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Abstract

Protecting an organization’s cyber assets from intrusions and breaches due to attacks by mali-

cious actors is an increasingly challenging and complex problem. Companies and organizations

(hereon referred to as the defender) who operate enterprise networks employ the use of numerous

protection measures to intercept these attacks, such as Intrusion and Detection Systems (IDS)

and along with dedicated Cyber Emergency Readiness Teams (CERT) composed of cyber ana-

lysts tasked with the general protection of an organization’s cyber assets. In order to optimize

the use of the defender’s limited resources and protection mechanisms, we can look to game

theory which has been successfully used to handle complex resource allocation problems and

has several deployed real-world applications in physical security domains. Applying previous

research on security games to cybersecurity domains introduce several novel challenges which

I address in my thesis to create models that deceive cyber adversaries and provide the defender

with an alert prioritization strategy for IDS. My thesis provides three main contributions to the

emerging body of research in using game theory for cyber and physical security , namely (i) the

first game theoretic framework for cyber deception of a defender’s network, (ii) the first game-

theoretic framework for cyber alert allocation and (iii) algorithms for extending these frameworks

to general-sum domains.
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In regards to the first contribution, I introduce a novel game model called the Cyber De-

ception Game (CDG) model which captures the interaction between the defender and adversary

during the recon phase of a network attack. The CDG model provides the first game-theoretic

framework for deception in cybersecurity and allows the defender to devise deceptive strategies

that deceptively alters system responses on the network. I study two different models of cyber

adversaries and provide algorithms to solve CDGs that handle the computational complexities

stemming from the adversary’s static view of the defender’s network and the varying differences

between adversary models.

The second major contribution of my thesis is the first game theoretic model for cyber alert

prioritization for a network defender. This model, the Cyber-alert Allocation Game, provides

an approach which balances intrinsic characteristics of incoming alerts from an IDS with the

defender’s analysts that are available to resolve alerts. Additionally, the aforementioned works

assume the games are zero-sum which is not true in many real-world domains. As such, the third

contribution in my thesis extends CAGs to general-sum domains. I provide scalable algorithms

that have additional applicability to other physical screening domains (e.g., container screening,

airport passenger screening).
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Chapter 1

Introduction

Protecting an organization’s cyber assets from intrusions and breaches due to attacks by malicious

actors is an increasingly challenging and complex problem. This challenge is highlighted by

several recent major breaches which have caused severe damage, such as the Equifax breach in

2017 and Yahoo in 2016 1. To protect from cyber breaches, companies and organizations employ

the use of anti-virus softwares, Intrusion and Detection Systems (IDS), and Cyber Emergency

Readiness Teams (CERT) composed of cyber analysts tasked with the general protection of an

organization’s network and cyber assets. Modern day cyber adversaries are persistent, targeted

and sophisticated. This highlights the tremendous need for organizations protecting against such

attacks to model these adversaries to optimize the application of the network defender’s to protect

targets and systems across the enterprise network. The Cyber Kill Chain [55, 8] encapsulates

the necessary steps an adversary must complete to successfully breach the defender’s enterprise

network.2 Figure 1.1 shows the Cyber Kill Chain3. In the first phase of the Cyber Kill Chain

124th Air Force - AFCYBER: http://www.24af.af.mil; 688th Cyberspace Wing: http://www.24af.af.

mil/Units/688th-Cyberspace-Wing
2The Cyber Kill Chain is a common framework for post analysis of a cyber breach. Recently, it was used to

analyze the methods used by Russian actors targeting energy and other critical U.S. infrastructure sectors. https:

//www.us-cert.gov/ncas/alerts/TA18-074A
3Source: https://www.eventtracker.com/tech-articles/siemphonic-cyber-kill-chain/.
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the adversary spends a significant amount of time completing reconnaissance of the defender’s

enterprise network to learn about the vulnerabilities present and potential points of compromise.

After recon, the adversary’s next phases consist of weaponizing his exploit or malware, delivering

it to the network through some medium and then exploiting a vulnerability in a system connected

to the defender’s network. To finish out his attack, the adversary’s installs additional malware to

ensure persistence and then establishes a command and control channel so he is able to act on his

objectives, i.e., exfiltrate sensitive information, and complete his ultimate goal from breaching

the network.

Figure 1.1: The Cyber Kill Chain developed by Lockheed Martin.

Stopping a cyber breach crucially depends on thwarting an adversary’s attack during one of

the phases occurring in the Cyber Kill Chain. To impede the adversary during the phases of his

attack, network administrators use techniques such as the whitelisting of applications, locking

down permissions, and immediately patching vulnerabilities [42]. An interesting direction of re-

search is the use of deception as a framework to improve cybersecurity defenses [4]. In particular,

deception is extremely useful as a defense mechanism to impede an adversary during the recon
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phase of his attack. Criminals who target networks first map it out by using network scanning

tools to ascertain network information through a suite of requests using tools such as NMap [53].

Deception is useful here as the adversary relies on the information received from network scan-

ning tools to learn about the vulnerabilities he can exploit to compromise the defender’s network.

Instead of directly stopping an attack, deceptive techniques concentrate on diverting an adversary

to attack non-critical systems or honeypots using deceptive views of the network state. Essen-

tially, approaches for deception focus on making it difficult for the adversary to ascertain the true

state of the network using network scanning tools like NMap. However, one drawback of most

of these previous approaches is that they do not adequately model the adversarial nature of the

cybersecurity domain.

After the recon phase, the adversary must complete phases 2 through 6 of his attack which in-

clude the delivery and exploitation phases of his attack. During these phases, automated intrusion

detection and prevention systems (IDS) generate alerts for potentially malicious activity occur-

ring on the defender’s network where the generated alerts are aggregated into a central repository

security information and event management tools (SIEM). To resolve the alerts generated by the

IDS, human cybersecurity analysts on the CERT must investigate the alerts to assess whether they

were generated by malicious activity, and if so, how to respond. Unfortunately, these automated

systems are notorious for generating high rates of false positives [78]. Compounding this prob-

lem is the fact that expert analysts are in short supply, so organizations face a key challenge in

investigating and managing the enormous volume of alerts they receive using the limited time of

analysts. Failing to solve this problem can render the entire system insecure, e.g., in the 2013 at-

tack on Target, IDS raised alarms, but they were missed in the deluge of alerts [69]. It is important

to note these alerts give the defender the ability to stop the adversary during the later phases of

3



the cyber kill chain, e.g., the delivery, exploitation, or installation phases, and prevents a network

breach from occurring or catches the adversary earlier in his attack that reduces the damage from

a network breach.

An overriding consideration throughout the Cyber Kill Chain is the strategic reasoning taking

place between the network defender and a motivated adversary. Unfortunately, the defender is

limited in her security resources and cannot protect all systems from an attack; further, the ad-

versary could be conducting surveillance to learn about the defender’s deceptive strategies and

resolution strategies. A drawback of previous approaches to deception and the prioritization of

cyber alert resolution is that they do not sufficiently consider the response of a strategic adversary.

Failing to consider the actions of a strategic adversary can have detrimental effects on the effec-

tiveness of the defender’s deception and protection strategies as deterministic (non-randomized)

strategies are open to exploitation by smart adversaries. Game theory provides a foundation for

modeling the strategic interactions between two opposing parties. In this sense, my thesis looks to

game theory as a foundation to improve cyber defense for enterprise networks and to provide an-

other tool to the network defender to harness for protecting her network from constantly evolving

cyber adversaries.

In recent years, the use of game theory has seen tremendous success in security domains for

handling handling the complex scheduling and resource allocation problems of security resources.

One model of interest for the cybersecurity problems studied in my thesis is the Threat Screening

Game (TSG) model which was developed for the airport passenger screening domain. Airport

passenger screening relates nicely to the problem of choosing which incoming alerts to screen

with cyber analysts. However, it and other game theory models fail in three significant ways

when being applied to cyber deception and alert prioritization. Namely, (1) previous game theory

4



models consider an adversary who observes a mixed strategy from the defender, (2) they do

not model defender resources with heterogenous screening times or attacks which present as

probabilistic distributions over alert types, and (3) previous work assumes a game with zero-sum

payoffs.

(a) Network Reconnaissance (b) Cyber Security Operations (c) TSA Screening

Figure 1.2: Domains of application for game theory in varying security domains and operations.

My thesis addresses these issues and advances the state of the art in the application of game

theory to cybersecurity and the field of security games. The first major contribution of my the-

sis is the Cyber Deception Game (CDG) model which captures the interaction between defender

and adversary during the reconnaissance phase of an enterprise network attack. The second ma-

jor contribution of my thesis is the Cyber-alert Allocation Game model which provides a game

theoretic framework for prioritization of cyber alerts coming from IDS placed throughout the

defender’s network and tackles to second limitation of previous game theoretic models. The fi-

nal major contribution of my thesis extends CAGs to domains with general-sum payoffs that is

additionally applicable to physical security domains as it applies to TSGs as well.
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1.1 Cyber Deception

Experienced attackers attempting to infiltrate a network spend a significant amount of time during

the reconnaissance phase of their attack to find vulnerabilities throughout the network by map-

ping out the network through NMap scans, stealth SYN scans, TCP connections scans along with

others [54, 42]. After gathering all of this information, the attacker then mounts their attack on

a network. In the cyber domain, the network administrator has asymmetric information as she

knows the true state of the network, i.e., properties of systems such as its operating system and

applications running, and further, she can deceptively alter responses to network scans sent by

an adversary [18, 2]. By hiding or lying about part of each system’s configuration, the defender

makes it significantly harder for the adversary to determine the true vulnerabilities present in

systems on the network. Since exploits generally rely on specific vulnerabilities and versions of

software, incorrectly identifying a system’s software information decreases the likelihood of a

successful attack and increases the amount of time it takes an adversary to compromise the de-

fender’s network. This type of interaction introduces an opportunity for the defender to employ

deceptive techniques at a network level to increase uncertainty during an adversary’s reconnais-

sance activities.

The first contribution of my thesis concentrates on how the defender can maximize the benefit

from deceiving cyber adversaries with a mix of true, false and obscure responses to network

scans. To highlight the defender’s advantage, consider a network with 1 system running Nginx

and 2 running Tomcat. Suppose the adversary has a specific exploit for Nginx. The adversary

uses nmap to determine the webserver for each system and deploy his exploit to the one running

Nginx. However, if the defender can lie about the webserver, the adversary potentially has to

6



deliver his exploit to all systems before infiltrating the network. This process increases the time

spent by the adversary to infiltrate the network (which gives the defender time to mount a better

defense) and increases the chances the defender identifies an ongoing attack. The main problem

for the defender then is to determine how to alter the adversary’s perception of the network to

minimize her expected loss from an attack.

In this regard, I introduce a novel game theoretic model called the Cyber Deception Game

(CDG) [72] which captures the interaction between the defender and adversary during the recon

phase of network attacks and the cyber kill chain. The CDG model introduces a framework for a

defender to deploy randomized deceptive strategies in a holistic fashion at a network wide level.

I first consider a powerful adversary where I make a robust assumption about the information

the adversary has to determine his optimal response to the defender’s deceptive strategy In this

domain, the adversary is assumed to view a static version of the network state, i.e., one observed

configuration for each system on the network, which in turn causes the problem of computing

the defender’s optimal strategy to be NP-hard. To alleviate these issues, I explore two separate

algorithms for solving CDGs. First, I use a reformulation approach to convert the defender’s non-

linear optimization problem into a MILP. Second, I make use of a Bisection algorithm framework

which solves a sequence of Mixed Integer Linear Programs (MILP) feasibility problems to obtain

an ε-optimal approximate strategy for the defender. The second adversary model I explore in this

research focuses on a naive adversary who is not aware of the deception and has a fixed set of

preferences for systems (given an observed configuration) on the network. Extensive experimen-

tal evaluation is provided comparing the two approaches and the trade-off between the solving

the optimal reformulated MILP and the bisection algorithm.
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1.2 Cyber Threat Screening

Many approaches for mitigating the problem of sifting through the deluge of alerts generated fo-

cus on reducing the number of overall alerts. IDS can be carefully configured, alert thresholds can

be tuned, and the classification methods underlying the detections can be improved [77, 13, 48].

Other techniques include aggregating alerts [91], and visualizing alerts for faster analysis [61].

Even when using all of these techniques, there is still a large volume of alerts which makes it

infeasible for analysts to investigate all of them in depth. My work focuses on the remaining

problem of assigning limited analysts to investigate alerts after automated pre-processing meth-

ods have been applied.

The typical approach to managing alerts is either ad-hoc or first investigates alerts with the

highest priority (e.g., risk). However, this fails to account for the adversarial nature of the cy-

ber security setting. An attacker who can learn about a predictable alert management policy can

exploit this knowledge to launch a successful attack and reduce the likelihood that they will be

detected. For example, if the defender had a policy that only inspects alerts from high valued as-

sets in her network, an attacker who can learn this evades detection indefinitely by only attacking

lower valued assets.

To address shortcomings of the previous methods for cyber alert allocation, I introduce the

Cyber-alert Allocation Game (CAG) [73] model which provides a game theoretic framework for

the defender to prioritizes and assign alerts for resolution raised from IDPS placed on systems and

nodes across the network. Game theory allows us to explicitly model the strategies an attacker

could take to avoid detection. By following a randomized, unpredictable assignment strategy the

defender can improve the effectiveness of alert resolution strategies against strategic attackers.
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The CAG model considers the characteristics of the alerts (e.g., criticality of origin system), as

well as the capabilities of the analysts in determining the optimal policy for the defender. I de-

velop techniques to find the optimal allocation of alerts to analysts on the Computer Emergency

Readiness Teams (CERT) in general CAGs and identify special cases where the computation be-

comes easy. The main algorithm takes advantage of a compact marginal representation of the

defender’s strategy space that leverages a special type of constraint structure called a bihierar-

chy which provides special conditions for when optimizing over the defender’s marginal strategy

space is equivalent to the mixed strategy space. Further heuristics are developed to achieve sig-

nificant scale-up in CAGs without significant trade-offs in solution quality.

