
Using Social Networks to Raise HIV Awareness Among Homeless Youth 
A. Yadav, H. Chan, A.X. Jiang, H. Xu, E. Rice, R. Petering, M. Tambe 

Abstract 

Many homeless shelters conduct interventions to raise awareness about HIV (human 
immunodeficiency virus) among homeless youth. Due to human and financial resource 
shortages, these shelters need to choose intervention attendees strategically, in order to maximize 
awareness through the homeless youth social network. In this work, we propose HEALER 
(hierarchical ensembling based agent which plans for effective reduction in HIV spread), an 
agent that recommends sequential intervention plans for use by homeless shelters. HEALER's 
sequential plans (built using knowledge of homeless youth social networks) select intervention 
participants strategically to maximize influence spread, by solving POMDPs (partially 
observable Markov decision process) on social networks using heuristic ensemble methods. This 
paper explores the motivations behind HEALER’s design, and analyzes HEALER’s performance 
in simulations on real-world networks. First, we provide a theoretical analysis of the DIME 
(dynamic influence maximization under uncertainty) problem, the main computational problem 
that HEALER solves. HEALER relies on heuristic methods for solving the DIME problem due 
to its computational hardness. Second, we explain why heuristics used inside HEALER work 
well on real-world networks. Third, we present results comparing HEALER to baseline 
algorithms augmented by HEALER’s heuristics. HEALER is currently being tested in real-world 
pilot studies with homeless youth in Los Angeles. 

Introduction 
Homelessness has reached a crisis level, with over 565,000 homeless people in the US on any 
given night. Homeless youth (i.e., people below the age of 25) account for almost 34% of the 
total homeless population [1]. These homeless youth face significant difficulties, having to 
struggle for basic amenities such as healthcare, nutritious food, and primary education. 

HIV has an extremely high incidence among homeless youth, as they are more likely to engage 
in high HIV-risk behaviors (e.g., unprotected sexual activity, injection drug use) than other sub-
populations. In fact, previous studies show that homeless youth face a 10 times greater risk of 
HIV infection than stably housed populations [1].  

To help prevent HIV infection among homeless youth, many homeless shelters implement social 
network based peer-leader intervention programs, where a select number of youth, called peer 
leaders, are taught strategies for reducing risk of contracting HIV. These intervention programs 
consist of day-long educational sessions in which these peer-leaders are provided with 
information about HIV prevention measures [2]. These “leaders” are then encouraged to share 
these messages with their peers in their social circles, in order to “lead” all their peers towards 
safer behaviors and practices. 
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These peer-leader-based intervention programs are motivated by the shelters limited financial 
resources, which prevents them from directly assisting on the entire homeless youth population. 
Therefore, they try to maximize the spread of awareness among the homeless youth population 
(via word-of-mouth influence) using the limited resources at their disposal. This leads to the 
well-known question from the field of influence maximization of how to select “influential” 
nodes (i.e., homeless youth) to maximize spread of awareness within a given social network? In 
the context of homeless shelters, this problem is further complicated by two factors. First, the 
social network structure is imperfectly known, which makes identifying “influential” nodes 
challenging [3]. Although some connections (friendships) are known, other connections may be 
uncertain. This is because homeless youth are a hard-to-reach population, and their social 
networks are harder to characterize than networks of stably housed youth [2]. Second, managing 
homeless youth (some of whom have emotional and behavioral problems) during an 
intervention, with the homeless shelter’s limited personnel is not easy. As a result, the shelter 
officials can only manage small groups composed of three or four youths at one time. Therefore, 
the shelter officials prefer a series of small sized intervention camps organized sequentially (i.e., 
one after the other) to maximize the impact of their intervention [4]. In such camps, youth may 
reveal some additional information about the network; which can be used to inform future 
interventions. 

The shelters need a plan to choose the participants (i.e., peer leaders) of their sequentially 
organized interventions. This plan must address four key points: (i) it must efficiently deal with 
uncertainties in the network structure, i.e., uncertainty about existence or absence of some 
friendships in the network;  (ii) it needs to take into account new information uncovered during 
the interventions, which reduces the uncertainty in our understanding of the network; (iii) the 
plan needs to be deviation tolerant, as sometimes homeless youth may choose not to be a peer 
leader, thereby forcing the shelter to modify its plan; (iv) our approach should address the 
challenge of gathering information about social networks of homeless youth, which usually costs 
thousands of dollars and many months of time [4].  

