𝑇+1,𝑖) × 𝑝(𝑎𝑇,𝑖|𝐨)𝑎𝑇,𝑖
 (12) 

where 𝑝(𝑎𝑇+1,𝑖 = 1|𝑎𝑇,𝑖, 𝑐𝑇+1,𝑖) is the attacking probability at (T+1,i) given the poachers' action 

𝑎𝑇,𝑖 at (T,i) and the rangers' coverage probability 𝑐𝑇+1,𝑖. In addition, 𝑝(𝑎𝑇,𝑖|𝐨) is the total 

probability at (T,i) which can be recursively computed based on the Baum-Welch approach. MP1 

represent a non-convex optimization problem in the rangers' coverage probabilities 𝑐𝑇+1,𝑖, and 

can be solved using non-convex solvers (e.g., fmincon in MATLAB).  
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However, using non-convex solvers would be slow and is not guaranteed to converge to the 

global optimal point or a local optimal point with a sufficient bound on the solution quality. To 

efficiently find a feasible solution to MP1 with a quality guarantee, we use the piecewise linear 

approximation method. This method has been widely used for solving standard security games 

given a behavioral model of the adversary [43]. We leverage this idea for solving MP1. Each 

additive term of the rangers' utility in the objective function of MP1 (Equation (9)) is a separate 

sub-utility function of the rangers' coverage 𝑐𝑇+1,𝑖, denoted by 𝑓𝑖(𝑐𝑇+1,𝑖). 

𝑓𝑖(𝑐𝑇+1,𝑖) = 𝑝(𝑎𝑇+1,𝑖 = 1|𝐨, 𝑐𝑇+1,𝑖) × 𝑈𝑇+1,𝑖
𝑑  (13) 

We can approximate 𝑓𝑖(𝑐𝑇+1,𝑖) for each i as a piece-wise linear function. The feasible region for 

the rangers' coverage at each cell, [0,1], can be divided into M equal segments: [0, 
1

𝑀
], 

[
1

𝑀
,
2

𝑀
],…,[

𝑀−1

𝑀
, 1]. The rangers' coverage 𝑐𝑇+1,𝑖 at cell i is then decomposed into M smaller 

pieces:  

𝑐𝑇+1,𝑖 = ∑ 𝑐𝑇+1,𝑖
𝑚𝑀

𝑚=1  (14) 

where each piece 𝑐𝑇+1,𝑖
𝑚  indicates the portion of 𝑐𝑇+1,𝑖 belonging to the mth segment. And 

𝑐𝑇+1,𝑖
𝑚 > 0 only when 𝑐𝑇+1,𝑖

𝑚−1 =
1

𝑀
. This decomposition can be seen as filling a bottle of water with 

total amount 𝑐𝑇+1,𝑖 into M cups, each with capacity 
1

𝑀
, and only filling the next cup when all 

previous cups are full. For example, suppose that 𝑐𝑇+1,𝑖 = 0.3 and the number of segments 𝑀 =

5 and 
1

𝑀
= 0.2. Then we obtain the values for all pieces as 𝑐𝑇+1,𝑖

1 =0.2, 𝑐𝑇+1,𝑖
2 =0.1, 𝑐𝑇+1,𝑖

𝑚 =0 for 

𝑚 = 3,4,5. Given that the rangers' coverage at each cell i is decomposed into smaller pieces, the 

sub-utility function 𝑓𝑖 now can be approximated using M segments connecting pairs of 

consecutive points (
𝑚

𝑀
, 𝑓𝑖 (

𝑚

𝑀
)) and (

𝑚+1

𝑀
, 𝑓𝑖 (

𝑚+1

𝑀
)) where 𝑚 = 0, 1…𝑀. In other words, 𝑓𝑖 can 

be piecewise-linearly represented as: 

𝑓𝑖(𝑐𝑇+1,𝑖) ≈ ∑ 𝛼𝑖
𝑚𝑐𝑇+1,𝑖

𝑚𝑀
𝑚=1  (15) 

where 𝛼𝑖
𝑚 = 𝑀 × (𝑓𝑖 (

𝑚

𝑀
) − 𝑓𝑖 (

𝑚−1

𝑀
)) is the slope of the mth aforementioned segment. Given the 

piecewise linear approximation for each sub-utility function, we now can reformulate MP1 as a 

Mixed Integer Linear Program which maximizes the rangers' utility ∑ 𝑓𝑖(𝑐𝑇+1,𝑖)𝑖  given resource 

constraints and piecewise constraints similar to [43]. We provide the following proposition 

which shows a bound guarantee. 

