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Abstract. Colluding adversaries is a crucial challenge for defenders in many
real-world applications. Previous literature has provided Collusive Security Games
(COSG) to model colluding adversaries, and provided models and algorithms to
generate defender strategies to counter colluding adversaries, often by devising
strategies that inhibit collusion [6]. Unfortunately, this previous work focused
exclusively on situations with perfectly matched adversaries, i.e., where their
rewards were symmetrically distributed. In the real world, however, defenders
often face adversaries where their rewards are asymmetrically distributed. Such
inherent asymmetry raises a question as to whether human adversaries would at-
tempt to collude in such situations, and whether defender strategies to counter
such collusion should focus on inhibiting collusion. To address these open ques-
tions, this paper: (i) explores and theoretically analyzes Imbalanced Collusive
Security Games (ICOSG) where defenders face adversaries with asymmetrically
distributed rewards; (ii) conducts extensive experiments of three different adver-
sary models involving 1800 real human subjects and (iii) derives novel analysis
of the reason behind why bounded rational attackers models outperform perfectly
rational attackers models. The key principle discovered as the result of our experi-
ments is that: careful modeling of human bounded rationality reveals a key differ-
ence (when compared to a model using perfect rationality) in defender strategies
for handling colluding adversaries which face symmetric vs asymmetric rewards.
Whereas a model based on perfect rationality always attempts to break collusion
among adversaries, a bounded rationality model acknowledges the inherent dif-
ficulty of breaking such collusion in symmetric situations and focuses only on
breaking collusion in asymmetric situation, and only on damage control from
collusion in the symmetric situation.

Keywords: Stackelberg Security Game, Collusion, Human Behavior Model, Ama-
zon Mechanical Turk

1 Introduction

Motivated by threats on human and cyber-physical systems, game theoretic approaches
have been devised to help solve real-life security problems in many domains. [1, 13, 19]
In these applications, Stackelberg security game based models have proved to be both
practical and effective in many scenarios, e.g., to protect airports [17, 19], train stations
[22], and even wildlife [4, 5, 21].
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In order to advance these applications, collusion among adversaries in security
games is a vital issue that needs to be addressed. Instead of working alone, adversaries
colluding with one another often attack targets more effectively. For example, smug-
glers in Colombia have developed from small criminal groups to huge drug cartels by
working closely since the 1950s [18]. Terrorists received material support from crimi-
nal groups and carried out more severe violent actions in the US [8]. These examples
show that if we do not break the collusion in an early stage, the attackers might collude
to become a stronger threat to defenders.

Previous literature has provided Collusive Security Games (COSG) to model collud-
ing adversaries [6]. It has provided algorithms to generate defender strategies to counter
the colluding adversaries in such a model. However, this previous work focused exclu-
sively on situations with perfectly matched adversaries, i.e., where their rewards were
symmetrically distributed. In the real world, however, defenders often face adversaries
where rewards are asymmetrically distributed [3].

Such inherent asymmetry raises a question as to whether human adversaries would
attempt to collude in such situations, and whether defender strategies to counter such
collusion should focus on inhibiting such collusion. To address these open questions,
this paper: (i) explores and theoretically analyzes Imbalanced Collusive Security Games
(ICOSG) expand from COSG where defenders face adversaries with asymmetrically
distributed rewards; (ii) conducts extensive experiments involving 1800 real human sub-
jects of three different adversary models and (iii) derives novel analysis of the reason
behind why bounded rational attackers models outperform perfectly rational attackers
models. The key principle discovered as the result of our experiments is that: Careful
modeling of human bounded rationality reveals a key difference (when compared to
a model using perfect rationality) in defender strategies for handling colluding adver-
saries which face symmetric vs asymmetric rewards. Whereas a model based on perfect
rationality always attempts to break collusion among adversaries, a bounded rationality
model acknowledges the inherent difficulty of breaking such collusion in symmetric
situations and focuses only on breaking collusion in asymmetric situation, and only on
damage control from collusion in the symmetric situation.

2 Imbalanced Collusive Security Games

The Stackelberg Security Game model is widely used in both literature and security
applications. [2, 11, 15, 19] Models based on it usually consist of two stages, the de-
fender decides her strategy in the first stage. After observing the defender strategy, the
attacker chooses a strategy as the best response to it in the second stage. The objective
of the defender is to use a limited number m of resources to protect several targets in a
set T', with each target having a different value. The attacker on the other hand seeks to
attack the target that gives him the highest utility while avoiding being caught by the de-
fender. Knowing the attacker will observe her strategy', the best choice for the defender
is to deploy a mixed strategy that defends each target stochastically (rather than using
pure strategies to always defend the same set of targets). This mixed strategy can be

!By convention in the security game literature, we refer to the defender as a “she” and the
adversary as a “he”.
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viewed as a probability distribution over pure strategies. We can equivalently represent
such strategy with a vector ¢ with elements ¢; € [0,1] (3, ¢; = 1) [11] denoting the
probability of target ¢ being covered. As for the attacker, after observing the defender
strategy, his strategy consists of choosing a particular target to attack. We express the
attacker’s choice using a vector « with element oy € {0,1}, ¢ € T, equal to 1 iff target
t is chosen.

For each target, we denote the utility that the defender receives when she success-
fully defends the target by Ug (t). The defender commiits to a strategy and the adversary
observes this strategy and each select a target to attack; accordingly, if she fails to pro-
tect the target, she receives the utility UZ (t). We also denote the utility of the attacker
when he successfully attacks a target (without being caught) as Uz (t); accordingly, if
he gets caught attacking a target, he receives the utility UL (¢).