This paper presents three key contributions in addressing the sequential planning needs of 
homeless shelters. First, we model the shelters' sequential planning needs by introducing the 
dynamic influence maximization under uncertainty (or DIME) problem. The sequential selection 
of intervention participants under network uncertainty in DIME sets it apart from any other 
previous work on influence maximization, which mostly focuses on single shot decision 
problems (i.e., a set of nodes are selected just once, instead of selecting sets of nodes repeatedly) 
[5, 6, 7, 8]. We analyze several novel theoretical aspects of the DIME problem, which illustrates 
its computational hardness. 

Second, we propose a new software agent, HEALER (hierarchical ensembling based agent which 
plans for effective reduction in HIV spread), to provide an end-to-end solution to the DIME 
problem. First, HEALER casts the DIME problem as a partially observable Markov decision 
process (POMDP) and solves it using HEAL (hierarchical ensembling algorithm for planning), a 
novel POMDP planner that quickly generates high-quality recommendations (of intervention 
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participants) for homeless shelter officials. In this paper, we discuss the design of HEALER and 
explain its method of gathering information about the homeless youth social network (at low 
cost) by interacting with youth via a network construction application. We also give a high-level 
overview of the HEAL algorithm and refer the reader to Yadav et. al. [9] for a more complete 
understanding. 

Simulations presented in Yadav et. al. [9] show that even on small networks, HEAL achieves a 
100-fold speed up and 70% improvement in solution quality over PSINET (POMDP based social 
interventions in networks for enhanced HIV testing) [10] (a baseline algorithm which uses 
POMDPs); and on larger networks where PSINET is unable to run at all, HEAL continues to 
provide high quality solutions quickly. This is in spite of several sub-optimal heuristics currently 
being used by HEALER. In order to better understand why HEALER’s heuristics work so well 
on real-world networks, we analyzed the real-world networks used in HEALER’s simulations to 
determine the reasons behind its outperforming its competitors. 

Finally, to further explore and highlight HEALER’s performance, we compare HEALER with 
baseline algorithms, including one augmented with the same heuristics. We then provide 
comparison results for HEALER and these augmented baseline algorithms. 

HEALER has been tested in a real-world pilot study, in collaboration with a homeless shelter 
(called Safe Place for Youth), which provides food and lodging to homeless youth aged 12-25. 
They provide these facilities for ~55-60 homeless youth every day. They also operate an on-site 
medical clinic where free HIV and Hepatitis-C testing is provided.  The recently completed pilot 
study enrolled 60 homeless youth, and then conducted three interventions on this population 
based on HEALER’s recommended peer-leaders. To the best of our knowledge, this pilot study 
represents the first real-world evaluation of such sequential influence maximization algorithms, 
and it showed HEALER’s effectiveness at spreading information in a social network effectively. 
Results from the pilot studies can be found in Yadav et. al. [11].  

Related work 
There are three distinct areas of work related to the homeless shelter problem that we introduced 
above. The primary problem in computational influence maximization is to find optimal ‘seed 
sets’ of nodes in social networks, which can maximize the spread of information or influence in 
the social network (according to some a priori known influence model). While there are many 
algorithms for finding `seed sets' of nodes to maximize influence spread in networks [5, 6, 7, 8], 
most of these algorithms assume no uncertainty in the network structure and select a single seed 
set. In contrast, HEALER selects several seed sets sequentially in our work to select intervention 
participants for each successive training program, taking into account updates to the network 
structure revealed in past interventions. The DIME problem also incorporates uncertainty about 
the network structure and influence status of network nodes (i.e., whether a node is influenced or 
not). Finally, unlike [5, 6, 7, 8], HEALER uses a different diffusion model as we explain later in 
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this paper. Golovin et. al. [12] introduced adaptive submodularity and discussed adaptive 
sequential selection (similar to our problem), and they proved that a Greedy algorithm has a (1-1/
e) approximation guarantee. However, unlike the DIME problem, they assume no uncertainty in 
the network structure. We show that while the DIME problem can be cast into the adaptive 
stochastic optimization framework of [12], its influence function is not adaptive submodular (see 
section of paper titled “DIME Problem Statement”) and because of this, their Greedy algorithm 
loses its approximation guarantees. Finally, Lei et. al. [13] use multi-armed bandit algorithms to 
pick influential nodes in social networks when influence probabilities are not known, but their 
approach requires lots of iterations to converge, thereby making it unsuitable for a real-world 
domain like ours.  