Both the CDG and CAG models assume games in which the payoffs are zero-sum, however,

in many real world security domains this assumption may not hold. Hence, the last contribution

of my thesis extends the CAG to domains with general-sum payoffs which I show makes the com-

putation of the defender’s optimal strategy NP-hard [71]. This work has additional applicability

to physical security domains (e.g., shipping container screening or airport passenger screening)

as it extends the work done on Bayesian Threat Screening Games (TSGs) which previously as-

sumed the payoffs to be general-sum as well. To deal with these issues, I provide the GATE

which combines branch-and-bound search with Marginal Guided Algorithm, introduced in [22]

to solve zero-sum TSGs, to optimally solve general-sum TSGs and additional heuristics which

improve the scalability of GATE to real-world domains.
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1.3 Thesis Outline

In Section 2, I discuss two relevant game theoretic models which inspire the development of the

game theoretic models in this thesis. In Section 3, related works are discussed for background

in security games and cybersecurity research. Next, Section 4 I introduce the Cyber Decep-

tion Game (CDG) model and discuss the associated algorithms for solving for optimal deceptive

defender strategies. Section 5 introduces the Cyber-alert Allocation Game (CAG) model and

presents algorithms for determining defender alert allocation strategies to her cyber analysts on

the floor. In Section 6, I present the GATE algorithm which solves General-sum Bayesian Threat

Screening Games. Finally, in Section 7 I discuss relevant future work for the use of deception in

cybersecurity domains, future work for using the alert prioritization strategies in the real world

and conclude my thesis.
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Chapter 2

Background

2.1 Security Games

A security game [70, 27, 60, 81, 43] is a two-player game player between a defender and an

adversary, where the defender protects a set of N targets from the attacker. The defender is

assumed to have K security resources at her disposal to prevent an attack. A pure strategy for

the defender is an assignment of the K resources to eiher targets or patrols (which can consist

of multiple targets) while an adversary’s pure strategy consists of choosing a target to attack.

Denote the kth defender pure strategy as Pk, which is an assignment of all security resources.

Pk is represented as a column vector Pk = [Pki]
T , where Pki = 1 determines whether target i is

protected by Pk. For instance, consider a security game with 3 targets and 2 resources, then

Pk = [1,0,1] represents the pure strategy where the defender protects targets 1 and 3 while 2

is left uncovered. Each target i ∈ N has a corresponding set of payoffs {Uc
d ,U

u
d ,U

c
a ,U

u
a }: If

an adversary attacks target i and it is protected by a resource, then he receives utility Uc
a and the

defender receives utility Uc
d . If target i is not protected then the adversary receives utility Uu

a while

the defender receives Uu
d . For security games, it is assumed that Uc

a < Uc
d and Uu

a > Uu
d , which
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means the defender strictly benefits from covering a target more often with a resource while it is

disadvantageous to the adversary. In security domains, it is often true that there are significantly

more targets to protect than security resources available to protect them, i.e., K < N, and hence,

it is of tremendous importance to the defender to carefully design a protection strategy.

A major assumption in most work on security games is that the interaction between the de-

fender and adversary can be captured via the Stackelberg assumption, i.e., the defender commits

to a strategy first. The adversary is then assumed to conduct surveillance and learns the defender’s

strategy before selecting his best response. This type of game is called the Stackelberg Security

Game (SSG) where the standard solution concept is the Strong Stackelberg Equilibrium (SSE).

For SSE, the defender is assumed to select an optimal strategy based on the assumption that an

adversary selects his best response, breaking ties in favor of the defender. In an SSG, the de-

fender’s optimal strategy is generally a mixed (randomized) strategy q, which is a distribution

over pure strategies P , as an adversary can typically exploit any deterministic (pure strategy)

played by the defender. The mixed strategy is represented as a vector q = [qk]
T , where qk ∈ [0,1]

is the probability of choosing a pure strategy Pk and ∑k qk = 1. The defender’s strategy can also

be represented in a compact manner using a “marginal” representation. Let n be the marginal

strategy, then ni = ∑Pk∈P qkPki is the probability that target i is protected. Hence, work on SSG

typically focus on solving for the defender’s optimal marginal strategy q or the marginal strategy

n.
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2.2 Threat Screening Games

A threat screening game (TSG) is a Stackelberg game played between the screener (leader) and an

adversary (follower) in the presence of a set of non-player screenees that pass through a screening

checkpoint operated by the screener. While TSGs are applicable to many domains, given that

readers may be familiar with passenger screening at airports, I use examples from that domain.

A TSG is composed of several features beyond the traditional SSG. A TSG is played over Time

windows w∈W that capture the temporal aspect of screening. The incoming passengers are group

together by implicit characteristics, e.g., risk level and flight, into screenee categories c ∈ C.

Nc gives the total number of screenees arriving in a category while Nw
c denotes the number of

screenees in category c arriving in time window w. The adversary is assumed to have an adversary

type θ ∈Θ that defines implicit characteristics of an adversary which cannot be chosen, e.g., TSA-

assigned risk level. This in turn restricts the adversary to select from screenee categories Cθ ⊂C.

The adversary is assumed to know his type, but the defender only knows a prior distribution z

over the types. The adversary then chooses an attack methods m ∈ M to attack with, e.g., on-

body explosive. The defender has resource types r ∈ R that can be used to screen at most Lw
r in

a given time window. Each resource has effectiveness Er
m which is the probability of detecting

attack method m. These resources can be combined to team types t ∈ T that are used to screen

a passenger, e.g., walk-through metal detector and x-ray machine. Each team has effectiveness

Et
m = 1−Πr∈t(1−Er

m) which defines the probability of detecting m.

Pure strategy A pure strategy P for the screener can be represented by |W |× |C|× |T | non-

negative integer-valued numbers Pw
c,t , where each Pw

c,t is the number of screenees in c assigned to

be screened by team type t during time window w. Pure strategy P must assign every screenee

13



t1 t2 t3 

c1 

c2 

c3 

4 

1 

3 

2 

4 

5 

3 

4 

1 

(a) Pure Strategy 

t1 t2 t3 

c1 

c2 

c3 

4.3 

0.7 

3 

1.5 

4.1 

5.4 

3.2 

4.2 

0.6 

(b) Marginal Strategy 

Figure 2.1: TSG Strategies

to a team type while satisfying the resource type capacity constraints for each time window, via

the following constraints: ∑t∈T It
r ∑c∈C Pw

c,t ≤ Lw
r ∀w ∈W,∀r ∈ R and ∑t∈T Pw

c,t = Nw
c ∀w ∈

W,∀c ∈ C where It
r is an indicator function returning 1 if team type t contains resource type r

and 0 otherwise. P̂ denotes the set of all valid pure strategies and it is assumed P̂ 6= /0, i.e., it is

possible to assign every screenee to a team type. The pure strategies for the adversary types are

denoted as aθ ,w
c,m which specifies that adversary type θ selects time window w, screenee category

c, and attack method m.

For example, consider a game with one time window w1 and two screening resources r1,

r2 with capacity constraints Lr1,r2 = 20, respectively. The resources are combined into three

screening teams t1 = {r1}, t2 = {r1,r2} and t3 = {r3}. There are three categories c1, c2 and c3

and each has Nc = 9 passengers. Figure 2.1(a) shows an example of a pure strategy allocation in

this game.

Marginal strategy A marginal strategy n for the screener can be represented by |W |× |C|×

|T | non-negative real-valued numbers nw
c,t , where nw

c,t is the number of screenees in c assigned

to be screened by team type t during time window w. We would want this marginal strategy to

be a valid mixed strategy (implementable), i.e., there should exist a probability distribution over
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P̂ given by qP (i.e., ∑P∈P̂ qP = 1, 0 ≤ qP ≤ 1) such that nw
c,t =∑P qPPw

c,t . An example marginal

screener strategy is shown in Figure 2.1(b) with the same game parameters described previously.

Utilities Since all screenees in category c are screened equally in expectation, we can inter-

pret nw
c,t/Nw

c as the probability that a screenee in category c arriving during time window w will

be screened by team type t. Then, the probability of detecting an adversary type in category c

during time window w using attack method m is given by xw
c,m = ∑t Et

mnw
c,t/Nw

c . The payoffs for

the screener are given in terms of whether adversary type θ chooses screenee category c and is

either detected during screening, denoted as Ud
s,c, or is undetected during screening, denoted as

Uu
s,c. Similarly, the payoffs for adversary type θ are given in terms of whether θ chooses scree-

nee category c and is either detected during screening, denoted as Ud
θ ,c, or is undetected during

screening, denoted as Uu
θ ,c. Given adversary type θ pure strategy aθ ,w

c,m , the screener’s expected

utility is given by Us(a
θ ,w
c,m ) = xw

c,mUd
s,c +(1− xw

c,m)U
u
s,c and the expected utility for adversary type

θ is given by Uθ (a
θ ,w
c,m ) = xw

c,mUd
θ ,c +(1− xw

c,m)U
u
θ ,c.
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Chapter 3

Related Work

3.1 Stackelberg Security Games

Stackelberg Security Games (SSG) have been well studied in previous literature [45, 50, 47, 34,

80, 41, 51, 46]. The early work in this area of research concentrated on providing the necessary

theoretic and algorithmic foundation needed to solve general Stackelberg games and not on the

problem of security. [82] is the first work to explore the concept of commitment to mixed (i.e.,

randomized) strategies in Stackelberg games. The earliest approach to solving general Stackel-

berg games termed Multiple LPs is introduced in [27] which shows that you can compute the

optimal commitment by solving a single LP for each adversary action. The DOBSS algorithm

presented in [60] improves on the Multiple LPs approach by showing the Strong Stackelberg

Equilibrium (SSE) in Bayesian Stackelberg Games, i.e., where the leader may face multiple fol-

lower types, can be found using a single Mixed Integer Linear Program (MILP).

The formal Stackelberg Security Game model was introduced in [43] along with the

ORIGAMI and ERASER algorithms for solving these games. ORIGAMI gives a polynomial time

algorithm for solving security games without resource constraints, e.g., scheduling constraints in
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patrolling domains. ERASER, on the other hand, compactly represents the defender’s strategy

space which allows for significantly more scalability in security games with multiple resources.

Additionally, ERASER handles resource constraints that are not considered in ORAGAMI. The

first optimal approach to solving SSG with arbitrary resource constraints is ASPEN [37] which

uses a branch-and-price framework that considers only the most relevant pure strategies to incre-

mentally build up the defender’s optimal mixed strategy. The HSBA algorithm [39] advanced

the state-of-the-art in solving Bayesian SSG. HSBA breaks down the Bayesian game into smaller

restricted games, i.e., games with a subset of the adversary types from the original problem, and

solves the restricted games by combining an efficient branch and bound search with column gen-

eration. The solution information from these restricted games is then used to solve the original

game more effectively.

Research on SSGs have led to several successfully deployed decision-support applications in-

cluding ARMOR [64], IRIS [81], GUARDS [65], PROTECT [75], and TRUSTS [87]. These de-

cision aids provide algorithms that generate strategies and patrols of defender security resources

for the protection of physical targets such as airports, ports and metro systems. All of these works

assume that an adversary observes a mixed strategy from the defender and assume the security

resources are 100% effective at protecting a target if allocated to it. This is in contrast to the

work in this thesis that accounts for resources that are not 100% effective and an adversary who

observes a pure strategy from the defender, which are crucial features of the cyber domain.

The problem of threat screening has been explored extensively in literature. The Threat

Screening Game (TSG) model was introduced in [22] and looks to SSG for inspiration to de-

vise a game theoretic model for the threat screening domain. As [22] points out, the TSG ap-

proach provides a significant improvement on prior non-game-theoretic models in domains such
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as, screening for shipping containers [6], stadium patrons [68], and airport passengers [57, 58] or

simple game-based models such as [83]. Specifically, previous non-game-theoretic approaches

fail to model a rational adversary who aims to take advantage of vulnerabilities in the screening

strategies whereas TSGs take this into account when devising screening strategies. Furthermore,

previous solution methods for solving security games fail to apply directly to airport passenger

screening. This happens because TSGs (i) include a group of non-player screenees that all must

be screened while a single adversary tries to pass through screening undetected, (ii) model screen-

ing resources with different efficacies and capacities that can be combined to work in teams and

(iii) do not have an explicitly modeled set of targets. These are fundamental differences from

traditional security games [43, 64, 75, 81] where the defender protects a set of targets against a

single adversary. [22] provides MGA to solve for the defender’s optimal screening strategy in

Bayesian zero-sum TSGs, but these techniques fail to apply to TSGs with non-symmetric (i.e.,

general-sum) payoffs. HSBA represents an interesting approach for solving Bayesian general-

sum TSGs, but as shown in [22] column generation is not a scalable approach for solving TSGs.

Hence, novel algorithms are needed to tackle the challenges of scaling up solution methods to

Bayesian general-sum TSGs.

3.2 Cyber-alert Allocation

Intrusion detection has been studied for over three decades, beginning with the early work

of [7, 29]. A major concentration of research on intrusion detection has focused on developing au-

tomated techniques (e.g., machine learning) for identifying malicious activity [36, 35, 84, 30, 79].

However, these methods have significant detection error and suffer from generating a plethora of
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alerts for the defender to investigate [77]. As the volume of alerts increased significantly due to

Intrusion and Detection systems across a network, later research [12, 77] focused on reducing the

number of false positive alerts by developing automated alert reduction techniques. In this regard,

there are both open source [21] and commercially available [91] Security and Event Management

(SIEM) tools that take raw data input from sensors, aggregate and correlate them, and provides

a central repository of alerts from the enterprise network that can then be assigned for investiga-

tion by the cyber security analysts. Most modern cybersecurity operations of large organizations

house a team of human cyber analysts (e.g., Computer Emergency Response Team (CERT)1 )

who are tasked with investigating these alerts generated by the automated detectors [28]. A re-

cent line of work [33] uses decision theory to optimize the scheduling of cyber-security analysts

over 2 week periods to minimize the risk associated with investigating and needing to remediate a

critical attack, but this approach does not consider the response of a strategic attacker. In contrast

with this previous work, my thesis focuses on the problem of how to assign the alerts to analysts

which are currently on the operations floor given an adversary attempting to exploit weaknesses

in the defender’s allocation strategy.