The expected utilities of the defender and the attacker for a given defense strategy c
and attack vector o can be respectively expressed as

Us(c,a) = Zat (ctUg(t) + (1= e)UE®) (1)
teT

Ug(c,a) = Zat (cth(t) +(1- ct)UQ,g(t)) . (2)
teT

The solution concept, known as Strong Stackelberg Equilibrium (SSE), assumes that
the attackers maximize their own expected utility and break ties in favor of the defender
[10, 19]. In such equilibrium, the defender plays the strategy that is the best response to
the attacker’s strategy ¢(@) and the attacker plays the strategy that is best response the
the defender strategy @(¢) such that Ug (¢, @) > Ug(c, @) V cand Uy (¢, @) > Uy (T, @)
Y a.

Numerous security problems from the real world have been cast in the Stackelberg
Security Game framework. For example, [23, 12] provide a model where the attacker
has the ability to attack multiple targets, [7] models the cooperation methods between
multiple attackers and finally, [6] models the possibility of collusion between identical
individual attackers. In this paper, we exploit and expand the work from [6].

In [6], the authors defined a model called Collusive Security Games (COSG) in
which each attacker needs to make an extra decision of whether or not to collude with
each other besides choosing which target to attack. They have introduced a new solution
for COSG, termed Collusive Security Equilibrium (CSE), which generalizes the SSE.
This solution concept eliminates weak equilibria while preserving properties of SSE.
In CSE, the defender and attackers form a Nash equilibrium that the attackers will both
choose to collude if and only if they both receive strictly higher expected utility. In
addition, the attacker breaks ties between equilibria of the colluding decision in favor
of the defender. Next, we expand this concept to the Imbalanced Collusive Security
Games model (ICOSG), which captures the imbalance in wealth of the attackers in
COSG.
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2.1 Problem Formulation

In this paper, we consider a problem similar to the classic Stackelberg Security Games
[19], where the defender plays as the leader of the two-stage game and needs to deploy
a defense strategy before knowing the action of the attacker.

In contrast to most works in this setting, our game consist of 1 defender @ and N
attackers ¥ ... Wy.Given a set of target T = {¢1,t2,...t,, } that consist of N disjoint
sets 11,...,Tn, each attacker ¥; is restricted to choosing one target within his own set
T;. By choosing and successfully attacking target ¢ without being captured, the attacker
¥; will receive utility Ugi (), and penalty of being capture Uy (t) otherwise. Similarly
for the defender O, if attacker W; choose to attack target ¢, she receives certain utility
when successfully capturing the attacker of U3 (¢) and otherwise U (¢) as the penalty
of failure to protect it. Both the defender and the attacker receive zero utilities from
non-attacked targets.

We introduce the notion of a wealth index, which captures the relative wealth of
each attacker mentioned above by evaluating the portion of total utility he could earn.
The wealth index of attacker 7 is defined as

ot Sier, Us (1)

For the following paper, to streamline the presentation, we henceforth focus on
ICOGS with a single defender and two attackers with zero-sum game structures. With-
out loss of generality we also assume A; € [0.5,1] and Ay = 1 — Ay € [0,0.5] so that
the first attacker is more “powerful” (has higher relative wealth). We define the utility
that the defender will receive in each case as UJ (t) = ngi (t) == —R(t) < 0 and
US(t) = —UJ (t) := —P > 0 of constant P for all targets ¢.

After deciding which target to attack, each attacker can choose if he wants to offer
collusion or not. The collusion (which can be thought of as an alliance) will only be
established if both attackers agree to collude. If the collusion is established, they will
receive some collusion bonus d for each successful attack, which captures the extra
benefit they gain through collusion. However, they will split their total reward based on
their relative wealth.

Given that the collusion between attackers may result in a higher loss, the defender’s
strategy is no longer simply to defend the high-risk target with more resources. For
example, the defender may benefit by allocating resources in a way that breaks the
willingness of the adversaries to collude by allowing them to have a higher utility from
working alone while still maintaining some level of defense against these attackers.

For defender strategy, due to the same reasons as SSG, we consider only mixed
defender strategies and define them as coverage vectors c. As for attacker strategies,
there is always an equilibrium in which all of them play only pure strategies after
observing the defender’s mixed strategy [10]. We represent the attack decision over
the N target sets 7 ...Tn of the N attackers as N vectors «q,...,an of differ-
ent length |T;|, where o; € {0,1}/7:l with its ¢th element equal to 1 iff attacker i
chooses to attack target t. We also encapsulate their decision about offering collusion
as 3, of which 38; = 1 if ¥; offers collude and 0 otherwise. Finally, we can represent

3

7 .
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the strategy of each attacker ¥; as the Cartesian product of the two decision vector
gi = a; x B; € {0,111 x {0,1} or G = a x 3 € {0,1}T1 x {0, 1} that encapsulate
strategies of all the attackers as o = [a], 0] ... a%]T and 8 = [B1,B2...8n]". For
the sake of easier expression, we represent U3 and U} as vectors of length |T| with
their tth element as U3 (t) and UJ (¢) respectively. Given the strategies of the defender
and attackers, the expected utility of defender can be expressed as:

N
Uo(c,G) =aT(co U5 + (Ljp —c)o U5)— (N — aTc)énﬁi ()
i=1

where o denotes element wise product (Hadamard product) of same length vectors and
17| is the element vector of length |T'|.