Next, we discuss literature from social work. The general approach to these interventions is to 
use peer change agents (PCA) (i.e., peers who bring about change in attitudes) to engage 
homeless youth in interventions, but most studies do not use network characteristics to choose 
these PCAs [14]. A notable exception is Valente et. al. [15], who proposed selecting intervention 
participants with highest degree centrality (the most ties to other homeless youth). However, 
previous studies [10, 16] show that degree centrality performs poorly, as it does not account for 
potential overlaps in influence of two high degree centrality nodes. 

The final field of related work is planning for reward and cost optimization. We only focus on 
the literature on Monte-Carlo (MC) sampling based online POMDP solvers since this approach 
allows significant scale-up [17]. The POMCP (Partially Observable Monte-Carlo Planning) 
solver [18]  uses Monte-Carlo UCT (upper confidence bound) tree search in online POMDP 
planning. Also, Somani et. al. [19] present the DESPOT (determinized sparse partially 
observable tree) algorithm, that improves the worst case performance of POMCP. Our initial 
experiments with POMCP and DESPOT showed that they run out of memory on even our small 
sized networks. A recent paper introduced PSINET-W [10], which is a MC sampling based 
online POMDP planner. We have discussed PSINET's shortcomings above, and how HEALER 
remedies them with the use of its heuristics. In particular, HEALER scales up whereas PSINET 
fails to do so. HEALER's algorithmic approach also offers significant novelties in comparison 
with PSINET. 

HEALER’s Design 
HEALER has a modular design [9], and consists of two major components. First, it has a 
network construction application for gathering information about social networks. Second, it has 
an algorithm called HEAL, which solves the DIME problem (introduced later) using heuristics. 
We first explain HEALER's components individually, and then explain how they are used inside 
HEALER's design. 

Network Construction Application  
HEALER gathers information about social ties among homeless youth by interacting with these 
youth via its network construction application. Once a fixed number of homeless youth register 
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in its network application (which is hosted as a website to ensure ease of access for the youth), 
HEALER parses contact lists (on Facebook) of all the registered homeless youth and generates 
the social network that connects these youth. We choose Facebook for gathering information 
because previous studies [20] show that a large proportion (~80%) of homeless youth are 
regularly active on Facebook. Specifically, HEALER adds a link between two homeless youth, if 
and only if both youth are (i) friends on Facebook; and (ii) are registered in its application. 
Unfortunately, there is uncertainty in the generated network as friendship links between people 
who are only friends in real-life (and have not added each other as friends on Facebook) are not 
captured by HEALER’s network construction application.  

Previously, collecting accurate social network data on homeless youth was a technical and 
financial burden beyond the capacity of most agencies working with these youth [20]. Homeless 
shelters conducted tedious face-to-face interviews with homeless youth to infer ties between 
these youth, a process that costs thousands of dollars and many months of time. HEALER's 
network construction application enables homeless shelters to quickly generate a first 
approximation of the homeless youth social network at low cost. The HEAL algorithm (the 
second component in HEALER) subsequently corrects and improves the social network structure 
iteratively (as explained later), which is one of the major strengths of this approach. This network 
construction application has been tested multiple times by our collaborating homeless shelter 
with positive feedback. 

DIME Solver 
The DIME Solver then takes the approximate social network (generated by HEALER's network 
construction application) as input and solves the DIME problem (formally defined later in the 
paper) using HEAL, the core algorithm running inside HEALER. The HEAL algorithm is an 
online POMDP solver, i.e., it interleaves planning and execution for each time step (explained 
later in the paper). The solution of the DIME problem generated by HEAL is provided as a series 
of recommendations (of intervention participants) to homeless shelter officials. Each 
recommendation would urge the officials to invite a particular set of youth for their intervention 
camp. For example, in Figure 1, HEALER would recommend inviting nodes D and A for the 
intervention. 

HEALER Design 
HEALER's design begins with the network construction application constructing an uncertain 
network (as explained above). HEALER has a sense-reason-act cycle; where it repeats the 
following process for T interventions. It reasons about different long-term plans to solve the 
DIME problem, it acts by providing DIME's solution as a recommendation (of intervention 
participants) to homeless shelter officials. The officials may choose to not use HEALER's 
recommendation in selecting their intervention's participants. After finalizing the selection of 
participants, the shelter officials contact the chosen participants (via phone/email) and conduct 
the intervention with them. Upon the intervention's completion, HEALER senses feedback about 
the conducted intervention from the officials. This feedback includes new observations about the 
network, e.g., uncertainties in some links may be resolved as intervention participants are 
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interviewed by the shelter officials (explained more later). HEALER uses this feedback to update 
and improve its future recommendations. 

