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Abstract. We consider the problem of monitoring a set of targets, using
scarce monitoring resources (e.g., sensors) that are subject to adversar-
ial attacks. In particular, we propose a constant-sum Stackelberg game
in which a defender (leader) chooses among possible monitoring loca-
tions, each covering a subset of targets, while taking into account the
monitor failures induced by a resource-constrained attacker (follower).
In contrast to the previous Stackelberg security models in which the de-
fender uses mixed strategies, here, the defender must commit to pure
strategies. This problem is highly intractable as both players’ strategy
sets are exponentially large. Thus, we propose a solution methodology
that automatically partitions the set of adversary’s strategies and maps
each subset to a coverage policy. These policies are such that they do
not overestimate the defender’s payoff. We show that the partitioning
problem can be reformulated exactly as a mixed-integer linear program
(MILP) of moderate size which can be solved with off-the-shelf solvers.
We demonstrate the effectiveness of our proposed approach in various
settings. In particular, we illustrate that even with few policies, we are
able to closely approximate the optimal solution and outperform the
heuristic solutions.

1 Introduction
Protection1 of important targets is a critical security problem with a wide range
of applications including environmental surveillance, and infrastructure security.
One of the strategies is to monitor the targets by allocating resources, such as
inspection posts, sensor devices, etc. However, this allocation task can become
extremely challenging if one considers the possibility of malicious attacks [9].
Such adversarial actions will increase the vulnerability of targets; therefore, more
strategic monitoring policies should be implemented in order to ensure a high
level of robustness against potential adversarial attacks.

Game theory, and in particular, Stackelberg games have been used to model
complex security problems, in which a defender first commits to a strategy and
1 Throughout the paper, we will use the terms “cover”, “monitor”, “protect” inter-

changeably.
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an attacker who can surveil the defender’s strategy acts next to maximize the
harm. Some of the important applications of these models can be found in [15,
16]. In Stackelberg security games, it is often assumed that the defender com-
mits to a randomized strategy. While in many applications, the randomness is
advantageous to the defender by making the action less predictable, there are
also many security domains for which a randomized solution is not feasible, e.g.,
static sensor placement for monitoring. Also, most of the previous work has fo-
cused on models in which the targets are subject to attacks, whereas it is also
possible for an adversary to attack the defender’s resources.

In this paper, we introduce the “strategic monitoring problem”, in which a
defender aims to maximize the total value of the targets it protects by placing
a limited number of monitors. An adversary who aims to make the targets vul-
nerable, attacks some of the monitors such that the value of the unprotected
targets is maximized. We view this problem as a two-player Stackelberg game.

In our model, we assume that all of the targets are at risk and important to
be protected; therefore, the defender obtains a positive payoff equal to the total
value of protected targets, whereas the attacker’s reward is evaluated based on
the accumulative value of the targets that are unprotected. As a result, the sum
of both players’ payoff is equal to the total value of the targets. Our goal is to
find a minimax pure strategy for the defender, that is, a strategy that maximizes
the minimum payoff that the defender can obtain.

In terms of modeling, our model extends the existing literature of Stackelberg
security games by considering a more general attack model, which allows the
adversary to attack the resources. In addition, we solve for pure strategies for
the defender. Our commitment to pure strategies is due to the assumption that
the monitors are fixed and as a result randomized solutions are not applicable.
Furthermore, our model is general as it can accommodate for heterogeneous
targets (with arbitrary values) and monitors (with different monitoring powers).
We will elaborate on this in the formal problem description.

In terms of technical contributions, the strategic monitoring problem that we
study is highly intractable as both players’ strategy set is exponentially large.
In order to tackle this problem, we propose a novel max-min-max binary opti-
mization model, which allows us to leverage techniques from robust optimization
literature. In particular, we extend the K-adaptability idea from two-stage ro-
bust optimization literature, based on which first the desired set of monitors
together with K candidate coverage policies are selected. This is equivalent to
partitioning adversary actions intoK subsets, such that each subset is mapped to
a particular coverage policy. The coverage policies are such that the value of the
covered targets is not overestimated, but as high as possible. We extend the work
of Hanasusanto et al. [11] by generalizing their approach to the case of discrete
adversary actions by exploiting the specific structure of our problem. We show
that, in contrast to their formulation, we can reformulate the K-adaptability
problem as an MILP that is exact. The significance of the MILP formulation is
that it is polynomial in all problem inputs; thus, it circumvents the exponential-
ity of the attacker’s action. Furthermore, our approach bridges the gap between



Network Monitoring Games 3

the suboptimal heuristic solutions and the fully optimal, yet intractable exact
approach, where the trade-off between complexity and optimality can be tuned
using a single design parameter K.

In the remainder of this paper, we first give an overview of the related work.
Next, in Section 3 we formally define the strategic monitoring problem as a
constant-sum Stackelberg game and we show that it can be equivalently modeled
as a two-stage robust optimization problem. Following that, we introduce the K-
adaptability counterpart problem and we prove it can be reformulated exactly as
a single optimization problem of moderate size. Finally, in Section 4 we present
results that demonstrate how the presented approach performs across different
criteria. The paper concludes with a summary of contributions.

2 Related Work
The strategic monitoring problem falls under the category of large scale constant-
sum games with exponential strategy space. Mainly, there are two approaches to
tackle large scale games: One approach is based on iterative strategy generations
used by double-oracle algorithms [12, 8] for which there is no guaranteed polyno-
mial run-time. The other approach focuses on using compact representations of
the games, where a common approach is based on clustering strategies to solve
simpler games. In this regard, Bard et al. [1] propose a greedy-based clustering
approach. Also, in [2] authors use k-means clustering to construct the abstract
games. What we propose in this work can be viewed as an automatic genera-
tion of a partition of adversary’s strategy set, which is not reliant on any metric
such as the ones used in the clustering algorithms. In fact, the partitioning is
performed implicitly by choosing limited number of coverage policies.