As for attacker reward calculation, if any of the players refuse to collude with others,
the expected utilities they received, defined as Uy, , Uy, . .. Uy, , are expressed as

Ug,(c,90) = > _ ailt) (1 = c))Ug. () + iUy, (1)) &)

teT;

If all the players choose to collude (5; = 1 Vi), the total reward they receive is calculated
as

N
Up(e,G) =Y ai(t) (1= e)Uz?2 (8) + U " (1)) (6)

i=1teT;

where Uz®(t) = Ug (t) + 0 and U3F (t) = UJ (t). The final reward each attacker
receives depends on their wealth index.

Uz, = \U; %)

Also noted that in zero-sum reward structure settings, the above equation yields to
Ueg = Uy for [[B; = 1 and Ug = —Uy for [[ B; = 0 in the respective colluding
and non-colluding cases.

The goal is to find the optimal strategy c to maximize the expected defender utility
Ue by breaking the collusion of the attackers while maintaining good defense. How-
ever, such strategy diverges for different attacker behavior assumptions, which will be
elaborated in the following section.

2.2 Defender Strategies

Perfectly rational model (PRM) By assuming each attacker to be perfectly rational,
we assume each of them selects the strategy to maximize their expected utility Uy,. We
applied the solution concept of Collusive Security Equilibrium (CSE) used in [6]. CSE
requires that (i) the defender’s strategy is a best response to each attacker’s strategy, (ii)
the attacker strategies form a Nash Equilibrium in their game, (iii) both attackers play
collude if they obtain strictly greater utility in a (collude, collude) equilibrium than (not
collude, not collude) equilibrium, and (iv) the attackers break ties between equilibria
which satisfy (i)-(iii) in favor of the defender.
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In addition, the CSE of our problem can also be calculated by modifying the mixed
integer linear program (MILP) in [6]. The MILP set is based on the ERASER formu-
lation introduced by Kiekintveld et al. [10] that solves the equilibrium of traditional
SSGs. More details can be found in [6].

This algorithm can return the CSE of any reward structure and gives us the equi-
librium strategies of the defender ¢(g,, g) and attackers g, (¢, g5) and g5 (¢, gy ). If the
attackers select their strategies in a perfectly rational way, this method generates the
optimal strategy for the defender.

Bounded rational model (BRM) In contrast to perfectly rational model, BRM as-
sumes players perceive the utility in a bounded rational way. Instead of strictly maximiz-
ing their expected utility, it is often more effective to assume human adversaries choose
strategies (i) which grid to attack (ii) collude with another player or not stochastically
based on their perceived utility[14]. The features we applied to model the bounded ra-
tionality of human subjects, which were used and proven to be effective in [6] are:

1. SUQR model [16]
2. Prospect Theory [9, 20].

For the first feature, SUQR is an extension of Quantal Response (QR). Instead of ex-
pected utility, SUQR assumes humans make decisions stochastically based on their per-
ceived utility, which is a weighted function of different factors. In addition, the bounded
rationality of how people perceive probabilities is also considered using Prospect The-
ory (PT). PT proposes that individuals perceive the probability of success and failure
in a non-linear way. Such nonlinearity can be captured by various functional forms [9,
20].

What follows are the details of how we construct and learn our BRM model. Given
the defender strategy (c), reward (Ui) and penalty (Ué}; ) for each target ¢t € T}, the
perceived utility of attacking it for attacker ¥; is defined as

Ug (t,c) =wS - é(c) + wh - Ug (t) + wh - Uy, (¢) (8)

Where ¢, is the Prospect Theory modified perceived probability of the original
probability c;;, defined as

.
R UL

Ct :—770;/ T (1 — Ct)'y (9)

From the SUQR model, the probability of that the adversary ¥; will attack target t € T;
is given by:

U, (1:2)

S o)

teT;

it c) = (10)
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Another decision of the bounded rational attacker we need to model is the probabil-
ity of collusion. Similar to attack probability, we define the perceived utility of colluding
and not colluding as

. Nl ery et W Yier, U () +wh - X per, UsF (1)
U;;;B(C) :/\ZZ teT); te |JT| i teT; J (11)
j=1 J
Uﬂ _wg i Zt€Ti Ct + w}% ’ ZtGTi UQ/SI (t> + wlé : ZtETi U‘gz (t)

Again, from the SUQR model, the probability adversary ¥; will offer collusion is
given by
B ( ) eU;f(tj,C)
ilC) === ~
e RO N ()

13)

There are a total of 5 parameters for attack probability and 3 parameters for collu-
sion probability to be determined, which are (w2, w$, w$,n,v) and (w?, wg, wg) re-
spectively. These parameters are estimated via Maximum Likelihood Estimation (MLE)
using data collected from the human subject experiments of PRM strategy.

Note that in the bounded rational model applied for identical powerful adversaries
in the previous work [6], it is assumed the grid attacking probabilities of an attacker
are conditional probabilities of given his decision to collude or not and given which
attacker he is. Thus it has a total number of 4 x 5 (4 condition of 5 parameters to model
attack probabilities)+3 (parameters to model collusion probabilities)= 23 parameters
to learn for each game. By assuming the & and Btobe independent, the modified model
is able to reduce the number of parameters and still be applicable when either type of
decision making data is missing for certain data points.

Given a learned parameter set and a defender strategy as input, BRM can generate
the response “strategy” of a bounded rational attacker for each attacker ¥;, which can be
expressed as the Cartesian product of the two decision probability vector of length |T;|

and 1 as §; = &; X (B; or G=ax B that encapsulate probabilities of all the attackers
R . 1T

decisions as & = [a, a3 ...aY] Tand § = {ﬁl, Bs ... BN} . Given C as the feasible

solution space of defender’s coverage vector c, by replacing G with G, we want to find

¢ = argmax (U@ (c, G’(c))) in equation 4, which we approximate by multiple runs of
ceC

fmincon optimizer.

