
Maximizing Influence in an Unknown Social Network

Bryan Wilder12, Nicole Immorlica3, Eric Rice24, Milind Tambe12
1Department of Computer Science, 2Center for Artificial Intelligence in Society 4School of Social Work

University of Southern California
{bwilder, ericr, tambe}@usc.edu

3Microsoft Research, New England
nicimm@gmail.com

Abstract

In many real world applications of influence maximization,
practitioners intervene in a population whose social structure
is initially unknown. This poses a multiagent systems chal-
lenge to act under uncertainty about how the agents are con-
nected. We formalize this problem by introducing exploratory
influence maximization, in which an algorithm queries indi-
vidual network nodes (agents) to learn their links. The goal
is to locate a seed set nearly as influential as the global op-
timum using very few queries. We show that this problem
is intractable for general graphs. However, real world net-
works typically have community structure, where nodes are
arranged in densely connected subgroups. We present the
ARISEN algorithm, which leverages community structure to
find an influential seed set. Experiments on real world net-
works of homeless youth, village populations in India, and
others demonstrate ARISEN’s strong empirical performance.
To formally demonstrate how ARISEN exploits community
structure, we prove an approximation guarantee for ARISEN
on graphs drawn from the Stochastic Block Model.

1 Introduction
In contexts ranging from health to international develop-
ment, practitioners have used the social network of their
target population to spread information and change behav-
ior. Social interactions between population members form
a multiagent system; the challenge is identify the most in-
fluential agents. While previous work has delivered compu-
tationally efficient algorithms for this influence maximiza-
tion problem (Chen, Wang, and Wang 2010; Tang, Xiao, and
Shi 2014; Yadav et al. 2016), this work assumes that the so-
cial network is given explicitly as input. However, in many
real-world domains, the network is not initially known and
must be gathered via laborious field observations. For ex-
ample, collecting network data from vulnerable populations
such as homeless youth, while crucial for health interven-
tions, requires significant time spent gathering field observa-
tions (Rice et al. 2012). Social media data is often unavail-
able when access to technology is limited, for instance in
developing countries or with vulnerable populations. Even
when such data is available, it often includes many weak
links which are not effective at spreading influence (Bond
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et al. 2012). For instance, a person may have hundreds of
Facebook friends whom they barely know. In principle, the
entire network could be reconstructed via surveys, and then
existing influence maximization algorithms applied. How-
ever, exhaustive surveys are very labor-intensive and often
considered impractical (Valente and Pumpuang 2007). For
influence maximization to be relevant to many real-world
problems, it must contend with limited information about
the network, not just limited computation.

The major informational restriction is the number of
nodes which may be surveyed to explore the network. Thus,
a key question is: how can we find influential nodes with a
small number of queries? We formalize this problem as ex-
ploratory influence maximization and seek a principled al-
gorithmic solution, i.e., an algorithm which makes a small
number of queries and returns a set of seed nodes which are
approximately as influential as the globally optimal seed set.
Existing field work uses heuristics, such as sampling some
percentage of the nodes and asking them to nominate influ-
encers (Valente and Pumpuang 2007). To our knowledge, no
previous work directly addresses this question from an algo-
rithmic perspective (see Section 3).

We show that for general graphs, any algorithm for ex-
ploratory influence maximization may perform arbitrarily
badly unless it examines almost the entire network. How-
ever, real world networks often have strong community
structure, where nodes form tightly connected subgroups
which are only weakly connected to the rest of the net-
work (Leskovec et al. 2009). Consequently, influence mostly
propagates locally. Community structure has been used to
develop computationally efficient influence maximization
algorithms (Wang et al. 2010; Chen et al. 2014). Here, we
use it to design a highly information-efficient algorithm.
We make four contributions. First, we introduce exploratory
influence maximization and show that it is intractable for
general graphs. Second, we present the ARISEN algo-
rithm, which exploits community structure to find influen-
tial nodes. Third, we show that ARISEN has strong empir-
ical performance on an array of real world social networks.
Fourth, we formally analyze ARISEN on graphs drawn from
the Stochastic Block Model (SBM) (Fienberg and Wasser-
man 1981), a widely studied model of community structure.
We prove that it approximates the optimal influence if the
entire network were known by querying only a polylogarith-



mic number of nodes in the network size.