This problem is also related to robust sub-modular optimization. In this re-
gard, Krause et al. [13] formalized a general max-min problem, and they proposed
an approximation algorithm to maximize the worst-case performance of a sub-
modular function against a set of possible failure scenarios but their algorithm is
only efficient for moderately-sized set of scenarios. Later, Orlin et al. [14] studied
a problem, in which one chooses a set of up to I items, and nature counteracts
by eliminating at most J of the selected items. The objective to maximize a
monotone sub-modular set function. The authors propose a greedy-based algo-
rithm with a constant (0.387) factor approximation result, valid for J = o(

√
I).

This work was followed by [7], in which they show the same approximation fac-
tor for J = o(I). In [17], the authors propose another greedy-based algorithm
and provide a bound using the curvature of the sub-modular function. Although
these greedy algorithms are computationally efficient, the approximation guar-
antees are quite loose, whereas in some applications, such as monitoring, it is
more desirable to spend more time in the decision making phase, since once the
monitoring locations are chosen, they will be in use for a long duration.

Finally, our solution approach draws from robust optimization (RO) litera-
ture. RO models concern decision making problems affected by uncertainty, in
which the uncertainty is modeled as a set, also referred to as uncertainty set.
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This class of problems are modeled as max-min optimization problems and can
also be considered as a zero-sum game against “nature” which acts as an ad-
versary by choosing the worst setting of the uncertain parameters. For further
reading one can refer to [3, 5]. Two-stage robust optimization is an extension of
the single-stage RO problems in which the decision maker chooses a secondary
action upon observing nature’s choice.

This class of problems are intractable in general [4], specially if the second-
stage actions are binary. However, there exists efficient approximation schemes
which have been proven to perform well in practice. In particular, finite adapt-
ability has been proposed [6], in which the nature’s action set, is partitioned and
a second-stage decision is determined for each partition. These partitions can be
either fixed by the modeler [18] or decided in the optimization [6, 11] process.
In the present work, we propose a novel two-stage optimization model for the
strategic monitoring problem and we build on the work of [11] which proposes a
methodology for obtaining K partitions, also known as K-adaptability. In [11],
the authors show that for polyhedron (convex) uncertainty sets, a two-stage ro-
bust optimization can be approximately reformulated as an MILP. We generalize
their result to the case of discrete sets, and we provide an MILP reformulation
that is exact.

3 Strategic Monitoring Problem

We are given a set of monitoring locations N := {1, . . . , N}, and a set of targets
T := {1, . . . , T}. Each target n has a (normalized) value Un ∈ [0, 1] which
indicates the importance of that target. Further, each monitor n′ ∈ N can cover
a subset of the targets. We represent the target coverage via a bipartite graph
G = (N , T , E), where E is the set of edges between N and T . An edge from
n′ ∈ N to n ∈ T , denoted by (n′, n), exists if n can be monitored by n′ (e.g., n
is within the observable range of n′). For each target n, we define δ(n) := {n′ ∈
N : (n′, n) ∈ E} which is the set of nodes that can monitor n. Figure 1 depicts
an example graph, in which the circles are the monitoring locations, and the
squares are the targets that need to be protected. We consider a constant-sum
Stackelberg game as:

max
X⊆N
|X|≤I

min
Z⊆X
|Z|≤J

F (X\Z), (1)

in which a defender aims to select a set of nodes X ⊆ N of cardinality at
most I as monitors such that it maximizes the coverage of the targets after an
adversary eliminates subset Z ⊆ X of the chosen monitors. The payoff function
F (·) evaluates the targets that are covered, given the defender and attacker’s
strategies, and it is defined precisely as follows:

F (Y) :=
∑
n∈T

UnI (∃n′ ∈ Y : n′ ∈ δ(n)) , (2)
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Fig. 1. An example input of the strategic monitoring problem. In this figure the circles
represent targets, and squares are the monitoring locations.

where I(·) is the indicator function defined as:

I(P ) =
{

0 if P ≡ FALSE
1 if P ≡ TRUE

. (3)

According to this definition, a target is covered iff at least one its neighbors is
chosen as a monitor and has not been attacked by the adversary.

In the following proposition, we show the importance of modeling the ad-
versary. We prove that the optimal solution of the problem that ignores the
existence of an adversary can be quite sub-optimal in the presence of adversary.

Observation 1 The optimal solution of a problem that ignores the possibility
of adversarial attacks can be sub-optimal in Problem (1) with optimality gap in
the order O(T ).

Proof. We prove this by means of an example. Consider an instance of Prob-
lem (1) on the network depicted in Figure 1, with input given as N = 5, T = 6,
I = 2, J = 1. We also assume that all of the targets have a value equal to 1. In
the absence of an adversary, (or if we ignore the adversary), an optimal solution
is to choose nodes 1 and 2 which will cover all of the targets. If an adversary
exists, however, this decision can be highly sub-optimal as in this case if node 1
is attacked, only 2 targets will be covered. By optimizing against an adversary,
the optimal decision is to select nodes 1, and 3. This solution obtains a coverage
of 4.