Simulations Figure 1 shows the simulation of the probabilities that collusion between
two attackers is actually established. The number of defender resources is set to be
m = 3. Along the rows are different wealth index combinations; along the columns are
different values of delta, which gives the collusion bonus.

One interesting observation is that it is easier to break the collusion for higher wealth
imbalance in both PRM and BRM simulations. In fact in PRM, there is a transition \
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5 5
AR 1 2 3 4 5 6 A 1 2 3 4 5 6
0.8-0.2 0 0 0 0 0 0 0.8-0.2 | 0.645674 | 0.833459 | 0.907055 | 0.946411| 0.9693 0.9826
0.6-0.4 0 0 0 0 0 1 0.6-0.4 | 0.64303 |0.876889 ) 0.962063 | 0.98841
0.5-0.5 0 0 0 0 1 1 0.5-0.5 |0.636445 | 0.889326 | 0.972065 | 0.993309 | 0.99381

(a) Perfetly rational attackers (b) Bounded rational attackers

Fig. 1. Simulation of actual collusion probability (attacker 1 collusion offering probability x at-
tacker 2 collusion offering probability) with different collusion bonuses (J) and wealth indexes
(A1 and A2) of the two attackers. Larger bonuses and closer wealth indexes yield higher proba-
bilities of collusion.

that determines if the collusion is breakable or not in the CSE for some given structure,
which we will elaborate on the next section.

Another interesting observation is that in the simulations, PRM always breaks the
collusion between perfectly rational attackers when the collusion bonus is low, whereas
BRM predicts that even with low collusion bonuses, the bounded rational attackers are
still going to collude with high probability.

Our experiment focused on the first column of the simulation, which is collusion
bonus § = 1 for different wealth imbalance. The bonus value is far from the value that
PRM starts to give up on breaking the collusion (6 > 5). If the human subjects are
perfectly rational, PRM strategy should be able to break the collusion completely.

3 Effect of Imbalance

In this section, we provide an analysis of the effect of imbalance, and use the perfectly
rational model for simplicity. For N player ICOSGs, the expected utility of the defender
and each attacker can be expressed as equations 4~ 7. By using a MILP, we can solve
the equilibrium strategy of the defender. However, it is complicated to analyze the effect
of the parameters due to the complexity of reward structure, as the general structure does
not have a closed form of utility gain.

To analyze the effect of imbalance degree A, we start with a more straightforward
case. We denote the total value of targets as >, U5 (t) = —Rg and ), Y, Ui t) =
Ry, the reward/penalty of catching/being caught as U5 (t) = Pe and Uy (t) = =Py
Vt € T for the defender and attackers respectively. All of the parameters above (Rg,
Ry, Po and Py) are non-negative number to avoid confusion. For zero-sum game,
Ro = Ry and Pg = Py. The total number of defender resources is set to be m.

3.1 Uniform Distribution Reward Structure

Assume we have a uniform distribution of value allocated on each target set 7; with
density Ug (t) = ARy Vt € Ty and Ug (t) = (1 — A\)Ry Vt € To. We simplify each
field to a single target as they all have the same utility.

Since the structure is simplified, the only decision that the attackers have to make
is to collude or not. The only decision the defender has to make is how many resources
to allocate to each attacker, denote as m;. We separate the colluding (Ug and U;i) and
non-colluding (Ug and Uy,) case and rewrite the expected utility in equation 4~ 7 as:
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Mz

U(c) = (1 —m;)A\;Ro + mPo — (N —m)d (14)
=1
N

Us(c) ==Y (1—mi)AiRe +mPo (15)
i=1
N

Z (1 —m;)\;Ry — mPy + (N —m)d (16)

=(1 — m;)A\;Ry — m; Py (17

Proposition 1 In two attackers imbalanced COSGs with uniform reward distribution
and negligibly small penalties of failing the attack, the best defender strategy is to allo-
cate all its resources to the attacker with the largest wealth index )\, regardless of other
parameters.

Proof. Suppose the optimal defender strategy is ¢* in the CSE and the defender re-
sources it deployed on ¥; and ¥y are m] and m3 respectively. Without loss of general-
ity, assume A; > 0.5 > Ao. We prove the proposition by showing mj > mj first. Then
we show that if m] > m3, allocating more resources to mj always results in higher
defender utility until ¥; is fully covered.

First, we prove that m] > m3. Suppose m} < mj, consider another defender strat-
egy ¢ such that m; = mj and 3 = mj. We prove that this alternate defender strategy
returns higher defender utility thus m] < m3 can not be optimal. To be clear, attacker
strategy collude means both attackers choose to collude (3182 = 1) and attacker strat-
egy not collude means at least one of the attackers refuse to collude(8,82 = 0). If
the attacker strategies against the two defender strategies(c* and ¢) are both collude,
both not collude or collude against c* and not collude against ¢, the new strategy ¢ re-
turns higher defender utility in all three cases thus ¢* can not be the optimal strategy.
Since U (c*) < Ug(e), Us(c*) < Ug(e) and Ug(c*) < Ug(c) for Ay > Ay and
—(N —m)d < 0 in equation (14) and (15).