DIME Problem Statement 
HEALER represents social networks as directed graphs (consisting of nodes and directed edges) 
where each node represents a person in the social network and a directed edge between two 
nodes A and B (say) represents that node A considers node B as their friend. HEALER assumes 
directed-ness of edges as sometimes homeless shelters assess that the influence in a friendship is 
very much uni-directional; and to account for uni-directional follower links. Otherwise 
friendships are encoded as two uni-directional links. In the following, we provide some 
background information that helps us define a precise problem statement for DIME. After that, 
we will show some hardness results about this problem statement.  

Uncertain Network 
The uncertain network is a directed graph G= (V,E)  with |V| = N nodes and |E| = M edges. The 
edges E in an uncertain network are of two distinct types: (i) the set of certain edges , that 
consists of friendships that we are certain about; and (ii) the set of uncertain edges  ,which 
consists of friendships which we are uncertain about. Recall that uncertainties about friendships 
exist because HEALER's network construction application misses out on some links between 
people who are friends in real life, but not on Facebook.  

To model the uncertainty about missing edges, every uncertain edge has an existence probability 
u(e) associated with it, which represents the likelihood of “existence” of that uncertain edge in 
the real-world. For example, if there is an uncertain edge (A,B) (i.e., we are unsure whether node 
B is node A's friend), then u(A,B) = 0.75 implies that B is A's friend with a 0.75 chance. This 
existence probability allows us to measure the potential value of influencing a given node. For 
example, if node A is connected to many uncertain edges with low u(e) values, then it is unlikely 
that node A is highly influential (as most of his supposed friendships may not exist in reality).   

In addition, every edge in the network (both certain and uncertain) has a propagation probability 
p(e) associated with it. A propagation probability of 0.5 on directed edge (A,B) denotes that if 
node A is influenced (i.e., has information about HIV prevention), it influences node B (i.e., 
gives information to node B) with a 0.5 probability in each subsequent time step (our full 
influence model is defined below). This graph G with all relevant p(e) and u(e) values represents 
an uncertain network and serves as an input to the DIME problem. Figure 1 shows an example 
of an uncertain network, where the dotted edges represent uncertain edges. We now explain how 
HEALER generates an uncertain social network. 

First, HEALER uses its network construction application to generate a network with no uncertain 
edges. Next, we use well known link prediction techniques such as KronEM [21] to infer 
existence probabilities u(e) for additional friendships that might have been missed by the 

!  6



network construction application. This process gives us an uncertain network which is then used 
by HEALER to generate recommendations, as we explain next. 

Given the uncertain network as input, HEALER runs for T rounds (corresponding to the number 
of interventions organized by the homeless shelter). In each round, HEALER chooses K nodes 
(youth) as intervention participants. These participants are assumed to be influenced after the 
intervention (i.e., our intervention deterministically influences the participants). Upon 
influencing the chosen nodes, HEALER `observes' the true state of the uncertain edges 
(friendships) out-going from the selected nodes. This translates to asking intervention 
participants about their 1-hop social circles, which is within the capabilities of the homeless 
shelter [2].  

After each round, influence spreads in the network according to our influence model (explained 
below) for L time steps, before we begin the next round. This L is the time duration in between 
two successive intervention camps. In between rounds, HEALER does not observe the nodes that 
get influenced during L time steps. Thus, while HEALER knows the influence model, it does not 
observe the random samples from the influence model which led to some nodes getting 
influenced. HEALER only knows that explicitly chosen nodes (our intervention participants in 
all past rounds) are influenced. Informally then, given an uncertain network  and integers T, K, 
and L (as defined above), HEALER finds an online policy for choosing exactly K nodes for T 
successive rounds (interventions) that maximizes influence spread in the network at the end of T 
rounds.  