My approach for cyber alert allocation draws on the principles and modeling techniques of

the large body of work that applies game theory to security problems [80]. The existing work

on security games focuses heavily on applications to physical security (e.g., patrolling), with

some exceptions (e.g., [48, 31]). However, Cyber-alert Allocation Games (CAG) significantly

differs from SSG due to the absence of an explicit set of targets, a large number of benign alerts

and varying time requirements for inspections. TSGs relate nicely to CAGs, but there are some

1As an example the United States Air Force employs the use of 688th Cyberspace Wing to protect De-
partment of Defense networks and systems from priority threats. http://www.afcyber.af.mil/About-Us/

688th-Cyberspace-Wing/
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crucial differences with the cybersecurity domain: (1) Screening in airports is a quick scan of a

passenger; in CAGs, investigating a threat may take varying amounts of time leading to a different

“non-implementability” [45] issue for CAG as compared to TSG and other security games which

require novel techniques to resolve, (2) CAG does not consider teams of resources, and (3) in

cybersecurity attacks result in a distribution of potential alert types.

3.3 Cyber Deception

The use of game theory has been studied before in the context cybersecurity problems [52, 5,

74, 49, 73]. [44, 63, 32, 31] study a honeypot selection game where the defender chooses the

properties of the network, a sequel where the adversary can probe machines to ascertain the true

state and a final version which models the adversary’s actions as attack graphs. [24] studies a

signaling game where the defender signals to an adversary if a system is either real or a honeypot

when the adversary performs a scan. [62] extends the signaling game to account for an adversary

who can gain evidence about the true state of a system. In my work, I consider a game scenario in

which the defender determines the optimal way to respond to scans sent by a potential adversary

given a set of possible responses. Further, I explore different types of adversaries with varying

awareness of deception.

Deception has also been widely studied as a means to improve the protection of enterprise

networks from potential hackers and intruders [3, 1]. [2] uses a graph theoretic approach to

confuse a potential attacker by manipulating his view of systems on the network. However, this

work focuses on finding a view which is measurably different from the true state and does not

adequately model the response of a strategic adversary. [40] is closely related to my work on
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deception. The authors study how to respond to an attacker’s scan queries using an annotated

probabilistic logic model. My research provides a complimentary view using game theory to

determine how a defender manipulates scan responses to confuse an attacker’s view of systems

on the network. I also study varying adversary models, which can have significant impact on the

defender’s optimal strategy which is not explored in [40].
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Chapter 4

Cyber Deception Games

4.1 Problem Domain

The first stage of the cyber kill chain, the reconnaissance phase, is one of the most critical stages

for an adversary attempting to breach an enterprise network, and hence, a critical phase in which

the defender can protect against network intrusions. . Motivated adversaries spend a signifi-

cant amount of time completing reconnaissance on the enterprise network to learn about system

vulnerabilities and the best points of compromise in the defender’s network. Reconnaissance

is completed through a suite of scan requests, such as Stealth SYN scans, OS scans, and ser-

vices scans by using network scanning tools such as NMap. Importantly, the type of interaction

between the defender and an adversary during the recon phase provides an opportunity for the

defender to deceive a cyber adversary by altering and lying about the system information which

is returned from from scanning activity.

This chapter explores a game theoretic model, the Cyber Deception Game (CDG), which

provides a framework for the defender to deceptively set scan responses for systems across the

defender’s enterprise network to deceive potential cyber adversaries. Two adversary models are
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explored that represent the various types of real-world adversaries that can be encountered in

the network security domain. The first is a powerful adversary who is assumed to have a robust

amount of information about the defender’s deceptive strategy, e.g., nation-state level adversaries

who may have access to insider information. The second is a naive adversary assumed to not

be aware of the deception and who has a fixed set of preferences over observed systems on the

network, e.g., script-kiddies who are not as advanced. I show that computing the optimal strategy

for the network defender is NP-hard due when facing a powerful adversary due to either masking

or cost constraints imposed on the defender’s deceptive response strategy space. Additionally, I

show computing the optimal strategy against the naive adversary to be NP-hard as well when both

the masking and cost constraints are imposed on the defender. I develop three solution approaches

to find the defender’s optimal deceptive response scheme against a powerful adversary: (1) a

Mixed Integer Linear Programming (MILP) approach, (2) a bisection algorithmic approach, and

approaches to find the defender’s optimal strategy against naive adversaries and (3) a greedy

heuristic approach to quickly generate defender deceptive strategies. I also present experimental

results showing the scalability of the algorithms to larger scale CDGs. Finally, technical deceptive

techniques and approaches are discussed which could leverage the use of the CDG model to

generate deceptive network views.

4.2 Cyber Deception Game

The Cyber Deception Game (CDG) is a zero-sum Stackelberg game between the defender (e.g.,

network administrator) and an adversary (e.g., hacker). The defender moves first and chooses how

the systems should respond to scan queries from an adversary, and the adversary subsequently
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Figure 4.1: The network reconnaissance domain in which an adversary scans the defender’s
enterprise network and the defender deceptively alters the system’s responses.

moves by choosing a system to attack based on the responses. Despite the similarities with game-

theoretic models in security domains, such as [80, 15, 16], there are two key differences. First,

the defender can only commit to a pure strategy and not an arbitrary mixed strategy. This is

because, in these domains, network administrators modify the network very infrequently, and

thus, the attackers’ view of the network is static. Second, there are no explicit security resources

for the defender in CDGs. Consequently, the existing approaches for solving standard Stackelberg

games in security domains, cannot be directly applied. The various components of the game and

the aforementioned model characteristics are described in detail as follows:

Systems and True Configurations

The defender aims to protect a set K of systems, from possible exploits and intrusions. Each sys-

tem has certain attributes, e.g., an operating system, an anti-virus protection mechanism, services

hosted, etc. These attributes altogether constitute the true configuration (TC) of the system. The
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set of all possible TCs is denoted by F . Each system has an associated utility, which captures how

much the adversary would get by attacking it. This utility solely depends on the TC of the system

— each f ∈ F induces a utility denoted by U f to any system that is assigned f . U f can be negative

if the security level of the system is so high that the attacker’s efforts end in vain or the attacker

gets fake data from a seemingly successful attack, leading to a loss in the end. It follows that,

the true state of the network (TSN) can be represented as a vector N = (N f ) f∈F , where N f ∈ Z>0

denotes the number of systems on the network which have a TC f and ∑
f∈F

N f = |K| (Assume

N f 6= 0, since such a TC simply need not be considered).

Observed Configurations

The adversary attempts to gain information about every system on the network, via probes and

scans. By scanning a system, the adversary observes certain attributes, which constitute the

observable configuration (OC) of the system. The set of possible OCs is denoted by F̃ . It is

assumed that it is possible for the defender to make some of the observable attributes of a system

appear different than what they truly are (e.g., altering the TCP/IP stack of a system, spoofing a

running service on a port). By means of such alterations at her disposal, the defender controls

the OC an attacker sees when probing a system. Note that it may not be possible for an arbitrary

TC f to be made to appear as an arbitrary OC f̃ ∈ F̃ — such a constraint is called a feasibility

constraint, and these are denoted by a (0,1)-matrix π . Iff π f , f̃ = 1, then f can be covered, or

masked with f̃ . The set of OCs which can mask a TC f , is denoted by F̃f = { f̃ ∈ F̃ | π f , f̃ = 1},

and similarly, the set of TCs which can be masked by an OC f̃ , by Ff̃ = { f ∈ F | π f , f̃ = 1}.

From the adversary’s perspective, two systems having the same f̃ as their OC are indistin-

guishable, and hence, his observed state of the network (OSN) can be represented as a vector
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Ñ = (Ñ f̃ ) f̃∈F̃ where Ñ f̃ ∈Z≥0 denotes the number of systems which have an OC f̃ . As is the case

with the TSN N, we must have ∑
f̃∈F̃

Ñ f̃ = |K|.

It is assumed that masking a TC f with an OC f̃ , has a cost of c( f , f̃ ) incurred by the defender,

which typically captures the monetary costs for deploying network modifications necessary for

such a deception. It is also useful to note that although honeypots are not explicitly discussed in

the model they can represented with a true configuration fhoney and an observable f̃honey. Systems

on the network which do not appear for a specific system can also be modeled with an observable

configuration f̃hidden which does not have a utility, and further, any systems masked with f̃hidden

do not appear in the optimization problem formulated in Section 4.3.2.

Defender Strategies

Naturally, F , F̃ , π , c and N are known to the defender. Given all this information, the defender

must decide her strategy — for each TC f , she must decide how many of the N f systems having

TC f , should be assigned the OC f̃ , where f̃ ∈ F̃f . Thus, any possible strategy can be represented

as a |F |× |F̃ | matrix φ having non-negative integer entries, with φ f , f̃ representing the number of

systems having TC f and OC f̃ . Hence, φ must satisfy

φ f , f̃ ∈ Z≥0 ∀ f ∈ F,∀ f̃ ∈ F̃ (4.1)

Since the TSN N is fixed, φ must also satisfy

∑
f̃∈F̃

φ f , f̃ = N f ∀ f ∈ F (4.2)
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Since feasibility constraints π are specified, φ must also satisfy

φ f , f̃ ≤ π f , f̃ N f ∀ f ∈ F, ∀ f̃ ∈ F̃ (4.3)

Finally, since setting any OC on a system has an associated cost, the defender’s total cost cannot

exceed a limit B, which is called the budget constraint. Formally, φ must also satisfy

∑
f∈F

∑
f̃∈F̃

φ f , f̃ c( f , f̃ )≤ B (4.4)

The set of strategies φ which satisfy the constraints (4.1), (4.2), (4.3), and (4.4), is denoted by

Φ.1 When the defender plays φ ∈Φ, the resulting OSN Ñ is given by Ñ f̃ = ∑
f∈F

φ f , f̃ ∀ f̃ ∈ F̃ .

Adversary Strategies

Depending on the defender’s strategy, the adversary observes Ñ as described above. All systems

having the same OC f̃ are indistinguishable to the adversary, and hence, he must be indifferent

between all such Ñ f̃ systems when deciding which system to attack. As a result, the adversary

is assumed to choose the OC f̃ which gives him the highest expected utility (described momen-

tarily), and attack all the Ñ f̃ systems having this OC with an equal probability. In short, we say

“the adversary attacks an OC f̃ ” to mean he attacks all the systems having OC f̃ with an equal

probability. A general mixed strategy for the adversary is to attack the set of OCs with any proba-

bility distribution. However, since there always exists a pure best-response strategy in any game,

it suffices to consider the adversary’s strategies as simply attacking a particular f̃ .

1The feasibility constraints can simply be captured via the budget constraint by setting the costs of infeasible
assignments to be higher than the budget. However, they are essential in the model, since, in some cases, having no
budget constraint allows an efficient solution to the problem (e.g. Section 5), while still having the very practical
feasibility constraints keeps the problem non-trivial.
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Utilities

When the defender plays a strategy φ , the adversary’s expected utility on attacking an OC f̃ with

Ñ f̃ > 0, denoted by Ū f̃ (φ) — or, as Ū f̃ for simplicity, when the underlying φ is unambiguously

understood — is given by

Ũ f̃ = E[U f |φ , f̃ ] = ∑
f∈Ff̃

P( f |φ , f̃ )U f = ∑
f∈F

φ f , f̃

Ñ f̃
U f (4.5)

(4.5) follows from computing P( f |φ , f̃ ) using the fact that out of Ñ f̃ systems having an OC f̃ ,

φ f , f̃ have a TC f . Since the game is zero-sum, the defender’s expected utility is −Ũ f̃ when f̃

is attacked. Note the attacker cannot attack an OC f̃ with Ñ f̃ = 0, or equivalently, his expected

utility is −∞ if he does so.

Next, the model is illustrated using a simple example.

Figure 4.2: Simple example of an enterprise network.

Example Game 1: Figure 4.2 shows a simple example enterprise network which will be used as

a running example. We have a set of systems K = {k1,k2,k3}, set of TCs F = { f1, f2, f3} (shown

in Figure 4.2 as the green boxes) and set of OCs F̃ = { f̃1, f̃2} (shown in Figure 4.2 as the yellow
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boxes). Let the feasibility constraints be given by the sets Ff̃1
= { f1, f2} and Ff̃2

= { f2, f3}. The

TCs are as follows:

f1 = [[os] L, [web] T, [ssh] O, [files] S]

f2 = [[os] L, [web] N, [ssh] O, [files] P]

f3 = [[os] W, [web] N, [ssh] O, [files] I]

For the TCs, the utilities are U f1 = 10, U f2 = 0, and U f3 = 6. The OCs are as follows:

f̃1 = [[os] L, [web] T] f̃2 = [[os] W, [web] T]

For simplicity, let all the costs c( f , f̃ ) to be 0, so that there is essentially no budget constraint.

Based on the TCs assigned as shown, the state of the network (N f ) f∈F is (1,1,1). When the

defender assigns OCs as shown in Figure 4.2, her strategy φ is given by



f̃1 f̃2

f1 1 0

f2 1 0

f3 0 1



The expected utility of the adversary (loss of the defender) when he attacks f̃1 or f̃2 is respectively

given by Ũ f̃1
= (10+0)/2= 5 and Ũ f̃2

= 6/1= 6. Thus, attacking f̃2 leads to the highest expected

utility for the attacker.
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Adversary Knowledge and Utility Estimation

The attacker’s awareness of the deception and the understanding of the defender’s strategy may

vary. Note that if the adversary is always able to find the OC with highest expected utility, it is the

worst case scenario for the defender given the game is zero-sum. An attacker who is fully aware

of how the defender sends the false responses to scan requests (via insider threats, information

leakage, etc.) would have such an ability. Formally, a powerful attacker is defined as someone

who knows F , F̃ , π , U and φ and chooses to attack the OC with the (correct) highest expected

utility Ũ f̃ computed through Equation (4.5). If the defender chooses a strategy that minimizes the

expected utility of a powerful attacker, she gets a robust strategy as the defender can be assured

that no matter the extent of the adversary’s knowledge, no strategy he plays can lead to a greater

loss for the defender, in alignment with the minimax principle.