As for the last case, the attackers playing not collude against c* and collude against
¢, we prove that such a scenario is not possible. The condition of breaking the collusion
is Uy, > Uy, for any i. In the two attackers case, since Py is negligibly small, it can
be derived from equation 16 and 17 that the condition of breaking the collusion is to
satisfy one of the following two inequalities:

mA ARy + mAoPy — (2—m)A2d6 m  (2—m)d

< ~N—_ - 18

M2 = 2M1 o Ry + Py 2 201 Ry (8

my < mM ARy + mA\ Py — (2—m)/\15 N m (2—m)5 (19)
21 2Ry + Py 2 2Xo Ry

Note that these two equations cannot be satisfied simultaneously since m; + my =
m and only one of them can be less than m /2. This suggests that at least one of the
attackers is willing to offer the collusion when the penalties are negligibly small. If
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mj] < mj in c¢* and the two attackers are not colluding, c* must satisfy equation 19.
However, since o = mj and A1 > Ay, we have

m (2—m)5<m (2—m)o
2 /\QRQ/ 2 )\1RJI

mQ:mTS

thus for defender strategy ¢ satisfy equation 18 and the collusion will be break as well.

Second, we prove that for m; > ms, allocating more resources on attacker 1 before
it is fully covered will result in higher defender utility. Similar to the first part of proof,
suppose the optimal defender strategy is ¢* and 1 > mJ] > m3 > 0, consider another
defender strategy ¢ such that m; = mJ +¢ and my = mj —e. If ¢* breaks the collusion,
c* must satisfy equation 18 as m] > m3 in the optimal strategy. Since My < m3, the
new strategy ¢ must break the collusion as well. Again, from equation 14 and 15, ¢
always returns higher defender utility in the other three possible cases. Thus we have
proven the proposition.

Proposition 2 Define the transition threshold \* as the two attackers will not collude
in the equilibrium if and only if A > maxz(\*,0.5) for fixed total Ry. In two attackers
ICOSGs with uniform distribution, assuming none of the attackers is fully covered, the
transition threshold is

A= .
ngp Rg

(20)
Proof. By proposition 1, we can replace mo with 0 and m; with m for m < 1 in
equation 18 and derive the above transition threshold.

This equation indicates whether the collusion is breakable or not in the uniform
distribution game for a specific parameter set. The collusion becomes harder to break
when collusion bonus 4 is higher and easier to break when defender resource m, penalty
Py and the wealth index of stronger attacker \ is higher. In other words, when other
conditions are the same, higher wealth imbalance makes the collusion easier to break.

Unfortunately, the transition threshold A* does not have a closed form in general
structure game. However, it is still obtainable using numerical approach.

3.2 Uniform Scale Affine Transformation Reward Structure

It is difficult to derive closed-form analysis for the reward structure of the general dis-
tribution. However, one class of distribution; which is what we used in the latter exper-
iments as the example figure 3 shows, have some nice properties to be explored.

Definition 1. Uniform Scale Affine Transformation Reward Structure

Given a base reward structure with |T'|/N targets t,...t|p| /N of a general distribu-
tion define as Uy such that Y, U7 (t) = Ry. Each attacker has the same number of
targets to choose from(|T;| = |T|/N| Vi). The reward structure of each attacker is the
uniform scale affine transformation of the base reward structure, in which the scale is
given by Ug (t;) = \Ug (t;) for j = 1---|T;| and the penalty Ug, (t;) = P is an
ignorable small constant for all targets. /
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Define A = (A, A2, ...An) as a set of wealth indexes. For the same base reward
structure, we define U(g, 1) (c, G) as the defender utility in game with wealth index set
A. We decompose the first term of the right hand side in equation 4 and rewrite the
equation as Uig 4y (Ca, G) = Zivzl Eo(¥;, \i,ea) — (N —avey)d Hfi1 B;. The term
Eo(¥;, \i,ca) represents the expected utility of defender gain from defending attacker
¥, and ¢4 represent the best response of the defender for game with wealth index set A.
This term has the following three properties

1. Eo(¥;, %,¢a) > Eo(¥;, +,¢a) for m; > m;

2. Eo(W;, A\, Cy) = %E@(%, A, C4) for any AMA>0
3. m; > m; in ¢y for \; > )‘j

The proof of the first property is straightforward. In game with identical wealth index
attackers, the more resources the defender allocate to the attacker, the more expected
utility she will gain from him. As for the second term, since we have the same reward
distribution and same strategy, the reward on every target is proportional to A and yields
to the expected reward proportional to A. Finally, term 3 can be proved using the same
method in the first part of proposition 1. Based on the above properties, we are now able
to prove proposition 3.

Proposition 3 In two attackers ICOSGs with uniform or zero-sum uniform scale affine
transformation reward structure, a larger wealth imbalance results in a smaller de-
fender loss.

Proof. The uniform distribution part is straightforward, as it can be inferred that the
defender in the game with larger wealth imbalance could always break the collusion if
the defender in the game with lower wealth could break the collusion from proposition 2
thus its utility is higher from equation 14, 15 and proposition 1.

As for zero-sum uniform scale affine transformation reward structure, assume A=
(A, (1—=A)) and A > 0.5, we want to prove that U o ) > U(e, ) for any A= 01—

5\)), A > \. From above properties and the fact that the defender gain higher utilities
when playing the best response, assume 3132 = 0 in both games, we have:

U,1) =Eo(¥1,\,¢a) + Eo(¥2, (1 — )\),Ca)
1 1
=2\Eo (¥, 575/1) +2(1 - N Eo(¥s, 575/1)
. 1 A 1
<2A\Eeo (¥, 575/1) +2(1 — N Eo(¥s, 5,5/1)
=FEo (¥, ), 2a) + Eo (W2, (1 — \),¢4)
<Eo(¥1,),t5) + Eo (W2, (1 - X),24)
=Ue,4)

Since A < 5\, for some trar}sition threshold A\*, the only possible relationsA of the three
parameters are either A < A < A* (8132 = 1 for both game), (A < \* < A\)(5162 =1
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for A and 185 = 0 for A) or <A< ;\)(6162 = 0 for both game). Similar
inequalities can be derived for remaining two cases by adding the collusion bonus term.
Thus we have proved proposition 3.