Influence Model  
Unlike most previous work in influence maximization [5, 6, 7, 8], HEALER uses a variation of 
the independent cascade model [22]. In the standard independent cascade model, all nodes that 
get influenced at time t get a single chance to influence their un-influenced neighbors at time 
t+1. If they fail to spread influence in this single chance, they don't spread influence to their 
neighbors in future rounds. On the other hand, HEALER’s model assumes that nodes get 
multiple chances to influence their un-influenced neighbors. If they succeed in influencing a 
neighbor at a given time step t', they stop influencing that neighbor for all future time steps. 
Otherwise, if they fail in step t', they try to influence again with the same propagation probability 
in the next time step. This variant of independent cascade has been shown to empirically provide 
a better approximation to real influence spread than the standard independent cascade model [22, 
23]. Further, we assume that nodes that get influenced at a certain time step remain influenced 
for all future time steps.  

We now provide notation for defining HEALER's policy formally. Let  denote the set of K sized 
subsets of V, which represents the set of possible choices that HEALER can make at every time 
step  . Let  denote HEALER's choice in the time step. Upon making choice , HEALER `observes' 
uncertain edges adjacent to nodes in , which updates its understanding of the network. Let  
denote the uncertain network resulting from  with observed (additional edge) information from . 
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Formally, we define a history  of length i as a tuple of past choices and observations . Denote by  
the set of all possible histories of length less than or equal to i. Finally, we define an i-step policy  
as a function that takes in histories of length less than or equal to i and outputs a K node choice 
for the current time step. We now provide an explicit problem statement for DIME. 

Problem Statement  
Given as input an uncertain network  and integers T, K and L (as defined above). Denote by  the 
expected total number of influenced nodes at the end of round T, given the T-length history of 
previous observations and actions , along with , the action chosen at time T. Let  denote the 
expectation over the random variables  and influence of , where  are chosen according to , and  
are drawn according to the distribution over uncertain edges of  that are revealed by . The 
objective of DIME is to find an optimal T-step policy . 

Next, we show hardness results about the DIME problem. First, we analyze the value of having 
complete information in DIME. Then, we characterize the computational hardness of DIME.  

The Value of Information  
We characterize the impact of insufficient information (about the uncertain edges) on the 
achieved solution value. We show that no algorithm for DIME is able to provide a sufficiently 
good approximation to the full-information solution value (i.e., the best solution achieved w.r.t. 
the underlying ground-truth network), even with infinite computational power.  

Theorem 1 Given an uncertain network with n nodes, for any , there is no algorithm for the 
DIME problem that can guarantee a  approximation to, the full-information solution value. 
Proof We prove this statement by providing a counter-example in the form of a specific (ground 
truth) network for which there can exist no algorithm that can guarantee a  approximation to . 
Consider an input to the DIME problem, an uncertain network with n nodes with  uncertain 
edges between the n nodes, i.e., it is a completely connected uncertain network consisting of only 
uncertain edges (an example with n=3 is shown in Figure 1). Let p(e)=1 and u(e)=0.5 on all 
edges in the uncertain network, i.e., all edges have the same propagation and existence 
probability. Let K=1, L=1 and T=1, i.e., we just select a single node in one shot (in a single 
round).  

Further, consider a star graph (as the ground truth network) with n nodes such that propagation 
probability p(e) = 1 on all edges of the star graph (shown in Figure 1). Now, any algorithm for 
the DIME problem would select a single node in the uncertain network uniformly at random 
with equal probability of 1/n (as information about all nodes is symmetrical). In expectation, the 
algorithm will achieve an expected reward . However, given the ground truth network, we get , 
because we always select the star node. As n goes to infinity, we can at best achieve a  
approximation to . Thus, no algorithm can achieve a  approximation to  for any     
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Computational Hardness 
We now analyze the hardness of computation in the DIME problem in the next two theorems. 

Theorem 2 The DIME problem is NP-Hard. 
Proof Consider the case where  and . This degenerates to the classical influence maximization 
problem which is known to be NP-hard. Thus, the DIME problem is also NP-hard.    

Some NP-Hard problems exhibit nice properties that enable approximation guarantees for them. 
Golovin et. al. [11] introduced adaptive submodularity, an analog of submodularity for adaptive 
settings. Intuitively, adaptive submodularity deals with cases in which actions/items are to be 
picked in multiple stages, and newer information is revealed every time an action is picked. 
Adaptive submodularity requires that the expected marginal gain of picking an action can only 
decrease as more actions are picked and more information is revealed. Formally, adaptive 
submodularity requires that , where  represents the marginal gain/benefit of picking action A, 
conditioned on getting information . This makes the adaptive submodularity framework a natural 
fit for the DIME problem. Presence of adaptive submodularity ensures that a simply greedy 
algorithm provides a (1-1/e) approximation guarantee w.r.t. the optimal solution defined on the 
uncertain network. However, as we show next, while DIME can be cast into the adaptive 
stochastic optimization framework of [11], our influence function is not adaptive submodular, 
because of which their Greedy algorithm does not have a (1-1/e) approximation guarantee.  