2 Exploratory influence maximization
As a motivating example, consider a homeless youth shelter
which wishes to spread HIV prevention information (Rice et
al. 2012). The shelter would try to select the most influen-
tial peer leaders to spread information, but the youths’ social
network is not initially known. Constructing the network re-
quires a laborious survey (Rice et al. 2012). Our motivation
is to mitigate this effort by querying only a few youth. Such
queries require much less time than the day-long training
peer leaders receive. We now formalize this problem.

Influence maximization: The influence maximization
problem (Kempe, Kleinberg, and Tardos 2003), starts with
a graph G = (V,E), where |V | = n and |E| = m. We
assume that G is undirected; social links are typically recip-
rocal (Squartini et al. 2012). An influencer selects K seed
nodes, aiming to maximize the expected size of the resulting
influence cascade. We assume that influence propagates ac-
cording to the independent cascade model (ICM), the most
prevalent model in the literature. Initially, all nodes are in-
active except for the seeds. When a node activates, it inde-
pendently activates each of its neighbors with probability
q. q is often assumed to be the same for all edges (Chen,
Wang, and Wang 2010; Kempe, Kleinberg, and Tardos 2003;
Yadav et al. 2016). Let f(S) denote the expected number of
activated nodes with seed set S ⊆ V . The objective is to
compute arg max|S|≤K f(S).

Local information: The edge set E is not initially
known. Instead, the algorithm explores portions of the graph
using local operations. We use the popular “Jump-Crawl”
model (Brautbar and Kearns 2010), where the algorithm
may either jump to a uniformly random node, or crawl along
an edge from an already surveyed node to one of its neigh-
bors. When visited, a node reveals all of its edges. We say
that the query cost of an algorithm is the total number of
nodes visited using either operation. Our goal is to find in-
fluential nodes with a query cost that is much less than n,
the total number of nodes.

Stochastic Block Model: In our formal analysis, we as-
sume that the graph is drawn from the SBM. The SBM
originated in sociology (Fienberg and Wasserman 1981) and
lately has been intensively studied in computer science and
statistics (see e.g. (Abbe and Sandon 2015; Krzakala et al.
2013; Mossel, Neeman, and Sly 2015)). In the SBM, the
network is partitioned into disjoint communities C1....CL.
Each within-community edge is present independently with
probability pw and each between-community edge is present
independently with probability pb. Recall that the Erdős-
Rényi random graph G(n, p) is the graph on n nodes where
every edge is independently present with probability p. In
the SBM, community Ci is internally drawn as G(|Ci|, pw)
with additional random edges to other communities. While
the SBM is a simplified model, our experimental results
show that ARISEN also performs well on real-world graphs.
ARISEN takes as input the parameters n, pw, and pb, but is
not given any prior information about the realized draw of
the network. It is reasonable to assume that the model pa-
rameters are known since they can be estimated using ex-

Figure 1: Example SBM networks. (a) A community struc-
tured network (pw = 0.1, pb = 0.005). (b) A bipartite graph
(2 communities, pw = 0, pb = 0.1). (c) An Erdős-Rényi
graph (1 community, pw = 0.2). (d) One small community
with pw = 1; the rest in a community with pw = 0, pb = 0.

isting network data from a similar population (in our ex-
periments, we show that this approach works well). For in-
stance in HIV prevention, homeless youth social networks
have been shown to exhibit community structure and several
studies have gathered networks from which to infer pw and
pb (Yadav et al. 2016; Rice et al. 2012).

Our theoretical analysis will use a particular range of val-
ues for pw and pb. As formally defined, the SBM encom-
passes a wide range of possible topologies, depending on
how the parameters pw and pb are set. Figure 1 gives a few
examples, ranging from the a bipartite graph to an Erdős-
Rényi graph. The community-structure graph that we intend
to model is Figure 1(a). We later define a parameter range
which produces such networks.

Objective: We now formalize the objective that our al-
gorithm will optimize. We compare to the globally optimal
solution, i.e, the best performance if the entire network were
known. Let fE(S) give the expected number of nodes influ-
enced by seed set S when the set of realized edges are E.
Let A(E) be the (possibly random) seed set containing our
algorithm’s selections given edge set E. Let OPT be the
expected value of the globally optimal solution which seeds
K nodes. We aim to prove that E[fE(A(E))] ≥ αOPT for
some approximation ratio α, where the expectation is over
the randomness in the graph, the algorithm’s choices, and
the ICM.

Hardness result: We seek algorithms whose query cost
grows slowly with n. The following shows that no algorithm
with strictly sublinear query cost obtains a constant factor
approximation for general graphs. The notation o(1) refers
to a term which goes to 0 as n→∞.