4 Empirical investigation using human subjects

4.1 Imbalanced Wildlife Poaching Game

To investigate imbalance in COSG, we developed the imbalanced wildlife poaching
game and asked human subjects to play the role of poachers in a national park of Africa.
We recruited 1800 unique participants from Amazon Mechanical Turk (AMT) and of-
fered them bonus rewards as an incentive for them to perform well. Figure. 2 shows
the interface of the game used in our human subject experiments. We will elaborate the
detail of experiment design in the following section.

YOLI A bo.n us of 1 will be added to the total reward if you choose fo Cooperate 00:59 Bob

Success and Failure Percentage Success and Failure Percentage

Percentage of Percentage of
success failure

60% 40%
Pay-offs based on not cooperating

Percentage of
success

Percentage of
failure

90%
Pay-offs based on not cooperating

Yousucceeds g You'ais Bob succeeds g Bobfals ¢

: B 1(8)

™ Pay-offs based on cooperation
Yousucceed  You fail

;) 1(8)

Pay-offs based on cooperation
You succeed  You fail

' v
: Bobsucceeds o0 a 1.noa
Total: $0.5 Bob fails

have 90 seconds to explore the area and decide whether you want to cooperate or not

Bob succeeds mé 1.noa

Bob fais 2 M
250 a A .00{@‘\’

b4 Q@
Mﬂa 10072

8\
A\ﬂr

Attack!

Fig. 2. Imbalanced wildlife poaching game: the human subject is assigned to the left side of the
park. His partner attacker is assigned to the right side. The probabilities of being caught can be
observed by human subject through interacting with the game.

4.2 Human Subject Experiments

Our wildlife poaching game is a three-player security game with |T7| = |T3| = 9
targets available to each adversary. There are a total of |T'| = 18 grids that contains
some fixed number of animals. Each attacker is able to attack 9 targets ina 3 x 3 reward
distribution. A total of two reward structures of three different wealth imbalance has
been deployed on AMT as figure 3 shows. The penalty of the attacker getting caught is
set to be P = —1. The total number of rangers is set to be m = 3, and the collusion
bonus is set to be § = 1.

For each wave of the experiment, we deployed different defender mixed strategies
against human adversaries played as each side of Game 1, Game 2 and Game 3 of both
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olo[3[tfolo]| [1]o]2]6/0]5]|[o]o]6]8]0]0]| [2]0]3]5 04
o/3[2[6f18 0| |o|3 ojofato||o]6|3|5[M@ 0| |[o[6 0o|oE o
0/0/2[10/0 /0| |2]|0/2|8]0]10] [o|o|5]|7 0|0| |[5/0[4]6]|0]7
RS10.2-0.8 RS20.2-0.8 RS10.4-0.6 RS2 0.4-0.6
(a) Game 1(0.2-0.8) (b) Game 2(0.4-0.6)
olof7z[7]olo] [3]o[4]4]0]3
ol8l4|48]o] |of7]o|of[7l o0
ololels 0/o] |6 0]|5[5/0f6

RS10.5-05 RS20.50.5

(c) Game 3(0.5-0.5)

Fig. 3. Reward (animal density) structures of different wealth imbalance (A1-A2) deployed on
AMT.

reward structures. Note that although we have a symmetric reward structure in Game
3, the defender will still deploy the defender resources asymmetrically to break the
collusion.

Each participant was asked to play three rounds of carefully designed games, which
are the trial game, test game, and the main game. The score that participants gain from
the test game and main game (displayed as round 1 and round 2 for the participants)
were accumulated as the bonus payment to the participants to incentivize the play-
ers to perform well. The bonus of each participant was calculated as 0.5 4+ 0.05 x
(points earned in the test game and main game), the points earned could be negative if
the participant got caught in both games.

Before playing the trial game, participants were provided with a background story
and detailed instructions about the game. After reading the instructions, the participants
next played the trial game that has an obvious choice of the grid to attack and collusion
decision to make sure they comprehended the game. When they finished the trial game,
the participants could either choose to reread the instructions or begin to play the round
1 game (test game) and earn points. The test game, acts as a validation game, having
an apparent yet opposite choice for the collusion decision to the test game to avoid any
bias.

The test game serves two purposes. The first purpose is for us to validate if the
participants understand the game or not. The data of the participant was excluded if
it does not meet certain criteria in the test game. The second purpose is to balance the
total reward payment of different settings in the main game. For example, the participant
played as 0.2 side of game 3 has a limit potential to earn points in round 2 (the main
game). Thus he/she will be assigned to a higher potential reward in round 1 (test game)
to be fair and avoid bias as much as possible.

Finally, the second round game that participants played was the main game that
we used to collect data of their decision making. After the game, the participants were
asked to take a survey about their experience of the game and their personalities.

In each individual game, the human player is given a set amount of time to make
decisions about: (i) whether to collude with the other player or not and (ii) which region
of the park to place their snare. To make the first decision, a question appears on the
screen which asks whether the human player is inclined to collude or not. After answer-
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ing this question, a message appears on the screen that indicates whether collusion was
preferred by both players or not. Collusion occurs only if it is preferred by both players.
It is worth noting that the human participant has no opportunity to communicate with
or learn about the other player. Next, players are asked to choose a target in their own
region to attack. As before, players cannot communicate about which target to attack.