Theorem 3 The influence function of DIME is not adaptive submodular. 
Proof The definition of adaptive submodularity requires that the expected marginal increase of 
influence by picking an additional node is more when we have less observation. Here the 
expectation is taken over the random states that are consistent with current observation. We show 
that this is not the case in DIME problem. Consider a path with 3 nodes A, B and C and two 
directed edges  and . Let  i.e., propagation probability is 1; and  for some small enough  to be set. 
Thus, the only uncertainty comes from incomplete knowledge of the existence of edges.  

Let us assume that we pick node A. After picking node A, the expected marginal benefit of 
picking node C is . However, after picking node B, if we get information , then the expected 
marginal benefit of picking node C goes to 1 (up from  ). Since the expected marginal benefit of 
picking node C increased from  to 1 upon receiving more information and picking more actions, 
this contradicts the definition of adaptive submodularity. This shows that the influence function 
of DIME is not adaptive submodular. 

HEAL: DIME PROBLEM SOLVER 
The above theorems show that DIME is a hard problem as it is difficult to even obtain any 
reasonable approximations. HEALER models DIME as a partially observable Markov decision 
process (POMDP) [24], which is a logical fit for the problem because of two reasons. First, 
several interventions are conducted sequentially, similar to sequential POMDP actions. Second, 
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there is partial observability (similar to POMDPs) due to uncertainties in network structure and 
influence status of nodes. We now provide a high level overview of HEALER’s POMDP model.  

POMDP Model 
A state in this model includes the influence status of all network nodes (i.e., which nodes are 
influenced and which nodes are not) and the true state of the uncertain edges (i.e., whether each 
uncertain edge exists or not in the real world). Thus, there are  possible POMDP states in a 
network with N nodes and M uncertain edges. Similarly, an action in this model is any possible 
subset of K network nodes, which can be called for an intervention. Thus, if K nodes are being 
selected in every intervention on a network with N nodes, there are possible POMDP actions. 
Finally, an observation in this model is based on the assumption that when a set of K nodes (i.e., 
K distinct homeless youth) are called in for intervention, the shelter officials can talk to these 
nodes (or youth) and resolve the status of the uncertain edges in their local neighborhood. 
Specifically, the shelter official observes the true state of each uncertain edge (i.e., whether it 
exists in the real world or not) outgoing from the K nodes chosen in that action. The observation 
of the true state of uncertain edge (A,B) leads to resetting of u(A,B) to either 1 or 0 (depending on 
whether edge (A,B) actually exists or not). Thus, when M uncertain edges are outgoing from the 
K nodes chosen in a POMDP action, there are   possible POMDP observations. Finally, the 
rewards in this model keep track of the number of new nodes that get influenced upon taking a 
POMDP action. Refer to Yadav et al. [9] for the full POMDP model. 

HEAL 
HEAL is a heuristic based online POMDP planner for solving the DIME problem. HEAL solves 
the original POMDP using a novel hierarchical ensembling heuristic: it creates ensembles of 
imperfect (and smaller) POMDPs at two different layers, in a hierarchical manner (see Figure 2). 
HEAL's top layer creates an ensemble of smaller sized intermediate POMDPs by subdividing 
the original uncertain network into several smaller sized partitioned networks by using graph 
partitioning techniques [25]. Each of these partitioned networks is then mapped onto a POMDP, 
and these intermediate POMDPs form the top layer ensemble of POMDP solvers. 

In the bottom layer, each intermediate POMDP is solved using TASP (tree aggregation for 
sequential planning), HEAL’s POMDP planner, which subdivides the POMDP into another 
ensemble of smaller sized sampled POMDPs. Each member of this bottom layer ensemble is 
created by randomly sampling uncertain edges of the partitioned network to get a sampled 
network having no uncertain edges, and this sampled network is then mapped onto a sampled 
POMDP. Finally, the solutions of POMDPs in both the bottom and top layer ensembles are 
aggregated using novel techniques to get the solution for HEAL's original POMDP.  