Theorem 1. There exists a family of graphs on which any
algorithm with query cost O(n1−ε) for some ε > 0 has ap-
proximation ratio no better than o(1).

Proof. Consider a family of graphs which consist of a clique
on log n nodes along with n − log n isolated nodes. Let
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Figure 2: Example run of ARISEN with K = 3 (explained
further in text). Each block is one sample, with current
weight proportional to its height (e.g., in Frame 2, C5 has
one sample with very high weight).

q = 1 and K = 1. The algorithm gets influence log n if
it selects a node in the clique, and influence 1 otherwise.
The probability it ever samples the clique is at most 1 −
(1− logn

n )O(n1−ε) ≤ 1− e−
logn
O(nε) (1− log2 n

n )O(nε) = o(1).
Hence, its expected influence is o(1) log n+ 1, while OPT
is log n, giving approximation ratio o(1) logn+1

logn = o(1).

3 Related work
First, Yadav et al. (2016) and Wilder et al. (2017) studied dy-
namic influence maximization over a series of rounds. Some
edges are ”uncertain” and are only present with some proba-
bility; the algorithm can gain information about these edges
in each round. However, most edges are known in advance.
By contrast, our work does not require any known edges.
Mihara et al. (2015) also consider influence maximization
over a series of rounds, but in their work the network is ini-
tially unknown. In each round, the algorithm makes some
queries, selects some seed nodes, and observes all of the
nodes which are activated by its chosen seeds. The ability
to observe activated nodes makes our problem incompara-
ble with theirs because activations can reveal a great deal
about the network and give the algorithm information that
even their benchmark does not have. Further, activations are
unobservable in many domains (e.g. medical ones) for pri-
vacy and legal reasons. Carpentier and Valko (2016) study
a bandit setting where the algorithm does not know the net-
work but observes the number of activations at each round.
However, in applications of interest (e.g., HIV prevention) it
is not feasible to conduct many low-reward trial campaigns.

Another line of work concerns local graph algorithms,
where a local algorithm only uses the neighborhoods around
individual nodes. Borgs et al. (2012) study local algo-
rithms for finding the root node in a preferential attach-
ment graph and for constructing a minimum dominating
set. Other work aims to find nodes with high PageRank
using local queries (Bressan, Peserico, and Pretto 2013;
Borgs et al. 2014). These algorithms are not suitable for
our problem since a great deal of previous work has ob-
served that seeding high PageRank nodes can prove highly
suboptimal for influence maximization (Kimura et al. 2009;

Chen, Wang, and Wang 2010; Jung, Heo, and Chen 2012).
Essentially, PageRank identifies a set of nodes that are indi-
vidually central, while influence maximization aims to find
a set of nodes which are collectively best at diffusing in-
formation. We also emphasize that our technical approach
is entirely distinct from work on PageRank. Lastly, Alon et
al. (2015). attempt to infer a ground truth from the opinions
of agents with an unknown social network, a different task
from ours with correspondingly distinct techniques.

4 The ARISEN algorithm
We now introduce our main contribution, the ARISEN al-
gorithm (Approximating with Random walks to Influence a
Socially Explored Network). Figure 2 shows an example, ex-
plained in detail later. The idea behind ARISEN (Algorithm
1) is to sample a set of T random nodes {v1...vT } from G
and explore a small subgraph Hi around each vi by taking
R steps of a random walk (Lines 1-3). R and T are inputs;
Section 6 gives settings which obtain theoretical guarantees.
Intuitively, T should be greater thanK (the number of seeds)
so we can be sure of sampling each of the largestK commu-
nities. R is discussed with Algorithm 2. The subgraphs Hi

are used to construct a weight vector w where wi gives the
weight associated with vi (Lines 5-6). The algorithm then
independently samples each seed from {v1...vT } with prob-
ability proportional to w (Line 7).

The challenge is to construct weights w which balance
two opposing goals. First, we would oftentimes like to dis-
perse the seed nodes throughout the network. For instance,
if each community has equal size, we would like to seed K
different communities. Second, we would other times like to
place more seeds in large communities. For instance, if one
community has 10,000 nodes and each other has only 100
nodes, we should seed the large community more. ARISEN
navigates this tradeoff with the following ingredients (Al-
gorithms 1-2). First, INITIALIZEWEIGHTS uses the random
walk around each vi to estimate the size of the community
that vi lies in. From these estimates, it constructs a w that,
in expectation, seeds the largest K communities. Second,
REFINEWEIGHTS tests if a w′ that puts more weight on
large communities would increase the expected influence.
The main novelty is to carry out these steps using purely lo-
cal information, since we will not generally be able to tell
which of the vi are in the same community.