In this particular example, we observed an optimality gap of 2 (=4-2). Now,
consider the same network structure with T targets, in which nodes 1, and 3
are connected to T − 2 targets and node 2 covers the remaining 2 targets. The
optimality gap in this case is T − 4 which increases linearly with the number of
targets. Therefore, we can conclude that in the worst-case this gap is O(T ). ut

In the description of Problem (1), the adversary’s choice is dependent on the
decision maker’s choice X . We propose an alternative formulation in which the
dependence on X is removed, and the adversary can choose from the ground set
N (instead of X ). We show that the two problems are equivalent.
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Proposition 1. Stackelberg game model (1) is equivalent to:

max
X⊆N
|X|≤I

min
Z⊆N
|Z|≤J

F (X\Z), (4)

in which the adversary can choose among the set N .

Proof. This proof is based on the intuition that a rational adversary will always
choose among the selected monitors by the defender, even if it is given the option
to attack other nodes. The formal proof is given below.

Fix an arbitrary X ⊆ N and let z and w denote the optimal objective values
of the inner minimization problems in (1) and (4), respectively. We will show
that w = z, which given the choice of X is arbitrary, results in the equivalence
of the two problems. Since X ⊆ N , it follows that w ≤ z. We show that the
converse is also true. Let Z? be optimal decision for the inner minimization
problem in (4). We show that one can construct a solution Z ⊆ X feasible in
the inner minimization problem of (1) such that F (X\Z) = F (X\Z?), implying
that z ≤ w. If Z? ⊆ X , we can define Z = Z? and the claim follows. Else,
let z ∈ Z?\X and define Z := Z?\{z}. Then X\Z = X\{Z?\{z}} = X\Z?
and thus F (X\Z) = F (X\Z?). As the choice of X was arbitrary, the proof is
complete. ut

3.1 Reformulation as a Two-Stage Robust Binary Program
In this section, we show that the strategic monitoring problem can be reformu-
lated as a two-stage binary program. Since the two Problems (1) and (4) are
equivalent, we will focus on the latter. Indeed, as it will become apparent later
on, this simplification will enable us to reformulate Problem (1) exactly as an
MILP. The two-stage binary program is as follows:

max
x∈U

min
ξ∈Ξ

max
y∈{0,1}T

∑
n∈T

Unyn :
∑

n′∈δ(n)

ξn′xn′ ≥ yn, ∀n ∈ T

 . (5)

In this formulation, x is a binary vector and xn = 1 iff node n is chosen to
place a monitor. Binary vector ξ encodes whether a node is not attacked, where
ξn = 0 iff node n is attacked by the adversary. Also, binary vector y indicates
which targets are monitored. Note that the value of y can be determined after
the adversary’s action is revealed, which forces the introduction of the second-
stage counting stage. Set U = {x :

∑
n∈N xn ≤ I} is the set of all feasible

monitor selections. Also, Ξ is the set of feasible actions of the adversary and it
is defined as:

Ξ :=
{
ξ ∈ {0, 1}|N | :

∑
n∈N

(1− ξn) ≤ J
}
. (6)

This set expresses that at most J nodes can be attacked by the adversary, which
is equivalent to the definition used in Problem (4). The first maximization prob-
lem determines the value of x, i.e., the set of monitoring locations. In the inner
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minimization problem, the adversary chooses which monitors to attack. Finally,
the innermost maximization problem determines the covered targets i.e., the
problem maxy∈{0,1}T

{∑
n∈T Unyn :

∑
n′∈δ(n) ξn′xn′ ≥ yn, n ∈ T

}
models the

payoff function F (·) introduced in Problem (1). The constraints of this problem
stipulate that a target node is monitored if there is at least a monitor among its
neighbors, which is not attacked.
Remark 1. In Problem (5), set U can be defined by any arbitrary linear con-
straints, and our solution approach remains valid. However, we are only consid-
ering cardinality constraints in the definition of U .

Proposition 2. Problem (4) is equivalent to the two-stage robust monitoring
Problem (5).

Proof. Problem (4) is equivalent to:

max
X⊆N
|X|≤I

min
Z⊆N
|Z|≤J

F (X\Z) = max
x∈U

min
ξ∈Ξ

F ({n ∈ N : xn = 1}\{ξ ∈ Ξ : ξn = 0}),

thus, it suffices to show that for any x, and ξ:

F ({n ∈ N : xn = 1}\{ξ ∈ Ξ : ξn = 0}) =

max
y∈{0,1}T

∑
n∈T

Unyn :
∑

n′∈δ(n)

ξn′xn′ ≥ yn, ∀n ∈ T

 .
(7)

Let y? be the optimal solution of the maximization problem:

∀n ∈ T : y?n = 1⇒
∑

n′∈δ(n)

ξn′xn′ ≥ 1.

Also, we note that the opposite direction holds true, meaning that:∑
n′∈δ(n)

ξn′xn′ ≥ 1⇒ y?n = 1,

otherwise, we can construct a new solution ỹ with higher objective which con-
tradicts the optimality of y?. As a result,

y?n = 1⇔ ∃n′ ∈ δ(n) : ξn′ = 1, xn′ = 1,

or equivalently:
y?n = I(∃n′ ∈ δ(n) : ξn′ = 1, xn′ = 1).

By summing over all n ∈ T :∑
n∈T

Uny
?
n =

∑
n∈T

UnI(∃n′ ∈ δ(n) : ξn′ = 1, xn′ = 1)

= F ({n ∈ N : xn = 1}\{ξ ∈ Ξ : ξn = 0}),
(8)

where the last equality follows by the definition of the coverage function F (·).
ut
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3.2 K-Adaptability
K-Adaptability has been proposed to approximate the solution to the two-stage
robust optimization problems with integer recourse decisions. In K-adaptability,
K non-adjustable second-stage policies yk, k ∈ {1, · · · ,K} are chosen in the first
stage, that is before the adversary takes an action. Upon observing the adver-
sary’s action, the best policy among the feasible ones will be output as the solu-
tion. This is equivalent to automatically partitioning the adversary actions into
K subsets, such that each subset is mapped to particular covering policy. The
covering policies are such that the number of covered nodes is not overestimated,
but is as high as possible. In the strategic monitoring game, the second-stage
variables are in fact indicator functions that indicate, for each node, whether it is
covered or not. In K-adaptability, we approximate this indicator function, where
we limit ourselves to a small number (K) of counting policies. The payoff will
be then evaluated based on the indicator function, thus, K-adaptability serves
as an approximation scheme of the payoff function.