These heuristics enable scale up to real-world sizes (at the expense of sacrificing performance 
guarantees), as instead of solving one huge problem, HEAL solve several smaller problems. The 
primary difference between HEAL and PSINET (the previous state-of-the-art) is in the top layer 
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of HEAL, which uses the graph partitioning heuristic. This heuristic divides up the network into 
different partitions, with each partition corresponding to an intermediate POMDP (Figure 2). The 
partitions are chosen in a way which minimizes the number of cross-edges going across the 
partitions (while ensuring that the partitions have similar sizes. Since these partitions are almost 
disconnected, we solve each partition separately without accounting for influence going across 
the partitions. Simulations show that even on smaller settings, HEAL achieves a 100-fold speed 
up over PSINET, while providing a 70% improvement in solution quality; and on larger 
problems, where PSINET is unable to run at all, HEAL continues to provide high solution 
quality. This raises the following question: Why does the graph partitioning heuristic (a 
seemingly counter-intuitive heuristic) work so well in simulation? To provide an answer, we next 
analyze the structure of the real-world social networks of homeless youth that were used to 
simulate performance of HEAL and PSINET.

Small-World Nature of Real World Networks 
The small-world network model is known to mimic many properties of real-world networks. In 
fact, these small-world networks are observed in many different domains, ranging from 
biological, social and technological networks. While there is no rigid definition that classifies a 
social network as small-world or not, there are two widely accepted network characteristics that 
small-world networks should possess. First, the average path length (i.e., the average distance 
between any two nodes in the network) in a small-world network should be somewhat 
comparable to the average path length of a random network. Second, the average clustering 
coefficient (i.e., the average cliquish-ness of the network) should be significantly higher than the 
average clustering coefficient of a random network. This means that small-world networks have 
relatively low average path lengths (as the average path length in a random network is low), and 
consist of lots of network cliques (as the average clustering coefficient is higher than that in a 
random network).  

The two networks of homeless youth used in our simulations are small-world networks, and 
hence well suited to HEAL’s graph partitioning heuristic. HEAL’s graph partitioning technique 
takes advantage of the clustering in these small-world networks by identifying the cliques in 
them, and considering their influence independently. 

Table 1 compares the average clustering coefficient and the average path length with the random 
clustering coefficient and random average path length for two different real-world networks of 
homeless youth. This table shows that in both networks, the average path length is comparable to 
that in a random network, whereas the average clustering coefficient is 8-fold higher on average. 
This explains why HEAL’s graph partitioning heuristic works well, as it allows HEAL to find the 
different cliques in these small-world networks, which are then influenced independently.  

Having established that the graph partitioning heuristic is the primary reason behind HEAL’s 
good performance, we now try to see if we can augment other baseline algorithms with the same 
heuristic, and provide comparison results. 
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Results comparing HEAL with Augmented Baselines 
We use three algorithms as baselines: Greedy, Greedy with partitioning and Degree Centrality. 
We use the modified Greedy algorithm used by Yadav et. al. [9] (referred to as Greedy in Figure 
3), their closest competitor to HEAL. Recall that even though Greedy has no theoretical 
guarantees in our domain (Theorem 3), we still want to test its empirical performance. Further, 
we augment this Greedy algorithm with the graph partitioning heuristic, i.e., we partition the 
network into different cliques, and then use the same Greedy algorithm inside each clique 
independently to find which nodes should be influenced in the network. This augmented Greedy 
algorithm is referred to as “Greedy + Partition” in Figure 3. We do not report results of PSINET 
as even with the graph partitioning heuristic, PSINET runs out of memory on our case study 
networks. Finally, we also compare against Degree Centrality (i.e., picking the nodes with the 
highest degree), the current modus operandi of homeless shelters.  

This experiment was run on a 2.33 GHz 12-core Intel machine having 48 GB of RAM, and was 
averaged over 100 runs. We use a metric of “Indirect Influence” for comparison between 
different algorithms, which is number of nodes “indirectly” influenced by intervention 
participants. For example, on the homeless youth network having 170 nodes, by selecting 2 
nodes (i.e., K=2) each for 10 interventions (horizon) (i.e., T=10), 20 nodes (a lower bound for 
any strategy) are influenced with certainty. However, the total number of influenced nodes might 
be 26 (say) and thus, the Indirect Influence is 26-20 = 6. In all experiments, the propagation and 
existence probability values on all network edges were uniformly set to 0.1 and 0.6, respectively. 
This was done based on findings in Kelly et. al. [26].  This comparison result is statistically 
significant under bootstrap-t (. 