Algorithm 3 ARISEN(R, T,B)

1: for i = 1...T do
2: Sample vi uniformly

random from G.
3: Hi = R nodes on a

random walk from vi.
4: end for
5: w,H ′ = INITIALIZEWEIGHTS(H,K,R, T,B)
6: w′ = REFINEWEIGHTS(w,H ′)
7: Sample u1...uK

iid∼ w′

8: return u1...uK



Algorithm 1 InitializeWeights(H,K,R, T,B)

1: for i = 1...T do
2: Form H ′i by discarding the first B nodes of Hi and

keeping each remaining node vj w.p. 1
d(vj)

3: d̂ = 1
R

∑
u∈H′i

d(u)

4: Ŝi = d̂−pbn
pw−pb

5: end for
6: wj = n

ŜjT
, j = 1...T

7: τ = max{Ŝj |
∑
{i|Ŝi≥Ŝj} wi ≥ K}

8: For any j with Ŝj < τ , set wj = 0.
9: return w, H ′

Algorithm 2 RefineWeights(w,H)

1: for i = 1...T do
2: vi = arg maxv∈Hi f(v,Hi)
3: end for
4: w′ = w
5: sort w′ in increasing order by f(vi, Hi)
6: for i = 1...T do
7: while ESTVAL(2w′i, w−i) > ESTVAL(w′) do
8: w′i = 2w′i
9: end while

10: w′i = BinarySearch(w′i, 2w
′
i)

11: end for
12: return w′

We first formalize the objective that ARISEN optimizes,
which is a lower bound on its true influence. Let f(X,Ci)
denote the influence of seed set X on the subgraph Ci and
g(X) =

∑L
i=1 f(X,Ci), i.e., the influence spread within

each community without considering between-community
edges. ARISEN aims to optimize E[g(X)]. Note that
f(X,G) ≥ g(X) always holds. When pb is low and little
influence spreads between communities (which is the case
that we study), g is a good proxy for the true influence. We
now explain ARISEN in detail, and how it optimizes the sur-
rogate objective g. Our focus on g is justified in Section 6,
where we bound the gap between E [g(X)] and OPT .

Initial weights
In the SBM, each community Ci has expected average de-
gree di = |Ci|pw + (n − |Ci|)pb. Solving for |Ci|, we
can estimate the size of the community from its average
degree. Since we do not have direct access to di, INITIAL-
IZEWEIGHTS estimates di (and hence |Ci|) using the nodes
sampled in the random walk (Algorithm 2, Lines 3-4); we
discard the firstB nodes in this sampling to avoid biasing the
estimate. Since a random walk is biased towards high degree
nodes, we use rejection sampling (Line 2) to obtain an unbi-
ased estimate. In order to choose seed nodes using the esti-
mated sizes, a natural idea would be to choose the K sam-
ples with the largest estimated size. However, this fails be-
cause large communities are sampled more often and will be
seeded many times, which is redundant. E.g., in the example
in Figure 2, placing all of the seeds in C1 would be subopti-
mal compared to also seedingC2. The difficulty is that using
local information, we will not know which samples belong
to the same community. One solution is to weight each sam-
ple inversely to its size (Line 6), and then sample seeds with
probability proportional to the weights. This evens out the
sampling bias towards large communities. Using weighted
sampling gives us a principled way to prioritize samples and
facilitates later steps which tune the weights to improve per-
formance. In Figure 2, all communities have total weight of
1 after inverse weighting (Frame 2).

Next, the weights are truncated so that only the largest
K communities receive nonzero weight (Line 7). After this

step, the largest K communities have weight 1 and all
smaller communities have weight 0 (at least approximately,
due to sampling errors). For example, Frame 3 of Figure 2
shows that only C1, C2 and C3 have nonzero weight. Sup-
pose that we draw K seeds using the resulting weights. In
each draw, each of the top K communities is seeded with
probability approximately 1

K . Thus, the cumulative proba-

bility that each is seeded is nearly 1−
(
1− 1

K

)K ≥ 1−1/e.
This reasoning is formalized in our theoretical guarantees.