Proposition 2. The piecewise linear approximation method provides an O(
1

𝑀
)-optimal solution 

for MP1, where M is the number of piecewise segments.  

This guarantee can be proved in a similar way as shown in [43].  

 

Efficient Multi-step Patrol Planning 
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Planning one-step patrolling strategy provides an immediate but short-term benefit. Instead, 

multi-step patrol planning generates strategies across multiple time steps with a long-term 

benefit. In the CAPTURE model, the poachers' behavior at time step t depends not only on the 

current patrolling strategy of the rangers at t but also on the poachers' actions in the previous 

time step (t-1). The poachers' actions at (t-1) are in turn determined according to the rangers' 

patrols at (t-1) and the poachers' actions at time step (t-2), and so on. In other words, the 

poachers' behavior is indirectly influenced by the rangers' past patrolling strategies. As a result, 

the choice of rangers' patrolling strategies in the current time step will impact the optimal choice 

of future patrolling strategies (via the poachers' behaviors). This dependency must be considered 

in designing multi-step patrol strategies for the rangers, there are two key challenges in 

incorporating the CAPTURE model that we need to take into account: 1) the time dependence of 

the poachers' behavior; and 2) the actual actions of the poachers are hidden (unobserved) from 

the rangers. These two challenges make the problem of planning multi-step patrols difficult as 

we show below. 

Furthermore, from the perspective of the rangers, this patrol-action relationship can only be 

determined if the poachers' past actions are known. However, the poachers' actual actions are 

unobserved by the rangers as explained in the CAPTURE model, leading to a further 

complications in the planning problem for the rangers. In this work, in order to specify the 

impact of the rangers' past patrols on the poachers' current actions, our idea is to marginalize 

over all possible past actions of the poachers.  

Given that the rangers have an observation history 𝐨 for 𝑡′ = 1…𝑇 and 𝑖 = 1…𝑁, the rangers 

aim at generating patrolling strategies 𝑐𝑡,𝑖 in next Δ𝑇 time steps where t = T + 1, …, T + Δ𝑇. 

Then the problem of computing the optimal patrolling strategies for next Δ𝑇 time step T + 1, …, 

T + Δ𝑇 can be formulated as the following mathematical program, denoted as MP2. 

max
𝑐𝑡,𝑖

∑ 𝑝(𝑎𝑡,𝑖 = 1|𝐨, 𝑐𝑇+1…𝑡,𝑖) × 𝑈𝑡,𝑖
𝑑

𝑡,𝑖  (18) 

s.t. 0 ≤ 𝑐𝑡,𝑖 ≤ 1, 𝑡 = 𝑇 + 1⁡… ⁡𝑇 + 𝛥𝑇, i=1…N (19) 

∑ 𝑐𝑡,𝑖𝑖 ≤ 𝐵, 𝑡 = 𝑇 + 1,… , 𝑇 + Δ𝑇 (20) 

where 𝑝(𝑎𝑡,𝑖 = 1|𝐨, 𝑐𝑇+1…𝑡,𝑖) is the attacking probability at (t, i) given the rangers' coverages at 

(t', i) where t' = T + 1,…, t and observation history 𝐨 = {𝑜𝑡′,𝑖} for 𝑡′ = 1…𝑇. Because of the two 

aforementioned challenges, we need to examine all possible actions of the poachers in previous 

time steps in order to compute the attacking probability at (t, i), 𝑝(𝑎𝑡,𝑖 = 1|𝐨, 𝑐𝑇+1…𝑡,𝑖). Our idea 

is to recursively compute this attacking probability via the attacking probabilities at previous 

time steps as follows: 

𝑝(𝑎𝑡,𝑖 = 1|𝐨, 𝑐𝑇+1…𝑡,𝑖) = ∑ 𝑝(𝑎𝑡,𝑖|𝑎𝑡−1,𝑖, 𝑐𝑡,𝑖) × 𝑝(𝑎𝑡−1,𝑖 = 1|𝐨, 𝑐𝑇+1…𝑡−1,𝑖)𝑎𝑡−1,𝑖
⁡ (21) 

where the initial step is to compute the total probability 𝑝(𝑎𝑇,𝑖|o) by using the Baum-Welch 

approach. Here, the objective in MP2 can be no longer divided into separate sub-utility functions 

of a single coverage probability at a particular (t, i) because of the time dependency of the 

poachers' behaviors. Thus, we cannot apply piecewise linear approximation as in the single step 
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patrol planning for solving MP2 quickly. In this work, we use non-convex solvers (i.e., fmincon 

in MATLAB) to solve MP2. 