Note that whereas the human player plays as one of the adversaries, we designed a
computer agent with rational behavior to play as the second adversary; thus there is an
algorithm generating defender strategies, and two adversaries (one a human and one a
computer agent). Choosing a computer agent as a second player let us to avoid requiring
coordination between two human players in the experiments. While the other player is
a computer, it is suggested to the human player that they are actually another human.
The computer agent rationally chooses its decision to collude. To simplify the analysis,
we assume that the second stage of decision making (where each adversary chooses a
target to attack) depends on his own inclination for collusion and does not depend on
the attitude of the other adversary.

There are total of 50 participants for each game set. For each strategy, 12 sets of
games ({Game Structure| RS1, RS2} x {11]0.2,0.4,0.54,0.5D A, 0.6,0.8}) were de-
ployed, in which RS1 represent reward structure 1, RS2 represent reward structure 2,
0.5A represents human player playing the side with less coverage in the symmetric
game (A1 = Ao = 0.5) and 0.5 D A represents otherwise for the sake of distinguishing.
Thus, a total of 600 human players participated in the experiments for each strategy, and
we deployed three strategies in total. We show and analyze our results in the following
section.

4.3 Numerical Results

Three waves of experiments have been conducted. In the first wave, we deployed the
optimal strategy acquired from PRM and asked human subjects to play the security
poaching game described above. We collected the human decision data of the attacking
decision « and the collusion decision 3 on these 12 sets of games.

Two models that assume the attackers are bounded rational have been learned using
the data collected in the first wave. For the first BRM strategy, we used maximum
likelihood estimation on all the data collected and learned the 8 parameters required
to generate the strategy, which are (wg,w$,w$,n,y) and (wg, wg, wg). The model is
named “BRM” in the figure below.

As for the second BRM strategy (called BRMO0S5), we only used data collected from
symmetric case in the first wave ({Game Structure| RS1, RS2} x {A1|0.54,0.5DA})
and learned the 8 parameters that generate the third strategy.

Next, two waves of experiments were deployed, one using BRM strategy and one
using BRMOS strategy. Each wave involved another 600 human subjects playing the
12 sets of games. To analyze which model is the more effective one, we looked at two
perspective accuracy and performance.

Accuracy The human decision data from the wave 1 experiment acts as the training
data for the BRM and BRMOS5 models. To be fair, we compare the prediction accuracy
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of the three models on wave 2 human decision data, which has not been used for the
training of any of the models. In figure 4, we vary the wealth imbalance(A; — A2) along
the x-axis and shows the prediction of each model versus the actual defender loss along
y-axis in the wave 2 games we conducted. The loss here refers to the total reward the
defender faces due to collusion and target choices of the attackers. Note that in this
game, the penalty is constant and low; and hence the defender usually faces a loss and
must reduce it as much as possible. This is intentionally designed to be consistent with
real world situation involving poaching in national parks.

Wave 2 RS1 Defender Loss Prediction Wave 2 RS2 Defender Loss Prediction

OPRM Predict M BRMOS Predict ®BRM Predict 8 Actual Game OPRM Predict  ® BRMOS Predict MBRM Predict 8 Actual Game

ORr N WS U O N ®

Game 1(0.2-0.8) Game 2 (0.4-0.6) Game 3 (0.5-0.5) Game 2 (0.4-0.6)

(a) RS1 (b) RS2

Fig. 4. Prediction of the defender loss by each model and the actual defender loss in wave 2
experiments. The error bars of the actual defender loss are small due to large sample size.

In terms of accuracy, both BRM models outperforms the PRM model. The inaccu-
racy of PRM model comes from two reasons, overestimating the defender loss from the
attacker target choice o and underestimating the defender loss from collusion offering
probability 3. While the latter factor sometimes helps in reducing the error, overall its
performance suffers compared to the BRM models.

The reason PRM overestimates the defender loss from the attacker target choice is
because it assumed the attackers to be perfectly rational and always choose the grid
with highest expected value to attack. However, in the experiments, we observe that
human subjects avoids high-risk high-reward grid cells and choose some safer yet lower
expected reward grid with high probability. The two BRM models are able to capture
and exploit this along with other bounded rational behavior as explained in section 2.3
and thus leads to a relatively more accurate prediction on c.

The two BRM models also perform better than PRM in predicting the probability
of collusion. In figure 5, we vary the wealth index of the attacker along the x-axis and
show the prediction of collusion offering probabilities of players versus actual collusion
offering probability in the wave 2 experiments along the y-axis .

In RS1, PRM predicts the strategy applied in wave 2 can always break the collusion
(for situations shown in figure 5 (a)) by making the weaker attacker collude with proba-
bility 0. In the real experiments, however, human subjects still offer collusion with high
probability, even if collusion results in a lower expected utility.
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Wave 2 RS1 Collusion Offering Probability Prediction Wave 2 RS2 Collusion Offering Probability Prediction
OPRM Predict  ® BRMOS Predict M BRM Predict 8 Actual Game OPRM Predict  ®BRMOS Predict M BRM Predict 8 Actual Game
100.00% 100.00%
90.00% 90.00%
80.00% 80.00%
70.00% 70.00%
60.00% 60.00%
50.00% 50.00%
40.00% 40.00%
30.00% 30.00%
20.00% 20.00%
10.00% 10.00%
0.00% 0.00%

0.2 0.4 05A  050DA 0.6

(a) RSI (b) RS2

Fig. 5. Prediction of the collusion offering probabilities by each model and the actual collusion
offering probabilities. PRM predicts O collusion offering probability of adversaries with wealth
index 0.2, 0.4 and 0.5A in RS1 hence no bar is shown. Same for adversaries with wealth index
0.2 in RS2.