However, the attacker may not be so powerful. On the other end of the spectrum, if the at-

tacker is unaware of the defender’s precise deception scheme or has a very limited understanding

of the situation such that he cannot make any meaningful inference, his decision making would

be completely dependent on the observed configurations of the systems and some fixed prefer-

ences over OCs in terms of the estimated expected utility. Formally, a naive attacker is defined

to be someone who chooses to attack an existing OC f̃ (i.e., one which has at least one system

configured to it) with the highest Ū f̃ where Ū f̃ is not dependent on the defender’s strategy and

is known to the defender. This is also equivalent to the case where the attacker just has a fixed

preference of the OCs. CDGs with powerful attackers are analyzed in Section 4.3, and CDGs

with naive attackers in Section 4.4.
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4.3 Optimal Defender Strategy against Powerful Adversary

In this section, it is shown how to compute the defender’s optimal strategy in a CDG assuming

a powerful adversary. The adversary attacks an OC from the set argmax f̃∈F̃ Ũ f̃ and gets an ex-

pected utility of max f̃∈F̃ Ũ f̃ , denoted in short as Ũ∗(φ), where the negative value is the defender’s

expected loss. Hence, the defender aims to minimize her loss by choosing her φ from the set

argminφ∈ΦŨ∗(φ).

4.3.1 Computational Complexity

The problem of finding optimal defender strategy against a powerful adversary in a CDG is called

CDG-Robust.

First, it is useful to investigate a special case. The following proposition provides a tight

lower bound on minφ∈ΦŨ∗(φ).

Lemma 4.1 The expected loss of the defender when playing her optimal strategy, is no lower

than the average utility of the systems, i.e.,

min
φ

Ũ∗(φ)≥UAve(K) =
∑ f∈F N fU f

|K|
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Proof 4.1 Equivalently, it can be shown that, Ũ∗(φ) ≥ ∑ f∈F N f U f
|K| for all φ . Fix any φ ∈ Φ. We

then have,

Ũ∗(φ)≥ Ũ f̃ (φ) ∀ f̃ (by definition of Ũ∗(φ))

∴ ∑
f̃∈F̃

N f̃Ũ
∗(φ)≥ ∑

f̃∈F̃

N f̃Ũ f̃

∴ |K| ·Ũ∗(φ)≥ ∑
f̃∈F̃

∑
f∈F

φ f , f̃U f (using (4.5))

= ∑
f∈F

(
U f ∑

f̃∈F̃

φ f , f̃

)
(re-ordering terms)

= ∑
f∈F

U f N f (by definition of φ , N f )

∴ Ũ∗(φ)≥
∑ f∈F N fU f

|K|

Since the choice of φ was arbitrary, the claim follows.

Thus, even when the defender plays her optimal strategy, the attacker’s expected utility is

at least UAve(K). Consequently, if the inequality becomes tight for a strategy φ , it must be an

optimal strategy. It is easy to see that the bound becomes tight if and only if Ũ∗(φ) = Ũ f̃ (φ), ∀ f̃ .

Clearly, this is true if and only if Ū f̃ is the same for each f̃ set on any system, and trivially so, if

only a single OC is set on all the systems. Thus,

Corollary 4.1 If it is feasible for the defender to set the same OC on all the systems making

them all indistinguishable to the adversary, doing so is an optimal strategy. Formally, if ∃ f̃ ∗ s.t.

∃φ ∗ ∈Φ where φ ∗f , f̃ ∗ = N f ,∀ f , then φ ∗ ∈ argminφ∈ΦŨ∗(φ).

It is possible to efficiently check if such an OC exists, by enumeration. However, it may not

exist, and next it is shown that CDG-Robust is NP-hard in general.
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Proposition 4.1 CDG-Robust is NP-hard.

Proof 4.2 The result is proven via a reduction from the Partition problem (PART ) which is known

to be NP-complete. Given a multiset S of n positive integers that sum up to 2r, PART is the

decision problem to determine if S can be partitioned into two subsets S1 and S2 such that the

sum of integers in S1 and S2 are each r. It can be reduced to CDG-Robust as follows.

Let the input to PART be a set of integers S = {s1, . . . ,sn} whose elements sum to 2r. To

construct a CDG, let the set of TCs be F = { f1, . . . , fn} ∪ { fn+1, fn+2}, with utilities U fi = si

for each i ∈ {1, . . . ,n} and U fn+1 = U fn+2 = −r. Next, let there be n+ 2 systems, each having a

different TC. Let the set of OCs be F̃ = { f̃1, f̃2}, with F̃fi = F̃ for each i ∈ {1, . . . ,n}, and F̃fn+1 =

{ f̃1}, F̃fn+2 = { f̃2}. Let all the costs be 0 so that the budget constraint can be ignored. Assuming

the adversary to be powerful, these components completely define a CDG-Robust problem.

Note that, by Corollary 4.1 and the fact that ∑ f U f = 0, the optimal strategy φ must have

Ũ∗(φ) ≥ 0. Now, suppose S can be partitioned into subsets S1 and S2 such that the numbers

in each sum to r. Then, consider the strategy φ which masks the TCs in { fi|si ∈ S1} and fn+1

with f̃1, and masks the TCs in { fi|si ∈ S2} and fn+2 with f̃2. It is easy to check that Ũ f̃1
(φ) =

Ũ f̃2
(φ) = 0 = Ũ∗(φ), making φ an optimal strategy. On the other hand, suppose the defender’s

optimal φ yields Ũ∗(φ) = 0. Since f̃1 must mask fn+1, and f̃2 must mask fn+2, neither of the

OCs are unused. Since Ũ∗(φ) = 0, w.l.o.g., assume Ũ f̃1
= 0. Hence, the sum of utilities of the

TCs masked with f̃1 must be 0. Therefore, the sum of utilities of TCs masked by f̃2 is also 0.

Then, S1 = {si|φ fi, f̃1
= 1}, and S2 = {si|φ fi, f̃2

= 1} form a partition of S, each having sum of the

elements r. It follows that, PART should output Y ES iff CDG-Robust finds an optimal strategy φ

with Ũ∗(φ) = 0. This reduction, being polynomial-time, proves the claim.
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4.3.2 The Defender’s Optimization Problem

The defender’s optimal strategy φ can be computed by solving the optimization problem given

below.

min
u,φ

u (4.6a)

s.t. u ∑
f∈F

φ f , f̃ ≥ ∑
f∈F

φ f , f̃U f ∀ f̃ ∈ f̃ (4.6b)

Constraints (4.1)∼ (4.4)

The objective function in Equation (4.6a) minimizes the utility u the adversary receives for

the game. Equation (4.6b) enforces that the adversary chooses a best response to the defender’s

strategy φ , where the expected utility for attacking a given f̃ is given by (4.5). Constraints

(4.1)∼(4.4) represent a feasible defender strategy.

This optimization problem is non-convex due to constraint (4.6b), which can be linearized,

to convert the optimization problem to a MILP as follows. First, an alternate representation is

devised for the defender’s strategy φ , as a |K|×|F̃ | (0,1)-matrix σ , where σk, f̃ = 1 denotes system

k is masked with f̃ . Further, the TSN N is represented via a vector x, where xk ∈ F represents

the TC for system k. Then, for each TC f , we have N f = |K f | where, K f = {k ∈ K | xk = F},

and φ f , f̃ = ∑k∈K f
σk, f̃ ∀ f ,∀ f̃ . Hence, the alternate representations are indeed equivalent. Then,

constraints equivalent to (4.1)∼(4.4) can be easily formulated for σ and x with an additional
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constraint ∑ f̃∈F̃ σk, f̃ = 1 ∀k ∈ K to ensure feasibility. More importantly, equation (4.6b) can be

reformulated as

u ∑
k∈K

σk, f̃ ≥ ∑
k∈K

σk, f̃Uxk ∀ f̃ ∈ F̃ (4.7)

The left-hand side of (4.7) can be seen as the sum of a set of terms uσk, f̃ , each of which is

the product of binary variable σk, f̃ and the continuous variable u. Such an expression can be

linearized by introducing variables zk, f̃ for each k ∈ K and f̃ ∈ F̃ , and enforcing zk, f̃ = uσk, f̃ .

Consequently, (4.7) can be rewritten as:

∑
k∈K

zk, f̃ ≥ ∑
k∈K

σk, f̃Uxk (4.8)

To enforce zk, f̃ = uσk, f̃ , consider u ∈ [Umin,Umax] where Umin = min f∈F U f and Umax =

max f∈F U f . With these bounds on u, we then include the constraints for each z variable in the

optimization problem as follows:

Umin
σk, f̃ ≤ zk, f̃ ≤Umax

σk, f̃ (4.9)

u− (1−σk, f̃ )U
max ≤ zk, f̃ ≤ u− (1−σk, f̃ )U

min (4.10)

After this conversion the optimization problem becomes a MILP. The complete formulation is

given below for clarity.
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min
u,σ ,z

u (4.11a)

s.t. ∑
k∈K

zk, f̃ ≥ ∑
k∈K

σk, f̃Uxk ∀ f̃ ∈ f̃ (4.11b)

∑
f̃∈F̃

σk, f̃ = 1 ∀k ∈ K (4.11c)

σk, f̃ ≤ πxk, f̃ ∀k ∈ F,∀ f̃ ∈ F̃ (4.11d)

∑
f̃∈F̃

∑
k∈K

σk, f̃ c(xk, f̃ )≤ B (4.11e)

Umin
σk, f̃ ≤ zk, f̃ ≤Umax

σk, f̃ ∀k ∈ F,∀ f̃ ∈ F̃ (4.11f)

u− (1−σk, f̃ )U
max ≤ zk, f̃ ∀k ∈ F,∀ f̃ ∈ F̃ (4.11g)

zk, f̃ ≤ u− (1−σk, f̃ )U
min ∀k ∈ F,∀ f̃ ∈ F̃ (4.11h)

σk, f̃ ∈ {0,1} ∀k ∈ F,∀ f̃ ∈ F̃ (4.11i)

4.3.3 MILP Bisection Algorithm

The reformulated MILP presented requires the addition of |K||F̃ | variables and 4|K||F̃ | con-

straints to solve for φ . This conversion significantly increases the size of the optimization problem

from the original number of |F ||F̃ | decision variables in the original optimization problem and

can create issues when solving larger CDG instances. The second approach develop for CDGs

does not require the reformulation and instead solves a sequence of smaller MILPs (same size as

(4.6a)) to find an ε-approximate solution for the defender [89]. This is done via a bisection al-

gorithmic framework. The algorithm initially is given an interval that the optimal objective value

Ũ∗ lies in which for CDGs is U∗ ∈ [ULB,UUB] where ULB = UAV E(K) and UUB = max f∈F U f .
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For the algorithm, two variables l = ULB and d = UUB are introduced with the initial width as

ε0 = d− l that contains the optimal value U∗ of the optimization problem. The main loop of the

algorithm is repeated until the width d− l ≤ ε . The main loop has the following two steps:

1. Take τ = (u+ l)/2 and solve the feasibility problem in Equation (4.12a) to find if there

exists a solution n that satisfies the constraints.

2. if feasible, take u := τ; if not feasible, take l := τ .

The algorithm is guaranteed to converge as after each update the interval [l,u] contains the

optimal U∗ and the width is halved. The number of steps that are needed to find the ε-approximate

optimal solution is dlog ε0
ε
e.

max
φ

1 (4.12a)

s.t. τ ∑
f∈F

φ f , f̃ ≥ ∑
f∈F

φ f , f̃U f ∀ f̃ ∈ f̃ (4.12b)

Constraints (4.1)∼ (4.4)

While the bisection algorithm may need to solve on the order of a dozen MILPs to arrive

at the approximate solution, as is shown in the experiments it can significantly outperform the

reformulated MILP in computational speed.

4.3.4 Greedy-Minimax Algorithm

Although the optimal φ can be found via a MILP, it can still be computationally expensive for

large instances. Hence, heuristic algorithms can be preferable as they may be suboptimal but run
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fast and perform well on average. In this section, a simple approach is described to sequentially

assign OCs to the systems, by greedily minimizing attacker’s maximum expected utility for the

partially built strategy at each stage. Algorithm 1 gives the pseudo-code.

Algorithm 1: Greedy-Minimax

1 minIndCost[]← (min f̃ c( f , f̃ )) f∈F

2 minTotCost← ∑ f N f ∗minIndCost[ f ]
3 initialize minu∗, σbest
4 For iter = 1 . . .numIter
5 Klist []← shu f f le(K)
6 initialize remB← B, reqB← minTotCost
7 initialize σ [], N̄[], Ū []
8 For i = 1 . . . |K|
9 k← Klist [i], f ← x[k]

10 σ [k]← GMMAssign( f ,σ [], N̄,Ū [])
11 N̄[σ [k]]← N̄[σ [k]]+1
12 update(Ū [σ [k]])
13 remB← remB− c( f ,σ [k])
14 reqB← reqB−minIndCost[ f ]
15 compute u∗ = max f̃ Ū [ f̃ ])
16 update(minu∗,u∗,σbest ,σ)
17 return σbest
18 Procedure GMMAssign( f ,σ [], N̄,Ū [])
19 initialize newU∗[]
20 For f̃ ∈ F̃f

21 If (reqB−minIndCost[ f ]+ c( f , f̃ )> remB) Then
22 Continue
23 σ [k]← f̃
24 newU∗[ f̃ ]←U∗(σ)
25 F̃best ← argmin f̃ newU∗[ f̃ ]
26 generate f̃best ∼ uniRand(F̃best)
27 return f̃best

Greedy-Minimax starts by computing for each f ∈ F , the minimum cost of masking f with

any feasible OC, and subsequently, the minimum total cost of masking all the systems (Lines 1-

2). Next, σbest and minu∗ are initialized, which respectively denote the final output strategy of the

algorithm and the corresponding utility (Line 3). Subsequently, the algorithm is conducted in a
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number of iterations. In each iteration, a random shuffle of the set of systems is obtained, referred

to as Klist above. Subsequently, the strategy σ which is a candidate solution corresponding to this

shuffle, the corresponding observed state of the network (N̄ f̃ ) f̃∈F̃ , and the corresponding utilities

(Ū f̃ ) f̃∈F̃ are all initialized. These are constantly maintained as the algorithm loops through Klist ,

building the solution by assigning an OC to a system one by one (Lines 8-10). The OC to be

assigned for a system is determined via the function GMMAssign() which is the essence of this

heuristic algorithm. The input to this function is the TC f of the system in question, and the

currently built solution in terms of σ , N̄,Ū ,remB,reqB. Given these, the function considers the

candidate OCs in F̃ one by one, refutes those which lead to the violation of the budget constraint

(i.e., make the resultant minimum required budget to exceed the resultant remaining budget). For

every other f̃ , it computes resultant Ū f̃ if the system is masked with f̃ , and stores it in the array

newU∗ (Lines 19, 23-24). Finally, based on these, it uniformly randomly chooses an OC from

those which minimize the resultant utility newU∗() (Lines 25,26). Once GMMAssign() returns

an OC f̃ , it is assigned to the system in question, N̄ f̃ , Ū f̃ are updated accordingly, as well as the

remaining budget and the minimum required (Lines 11-14). Once the loop through Klist is over

and the full strategy σ is built, its utility u∗ is computed, and compared with minu∗, to update

minu∗ and σbest appropriately (Lines 15-16).