In [15], the dependence of the attacker's actions on the defender's patrolling strategies in the past 

is also considered; they assume that the attacker's responses follow the SUQR model while the 

attacker perceives the defender's current strategy as a weighted linear function of the defender's 

strategies in the past. They also assume that these weights are known, thereby making the 

computational problem easy. In contrast, we make the more realistic assumption that the 

poachers are influenced by their own past observations and our learning algorithm learns the 

weights corresponding to such influence from the data. Unfortunately, this makes the problem of 

planning multistep patrols more difficult and computationally challenging as shown before. 

In this article, we provide a greedy algorithm (Algorithm 2) to solve MP2. The algorithm loops 

over all time steps, but in each time step, the algorithm computes the rangers' optimal strategies 

for 𝛿𝑇 ≪ Δ𝑇 time steps given the rangers' optimal strategies at previous time steps are already 

greedily computed. This greedy process will be completed when all Δ𝑇 strategies are computed. 

Intuitively, when 𝛿𝑇 is larger, the greedy solution would get closer to the actual optimal solution 

for multi-step patrol planning. 

Lessons Learned from Applying CAPTURE to QENP 
In this work, we focus on QENP [3, 14], where in collaboration with the Wildlife Conservation 

Society (WCS) and Uganda Wildlife Authority (UWA), we have obtained 12 years of ranger-

collected data that is managed in a database – SMART (Spatial Management and Reporting 

Tool) [44]. Some of the data are imported from MIST (Management Information System) [45] 

platform. The data are collected from patrols that started with different outposts, but we do not 

consider the impact on data quality of different outposts in this work.  

We apply CAPTURE to the collected data, and use it to predict the poachers' actions in the 

future based on their activities in the past. CAPTURE employs seven features for QENP 

specifically: animal density, distances to rivers or roads or villages, net primary productivity 

(NPP), habitat and slope. As mentioned earlier, the detectability is affected by domain features 

such as habitat. We apply a five-year time window with a one-year shift to split the poaching 

data into different pairs of training and test sets. For example, we use the data in 2005-2008 as 

training data, and predict where the poachers would go for poaching and where would the 

patrollers observe any poaching signs in 2009. 

Evaluations in Nguyen et. al. [46] show that CAPTURE is superior to existing models in 

predicting the poachers' behaviors and patrollers’ observations. CAPTURE leads to 26.16% 

improvement in AUC – area under the ROC (receiver operating characteristic) curve, which is a 

standard and common statistic in machine learning for model evaluation. Given the poachers’ 

behavior model predicted by CAPTURE, the planning algorithm leads to patrol strategies with 

higher expected utility for the patroller [46]. These results show the potential benefit that 

CAPTURE can lead to, and further field tests are needed for a comprehensive real-world 

evaluation. 

Here we take a closer look at the parameters learned by CAPTURE, and in particular, the 

weights learned for different features that decide poachers’ attacking probability, i.e., the 𝛌 
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parameters in Equation (3). In this analysis, we focus on recorded human signs with respect to 

non-commercial animals, and due to the seasonal difference, we only report the results for dry 

season I (Jun, July, and August). We consider 6 data sets, with the data in 2009-2014 being the 

test set respectively. 

Figure 2 shows the average value of learned weights (𝛌) on patrol coverage, previous poaching 

activity, and various domain features. We can see from the figure that the average weights for the 

defender’s patrol coverage, animal density, slope and habitat are negative, the average weights 

for poacher’s previous action, distance to road and NPP are positive, and the average weights for 

distance to river and village are close to zero (small positive value). Intuitively, a negative 

weight imply negative correlation between the feature value and the probability of attack. Figure 

3 shows a more fined grained picture of how the weights vary across different data sets. We can 

see that patrol coverage has negative weights across the six datasets, which indicates the 

poachers tend to avoid regions with high patrol coverage. Poachers’ previous action has positive 

weights in all datasets, indicating the poachers tend to go back to areas they have poached 

before. Surprisingly, the weights for animal density are negative across all six datasets, which is 

counterintuitive as the higher animal density often leads to higher benefit for the poacher. One 

possible explanation is that the value of animal density takes into account many different species 

of animals, while maybe only a few species of animals will affect the poachers’ decision making. 