K-Adaptability in Strategic Monitoring Problem

The K-adaptability counterpart of Problem (5) can be expressed as:

max
x∈U

yk∈{0,1}T
min
ξ∈Ξ

max
k∈K

{ ∑
n∈N

Uny
k
n : ykn ≤

∑
n′∈δ(n)

ξn′xn′ ,∀n ∈ T
}
. (9)

In Formulation (9), x encodes which nodes are chosen as monitors. Variables yk
are the K covering policies, where each policy yk indicates which target nodes
are covered. In other words, ykn = 1 means that according to the kth policy, node
n is monitored. These policies are chosen in the first stage, before observing the
adversary’s action. In addition, ξ denotes the adversary’s action which lies in the
set of adversary’s pure strategies Ξ. This set is defined in Equation (6). Also,
set K := {1, · · · ,K}.

In the first maximization problem, the defender chooses both the monitoring
nodes, and K covering policies. If ykn = 1, it means that according to policy k,
node n is monitored. In the minimization problem, the adversary counteracts
by choosing which nodes to attack. After observing which monitoring nodes are
not attacked, the best feasible policy is chosen in the inner-most maximization
problem. Policy k is feasible if it satisfies the constraints in the innermost maxi-
mization problem. The chosen policy is an approximation to the true payoff that
the defender receives.

These policies approximate the true coverage, meaning that instead of enu-
merating all defender-attacker pairs of actions and evaluating the corresponding
payoffs, one approximates the payoff, using K covering policies. This function is
determined simultaneously with the defender’s optimal strategy, in the formula-
tion presented. We will illustrate the K-adaptability via an example.

Example 1. Consider an instance of the problem on a graph depicted in Figure 2,
where all of the targets have equal values. We consider a setting with I = 3, and
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Fig. 2. Companion figure to Example 1. An example to illustrate the K-adaptability

J = 1. For K = 1, an optimal solution to the 1-adaptability problem is x =
[1, 1, 0, 0, 1], with the policy y1 = [0, 0, 1, 1, 1, 1, 0, 0]. According to this solution,
the defender chooses nodes 1, 2, and 5 as monitors. In this case, the adversary’s
best response is to attack node 5 which results in the coverage of only 4 target
nodes (those covered by 1, and 2) and this is captured by policy y1. Note that
the policy y1 is feasible under any other attacker’s response. This means that
even if the adversary chooses nodes 1 or 2 to attack, the same 4 targets would be
covered. In fact, under these scenarios more targets are covered, but the policy
under-counts those covered targets by setting their coverage value to 0 in order
to ensure feasibility for the case that node 5 is attacked. As a result, we obtain
a conservative approximation of the problem.

Now, let us compare this solution to the solution to the 2-adaptability prob-
lem. With K = 2, the payoff function is described approximately via two policies.
In this case, the optimal defender strategy is x = [1, 0, 1, 0, 1] and the two poli-
cies are equal to: y1 = [1, 0, 1, 1, 1, 1, 0, 0], and y2 = [0, 0, 1, 1, 0, 1, 1, 1]. If the
attacker chooses to attack either node 1 or 3, policy y2 will be feasible , which
indicates that 5 nodes will be always covered (in either of the scenarios). If the
attacker chooses node 5, policy y1 is feasible which covers another set of 5 nodes.
Comparing to the K = 1 case, the coverage is increased by 1.

This example also gives insights on how our approach allows an adjustable
approximation to the true optimal solution with a single parameter K. In fact, in
this example, the solution of K = 1 is the same as the greedy algorithms proposed
in [14, 7, 10]. By increasing K, the optimal objective value of the K-adaptability
problem approaches the optimal solution of the original problem. Also, in this
example, the solution of the 2-adaptability problem is optimal as it yields the
optimal coverage of 5.

Proposition 3. Value of K in order to recover an optimal solution to Prob-
lem (5) is upper-bounded by

(
I
J

)
. Moreover, there are instances of Problem (5)

for which this bound is tight, in the sense that exactly K =
(
I
J

)
policies are

needed in order to obtain the optimal coverage.
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Proof. We note that Problem (5) is always solvable since given any fixed value
of K, x = 0 and yk = 0, ∀k ∈ {1, · · · ,K} is always a feasible solution.
Also, observe that the cardinality of the set of feasible second stage actions is
|{0, 1}T | = 2T . Thus, there exists an optimal solution with 2T policies. Given an
optimal solution (x?,y1?, . . . ,yK

?), we show that we can construct an optimal
solution with the same objective value and with only K ′ =

(
I
J

)
policies.

Since (x?,y1?, . . . ,yK
?) is optimal, there exists a partition of Ξ into K

disjoint subsets {E(k)}Kk=1 such that yk is feasible and optimal, for all ξ ∈ Ξ(k).
Specifically, we can define:

Ξ(k) =ξ ∈ Ξ : k = min

k′ : k′ ∈ arg max
k∈{1,··· ,K}

{
∑
n∈T

Uny
k?

n :
∑

n′∈δ(n)

ξkn′x
?
n′ ≥ yk

?

n,∀n


 .