Refining the weights
The initial weights suffice to obtain the approximation guar-
antee proved below and are the best possible for some net-
works. However, they are overly pessimistic in other cases,
such as when some communities are much larger than oth-
ers. In such cases, it would be better to focus more seed
nodes on large communities. REFINEWEIGHTS tunes the
weights produced by INITIALIZEWEIGHTS to account for
such scenarios. In essence, REFINEWEIGHTS tries to exploit
easier cases where some communities are much larger than
others by producing new weights w′.

REFINEWEIGHTS (Algorithm 2) starts in Line 2 by defin-
ing vi to be the most influential node in the sampled sub-
graph Hi (instead of the random starting node). Lines 5-
11 successively modify each element of w. Starting with
the weights corresponding to the highest-value communi-
ties, REFINEWEIGHTS asks whether g would be increased
by doubling the wi under consideration (Line 7). If yes, we
set wi = 2wi and ask if it can be doubled again. If no,
REFINEWEIGHTS performs a binary search between wi and
2wi to find the best setting (Line 10). Then, it moves on to
the weight corresponding to the next community. In the ex-
ample in Figure 2, Frame 4 shows that the weights of sam-
ples from C1 and C2 have been increased. Each change is
made only if it improves g, so we have:
Proposition 1. Let w the output of INITIALIZEWEIGHTS
and w′ be the output of REFINEWEIGHTS. Then,
EX∼w′ [g(X)] ≥ EX∼w [g(X)].

The key difficulty is determining if each modification in-
creases g. In the ESTVAL procedure, we provide a way to
estimate g using only local knowledge:



Figure 3: Influence compared to OPT as q varies.

Figure 4: Influence spread compared to OPT as K varies
with q = 0.15.

Proposition 2. ESTVAL(w) = EX∼w [g(X)]

We give the main idea here; see the supplement for a proof
and pseudocode for ESTVAL. Take any seed set X . Note
that the influence within each Ci depends only on nodes in
X ∩ Ci, which we write as XCi . So, g can be rewritten as
g(X) =

∑L
i=1 E[f(XCi , Ci)]. If we knew XCi , then we

could calculate E [f(XCi , Ci)] by simulating draws from the
SBM for the unobserved portions of Ci. Concretely, let Hi

be the subgraph observed in community Ci, with estimated
size Ŝi. We simulate the rest of Ci by adding Ŝi − |Hi| new
nodes, with edges between them and Hi randomly gener-
ated from the SBM. This is sufficient to choose the best seed
within Hi, as in Line 2. For Line 7, we need to estimate g.
The obstacle is not knowing which of the v1...vT lie in the
same community (since a node will contribute less influence
if there is another seed from the same community). How-
ever, we do know (approximately) how many other times
each community is sampled, and the (approximate) weight
that those samples will receive, so g can be estimated by
averaging some careful simulations. Via a standard Hoeffd-
ing bound (Kempe et al. 2015), O(n

2

ε2 log 1
ε ) simulations per

ESTVAL call guarantee error ε with high probability.

5 Experiments
We now present experiments comparing ARISEN with sev-
eral baselines on an array of networks. We focus on net-
works with about 100-1000 nodes because this is the size of
real-world social groups of interest to us. The first network
is homeless: Two networks (a and b) gathered from home-

Figure 5: Query complexity as K varies.

Table 1: ARISEN’s % influence gain with 25% fewer seeds.

Network/baseline Rec. Snowball RG TopK

homeless-a 24.2 9.9 20.7 91.1
india-1 0.03 6.6 25.7 29.1
netscience 4.8 63.9 35.4 43.4

less youth in Los Angeles and used to study HIV prevention
with 150-200 nodes each. Second, india: Three networks of
the household-level social contacts of villages in rural In-
dia. Gathered by Banerjee et al. (2014) to study diffusion
of information about microfinance programs, with 250-350
nodes each. Third, netscience1: a collaboration network of
network science researchers with 1461 nodes. Fourth, SBM:
a synthetic SBM graphs with 1000 nodes. There are 10 com-
munities with size from 350 to 30 nodes (pw = 6 · 10−3,
pb = 2·10−5). We approximate the optimal value by running
TIM (Tang, Xiao, and Shi 2014), a state of the art influence
maximization algorithm, on each full network. For each real
network, pw and pb are estimated from a different network in
the same category (for netscience, we use another collabora-
tion network, astro-ph1). For SBM, we use another network
from the same distribution. We present a cross-section of re-
sults across the datasets but the general trends hold for all
networks. Exhaustive results are in the supplement.