It is possible to conceive examples where this heuristic approach does not yield a good solu-

tion on an arbitrary shuffle, even for problem instances with small parameters. Such an example

with 4 systems, 4 TCs and 2 OCs is discussed next. Further, there are examples where the solu-

tion value is Θ(|K|) times as bad as the optimal, on exponentially many shuffles. This motivates

getting candidate solutions for a large number of shuffles and choosing the best among them

as described above. Since the greedy choice does not guarantee optimality, Soft-GMM is also
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proposed, a slight modification of GMM which makes assignment probabilistically, and not de-

terministically. It works exactly as GMM, except Lines 25,26 — it draws fbest from a distribution

P(F̃) where, P( f̃ ) ∝ exp(−newU∗[ f̃ ]).

Note that the adversary’s utility U∗(φ) for any strategy φ can be at most |K| times the optimal

value minφU∗(φ). This follows from observing that for any strategy φ , we have Ũ f̃ ≤ max
f |N f >0

U f∀ f̃

by definition, and thus, U∗(φ) ≤ max
f |N f >0

U f , whereas minφU∗(φ) is at least the average of all the

system utilities by Proposition 4.1. Since any choice a greedy heuristic makes can be potentially

suboptimal, one may intuitively expect its performance to be worse for a higher number of choices

to be made, that is, for larger sized inputs, and relatively better for smaller inputs. However, an

example instance is shown next of a CDG where despite the input size (|F |, |K|, |F̃ |) being very

small, the (hard-)GMM algorithm in a particular iteration (i.e., when conducted on a particular

shuffle of the systems) gives a highly suboptimal solution.

Consider the set of systems K = {k1,k2,k3,k4}, the set of TCs F = { f1, f2, f3, f4} and the set

of OCs F̃ = { f̃1, f̃2}. Let the feasibility constraints be given via the sets Ff̃1
= { f1, f2, f3} and

Ff̃2
= { f2, f3, f4}. Let each system ki have the TC fi, so that the TSN (N f ) f∈F is (1,1,1,1). For

the TCs, let the utilities be U f1 = 1, U f2 = 2, U f3 = 30, and U f4 = 40. For simplicity, let all the

costs c( f , f̃ ) to be 0, so that there is essentially no budget constraint.
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Consider the ordering of the systems on which GMM is performed to be: {k1,k2,k3,k4}.

Then, the strategy σ computed by the GMM on this ordering is as follows:



f̃1 f̃2

k1 1 0

k2 1 0

k3 1 0

k4 0 1



Accordingly, the expected utilities of OCs are Ũ f̃1
=(1+2+30)/3= 11 and Ũ f̃2

= 40/1= 40,

and thus, adversary’s utility is 40 for this strategy. The optimal solution, however, masks k1, k3

with f̃1 and k2, k4 with f̃2 giving the expected utilities of the OCs: Ũ f̃1
= (40+ 2)/2 = 21 and

Ũ f̃2
= (30+1)/2 = 15.5, thus, the optimal being just 21.

Further, the following is an example of a CDG which shows the GMM algorithm can perform

Θ(|K|) as bad as the optimal solution on exponentially many shuffles.

Consider the CDG instance with the set of systems K = {k1, . . . ,km}, so that |K| = m. Let

the set of TCs F = { f1, f2, f3} and the set of OCs F̃ = { f̃1, f̃2}. Let the true state of the network

be: x = (1,2,3, . . .) Let the feasibility constraints be given by the sets Ff̃1
= { f1, f3} and Ff̃2

=

{ f2, f3}. For the TCs, the utilities are U f1 = 1, U f2 = 2000, and U f3 = ε . For simplicity, let all the

costs c( f , f̃ ) to be 0, so that there is essentially no budget constraint.

The optimal solution to this CDG is to assign systems k2, . . . ,km to be masked by f̃2 with

k1 being masked with f̃1. This gives the following expected utilities: Ũ f̃1
= 1/1 = 1 and Ũ f̃2

=

2000+(m−2)ε
m−1 = 2000

m−1 +
(m−2)ε

m−1 . Consider any shuffle which orders the systems such that k1 is first

and k2 is last (of which there are (m− 2)!). Given any ordering of this type, GMM assigns
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assigns systems k3, . . . ,km to be masked with f̃1 and would assign k2 to be masked with f̃2. The

expected utilities given this assignment is the following: Ũ f̃1
= 1+(m−2)ε

m−1 = 1
m−1 +

(m−2)ε
m−1 and

Ũ f̃2
= 2000/1 = 2000. The loss in this case is ≈ 2000

2000
m−1

= 1
m−1 which is a Θ(|K|) loss.

4.3.5 Solving for an Optimal Marginal Assignment n

The prior analysis focuses on finding the optimal pure strategy φ for the defender to commit to in

the game. This is due to the assumption that adversaries view a fixed (static) version of the net-

work when completing reconnaissance. However, it can also be useful to find the optimal mixed

strategy q for the defender in the game. Formally, a mixed strategy is defined as a probability

distribution over all possible defender pure strategies φ ∈Φ where ∑φ∈Φ qφ = 1 and 0≤ qφ ≤ 1.

For this game, enumerating the set of pure strategies is infeasible, but it is possible to find the

defender’s optimal marginal strategy n = ∑φ∈Φ qφ φ due to compactly representing the defender’s

strategy space. The optimal marginal strategy can be found using the same optimization as (4.6a)

and replacing all instances of φ f , f̃ with n f , f̃ . The optimization problem for finding the defender’s

optimal marginal strategy can be seen as a generalized fractional linear program.

As in Section 4.3, generalized linear fractional programs are solved efficiently using a bisec-

tion algorithmic approach which solves a sequence of linear programming feasibility problems

to get an ε-approximate optimal solution [10]. Similarly to the MILP bisection algorithm, this

algorithm is given an interval that U∗ lies in which is U∗ ∈ [ULB,UUB]. The variables l = ULB

and d = UUB are introduced with the initial width ε0 = d− l that contains the optimal value U∗

of the optimization problem. The main loop is repeated until the width d− l ≤ ε . The main loop

has the following two steps:
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1. Take τ = (u+ l)/2 and solve the feasibility problem in Equations (4.13)∼(4.18) to find if

there exists a solution n that satisfies the constraints.

2. if feasible, take u := τ; if not feasible, take l := τ .

The algorithm is guaranteed to converge as after each update the interval [l,u] contains the

optimal U∗ and the width is halved. The number of steps that are needed to find the ε-approximate

optimal solution is dlog ε0
ε
e.

max
u,σ

1 (4.13)

s.t. τ ∑
f∈F

n f , f̃ ≥ ∑
f∈F

n f , f̃U( f ) ∀ f̃ ∈ f̃ (4.14)

∑
f̃∈ f̃

n f , f̃ = N f ∀ f ∈ F (4.15)

∑
f̃∈F̃

∑
f∈F

n f , f̃ c( f , f̃ )≤ B (4.16)

n f , f̃ ≤ π f , f̃ N f ∀ f ∈ F, ∀ f̃ ∈ F̃ (4.17)

n f , f̃ ≥ 0 ∀ f ∈ F, ∀ f̃ ∈ F̃ (4.18)

4.4 Optimal Defender Strategy against Naive Adversary

The robust approach to solving CDGs, i.e., assuming a powerful adversary with knowledge of

φ , can cause the defender to not fully realize the benefit of her informational advantage when

faced with a less powerful attacker. In particular, the adversary may value OCs in a fixed manner
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that is known to the defender.2 In this case, the values Ū f̃ are fixed and the defender’s strategy

does not affect the adversary’s expected utility for attacking some f̃ . Importantly, if there is no

budget constraint one can solve for the defender’s optimal strategy φ in polynomial time using

Algorithm 2. W.l.o.g. it is assumed the adversary has a strict preference ordering over F̃ as if

Ū f̃ is equal for any two OCs, the sets could be merged from the defender’s perspective, with the

feasibility constraint and cost adjusted accordingly.

Algorithm 2 begins by initializing φ , Γ∗ (which stores the TCs the adversary attacks) and

f̃ ∗ (the OC the adversary attacks given φ ). In Line 3 the matrix minUtil[] is computed which

stores the lowest utility achievable for each TC which is min f̃∈F̃f
Ū f̃ . The For loop in Line 4

iterates over all f̃ ∈ F̃ which is sorted descending by Ū f̃ (Line 2) and determines for each f̃ the

best set of TCs to mask if f̃ is attacked by the adversary in Lines 5 through 12. To do this, F

is split into 4 separate sets P1, P2, P3 and P4 and the set of TCs to be masked with f̃i is stored in

Γ
′
. Note that for each f , N f copies for the algorithm are enumerated. P1 contains all TCs which

cannot be masked with an f̃ that has Ū f̃ < Ū f̃i
. Intuitively, if this set is non-empty it means the

defender is not able to devise a strategy φ such that the adversary prefers to attack f̃i, and hence,

all subsequent f̃i will never be preferred by the adversary. P2 (P4) contain TCs f which must be

masked (cannot be masked) with f̃i. P3 then contains all TCs f which can be masked with f̃i

but may also be masked with another OC f̃ j 6= f̃i. The function update(Γ
′
,P3) sorts the TCs in

ascending order and iterates over the TCs f ∈ P3 and masks all TC f with f̃i ⇐⇒ U f ≤ EU(Γ
′
).

In Line 13 update(Γ∗,Γ
′
, f̃ ∗, f̃i) sets Γ∗ = Γ

′
and f̃ ∗ = f̃i if EU(Γ

′
) < EU(Γ∗). Finally, the

function update(φ ,Γ∗, f̃ ∗) in Line 14 determines the OCs f̃
′

for all f /∈ Γ∗ given Ū f̃ ′ < Ū f̃ ∗ and

the strategy φ is returned.

2As an example, the adversary could estimate his utility according to values derived from the NIST National
Vulnerability Database [59].
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Algorithm 2: Compute defender’s optimal φ with fixed Ū f̃ .

1 initialize φ , Γ∗, f̃ ∗

2 sort(F̃) //descending by utility Ū f̃

3 minUtil[] := (min f̃ Ū f̃ ) f

4 For i = 1, . . . , |F̃ |
5 initialize Γ

′

6 P1:={ f | minUtil[ f ]> Ū f̃i
}

7 If P1 6= /0
8 break
9 P2:={ f | minUtil[ f ] = Ū f̃i

}
10 P3:={ f | minUtil[ f ]< Ū f̃i

and f̃i ∈ F̃f }
11 P4:={ f | minUtil[ f ]< Ū f̃i

and f̃i /∈ F̃f }
12 Γ

′
:= P2

13 update(Γ
′
, P3)

14 update(Γ∗,Γ
′
, f̃ ∗, f̃i)

15 update(φ ,Γ∗, f̃ ∗)
16 return φ

Proposition 4.2 Given fixed utilities Ū f̃ and no budget constraint, Algorithm 2 computes the

optimal strategy φ in O(|F ||F̃ |).

Proof 4.3 First, I show that for each f̃ ∈ F̃ , Lines 5 through 13 in Algorithm 2 computes the set

Γ
′

with the minimum average value. To see this, note that all TCs f ∈ P2 must be in Γ
′

while all

TCs f ∈ P4 cannot be included. In update(Γ
′
,P3) (note P3 is given in sorted order) the defender

decides for each f ∈ P3 to include the N f TCs in Γ
′ ⇐⇒ U f ≤ EU(Γ

′
). At the end of this update,

tt follows that Γ
′
must be the minimum average set for f̃i. Given that the for loop in Line 4 iterates

through all f̃ ∈ F̃ , it must be the case that the optimal Γ∗ is returned for some f̃ .

In Line 2, sorting F̃ takes O(|F̃ | log |F̃ |) time and calculating minUtil[] takes O(|F ||F̃ |) time.

For each iteration of the for loop in Line 4, it takes O(|F |) time to split F into the sets the four sets

P1, P2, P3 and P4. It takes the function update(Γ
′
,P3) at most |F | operations to update Γ

′
while

update(Γ∗,Γ
′
, f̃ ∗, f̃i) takes O(1) time. Hence, each iteration it takes O(|F |) time and hence,
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O(|F ||F̃ |) time for the for loop. Lastly, update(φ ,Γ∗, f̃ ∗) takes at O(|F ||F̃ |) time to return the

defender’s strategy φ as it must find an OC f̃ j for each f /∈ Γ∗ with Ū f̃ j
< Ū f̃i

.

It is possible to efficiently compute the defender’s optimal strategy when there is no budget

constraint. When the defender has a budget constraint, however, the question arises if her optimal

strategy can be found efficiently as well. This problem is called CDG-Fixed and next it is shown

to be NP-Hard.

Proposition 4.3 CDG-Fixed is NP-hard.

Proof 4.4 The proposition is proved via a reduction from the 0-1 Knapsack problem (0-1 KP),

which is a classical NP-hard problem. Given a budget B and a set of m items each with a weight wi

and value vi, 0-1 KP is the optimization problem of finding the subset of items Y which maximizes

∑i∈Y vi subject to the budget constraint ∑i∈Y wi ≤ B. Now I show that 0-1 KP can be reduced to

CDG-Fixed. For convenience, [m] is used to denote the set {1,2...,m} and S = ∑i∈[m] vi denote

the sum of all utilities.