Also, it follows directly from the definition of {Ξ(k)}Kk=1 that:

ξ ∈ Ξ(k) ⇒ ξ′ ∈ Ξ(k) : ξ′ ◦ x = ξ ◦ x,

where (◦) indicates the Hadamard product. This implies that for any K such
that Ξ(k) is non-empty, ξ′ ◦ x has a unique value for the ξ ∈ Ξ(k). Finally, we
note that, for any x, there are only

(
I
J

)
uniques values for ξ ∈ Ξ(k), it follows

that the maximal number of subsets that are non-empty is at most
(
I
J

)
. Since

at most
(
I
J

)
subsets are non-empty, we can eliminate all policies associated with

empty subsets, and maintain an optimal solution.
Now we prove, via an example, that there exist instances where exactly K =(

I
J

)
is needed in order to obtain the optimal solution. Consider the example

network in Figure 3. Let us assume the values I = N , and J = 1. For simplicity,
we assume all targets have equal values. Here, the defender will choose all the
monitoring nodes and the optimal coverage value is N − 1.

In the K-adaptability problem, an example policy (feasible for the case that
node 1 is attacked) will be equal to [0, 1, · · · , 1], which gives the N − 1 coverage.
However, this policy is not feasible under other attack scenarios. In general if
node n is attacked, a feasible policy would be a vector whose entries are equal
to 1, except for the nth entry, which is equal to 0. Since the total number of
scenarios is N, we can only obtain the optimal coverage of N − 1 with K =

(
N
1
)

policies.
ut

Remark 2. This result is stronger than what authors in [11] propose. Their upper
bound on the number of policies needed in order to obtain an optimal solution
to the Problem (5) is K = 2T (remember T is the number of targets). Here, we
showed that this bound can be improved to K =

(
I
J

)
.

The following proposition provides the lower bound on the value of K in
order to ensure that the K-adaptability problem yields a non-zero solution.
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Fig. 3. Companion figure of Propositions 3 and 4.

Proposition 4. Let ∆(t) be the tth highest degree in the network (e.g. ∆(1) is
the maximum degree and ∆(N) is the minimum degree). For any K ≥ min { T :
min(I,

∑T
t=1 ∆

(t)) ≥ J + 1 }, at least one node will be covered. Moreover, this
bound is tight in the sense that there are instances for which exactly K =
min { T : min(I,

∑T
t=1 ∆

(t)) ≥ J + 1} is needed to have a non-zero cover-
age.

Proof. We first show a way to construct a solution x to the Problem (9), which
requires the minimum number of policies (value of K) and obtains a non-zero
coverage.

The intuition is that if we require that at least one node is covered, that node
had better have the maximum number of neighbors, because this will increase
the likelihood that the node will be covered. As a result, we rank and rename all
the nodes in descending order of their degree. Let us use ∆(t) to denote the tth

highest degree node in the network, meaning that ∆(1) ≥ ∆(2) ≥ · · · ≥ ∆(N).
We start from the first node in this order, and we select all of its neighbors.

We continue until either we exceed the budget I, or we have chosen all the
neighbors. Next, we check whether min(I,

∑T
t=1 ∆

(t)) ≤ J, in which T is the
current node’s index, i.e., T th highest-degree node. This condition determines
if the number of chosen nodes is less than the number of nodes that can be
attacked. If this condition holds, we move to the next highest-degree node and
repeat the steps.

At termination, there are T ? nodes which have neighbor nodes that are cho-
sen. The condition J < min(I,

∑T?

t=1 ∆
(t)) also suggest that at least one of these

T ? nodes will be covered since the total number of chosen nodes exceeds the
number of nodes that are unavailable. We do not know a priori which of these
T ? node will be covered. Therefore, we define T ? policies, where policy yk := ek

(ek is a all-zeros vector with 1 in kth entry), ∀k ∈ {1, · · · , T ?}. These policies
are feasible in Problem (9), as for each possible adversary’s action, one of the
above policies will be a feasible coverage. Also, the worst-case coverage is 1.

So far, we have constructed a solution which ensures a worst-case coverage
of 1. In other words, T ? is an upper bound on K. Next, we prove that there are
network structures for which this bound is tight, meaning that exactly K = T ?

is needed in order to obtain a non-zero objective. Consider a network structure
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such as the one depicted in Figure 3. For I = 2 and J = 1, a solution is to
choose nodes 1, and 2 and T ? = 2. We can observe that with fewer policies, i.e.,
K = 1, the covering policy is all zeros, as this is the only feasible policy for all
adversarial actions. This means that exactly 2 policies are needed in order to
obtain a non-zero coverage which is equal to 1, and indeed it is optimal.

Finally, note that, for the sake of this proof, the values of the targets are
not important as we are only interested in a non-zero solution and this will be
achieved by making sure that there are enough covering policies. ut

3.3 Reformulation as an MILP
In this section, we derive an exact formulation for the K-adaptability counter-
part of the strategic monitoring problem. Our approach is inspired by work of
Hanasusanto et al. [11] who show that the K-adaptability problem of a two-stage
robust optimization problem with binary second-stage actions can be approxi-
mately reformulated, as an MILP, for Ξ defined as a non-empty polyhedron. In
this section, we show a stronger result by proving that we can provide an MILP
formulation that is exact, and it extends to the discrete set Ξ.