We consider four benchmarks. First, random greedy
(RG). RG uses the same query budget as ARISEN, but
queries nodes uniformly randomly. It then runs TIM on the
graph composed of the edges these queries reveal. Hence,
RG uses a sophisticated seed selection technique, but not
ARISEN’s sampling procedure. Second, TopK. TopK uses
ARISEN’s random walk sampling (lines 1-3), but seeds the
K samples with highest estimated community size instead
of using INITIALIZEWEIGHTS and REFINEWEIGHTS. RG
and TopK jointly test the importance of ARISEN’s sophisti-
cated methods for sampling the network and selecting seed
nodes, respectively. Third, recommend, which for each of the
K nodes, first queries a random node and then seeds their
highest degree friend. Fourth, snowball, which starts from a
random node and seeds that node’s highest degree neighbor.
It then seeds the highest degree neighbor of the first seed,
and so on. Recommend and snowball are the most common
strategies in the field (Valente and Pumpuang 2007).

Figure 3 shows that ARISEN obtains substantially higher
influence spread than the baselines, often exceeding the best
baseline by 20-50%. The x axis varies q. Each point gives

1http://www-personal.umich.edu/ mejn/netdata/



the fraction of OPT achieved for that q, averaged over 50
runs. E.g., the point at q = 0.2 for SBM indicates that
ARISEN’s value was 0.8 · OPT . We take K = 0.01n,
focusing on when few seeds are available (as in previ-
ous work (Chen, Wang, and Wang 2010)). All differences
(q ∈ [0.01, 0.7]) are statistically significant (t-test with Bon-
ferroni correction, p < 10−7). The gap between ARISEN
and the baselines is particularly high in the difficult case of
small but nonzero q. When q is close to 0, all algorithms per-
form close to OPT since little is possible. When q is very
high, influence maximization is easy and nearly any algo-
rithm performs well (Chen, Wang, and Wang 2010). Thus,
Figure 4 presents results where K is varied with q = 0.15
fixed (since this is the hard case). We see that ARISEN uni-
formly outperforms the baselines, particularly when K is
small. As K becomes larger, the baselines improve (again
because the problem becomes easier). However, they are still
outperformed by ARISEN.

In particular, we conclude from RG’s poor performance
that ARISEN’s random walk based query scheme substan-
tially improves on uniformly sampling an equivalent num-
ber of nodes. The comparison with TopK confirms that
ARISEN’s weighted seed selection is also necessary since
simply seeding the largest communities does poorly. In com-
bination, this demonstrates that ARISEN’s major elements
are both needed to ensure good empirical performance.

Figure 5 examines each algorithm’s query cost (each se-
lects the same number of seeds). The supplement listsR and
T values; here we just focus on the total queries. ARISEN
uses more queries than recommend and snowball, and an
equal number to RG and TopK. However, recommend and
snowball use more queries as K increases, with query cost
close to ARISEN for K = 0.02 · n. ARISEN’s query cost is
uniformly in the range 0.20 · n− 0.35 · n, a relatively small
portion of the network in absolute terms. This query bud-
get is justified by ARISEN’s larger influence spread, which
makes more efficient use of seed nodes. Intervening to seed
a node is often much more costly than querying its edges,
as in the HIV domain where an intervention is a day-long
class. Table 1 shows the percent by which ARISEN’s influ-
ence spread exceeds each baseline when the baseline uses
K = 0.02 · n but ARISEN uses 25% fewer seeds. ARISEN
outperforms all of the baselines, often by over 20%. Hence,
ARISEN delivers higher influence with fewer costly seeds.

6 Theoretical analysis
The previous section showed that ARISEN obtains close
to optimal influence spread on an array of real world net-
works. We complement these results with a theoretical anal-
ysis which formally demonstrates how ARISEN makes use
of community structure in the stochastic block model.