Given a 0-1 KP instance as described above, construct a CDG instance as follows. Let the set

of TCs be F = { f1, . . . , fm}∪{ fm+1}, with utilities U fi = vi,∀i ∈ [m] and U fm+1 = −W for some

fixed constant V . Note N f = 1 ∀ f ∈ F. Let the set of OCs be F̃ = { f̃1, f̃2}, with F̃fi = F̃ ∀i ∈ [m]

and F̃fm+1 = { f̃1}. Set the costs as c( fi, f̃1) = 0, c( fi, f̃2) = wi for all i ∈ [m] and c( fm+1, f̃1) = 0.

Set Ū f̃1
> Ū f̃2

. Assuming a naive adversary, these components completely define a CDG-Fixed

problem. Since fm+1 is bound to be masked by f̃1, and Ū f̃1
> Ū f̃2

, attacking f̃1 is a dominant

strategy for the adversary.

Observe that ∑ f∈F U f is ∑i∈[m] vi−V = S−V . It is claimed that the optimal objective of the

0-1 KP instance is greater than S−V if and only if the optimal defender utility in the constructed
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CDG-Fixed problem, i.e., U∗(φ), is negative. The ⇐ direction is proven next as the ⇒ is a

similar proof. Let φ ∗ be the optimal solution to the CDG-Fixed problem. By definition, the set

Y = {i : φ ∗fi, f̃2
= 1} is a feasible solution to the 0-1 KP since the cost of mapping fi to f̃2 is wi. The

sum of all utilities of all systems is S−V whereas U∗(φ ∗)< 0 means the total utilities of systems

mapped to f̃1 is less than 0, this implies that the total utilities of systems mapped to f̃2 is at least

S−V . Note each system mapped to f̃2 corresponds to an item and hence, the optimal objective

of the 0-1 KP is also at least S−V .

The above claim shows that for any constant V , one can check whether the optimal objective

of the 0-1 KP is greater than S−V by solving a CDG-Fixed instance. Using this procedure as a

black-box, a binary search can be performed to find the exact optimal objective of the 0-1 KP with

integer values within O(poly(log(S))) steps (both S and weights are machine numbers with input

size O(log(S))). As a result, a polynomial time reduction has been constructed from computing

the optimal objective of any given 0-1 KP to solving the CDG-Fixed problem. This implies the

NP-hardness of the CDG-Fixed problem.

CDG-Fixed can be solved with Algorithm 2 via a modification to the function update(Γ
′
,P3)

in Line 13. Given Γ
′
, one computes the minimum budget B

′
required to mask all TCs f ∈ Γ

′
with

f̃i and mask all TCs f ∈ P3 and f ∈ P4 with f̃ j such that Ū f̃ j
< Ū f̃i

. If Γ
′
= /0, then for f ∈ P3 mask

f with f̃i if c( f , f̃i)< B
′
. Assuming P3 is sorted ascending, once the defender assigns f̃i to a TC

47



f she is done. If Γ
′ 6= /0, the defender must solve multiple MILPs, with n = n

Γ
′ , . . . , |K| to find the

best Γ
′
. Denote u

Γ
′ = EU(Γ

′
).

min
φ

n
Γ
′u

Γ
′ +∑

f
φ f , f̃U f (4.19a)

s.t. ∑
f

φ f , f̃i
≤ n−n

Γ
′ (4.19b)

Constraints (4.1)∼ (4.4)

4.5 Experiments

The CDG model and solution techniques are evaluated using synthetically generated game in-

stances. The game payoffs are set to be zero-sum, and for each TC, the payoffs U f are uniformly

distributed in [1,10]. Each OC f̃ is randomly assigned a set of TCs it can mask, while ensuring

each TC can be masked with at least one OC. To generate the TSN, each system is randomly

assigned a TC uniformly at random. The costs c( f , f̃ ) are uniformly distributed in [1,100] with

the budget B uniformly distributed in-between the minimum cost assignment and maximum cost

assignment. All experiments are averaged over 30 randomly generated game instances.

4.5.1 Powerful Adversary - Scalability and Solution Quality Loss

When solving for the defender’s optimal strategy φ strategy for enterprise networks, it is impor-

tant to have solution techniques which can scale to large instances of CDGs. The first experi-

ment compares the scalability of the reformulated MILP, the bisection algorithm and the Greedy

Minimax (GMM) algorithm with 1000 random shuffles along with the solution quality of the

approaches. In Figure 4.3(a) the runtime results are shown with the runtime in seconds on the
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Figure 4.3: Runtime Comparison and Solution Quality Comparison (20 Observables) - Reformu-
lated MILP (MILP), the bisection algorithm with ε = .0001 (Bisection) and Greedy MaxiMin
(GMM) with 1000 random shuffles.

# OCs 2 4 6 8 10
10 systems 0 0.092% 0.015% 0.028% 0.512%
Optimal Instances 30 29 29 29 25
20 systems 0 0.028% 0.615% 1.91% 3.18%
Optimal Instances 30 28 17 12 9

Table 4.1: Solution Quality % loss and number of optimal instances for GMM versus MILP.

y-axis and the number of systems varied on the x-axis. As can be seen, the runtime for solving the

reformulated MILP increases dramatically as the number of systems increases while both GMM

and the bisection algorithm finish in under 10 seconds in all cases. The results from the bisection

algorithm compared to the reformulated MILP are quite surprising given it provides the ε optimal

solution and highlights the benefit from solving smaller MILP for larger CDG instances.

While GMM is much faster than the reformulated MILP (but comparable to the bisection

algorithm), it is not guaranteed to provide the optimal solution or an ε-approximate solution.

However, the experimental results show that empirically the solution quality loss is very small.

In Figure 4.3(b) the solution quality of the MILP is compared to GMM, where the attacker’s

utility is given on the y-axis and the number of OCs are varied on the x-axis. Importantly, GMM
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Figure 4.4: Solution Quality Comparison (20 systems and 20 OCs) - Comparison of Hard-GMM
(GMM - H) and Soft-GMM (GMM - λ ) varying the number of shuffles.

shows a low solution quality loss for the defender compared to the MILP with a minimum loss of

1.68% for 12 systems and a maximum loss of 5.93% for 16 systems. This experiment highlights

the scalability of GMM and shows the loss in solution quality from GMM can give a reasonable

trade-off between computational efficiency and solution quality.

An interesting feature of GMM is how often it returns the optimal solution for the defender as

the CDG game size changes. Table 4.1 compares the solution quality of GMM (with 1000 random

shuffles) versus the MILP for several game sizes with 10 and 20 systems where the number of

OCs are varied from 2 to 10. Interestingly, for CDGs with 10 systems, Hard-GMM is able to

find the optimal solution in a vast majority of instances (142 out of 150 instances). However,

for CDGs with 20 systems, GMM fails to recover the optimal solution in about a third of the

instances (96 out of 150). Nevertheless, the loss of solution quality still remains low (3.18%)

even when GMM returns the optimal solution a third of the time.

The solution quality of a variation of GMM, called Soft-GMM or GMM−λ , was tested as

well. Instead of greedily choosing the OC with minimax expected utility at the stage, a soft-min
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function [19] is applied with parameter λ controlling the greediness of the next choice. Fig-

ure 4.4 shows the solution quality of GMM (denoted as GMM-H) and GMM−λ with varying λ

values. GMM−.01 is very close to randomly choosing OCs for the systems and performs poorly

compared to larger λ values, indicating that GMM is an effective heuristic and performs much

better than random assignment. Importantly, the randomness in GMM−λ leads to a potential of

finding better strategies than GMM since GMM-Hard is restricted to a limited strategy space and

GMM−λ is not. This can be seen by comparing the results for GMM-Hard and GMM-10 where

the latter outperforms the solution quality achieved with GMM-Hard at 8000 and 16000 shuffles.

Further investigation is deferred to future work.

4.5.2 Comparing Solutions for Different Types of Adversaries

The last experiment compares how the optimal strategies for the two adversary models (powerful

versus naive) perform in the opposite case. Figure 4.5(a) compares the solution quality of the

MILP in Section 4.3 to Algorithm 2 when the adversary is assumed to know φ with the attacker’s

utility on the y-axis and the number of systems varied on the x-axis. This figure highlights that

for the powerful adversary the MILP performs significantly better than Algorithm 2 (except for 5

systems) and shows the risk of underestimating the adversary’s information when devising the de-

fender’s strategy φ . In Figure 4.5(b) the solution quality of Algorithm 2 is compared to the MILP

when the adversary is assumed to have fixed utilities. As the figure shows, the improvement in

utility is dramatically higher for Algorithm 2 compared to the MILP. The reason for this differ-

ence lies in Algorithm 2 leveraging the adversary’s fixed preferences over OCs and minimizes the

value of systems masked with the OC the adversary will attack. The MILP, however, minimizes

51



the worst case utility given the adversary may attack any OC and hence, fails to leverage the

defender’s advantage to a high benefit.
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Figure 4.5: Solution Quality Comparison (10 OCs) - In (a) the solution quality of the two types
of defender strategies is shown against a powerful adversary. In (b) the solution quality of the
strategies is shown against a naive adversary.

4.6 Real World Applicability

In this section, I will highlight several recent works that have provided technical solutions to

achieving the deception outlined in this chapter. This section is not meant to be a complete refer-

ence of all technical deceptive techniques available, but rather, a catalog of applicable deceptive

methods for a network administrator using the Cyber Deception Game model. There are three

main areas of active research in developing deceptive techniques to thwart adversarial network

reconnaissance: (1) Operating System and application/service obfuscation against fingerprinting,

(2) deceptive network topology alteration and (3) honeypots and honey-* defenses.
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4.6.1 OS and Application Fingerprinting & Obfuscation

One of the first pieces of information an adversary must gain when completing reconnaissance on

a defender’s network is determining the operating systems deployed on systems in the network.

This important first step provides crucial information about the types of exploits available to be

used and potentially the difficulty in attacking the defender’s network. Operating System (OS)

fingerprinting is an area of significant interest as it provides the tools necessary for an adversary to

determine the OSs that systems across the enterprise network are running. OS fingerprinting can

be accomplished in two ways (i) active fingerprinting which involves sending carefully crafted

packets to the target system and analyzing the results and (ii) passive fingerprinting which sniffs

and analyzes network network traffic traveling between systems.

Active fingerprinting techniques are generally more sophisticated than passive fingerprinting.

In some cases, an adversary can disregard stealthier approaches and simply attempt to connect to

the host system to learn about the OS of the system by establishing a connection via the Telnet

or SSH protocol which sends the OS version as part of the welcome message. For network recon

tools, active fingerprinting techniques trigger a target system to send a series of responses that

are then analyzed by the adversary’s network tools to determine the type and version of the OS

a system is running. The ICMP, TCP and UDP packets sent to a system are specially crafted to

observe how the system responds to both valid and invalid packets. For example, some features

of TCP probes received from a system can distinguish in-between different operating systems

(e.g., order of the TCP options, the TCP sequence number).

Passive fingerprinting consists of using a packet sniffer that passively collects and analyzes

packets traveling between systems in a network. One simple method of passive fingerprinting
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uses the Time To Live (TTL) field in the IP header and the TCP Window Size of the SYN or

SYN+ACK packet in a TCP session to determine the OS of a system. This is due to the values for

TTL and the TCP Window Size depending on the OS implementation as the RFC specifications

only define intervals of values and recommended values, and does not mandate specific values to

be used.

There are numerous tools available for fingerprinting today. Due to the variety of the network

mapping tools, no single deception approach can be used to defeat all of them, but with a com-

bination of approaches it is possible to significantly increase the difficulty in the reconnaissance

efforts of an adversary. Below is a list of some of the network scanning tools available to give

the reader a small overview of this area. A more in-depth and exceptional technical breakdown

of network scanning tools and their specifications can be found in [1].

1. Nmap [53]: Nmap is a network security scanner used to discover hosts and services on

a computer network that builds a “map” of the network. It works as an active tool by

sending specially designed packets to a host which it then analyzes to identify the OS and

applications running on different ports.

2. SinFP3: SinFP was developed in order to complete OS fingerprinting of a host under the

worst-case network conditions [9]. This includes a remote host having only one port or the

traffic to all other TCP and UDP ports is dropped by filtering services. Once the response

packets have been received SinFP uses a matching algorithm to determine the OS of a

particular system.
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3. Xprobe: Xprobe is an active OS fingerprinting tool that uses fuzzy signature matching,

probabilistic guesses and a signature database to determine the OS for a given host [86].

Many of the techniques in Xprobe have been built into nmap over time.

4. p0f3: p0f v3 [90] is a tool that utilizes passive traffic analysis to fingerprint hosts behind

any TCP/IP communications in a network without interfering in any way. The techniques

it uses for the fingerprinting are sophisticated and this tool can be used when Nmap probes

may be blocked or the adversary wants to be stealthy.

5. amap: amap [67] is a application mapper tool which determines the applications a host on a

network is running and the specific versions of those applications by interrogating network

services and sockets.

6. Nessus: Nessus [17] provides a wide-variety of network scanning tools in order to map

out a network. It is extremely useful as a vulnerability scanner by looking for types of

vulnerabilities such as misconfigurations, default passwords, and denials of service against

TCP/IP stack by using malformed packets. Additionally, it uses many of the other network

and application fingerprinting tools in conjunction to provide results to a Nessus user.

For the fingerprinting of applications running on a port of a host system, a typical approach

relies on retrieving the service banner to gather information on the application and version along

with using the port number (e.g., webservers typically have HTTP on port 80). In this regard,

approaches to combat application fingerprinting rely on altering the service banner sent back in

a packet for a given probe. There are a few potential issues from altering the banner of a service

which causes it to not be applicable to some services. For example, services that use the banner

information during the connection process (like SSH) require a non-transparent approach.
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Figure 4.6: The alteration of an outgoing packet to mimic a certain desired deceptive signature.