The constraints in the inner maximization problem make Problem (9) less
well-behaved. An alternative formulation is:

max
x∈U

yk∈{0,1}T
min
l∈L

min
ξ∈Ξ(x,yK,l)

max
k∈K, lk=0

∑
n∈T

Uny
k
n, (10)

in which, L = {0, . . . , T}K . Also, set Ξ(x,yK, l) is a subset of the set Ξ, depen-
dent on x, yK := {y1, · · · ,yK}, and l and is defined as:

Ξ(x,yK, l) =

ξ ∈ Ξ :

yklk >
∑

n′∈δ(lk)

ξn′xn′ , if ∀k ∈ K : lk > 0

ykn ≤
∑

n′∈δ(n)

ξn′xn′ , ∀n ∈ T , if ∀k ∈ K : lk = 0

 ,

(11)
In the above definition, vector l encodes which of the K second-stage policies are
feasible. If lk = 0, it means that policy k is feasible; therefore, all the constraints
must be satisfied, i.e., all the coverage constraints for all of the targets. Note that
the inner-most maximization problem chooses the best feasible policy (lk = 0).
On the other hand, if lk > 0, it indicates that there is at least one constraint
that is violated by policy k, and the value of lk indicates which constraint. In
this definition, and according to the first constraint for lk > 0, policy k violates
the constraint corresponding to node lk, whereas if lk = 0, it means that policy
k must satisfy all the constraints, thus the constraints are imposed for all n ∈ T .
As a result, by introducing l, the constraints of the inner maximization problem
are absorbed by decision l, and parameterized sets Ξ(x,yK, l).

Remark 3. In the above definition of vector l, it is sufficient to find at least one
constraint violation in order for policy k to be infeasible, and lk records the index
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of that constraint (equivalently, the node for which the coverage constraint is
violated).

While the discrete nature of set Ξ prohibits any attempts to use duality
theory in the reformulation as an MILP, in the following proposition, we show
that using certain structure of sets defined by Equation (11), we can disregard
the intergality constraints and obtain a convex set.

Proposition 5. Problem (10) remains unchanged if we replace the set Ξ with
the following:

Ξ :=
{
ξ ∈ [0, 1]|N | :

∑
n∈N

(1− ξn) ≤ J
}
. (12)

in which the integrality constraint on ξ is relaxed.

Proof. Throughout this proof we use Ξconvex and Ξ to refer to the convex, and
discrete sets, respectively. In order to show that the optimal objective value of
Problem (10) does not change under the set Ξconvex, first, note that the payoff
function is only dependent on the

∑
n∈T y

k
n,∀k ∈ K and not the values of ξ. As

a result, we only need to prove, for any arbitrary (x,yK, l):

if Ξconvex(x,yK, l) 6= ∅ ⇒ Ξ(x,yK, l) 6= ∅.
This follows since for cases when both sets are non-empty, for any fix (x,yK, l),

the objective values of both problems are equal. Let us choose an arbitrary
(x,yK, l). For the sake of conciseness, we drop the dependence on x, and yK.

Now, suppose ξ̃ ∈ Ξconvex(l) :

yklk >
∑

n′∈δ(lk)

ξ̃n′xn′ , if ∀k ∈ K : lk > 0, (13)

ykn ≤
∑

n′∈δ(n)

ξ̃n′xn′ , ∀n ∈ T , if ∀k ∈ K : lk = 0, (14)

According to Equation (13), and since x ≥ 0, ξ̃ ≥ 0 and y ≤ 1 :

lk > 0⇒ ylk = 1, ξn′xn′ = 0, ∀n′ ∈ δ(lk)⇒

ξn′ = 0, ∀n′ ∈ δ(lk) : xn′ = 1.
Now, we define ξ̂n := dξ̃ne, ∀n ∈ N , and we show that ξ̂n ∈ Ξ(l). In order for
ξ̂n to be in Ξ(l), it must satisfy the constraints that define the set Ξ(l).

∀k : lk > 0
∑

n′∈δ(lk)

ξ̂n′xn′ =
∑

n′∈δ(lk):xn′=1

ξ̂n′xn′ =
∑

n′∈δ(lk):xn′=1

dξ̃nexn′ = 0 ≤ yklk .

(15)
Also,

∀k : lk = 0
∑

n′∈δ(n)

ξ̂n′xn′ ≥
∑

n′∈δ(n)

ξ̃n′xn′ ≥ ykn, ∀n ∈ T . (16)

The proof is complete, as we showed ξ̂ ∈ Ξ(l).
ut
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Before reformulating the problem as an MILP, we note that the set described
by Equation (11) is not closed. We propose to substitute this set with the fol-
lowing set:

Ξc(x,yK, l) =

ξ ∈ Ξ :

yklk ≥
∑

n′∈δ(lk)

ξn′xn′ + 1, if lk > 0, ∀k ∈ K

ykn ≤
∑

n′∈δ(n)

ξn′xn′ , ∀n ∈ T , if lk = 0, ∀k ∈ K

 .

(17)
Proposition 6. Sets Ξc(x,y, l) and Ξ(x,y, l) are equal.
Proof. It suffices to show that if lk > 0:

yklk >
∑

n′∈δ(lk)

ξn′xn′ ⇔ yklk ≥
∑

n′∈δ(lk)

ξn′xn′ + 1.

For a given (x,y, l), ξ satisfies the constraint
(
yklk >

∑
n′∈δ(lk) ξn′xn′

)
only if(∑

n′∈δ(lk) ξn′xn′ = 0
)
.

The same is true for ξ satisfying the constraint
(
yklk ≥

∑
n′∈δ(lk) ξn′xn′ + 1

)
.

Therefore, the two sets are equal. ut
Remark 4. This result is stronger than [11] as we are able to obtain an exact
reformulation rather than an approximate formulation.
Next, we present the MILP reformulation of Problem (9).
Theorem 1. Problem (9) can be exactly reformulated as the following MILP:
max τ
s.t. x ∈ U , yk ∈ {0, 1}N , k ∈ K, τ ∈ R

λ(l) ∈ ∆K(l), α(l) ∈ RN+2
+ , βk(l) ∈ RN+ , ∀k ∈ K, ν(l) ∈ RK+

τ ≤
∑
n∈N
−αn(l) + (N − J)αN+1(l)−

∑
k∈K
lk 6=0

(yklk − 1)νk(l) + . . .