We aim to show that ARISEN’s expected influence
is close to OPT . We analyze the weights produced
by INITIALIZEWEIGHTS; applying REFINEWEIGHTS can
only increase E [g(X)] (Proposition 1). Note that INI-
TIALIZEWEIGHTS, and hence our theoretical guarantees,
does not require the algorithm to know q. However, RE-
FINEWEIGHTS uses q, if is available, to improve empiri-
cal performance. We often use the following connection be-

tween the joint behavior of the SBM/ICM on the one hand,
and the connected components of an Erdős-Rényi random
graph on the other. The ICM can be seen as removing each
edge independently with probability 1 − q. A node is in-
fluenced if afterwards it lies in the same connected compo-
nent as a seed node (Kempe, Kleinberg, and Tardos 2003).
Since each community is itself an Erdős-Rényi graph, the
connected components induced by the ICM in each commu-
nity are distributed exactly as those in an Erdős-Rényi graph
with connection probability pwq. A well-known result char-
acterizes the component sizes:
Lemma 1 ((Janson, Luczak, and Rucinski 2011)). Consider
the Erdős-Rényi graph G(n, p). If np < 1, then with proba-
bility 1 − o(1), its largest connected component has size at
most 3

(1−np)2 log n. If np > 1, then with probability 1−o(1),
its largest component has size (1 + o(1))βn . β is the solu-
tion to β + e−βnp − 1 = 0.

We denote by β(x) the fraction of nodes contained in the
largest connected component of G(x, pwq) (assuming that
xpwq > 1 and the event in Lemma 1 occurs). β(|Ci|) gives
the fraction of Ci that can be reached by a cascade.
Model parameters: As discussed earlier, we must place
some restrictions on pw and pb to model real-world net-
works. While it is often possible to prove approximation
guarantees for ARISEN in other settings, we focus on a par-
ticular parameter range which produces networks with com-
munity structure. First, we assume that each community is
internally connected, with few between-community edges.
Assumption 1. (a) For all communities Ci, it holds that
pw ≥ log |Ci|

|Ci| . (b) pb < 1
n .

Assumption 1(a) is necessary for each community to be
internally connected (Janson, Luczak, and Rucinski 2011);
the idea of a community is not meaningful if it may con-
tain entirely disconnected subgroups. Assumption 1(b) is
also necessary for meaningful community structure. With-
out it, we can see via Lemma 1 that the graph will contain
a giant connected component consisting just of between-
community edges. We make a complementary assumption
that influence mostly spreads within communities:
Assumption 2. (a) pwq|Ci| > 1 (b) Let cmax = maxi pbq ·
(n− |Ci|)|Ci|. We require cmax < 1.

Assumption 2(a) implies that it is possible for an influ-
ence cascade to reach a linear portion of the community.
Otherwise, if pwq|Ci| < 1, at most O(log |Ci|) nodes can
be influenced by any constant number of seeds (via Lemma
1). We focus on when it is possible for influence maximiza-
tion to have large results, not when only a vanishingly small
fraction of nodes can possibly be reached. In Assumption
2(b) cmax is the average number of additional communi-
ties influenced by a single seed node. cmax < 1 says that
while between-community spread is possible, the average
seed node influences just its own community. Otherwise, a
cascade starting in one community can reach a linear por-
tion of the graph. While it is clearly possible to give guar-
antees for this case (even for choosing seeds completely at
random), small between-community influence is both more
challenging and more relevant to applications.



Isolated communities: pb = 0
For simplicity, we start with disconnected communities (fix-
ing pb = 0). Here, g(X) is exactly the influence of a seed
set, so we just have to show that ARISEN obtains a high
value of g. We begin with a simplified version of our main
result which captures the intuition behind the proof. Sup-
pose that the top K communities each have equal size µ,
and occupy a linear portion of the network – for concrete-
ness, µK ≥ 0.01n. We have
Theorem 2 (Simplified case). Under the above conditions,
ARISEN can be implemented with approximation ratio (1−

1
e0.99 − 0.01− 1

K − o(1))β(µ) using O(log6 n) queries.
The query cost is chosen so that the random walk based

estimates of each community’s size are accurate with high
probability. We emphasize that only a polylogarithmic num-
ber of nodes need be queried, an exponential improvement
over exhaustive surveys. We now motivate the two compo-
nents of the approximation ratio. The first term is nearly
1−1/e, up to error terms which decrease as n andK become
large. We show that each of the topK communities is seeded
with probability close to 1− 1/e. The proof tracks the intu-
ition outlined when INITIALIZEDWEIGHTS was described:
each community receives total weight close to 1, giving it
probability close to 1

K of being hit by each of K seeds. The
second term, β(µ), is the fraction of each of the top K com-
munities which can be influenced by a seed node (via As-
sumption 2(a)). These nodes form a giant connected compo-
nent under the ICM. Consider a given seed node ui, which
is a uniformly random node in some Ci. With probability
β(µ), ui lies in this component; hence it influences at least
β(µ)2µ nodes in expectation. The best that OPT can do is
to influence the entire connected component with certainty,
giving an influence spread of β(µ)µ. The ratio between these
terms is β2(µ)µ

β(µ)µ = β(µ). Essentially, β(µ) expresses the dif-
ficulty of finding the influential nodes in each community
and increases as the product µpwq becomes larger.