A recent paper [1] provides a technical approach for OS and application obfuscation against

nmap reconnaissance efforts. Their approach works by altering important information contained

in the TCP/IP header’s in order to fool nmap scans into misclassifying the OS of a particular

system, and potentially, the application and services running on that system as well. Figure 4.6

shows how an outgoing packet is modified in order to provide a deceptive signature of the host

machine through the alteration of specific properties in the packet header. This approach is useful

as it can thwart both active and passive OS fingerprinting tools, such as Nmap and p0f3, while

also altering the reported services by altering the header files sent back from a particular service

scan (achieved by scanning the socket). For the obfuscation of a service hosted on a system, the

techniques presented in [1] relies on altering the banner message sent back when establishing a

connection or in the header of each appliance-level protocol data unit.
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4.6.2 Deceptive Network Topologies

Another area of interest for recent research focuses on altering the network view each host system

on a network observes from reconnaissance efforts. A recent line of work [26] provides the the

Adaptive Cyber Deception System (ACyDS) that gives the network administrator an incredibly

powerful tool. ACyDS provides each network host a unique virtual view of the enterprise network

that alters the subnet topology and IP address assignments of reachable hosts and servers and does

not reflect the physical network configurations.

ACyDS works by altering the network view for each host (system) on the network which con-

sists of the network entities and network topology. The network entities viewable from a system

are those which it is permitted to communicate with on the network. The network topology view

of a system’s network view consists of the routers connecting the host and other systems present

on the network from the network entities view. For a given system, the network view is then the

composite of the network entities and network topology views. An example is given in Figure 4.7

which shows Host1’s network view.

(a) True Network (b) Deceptive Network

Figure 4.7: Network views for a host connected to the defender’s network. In 4.7(a) is the true
network state while in 4.7(b) is an altered state with additional network connections and honey-
pots.
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ACyDS works by deceptively setting the network view for a system via altering the network

entities or network topology views. This is achieved with the use of Software-Defined Networking

(SDN) along with OpenFlow to correctly manage the traffic in the network. ACyDS leverages

SDN controllers, SDN switches, and other components to create the individual deceptive network

views for systems. It is recommended the reader reference [26] for an in-depth breakdown of the

incredible ACyDS tool.

4.6.3 Honeypots and Network Tools

Honeypots are used ubiquitously in cybersecurity as a means of identifying adversary attacks and

learning about adversary behavior. Although I do not talk about the use of honeypots extensively

in this chapter, they can be incorporated into the deception model along with their behaviors.

Additionally, software applications have been developed which can mimic network personalities

of host systems to increase the perceived number of host machines on a network to an adver-

sary. HoneyD [66] establishes virtual network daemons that listen for requests sent to certain IP

addresses on a defender’s network and can answer these requests for the virtualized machines.

HoneyD provides the ability to set the network topology, host machines and each the machine’s

configuration on a network. This provides the network administrator with the ability to fake ad-

ditional services on the real hosts while also emulating additional honeypots that may appear the

same as the real host systems. Using an approach of this type creates vastly more uncertainty

for an adversary and forces them to expend significant effort in order to identify real versus fake

systems on a network. Figure 4.8 gives an example of the how HoneyD can be used within a

network.
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Figure 4.8: The HoneyD server initializes network daemons to respond to pings and scans for
various IP addresses not used by a network.

Beyond HoneyD, another recent tool which has been developed to identify adversarial net-

work reconnaissance in Project Nova3. This application works by first analyzing a defender’s

network through the use of nmap and then developing a deceptive ‘haystack’ that is deployed

using HoneyD. The haystack is essentially a set of virtual systems to create in addition to the

current real systems operating on a network to increase the difficulty to an adversary learning

about systems on the network. In addition to increasing the effort expended by an adversary,

the haystack is useful in helping determine adversarial nodes that have been compromised in a

network which are being used for reconnaissance or attacking efforts. The CDG model can be

leveraged with the use of HoneyD or inside of an application like Project Nova to determine the

network state to show and autonomously change the views showed to the adversary.

3http://www.novanetworksecurity.com/index.html
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4.6.4 Leveraging the CDG Model

The technical approaches presented in this section highlight much of the current state-of-the-art

in developing network technologies to fool adversarial reconnaissance efforts. The CDG model

represents a high-level approach to reasoning about the deception schemes a network administra-

tor can employ when given an enterprise network environment and available technical deception

tools. One question that arises for a network administrator from this research is, “Why respond

at all?” It turns out that many organization’s enterprise networks must be open to outside users

through the DMZ portion of their network. These situations require systems on the network to

respond to requests for connections and scanning activity which is part of their function on the

network. Indeed, the CDG model is particularly useful as a tool to protect the perimeter of an

organization’s network, but it is general enough to also capture reconnaissance activities in the

organization’s intranet. In order to gain a concrete understanding of the applicability of CDGs, it

is useful to go through an example similar to the example network in Section 4.2.

Consider an example scenario where the network administrator has 4 systems, e.g., acting as

webservers in this scenario, on the network which have an operating system and a webserver soft-

ware. For the systems, assume systems k1 and k2 have the Windows Server 2012 OS with k3 and

k4 having the Ubuntu Linux 12.04 (Linux 3.2.x Distribution) OS. Assume all are running Apache

webserver, with k1 running version 2.2, k2 and k3 running version 2.3, and k4 running version

2.4. The TCs for these systems are then as follows: k1 = {[os] WS2012, [web] Apache2.2},

k2 = {[os] WS2012, [web] Apache2.3}, k3 = {[os] Linux3.2.x, [web] Apache2.3} and k4 =

{[os] Linux3.2.x, [web] Apache2.4}. For this scenario the technical approach presented in [1]

is considered which alters outgoing packets to obfuscate the OS and applications for a system.

60



Assume the network administrator has developed several obfuscation personas for the oper-

ating systems which allows them to make an OS of a system to appear as Windows Server 2008,

Windows Server 2012, Linux 2.6.x, and Linux 3.2.x. Additionally, the network administrator

can obfuscate the webserver version of Apache to appear as 2.2, 2.3 or 2.4. The combination of

all obfuscation personas make up the set of OCs available for the CDG model to optimize given

constraints on which personas can be used for a given system, e.g., Windows Server 2012 can

only be obfuscated as Windows Server 2008.

A possible deception scheme for the network administrator - from optimizing the CDG model

- is deploying the following personas for the systems: k1 = {[os] WS2008, [web] Apache2.2},

k2 = {[os] WS2008, [web] Apache2.2}, k3 = {[os] Linux2.6.x, [web] Apache2.4} and k4 =

{[os] Linux2.6.x, [web] Apache2.4}. In this scheme, k1 and k2 are made to appear the same

and in a similar way k3 and k4 are made to appear the same. From here the network administrator

only needs to tell the OS and service obfuscator to alter packets to make each system appear as

the desired persona. Switching to new personas is also easy as it only requires changing the at-

tached personas in the network switch (kernel module in Figure 4.6) responsible for altering the

packets sent out from systems on the network, i.e., one could have k1 and k2 have Apache 2.3 as

their webserver without much overhead.

As mentioned in Section 4.6.1, the deception is not always transparent to legitimate users.

Presenting false personas for systems requires the alteration of all outgoing packets in some cases

(given a passive network scanner), and hence, latency can become an issue along with reductions

in the data transfer speed caused from altering values such as the Maximum Segment Size (MSS)

or Window Size (WS). It is recommended the reader refer to [1] for more in-depth details and

analysis of the cost to a legitimate user from their technical deception approach.
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4.7 Chapter Summary

In this chapter, I study the problem of a network administrator should respond to scan requests

from an adversary attempting to infiltrate her network. I show that computing the optimal de-

fender strategy against a powerful adversary is NP-hard and provide two main techniques, a

MILP approach and a bisection algorithmic approach, to solve for the defender’s optimal strategy

against a powerful adversary. Additionally, a greedy algorithm is provided which quickly finds

good defender strategies and performs well empirically. I then show that computing the optimal

strategy against a naive attacker is still NP-hard given a budget constraint. Extensive experimen-

tal analysis is given demonstrating the effectiveness of the approaches. Finally, a section covering

technical deception approaches shows applications and tools that could be used in leveraging the

CDG model and algorithms to generate deceptive network views in real-world networks.

62



Chapter 5

Cyber-alert Allocation Games

5.1 Problem Domain

While many organizations face the challenge of cyber alert allocation, this chapter highlights

a scenario developed in consultation with experts at the United States Air Force (USAF). The

USAF relies on extensive global cyber systems to support its missions, which are monitored by

IDPS to prevent attacks on the network by intelligent adversaries. The Air Force Cyber defense

unit (AFCYBER) is responsible for investigating and resolving alerts generated by these IDPS 1.

Due to the global scale of USAF computer systems, millions of alerts are generated every day,

associated with different types of events. Prescreening of the alerts eliminates a large fraction of

insignificant events, but thousands remain to be investigated. Any of these remaining alerts could

indicate a malicious attack, but a large fraction are false positives.

Two primary features are used to prioritize the most critical alerts to investigate. First, each

alert has a risk classification (e.g., high, medium, low) based on the type of event detected by the

IDPS. Second, each alert has an origin location within the global network (e.g., a specific host,

system); some locations (e.g., headquarters) are more critical to operations.

124th Air Force - AFCYBER: http://www.24af.af.mil
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Figure 5.1: To protect against cyber intrusions, enterprise networks deploy Intrusion Detection
and Prevention Systems across their network that work at both a host and network level. The
alerts generated are given a risk classification and aggregated into a central repository called a
SIEM. The network administrator then must determine how to allocate the alerts to analysts for
investigation and remediation if necessary.

The AFCYBER has a limited number of Incident Response Team (IRT) cyber analysts who

investigate significant alerts after prescreening 2. Each analyst has different areas of expertise,

and may therefore be more effective and/or faster at investigating certain types of incidents. The

USAF also must protect against an adaptive adversary who can observe strategies through bea-

coning and other techniques. The problem AFCYBER faces is an excellent example of the central

analyst assignment problem covered in this section in the real world.

In this chapter, I will discuss the Cyber-alert Allocation Game (CAG) model which captures

the assignment problem a network administrator is faced with in this domain. This model helps

prioritize the resolution of alerts by accounting for a strategic adversary and constraints on the

cyber analysts investigating the alerts. Next, the CAG is computationally analyzed and techniques

are developed to solve for the defender’s optimal assignment policy. Finally, experiments are

2688th Cyberspace Wing: http://www.24af.af.mil/Units/688th-Cyberspace-Wing
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shown which demonstrate the benefit of the game theoretic approach versus ad-hoc assignment

policies while the scalability of the algorithms is also analyzed.

5.2 Cyber-alert Allocation Games

The Cyber-alert Allocation Game (CAG) is modeled as a (zero-sum) Stackelberg game played

between the defender (e.g., AFCYBER) and an adversary (e.g., hacker). The defender commits

to a mixed strategy to assign alerts to cyber analysts. A worst-case assumption is made such that

the attacker moves with complete knowledge of the defender’s strategy and plays a best-response

attack strategy [43]. However, in a zero-sum game the optimal strategy for the defender is the

same as the Nash equilibrium (i.e., when the attacker moves simultaneously) [88], so the order of

the moves is not consequential in the model.

Systems and Alerts: The defender responds to alerts originating from a set of systems k ∈ K.

A “system” in this model could represent any level of abstraction, ranging from a specific server

to a complete network. IDPS for each system generate alerts of different types, a ∈ A. The alert

types correspond to levels of severity (e.g., high, medium, and low), reflecting the likelihood of

a malicious event. The combination of the alert type and the origin system is represented as an

alert category, c ∈C, where c = (k,a). The alerts in a given category are not differentiable, so the

defender must investigate all alerts within a category with the same probability. The total number

of alerts for a given category c is denoted by Nc. It is assumed that both the defender and attacker

know the typical value of Nc from historical averages (similar to [33]).

Attack Methodologies: Attackers can choose from many attack methodologies. These fall

into high-level categories such as denial of service attacks, malware, web exploitation, or social
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engineering. These broad classes of attacks are represented as attack methods m ∈M. For every

attack method there is a corresponding probability distribution β m
a which represents the probabil-

ity that the IDPS generates an alert of type a for an attack method m. For example, if the attacker

chooses m = DoS the corresponding alert probabilities could be β DoS
High = .8, β DoS

Medium = .15 and

β DoS
Low = .05.

Cybersecurity Analysts: Cybersecurity analysts R are assigned to investigate alerts. The time

required for an analyst to resolve an alert type a varies, and is represented by T r
a . Intuitively, T r

a

represents the portion of a time period that an analyst needs to resolve an alert of type a. A time

period may be a shift, an hour or other fixed scheduling period. For example, if an analyst needs

half a time period to resolve a, then T r
a = 0.5. In the model: T r

a ≤ 1, ∀ a ∈ A, i.e., an analyst

can address multiple alerts within a time period. In addition to T r
a , the effectiveness of an analyst

against an attack method, representing her expertise, is captured via a parameter Er
m.

Defender Strategies: A pure strategy P for the defender is a non-negative matrix of integers of

size |C|× |R|. Each c,r entry is the number of alerts in category c assigned to be investigated by

cyber analyst r, denoted by Pc,r. The set of all pure strategies P̂ is all allocations that satisfy the

following constraints; Ca denotes all categories with the alert type a:

∑
a∈A

∑
c∈Ca

T r
a Pc,r ≤ 1 ∀r ∈ R (5.1)

∑
r∈R

Pc,r ≤ Nc ∀c ∈C (5.2)

Pc,r are integers (5.3)
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(a) Pure Strategy (b) Marginal Strategy

Figure 5.2: CAG Strategies for the defender.

Inequality (5.1) ensures that each analyst is assigned a valid number of alerts, while inequal-

ity 5.2 ensures the number of alerts assigned are not more than the total in a category.