Given the prediction toward wave 2 experiments as an example, BRM are better
than PRM at predicting attacker strategy. We now look into the performance of the
strategy they generated in the actual experiments.

Performance In each wave, games with two reward structures of three wealth imbal-
ance with multiple human subjects playing as both the weaker and stronger sides have
been conducted with the three strategies. Figure 6 shows the performance of the three
strategies in the experiments against real human attackers.

Experiment Defender Loss Experiment Defender Loss
OPRM Strategy BRMO5 MBRM Strategy OPRM Strategy BRMO5 M BRM Strategy
7 7
6 6
5 5
4 4
3 3
2 2
1 1
0 0
Game 1(0.2-0.8) Game 2 (0.4-0.6) Game 3 (0.5-0.5) Game 1(0.2-0.8) Game 2 (0.4-0.6) Game 3 (0.5-0.5)
(a) RS1 (b) RS2

Fig. 6. Average defender loss from experiments with 100 participants (50 on each side) in each
game per strategy (each bar). Error bars are small due to large sample size.

The BRM strategy outperforms PRM strategy in every game with different wealth
imbalance of both reward structures. The error bars shown in the graph are small due to
large sample size. The BRMO5 however, is more unstable. It outperforms the other two
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strategies in some games with lower wealth imbalance. However, it performs poorly for
high wealth imbalance and even lost to PRM in RS2. This fact suggests that it could not
capture some properties about the attacker behavior of the high imbalance game.

Another phenomenon worth noticing is that the defender loss did decrease as the
wealth imbalance increases as proposition 3 suggested for both PRM and BRM in asym-
metric games. Interestingly, BRM deployed some surprisingly different strategies when
dealing with symmetrically powerful adversaries, which will be analyzed in the next
section.

Strategy Difference Other than better prediction and the exploitation of bounded ra-
tional behavior when choosing grids to attack, there is another crucial reason for the
BRM to perform well. Figure 7 shows the actual collusion probability of PRM and
BRM strategy in real experiment.

RS1 Probability of Collusion RS2 Probability of Collusion
OPRM Strategy M BRM Strategy OPRM Strategy M BRM Strategy
100.00% 100.00%
90.00% 90.00%
80.00% 80.00%
70.00% 70.00%
60.00% 60.00%
50.00% 50.00%
40.00% 40.00%
30.00% 30.00%
20.00% 20.00%
10.00% 10.00%

0.00% 0.00%
Game 1(0.2-0.8) Game 2 (0.4-0.6) Game 3 (0.5-0.5) Game 1(0.2-0.8) Game 2 (0.4-0.6) Game 3 (0.5-0.5)

(a) RS1 (b) RS2

Fig.7. Comparison of the actual collusion probabilities between the PRM and BRM defender
strategies.

In asymmetric games, BRM is able to break the collusion with higher probabilities
than PRM. Surprisingly, in the symmetric game(game 3), BRM did not break more
collusion than PRM. To investigate this, we compare the strategy deployed in PRM and
BRM for such game in figure 8. It can be observed that BRM did not try to break the
collusion at all by defending both side symmetrically. By accepting the fact that human
adversaries are still going to collude and the resources it has are too little to spare, BRM
is able to keep the collusion probability within an acceptable amount without sacrificing
one side too much.

As for asymmetric adversaries, figure 9 shows the difference between the strategies
PRM and BRM deployed. The first thing to notice is that although the reward structure
is not uniformly distributed on each side, both PRM and BRM agrees that more de-
fender resources should be deployed on the attacker with more wealth as proposition 1.
In these games, BRM tries to break the collusion harder than PRM by deploying more
defender resources on stronger attacker than PRM.
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Fig. 8. Strategies of PRM and BRM for symmetric adversaries(Game 3(0.5-0.5)).
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(a) Game 1(0.2-0.8) (b) Game 2(0.4-0.6)
Fig. 9. Strategies of PRM and BRM for asymmetric adversaries.

5 Conclusions

This paper modeled and addressed a security game problem that focused on breaking
the collusion between asymmetric adversaries, which is often the case in the real world.
Questions as to whether human adversaries would attempt to collude in such situations,
and whether defender strategy to counter such collusion should focus on inhibiting such
collusion were addressed in this paper by: (i) theoretically analyzing Imbalanced Col-
lusive Security Games (ICOSG) where defenders face adversaries with asymmetrically
distributed rewards; (ii) conducting extensive experiments of three different adversary
models involving 1800 real human subjects and (iii) deriving novel analysis of the rea-
son behind why bounded rational attacker models outperform perfectly rational attacker
models. (iv) analyze the essential difference between balanced and imbalanced adver-
saries game. The key principle we found is that: Careful modeling of human bounded
rationality reveals a key difference(when compared to a model using perfect rational-
ity) in defender strategies for handling colluding adversaries which face symmetric vs
asymmetric rewards. Whereas a model based on perfect rationality always attempts to
break collusion among adversaries, a bounded rationality model acknowledges the in-
herent difficulty of breaking such collusion in symmetric situations and focuses only on
breaking collusion in asymmetric situation, and only on damage control from collusion
in the symmetric situation.
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