Figure 3 compares HEAL, Greedy, the “Greedy + Partition” approach and Degree Centrality 
(DC) on the two real-world networks of homeless youth in simulation (we see similar results on 
many other networks [9]). Each of these networks had around 170 nodes and 250 edges. The x-
axis shows the two different networks, and the y-axis shows the indirect influence achieved. 
First, this figure shows that a static approach like DC performs very poorly as compared to 
HEAL, an adaptive POMDP based solution. This is in part due to HEAL’s policy being 
responsive and flexible enough to incorporate any new observations that are seen during 
execution of HEAL’s policy, in order to improve future decisions taken by HEAL.  In contrast, 
DC does not change its node selection in future time steps, regardless of the observations 
received. In order to compare the flexibility of HEAL’s policy with DC’s policy, we analyzed the 
number of times HEAL chose different actions (i.e. chose different nodes) in future time steps, 
based on receiving different observations in earlier time steps. On one of the networks, HEAL 
chose an action in the first round, which led to four possible different observations. 
Corresponding to each of these four different observations (which we simulated), HEAL chose a 
different action in the next round. This is in comparison to DC which never modifies its chosen 
actions in response to getting different observations.  
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Second, this figure also shows that graph partitioning improves the performance of Greedy on 
only one network (due to the community structure of the networks) and not the other. Moreover, 
HEAL still outperforms the nearest competitor by ~32%. This is a secondary confirmation that 
even though the graph partitioning heuristic plays a major role in the determination of the 
solution quality, it is by no means the only reason for HEAL’s superior performance, thereby 
illustrating the importance of the TASP solver (see [9] for details) in HEAL as well. 

Third, the superiority of HEAL over Greedy and “Greedy + Partition” illustrates the importance 
of look-ahead search done by HEAL, which leads to higher solution qualities (i.e., indirect 
influence spread). On the other hand, Greedy does not do any look ahead search, thereby leading 
to lesser solution qualities. 

Conclusion 
In this paper, we explored the reasons and motivations behind the design and superior 
performance of HEALER, an adaptive software agent which recommends intervention attendees 
to homeless shelter officials. HEALER solves a POMDP on a social network to come up with 
recommendations for which homeless youth in a social network should be chosen as intervention 
attendees. We first formally characterized the computational problem (called DIME) solved by 
HEALER, and showed that it is an NP-Hard problem. Moreover, well-known algorithms such as 
Greedy lose their approximation guarantees in the DIME problem due to the feedback about 
network structure received during interventions. We inferred that DIME’s computational 
hardness forces HEALER to rely on heuristic methods for solving DIME. Further, we analyzed 
these heuristic methods, and showed that the primary reason behind the superior performance of 
HEALER is its graph partitioning heuristic, which works well due to the small-world nature of 
the real-world networks of homeless youth. However, we showed that the graph partitioning 
heuristic is not the only reason for HEALER’s superior performance, as other baseline 
algorithms augmented with the graph partitioning heuristic don’t perform as well. HEALER was 
recently tested in the real-world with 60 homeless youth, and it outperformed other baselines 
[11]. To the best of our knowledge, this is the first such evaluation of an influence maximization 
algorithm in the field.  
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Figures and Tables 
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Figure 1 Illustration of the value of information in the DIME Problem. A, B, C and D represent 
nodes, and the edges between them represent friendships. There are two kinds of edges: certain 
edges (denoted by solid edges as shown in the left figure); and uncertain edges (denoted by 
dotted edges as shown in the right figure). The propagation and existence probabilities on all the 
edges is assumed to be fixed. 
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Figure 2 Hierarchical decomposition in HEAL (From Yadav et. al. [9]) 

Table 1 Small World Characteristics of Real World Networks of Homeless Youth 

Networks          Avg.  
  Path Length In 
Real Nets 

Avg.  
Path Length 

       In Random Nets    

Avg.  
Clustering Coefficient 

In Real Nets

Random 
Clustering Coefficient 

In Random Nets   

Net 1 4.7758 3.1464 0.1752 0.0340

Net 2 5.8369 3.8368 0.1746 0.0208
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Figure 3 Influence Spread Comparison of HEAL with Augmented Baseline Algorithms 
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