Another possible explanation is that in QENP, the area with very high animal density is often 

associated with high tourism activity. Therefore, the poachers tend to avoid these areas because 

they do not want to be noticed by tourists. So one direction of future work is to consider the 

animal density for different kinds of animals separately, and another direction is to exclude areas 

with high tourism activity. This negative correlation may also be explained as there is a threshold 

above or below which the animal density doesn't matter since there is enough or too little 

animals. Such non-linear relationship cannot be captured by the current model. Although the 

average weights on distance to river and village is small, the fine grained picture shows that 

these two features are not neglectable but have varying weights across the datasets. The weights 

for other features such as distance to road also vary a lot across the six datasets, and the high 

variations make it difficult to draw a general conclusion for these features.  

Conclusion 
Wildlife poaching continues to be a global crisis and would have dire consequences on 

ecosystems and the economy. This paper has introduced CAPTURE, an AI-based anti-poaching 

tool that can assist the conservation agencies in anticipating where the poachers are likely to 

poach and planning effective patrols. CAPTURE uses a novel hierarchical model to predict the 

poachers' behaviors. It provides a significant advance over the state-of-the-art in modeling 

poachers previous work as it addresses the challenge of imperfect observations of the rangers, 

incorporates the temporal effect on the poachers' behaviors and does not require a known number 

of attackers. CAPTURE uses a new planning algorithm to generate optimal patrolling strategies 

for the rangers, taking into account the complex poacher model. In this paper, we have 

investigated the computational challenges that CAPTURE faces. We have analyzed parameter 

separation and target abstraction which are used to efficiently learn the parameters in the 

hierarchical model of CAPTURE. We have provided details of piece-wise linear approximation 

and greedy planning, two heuristics used to speed up the computation of the optimal patrolling 

strategies. We have also discussed the lessons learned from using CAPTURE to analyze real-
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world poaching data collected over 12 years in Queen Elizabeth National Park in Uganda. There 

are several directions for future work. One direction is to plan joint patrols of drones and human 

patrollers. Another direction is to build and learn behavior models of animals in addition to the 

behavior model of the poachers, and plan patrols accordingly. Also, the problem of planning a 

complete patrol route that traverse over multiple grid cells with detailed guidance needs further 

investigation. 
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Figure 1 Hierarchical Model used by CAPTURE. 
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Figure 2 Learned weights averaged over six data sets 

 
Figure 3 Learned weights on patrol coverage and domain features in six data sets 

Algorithm 1: Learn Parameters with Target Abstraction 

Input: Number of targets N, observation history 𝐨, patrol coverage 𝐜, domain features 𝐱 

1. (𝑁′, 𝐨′, 𝐜′, 𝐱′) = TargetAbstraction(𝑁, 𝐨, 𝐜, 𝐱) 
2. 𝐵𝑒𝑠𝑡𝐾 = ∅ 

3. For 𝑟 = 1: 𝑅 

a. (𝛌0, 𝐰0) = RandomParameter() 
b. (𝛌′, 𝐰′) = ParameterEstimation(𝑁′, 𝐨′, 𝐜′, 𝐱′, (𝛌0, 𝐰0),𝑀1) 
c. 𝐵𝑒𝑠𝑡𝐾 = ChooseBest(𝐵𝑒𝑠𝑡𝐾, (𝛌′, 𝐰′), 𝐾) 

4. 𝑂𝑝𝑡 = ∅ 

5. For 𝑘 = 1:𝐾 

a. (𝛌𝑘, 𝐰𝑘) = getBestK(𝑇𝑜𝑝𝐾, 𝑘) 
b. (𝛌∗, 𝐰∗) = ⁡ParameterEstimation(𝑁, 𝐨, 𝐜, 𝐱, (𝛌𝑘, 𝐰𝑘),𝑀2) 
c. 𝑂𝑝𝑡 = ChooseBest(𝑂𝑝𝑡, (𝛌∗, 𝐰∗), 1) 

6. Return (𝛌∗, 𝐰∗) ∈ 𝑂𝑝𝑡 
 

 

Algorithm 2: Greedy Multi-step Patrol Planning 

1. Input: observation history 𝐨, number of time steps Δ𝑇, number of sub-time steps 𝛿𝑇 ≪
Δ𝑇  

2. Set number of greedy rounds: 𝑛𝑅𝑜𝑢𝑛𝑑 =
𝛿𝑇

Δ𝑇
 

3. For n = 1 to 𝑛𝑅𝑜𝑢𝑛𝑑 
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a. Set 𝑡 = 𝑇 + (𝑛 − 1) × 𝛿𝑇 

b. Compute optimal strategies at current 𝛿𝑇 time steps t + 1,…, t + 𝛿𝑇 given that 

previous strategies are known for all time steps T + 1,…, t 

4. Return all strategies computed for all T + 1,…, T + Δ𝑇 

 