We now state our full result, which applies when the top
K communities have unequal (possibly sublinear) sizes. We
compensate by setting T and R, the number of samples, to
account for this imbalance. We do so by introducing param-
eters ρ and ε. ρ reflects how large the topK communities are
compared to n, while ε reflects the desired accuracy. We then
set T = O

(
1
ε3ρ log 1

ερ

)
and R = O

(
1
ε2 log2

(
T
ε

)
log6 n

)
,

chosen to ensure that each community’s size is estimate ac-
curately and hence achieve the desired approximation guar-
antee. In Theorem 2 we fixed ε, ρ = 0.01, leading to T =
Θ(1), R = O

(
log6 n

)
and TR = O

(
log6 n

)
total queries.

Our result requires two technical conditions on ρ and ε.
Let µ now be the average size of the top K communities,
µ = 1

K

∑K
i=1 |Ci|. The first condition is ρ ≤ µ/n. For in-

stance, if K = 3 and the largest three communities occupy
3
4 of the graph in total, we need ρ ≤ 1

4 . This ensures that
there are enough samples to detect the largest K commu-
nities since we set T higher when ρ is small. ρ should be
large if we prefer to use few samples (and risk failing if the
top K communities are very small) and small to guarantee
performance even when all communities are small.

The second technical condition is that ε5ρ|Ci| = poly(n)
for all Ci, which says that the attainable degree of preci-
sion becomes smaller when there are very small communi-
ties which are hard to distinguish.

Let βmin = β((1 − ε)|CK |) and βmax = β(|C1|) where
C1 is the largest community and CK the kth largest. βmin
(βmax) measures the fraction of the smallest (largest) of the
top K communities that can be influenced. We have:
Theorem 3. Suppose that ρ ≤ µ

n and choose ε < 3
8 such

that ε5ρ|Ci| = poly(n) ∀Ci. Then ARISEN can be imple-

mented using O
((

1
ε5ρ

)
log3

(
1
ερ

)
log6 n

)
queries with ap-

proximation ratio (1− e−(1−ε) − ε− 1
K − o(1))

β2
min

βmax
.

One difference from Theorem 2 is the term β2
min

βmax
, caused

by imbalanced community sizes. When the top K com-
munities have similar sizes, β2

min

βmax
converges to β(µ). Be-

sides handling unequal community sizes, Theorem 3 lets
us use more queries to extend the approximation guaran-
tee to when all communities have sublinear size. E.g., when
µK = Θ(

√
n), we need O(

√
n log9 n) queries.

General case: pb > 0

We now generalize to handle edges between communities.
There are two new challenges. First, a random walk may
leave its starting community, which could invalidate our esti-
mate of that community’s size. However, since pb is small by
Assumption 1(b), there are few between-community edges.
Further, the random walks are short since R (the number of
steps) is polylogarithmic in n. Hence, we show that all walks
stay in their starting communities with high probability.

Second, we must account for between-community influ-
ence spread. ARISEN does not try to select nodes that bridge
multiple communities, so it may get unlucky and not ben-
efit at all from between-community influence. However, it
always does at least as well as when pb = 0 since any ad-
ditional influence can only help. On the other hand, OPT
may be able to exploit pb > 0 by using its full knowledge
of the network to find seeds that can each influence multi-
ple communities. We bound the extent to which this is pos-
sible. Specifically, Assumption 2(b) (cmax < 1) says that
between-community influence is small. Under this condi-
tion, we show that OPT can increase from the pb = 0 case
by at most a factor of

12 log nµ
1−cmax . When the topK communities

comprise a linear portion of the network (µ = Θ(n)), this is
constant with respect to n. Formally, we obtain:
Theorem 4. Under the same conditions as Theorem 3, but
with pb > 0, ARISEN achieves an approximation ratio of(

1− cmax
12 log n

µ

)
β2
min

βmax

(
1− e−(1−ε) − ε− 1

K
− o(1)

)
We note that the constant 1

12 can likely be improved; the
main take-away is the dependence on the network structure.
We conclude that ARISEN provably exploits community
structure in the SBM, providing context for its strong em-
pirical performance on real world networks.
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