. . .
∑
k∈K
lk=0

∑
n∈T

yknβ
k
n(l) +

∑
k∈K

λk(l)
∑
n∈T

Uny
k
n,

− αn(l) + αN+1(l)−
∑
k∈K
lk 6=0

∑
n′∈δ(lk)

xn′νk(l) +
∑
k∈K
lk=0

∑
n′∈δ(n)

xn′β
k
n(l) ≤ 0,∀n ∈ N ,


, ∀l ∈ ∂L

α(l) ∈ RN+1
+ , ν(l) ∈ RK+∑

n∈N
−αn(l) + (N − J)αN+1(l)−

∑
k∈K
lk 6=0

(yklk − 1)νk(l) ≥ 1

− αn(l) + αN+1(l)−
∑
k∈K
lk 6=0

∑
n′∈δ(lk)

xn′νk(l) = 0, ∀n ∈ N


,∀l ∈ L+

.

(18)
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Proof. This result follows from Proposition 5 and 6 and derivation in [11] . In
order to make the paper self-contained, we will provide the full derivation in
Appendix B. ut

Remark 5. For a fixedK, the size of the above MILP is polynomial in all problem
inputs, thus, it circumvents the exponentiality of the attacker’s action set.

4 Results
In this section, we present different numerical results that demonstrate the per-
formance of K-adaptability, in terms of both computation effort and approxi-
mation quality. We use randomly generated graphs, where an edge between a
monitor and a target exists with probability P = 0.2. Our results are averaged
over 20 sample networks. In all experiments, there is a time limit of 60 minutes.
Also, all the targets are assumed to have equal value. This assumption is to
facilitate the interpretation of the results.

In our experiments, we compare our approach against an exact scenario-
based MILP solution, which explicitly enumerates the adversary’s actions and
solves for the best defender strategy against the worst-case attacker action. The
formulation for the scenario-based problem is presented in Appendix A. We also
compare our approach to the greedy-based algorithm by Tzoumas et.al [17].

Optimal Coverage vs. K [N=20, T=5, I=8, J=5]: The first experiment
compares the optimal solution of the K-adaptability problem, for various values
of K, with the exact solution. Both problems use greedy solution as warm-start.
In Figure 4, the vertical axis shows the normalized coverage (optimal coverage
divided by the total number of targets). The first three bars in this plot are the
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Fig. 4. Coverage vs. K

optimal coverage results from 1-, 2-, and 3-adaptability problems, and the last
bar corresponds to the exact solution. Here, we can observe that by increasing K
from 1 to 2 and 3, the optimality gap monotonically decreases, where for K = 3,
this gap is less that 10%.
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Coverage/Solver Time vs. Number of Attacks [N=30, T=8, I=8, K=2]
We now investigate how our approach performs, both in terms of solver-time
and solution quality, compared to the exact approach. Figure 4(a) shows the
normalized coverage, plotted versus different numbers of adversarial attacks (J).
The blue and yellow bars are the results of the 2-adaptability and exact problems,
respectively. We observe that as J increases, the coverage decreases, until J = 8
for which the exact formulation could not find a feasible solution within the time-
budget. This is because, going beyond J = 7, the number of attack scenarios, i.e.,
the number of constraints, becomes very large. For example, for (J = 8), there
were

(30
8
)
≈ 6× 106 constraints and the solver did not obtain a feasible solution

within the 1-hour time budget. However, we observe that the 2-adaptability
solution does not suffer from this issue, as it is able to solve for such cases. Also,
for (J < 8), it closely approximates the exact solution.
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Fig. 5. Comparing solver time and coverage for exact and 2-adaptability problems

Figure 4(b) compares the solver time of the 2-adaptability and exact solution.
We observe that the exact solution quickly becomes intractable as J increases.
For larger J, both problems reach the time limit, however, as Figure 4(a) sug-
gests, for (J > 7) the exact approach fails to provide a solution within the time
limit, whereas the 2-adaptability problem yields a high quality solution.

K-adaptability vs. Greedy [N=20, T=5, I=8, J=4, K=2]: In this ex-
periment, we test our approach on harder graph instances, graphs with solutions
that are hard for heuristic algorithms to find, and we average over 10 such graphs.
For instance, see Figure 2. In our comparison, we use the greedy algorithm pro-
posed in [17] as the baseline. There are several works on greedy solutions, how-
ever, most of them are limited in terms of allowable ranges for J [14, 7]. Thus,
we compare our solution to the work of [17], since it applies to all regimes of
J. Figure 6 shows the normalized coverage, for greedy, 1− and 2−adaptability
problems. This result indicates that by K as low as 1, on average we are able to
recover the greedy solution, where the 2−adaptability significantly outperforms
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Fig. 6. Comparing Greedy Solution with 1- and 2-Adaptability Problems

the greedy solution. As a result, this experiment illustrates that on hard graph
instances that greedy does not perform well, K-adaptability can outperform,
using only small values of K.

5 Conclusion
This work studies a Stackelberg game model for the strategic monitoring prob-
lem. This problem is highly intractable. Thus, we provide a tractable approxi-
mation scheme based on K-adaptability formulation. Our solution methodology
automatically partitions the set of adversary’s strategies and maps each subset
to a coverage policy. These policies are such that they do not overestimate the
defender’s payoff. We show that there exists an exact MILP reformulation of the
K-adaptability problem whose size grows polynomially in the description of the
problem input. We empirically show, the shortcomings of both the heuristic and
exact approaches and that K-adaptability can remedy those issues. In partic-
ular, our experiments indicate that with even with small values of K, ranging
from 1, to 3, K-adaptability recovers both the greedy and exact solutions.
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A Exact Scenario-based MILP
In Problem (5), the optimal pure strategy for the defender can be obtained from
the solution of the following deterministic MILP problem which enumerates all
the attacker pure strategies. This reformulation is exact, however, it requires a
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number of variables and constraints which is exponential in N . In this formu-
lation yξ,n is a binary variable and it is equal to 1 iff under attack scenario ξ,
target n is covered.

max
x∈U

y∈{0,1}|Ξ|×N

τ

s.t. yξ,n ≤
∑

n′∈δ(n)

ξn′xn′ , ∀n ∈ N , ∀ξ ∈ Ξ

τ ≤
∑
n∈N

yξ,n, ∀ξ ∈ Ξ

(19)

B Exact MILP Formulation of the K-Adaptability
The following reformulation is based on [11]. The objective function of the Prob-
lem (10) is identical to:

min
l∈L

min
ξ∈Ξc(x,y,l)

[
max

λ∈∆K(l)

∑
k∈K

λk
∑
n∈T

Uny
k
n

]
, (20)

where ∆K(l) = {λ ∈ R+ : e>λ = 1, λk = 0,∀k ∈ K : lk 6= 0}. We define
∂L := {l ∈ L : l >| 0}, and L+ := {l ∈ L > 0}. Note that ∆K(l) = ∅ if and only
if l > 0. If Ξc(x,y, l) = ∅ for all l ∈ L+, then the problem is equivalent to:

min
l∈∂L

min
ξ∈Ξc(x,y,l)

[
max

λ∈∆K(l)

∑
k∈K

λk
∑
n∈T

Uny
k
n

]
. (21)

By applying the classical min-max theorem:

min
l∈∂L

max
λ∈∆K(l)
l∈∂L

min
ξ∈Ξc(x,y,l)

∑
k∈K

λk
∑
n∈T

Uny
k
n. (22)

This problem is also equivalent to:

max
λ(l)∈∆K(l)
l∈∂L

min
l∈∂L

min
ξ∈Ξc(x,y,l)

∑
k∈K

λk(l)
∑
n∈T

Uny
k
n. (23)

We note that if Ξc(x,y, l) 6= ∅, for some l ∈ L+ the objective of Problem (10)
evaluates to −∞. Using the epigraph form, Problem (10) is equivalent to:

max τ
s.t. x ∈ U ,yk ∈ {0, 1}N , k ∈ K

τ ∈ R, λ(l) ∈ ∆K(l), l ∈ ∂L
τ ≤

∑
k∈K

λk(l)
∑
n∈T

Uny
k
n, ∀l ∈ ∂L, ξ ∈ Ξc(x,y, l)

Ξc(x,y, l) = ∅, ∀l ∈ L+.

(24)
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The semi-infinite constraint associated with l ∈ ∂L is satisfied if and only if:

min
∑
k∈K

λk(l)
∑
n∈T

Uny
k
n

s.t. 0 ≤ ξn′ ≤ 1, ∀n′ ∈ N∑
n′∈N

ξn′ ≥ N − J

yklk ≥
∑

n′∈δ(lk)

ξn′xn′ + 1, if lk > 0, ∀k ∈ K

ykn ≤
∑

n′∈δ(n)

ξn′xn′ , ∀n ∈ T , if lk = 0, ∀k ∈ K

(25)

is greater than τ.
In order to obtain the dual formulation, we introduce an auxiliary variable

ξT+1 = 1, and we rewrite the objective as: (
∑
k∈K λk(l)

∑
n∈T Uny

k
n) ξT+1. Using

strong linear programming duality:

max
∑
n∈N
−αn(l) + (N − J)αN+1(l)−

∑
k∈K
lk 6=0

(yklk − 1)νk(l) +
∑
k∈K
lk=0

∑
n∈T

yknβ
k
n(l) + αN+2(l)

s.t. αn(l) ≥ 0, n ∈ {1, . . . , N + 1}, βk(l) ∈ RN+ , ∀k ∈ K, ν(l) ∈ RK+
−αn(l) + αN+1(l)−

∑
k∈K
lk 6=0

∑
n′∈δ(lk)

xn′νk(l) +
∑
k∈K
lk=0

∑
n′∈δ(n)

xn′β
k
n(l) ≤ 0,∀n ∈ T ,

αN+2(l) =
∑
k∈K

λk(l)
∑
n∈T

Uny
k
n.

(26)
Also, the last constraint in formulation (24) is satisfied if the following linear
program is infeasible:

min 0
s.t. 0 ≤ ξn ≤ 1, ∀n ∈ N∑

n∈N
ξn ≥ N − J

yklk ≥
∑

n′∈δ(lk)

ξn′xn′ + 1, ∀k ∈ K, lk 6= 0.

(27)

Using strong duality, this occurs if the dual problem is unbounded. Since the
feasible region of the dual problem constitutes a cone, the dual problem is un-
bounded if and only if there is a feasible solution with an objective value of 1 or
more. The dual problem is as below:

max
∑
n∈N
−αn(l) + (N − J)αN+1(l)−

∑
k∈K
lk 6=0

(yklk − 1)νk(l)

s.t. α(l) ∈ RN+1
+ , ν(l) ∈ RK+

−αn(l) + αN+1(l)−
∑
k∈K
lk 6=0

∑
n′∈δ(lk)

xn′νk(l) = 0, ∀n ∈ N
(28)
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