Example CAG. Consider a CAG with two systems K = {k1,k2}, two alert levels A = {a1,a2},

and two analysts r = {r1,r2}. There are four alert categories C = {c1,c2,c3,c4}, where c1 =

(k1,a1), c2 = (k1,a2), c3 = (k2,a1) and c4 = (k2,a2). For the alert categories we have Nc1 = 3,

Nc2 = 2, Nc3 = 0, and Nc4 = 1. For r1, assume T r1
a1

= 1 and T r1
a2

= 0.5; For r2, assume T r2
a1

= 0.4

and T r2
a2

= 0.2. The analyst capacity constraint (Inequality (5.1)) for r1 is instantiated as follows

(the other columns are similar):

Pc1,r1 +0.5 ·Pc2,r1 +Pc3,r1 +0.5 ·Pc4,r1 ≤ 1

For c1 the alert capacity constraint (Inequality (5.2)) we have (the other rows are similar):

Pc1,r1 +Pc1,r2 ≤ 3

An example of a pure strategy P is given in Figure 5.2(a). The dashed boxes in Figure 5.2(a)

represent the set of variables in the analyst capacity constraints, i.e. constraints of type (5.1). An
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example marginal strategy is shown in Figure 5.2(b). This drops constraint (5.3), but satisfies

constraints (5.1) and (5.2).

Define a mixed strategy q over pure strategies P ∈ P̂ (∑P∈P̂ qP = 1,0 ≤ qP ≤ 1). From the

mixed strategy one can calculate the marginal (expected) number of alerts of category c assigned

to each analyst r, denoted by nc,r = ∑P qPPc,r. The marginal allocation is denoted by n with

component nc,r representing the expected number of alerts in category c assigned to analyst r.

The adversary plays a best response to the defender’s marginal strategy n which amounts to

choosing a system k to attack and an attack method m.

Utilities Since the alerts in a category are indistinguishable they are all investigated with the

same probability nc,r/Nc, which is the probability that an alert in category c is investigated by

analyst r. The probability of detecting an attack of type m that results in an alert of type c

is calculated as: xc,m = ∑r∈R Er
mnc,r/Nc. The payoffs for the defender depend on the system k

that is attacked, the attack method m, and if the adversary is detected (or undetected) during

investigation. This is denoted by Ud
δ ,c and Uu

δ ,c, respectively, where c refers to the category (k,a)

and δ is the defender. A CAG is formulated as a zero-sum game, hence the payoffs for the

adversary (θ ) are Ud
θ ,c = −Ud

δ ,c and Uu
θ ,c = −Uu

δ ,c. If the adversary chooses k, m, and given β m
a ,

the defender’s utility is:

Us = ∑
a∈A

β
m
a [xc,m ∗Ud

δ ,c +(1− xc,m)Uu
δ ,c] (5.4)

Bayesian Game It is possible to extend the CAG game formulation to allow for varying adversary

types. The motivation behind this extension is to handle the situation where a defender may be

protecting against adversaries that may value targets in the network differently, e.g. a nation-state
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versus script-kiddie. In this case, denote the set of adversary types as Θ and it is assumed the

defender knows a prior z over the chance of encountering the varying adversary types. Define the

utilities for adversary type θ as Ud
δ ,c(θ) and Uu

δ ,c(θ). The defender’s utility given θ , k, m and β m
a

is then Us,θ = ∑a∈A β m
a [xc,m ∗Ud

δ ,c(θ)+ (1− xc,m)Uu
δ ,c(θ)]. Although the bayesian formulation

can easily be handled, for clarity the rest of the analysis is completed without considering the

adversary types.

5.3 Defender’s Optimal Strategy

The defender’s optimal mixed strategy (maximin strategy) can be computed a linear program,

denoted as MixedStrategyLP:

max
n,v

v (5.5)

s.t. v≤Us ∀k ∈ K,∀m ∈M (5.6)

xc,m = ∑r∈R Er
m

nc,r
Nc

∀c ∈C,∀m ∈M (5.7)

nc,r = ∑
P∈P̂

qPPc,r ∀c ∈C,∀r ∈ R (5.8)

∑
P∈P̂

qP = 1,qP ≥ 0 (5.9)

This LP requires exponentially many pure strategies P ∈ P̂. The objective function in Equa-

tion 5.5 maximizes the defender’s utility, v. Equation 5.6, which uses Equation (5.4), ensures the

adversary selects a best response over all m ∈M and k ∈ K. Equation 5.7 calculates the detection

probabilities x from the marginal strategy n, which is computed by Equation 5.8. Equation 5.9

ensures the mixed strategy is valid.

69



Computing the maximin mixed strategy for the defender was shown to be NP-hard in the

case of TSGs [22]. The computational hardness arises from the underlying team formation of

applying a group of screening resources to screen incoming passengers. However, in CAGs there

are not teams of analysts, the defender only needs to assign the alerts to individual analysts. Thus,

one might hope that this could simplify the problem and admit a polynomial time algorithm.

Unfortunately, this turns out not to be the case. Specifically, in Theorem 5.1 it is shown that the

problem is still NP-hard, where the hardness arises from a different domain feature, i.e., the time

values, T r
a , for the analysts.

Theorem 5.1 Computing the defender maximin strategy is weakly NP-hard when there is only

one resource, and is strongly NP-hard with multiple resources.

Proof 5.1 From [85], it is shown that the computational complexity of computing minimax equi-

librium is equivalent to that of finding the best response. Here, I show that the best response

problem in CSGs is weakly NP-hard even when there is only one resource via a reduction from

the Knapsack problem and becomes strongly NP-hard when there are multiple resources via a re-

duction from the Generalized Assignment Problem (GAP). This, together will the results of [85],

yields the claimed conclusion. First, the weak NP-hardness is proven when there is a single re-

source. In the knapsack problem, we have N items each with a weight wi and value vi ∀i ∈ N, and

aim to pick items of maximum possible value subject to a weight-capacity budget B.

Now create a CSG instance with 1 system k1, 1 attack method m1, and one resource r1. Set

Er1
m1

= 1.0 and Lr1 = 1. Also, N alert levels are created, thus |A| = |C| = N. For each alert

level a ∈ A, set T r1
ai

= wi/B ≤ 1. Each category ci ∈C also corresponds to ai since there is only

one system. Set Ud
s,ci

= vi and Uu
s,ci

= 0. Also set qm1
a1

= . . . = qm1
aN

= 1/|N|. Further, set Nci = 1
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∀i ∈ N, i.e., each category has precisely one alert. The adversary only has one choice k1,m1.

In this constructed instance, the defender’s best response is a pure strategy that picks alerts of

the maximum value but subject to total time limit constraint. Let ni ∈ {0,1} denote whether the

resource resolves category ci, the best response problem then solves the following optimization

program:

max
n

∑
N
i=1 nivi (5.10)

s.t.
N

∑
i=1

ni ·wi/B≤ 1 (5.11)

ni ∈ {0,1} ∀i = 1, ...,N (5.12)

It is easy to see that this is precisely the Knapsack problem described above, yielding the

weak NP-hardness. To prove that the problem is strongly NP-hard with multiple resources, the

reduction is from the following Generalized Assignment Problem (GAP), a well-known NP-hard

problem: given R machines and A jobs, assign job a to machine r which costs T r
a time units and

achieves utility Er
a; machine R has a limit of 1 time unit. The goal is to assign these jobs to

machines to maximize the total utility subject to each machine’s time capacity. It is easy to verify

that this corresponds to the best response problem of a particular CSG as follows: one system,

R resources, alert set A; |A| attack methods with method ma triggering alert a with probability 1.

Trivial details are omitted here.

In some special cases, it is possible to compute the optimal marginal strategy in polynomial

time. Specifically, if all T r
a for a given analyst r are identical ∀a ∈ A, then the optimal marginal
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strategy can be found with an LP which is stated in Proposition 5.1. This result is discussed

further in Section 5.4.

Proposition 5.1 When T r
ai
= T r

a j
∀ai,a j ∈ A for each resource, then there is a polynomial time

algorithm for computing the maximin strategy.

Proof 5.2 When all T r
a for a given analyst r are equal, constraint: ∑a∈A ∑c ∈CaT r

a nc,r ≤ 1 can

be converted into ∑a∈A ∑c ∈Canc,r ≤ 1
T r

a
. WLOG, 1

T r
a
→ b 1

T r
a
c as any marginal assignment over

b 1
T r

a
c will not be implementable. This happens as all pure strategies have integer assignments.

Hence, for all constraints of type (5.16) a new constraint ∑c ∈Canc,r ≤ b 1
T r

a
c is introduced. This

new set of analyst capacity constraints forms a hierarchy H2 and therefore, the set of constraints

form a bihierarchy. The defender’s optimal marginal strategy n can be found by solving the

MSLP.

5.3.1 Defender’s Optimal Marginal Strategy

In the security games literature, two approaches are commonly used to handle scale-up: marginal

strategies [43, 50] and column generation [37]. A marginal strategy based approach is adopted

which finds the defender’s marginal strategy n and does not need to explicitly enumerate the

exponential number of pure strategies. A relaxed version of LP (5.5)∼(5.9) in given in LP

(5.13)∼(5.17). LP (5.13)∼(5.17) is similar to LP (5.5)∼(5.9) except that equations (5.8) and (5.9)

are replaced with equations (5.16) and (5.17) to model the relaxed marginal space. Recall that

marginal strategies satisfy constraints (5.1)∼(5.2) (which lead to Equations 5.16 and 5.17) but
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drop constraint (5.3). The optimal marginal strategy n for the defender can then be found by

solving the following MarginalStrategyLP3 (MSLP):

max
n,v

v (5.13)

s.t.v≤Us ∀k ∈ K,∀m ∈M (5.14)

xc,m = ∑r∈R Er
m

nc,r
Nc

∀c ∈C,∀m ∈M (5.15)

∑a∈A ∑c∈Ca T r
a nc,r ≤ 1 ∀r ∈ R (5.16)

∑r∈R nc,r ≤ Nc, nc,r ≥ 0 ∀r ∈ R,∀c ∈C (5.17)

Though MarginalStrategyLP computes the optimal marginal strategy n, it may not correspond

to any valid mixed strategy q, i.e., there may not exist a corresponding mixed strategy q such

that n = ∑P∈P̂ qPP, ∑p∈P̂ qP = 1. Marginal strategies of this type are called non-implementable.

However, when T r
a have a particular structure, one can show the marginal strategy returned is the

optimal for the defender. The intuition is that when T r
a = 1

wa
where wa ∈ Z+, the extreme points

of the marginal polytope are all integer. In these cases, the defender’s optimal implementable

marginal strategy can be efficiently computed using the MSLP.

Theorem 5.2 For any feasible marginal strategy n to MSLP, there is a corresponding mixed

strategy q that implements n whenever T r
a = 1

wa
where wa ∈Z+, ∀r ∈ R,∀a∈ A and Nc ≥∑r∈R

1
T r

a
,

∀c ∈C for a given CAG.

Proof 5.3 Let Q be the polytope defined by constraints 5.16 and 5.17. Notice that since

Nc ≥ ∑r∈R
1

T r
a

, constraint 5.17 is trivially satisfied, where ∑r∈R nc,r ≤ Nc. Now, because 5.16

3Note for the bayesian formulation, the objective function would be ∑θ∈Θ zθ vθ while the second constraint be-
comes vs,θ ≤Us,θ ∀k ∈ K,∀m ∈M,∀θ ∈Θ
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is independent across r ∈ R, Q can be written as Q = Q1 × Q2 × . . .× Qr|R| , where Qr =

{nc,r|∑a∈A ∑c∈Ca T r
a nc,r ≤ 1,nc,r ≥ 0}.

To show any feasible marginal strategy n from the MSLP has a valid mixed strategy q it needs

to be shown that the extreme points of Q belong to ∆P̂. Using a result from [20] it is known that

n ∈ Q is an extreme point iff nr ∈ Q is an extreme point of Qr, ∀r ∈ R. Hence, it only needs to be

shown that the extreme points of Qr ∈ ∆P̂.

Take an arbitrary point extreme point of Qr, then |C| linearly independent constraints must

be active. Since, ∑a∈A ∑c∈Ca T r
a nc,r = 1, |C|-1 of the nc,r ≥ 0 constraints must be active meaning

|C|-1 entries of nc,r = 0 for a given analyst r. Hence, nc,r > 0 for only one entry and given

∑a∈A ∑c∈Ca T r
a nc,r = 1 implies that nc,r = wa. As this is integer, this point is also a pure strategy.

Therefore, Qr ∈ ∆P̂ and by extension Q ∈ ∆P̂. In a similar way, one can argue the opposite

direction. If MarginalStrategyLP has a valid solution, then a corresponding mixed strategy can

be found.

The intuition behind Theorem 5.2 is that when the T r
a = 1

wa
and wa ∈ Z+, the extreme points

of the defender’s strategy space become integer. This can be seen from the maximum number of

alerts each resource is able to resolve. Whenever, T r
a = 1

wa
the number of alerts of a given type a

resource can solve will be wa, which corresponds to an integer assignment. Hence, the defender’s

marginal strategy space is the same as the defender’s mixed strategy space when these conditions

are true and the MSLP returns the optimal marginal strategy for the defender.
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5.4 CAG Algorithmic Approach

The problem of non-implementability of marginals in security games has been studied in previous

research [50, 22], but the non-implementability arose because of spatio-temporal resource con-

straints and constraints from combining resources into teams. For CDGs, non-implementability

arises from the presence of the T r
a coefficients (an example is discussed later). In this section,

an algorithm is presented that takes the initial constraints on a CAG and converts them to en-

sure the implementability of the marginal strategy. To that end, [23] presents a useful approach,

as they define a special condition on the constraints on the marginals called a bihierarchy. A

bihierarchy captures a sufficient condition needed to guarantee the implementability of the de-

fender’s marginal strategy n. Unfortunately, constraints on CAGs rarely satisfy the conditions for

a bihierarchy and must be converted to achieve the bihierarchy condition.

Definitions and Notation The marginal assignments n for the defender form a |C| × |R|

matrix. The assignment constraints on the defender’s marginal strategy, namely Equations 5.16

and 5.17, are a summation of nc,r over a set S ⊂ |C| × |R| with an integral upper bound. For

example, based on Equation 5.17, {{c1,r1},{c1,r2}} forms a constraint subset for the example

CAG. The collection of all such S form a constraint structure H when all coefficients in the

constraints are unitary, as they are in Equation 5.17.

A marginal strategy n is said to be implementable with respect to H if there exists a distri-

bution (a.k.a., mixed strategy) q such that n = ∑P∈P̂ qPP. A constraint structure H is said to be

a hierarchy if, for any two constraint sets in H, we have that either one is a subset of the other

or they are disjoint. More concretely, we have the following: ∀S1,S2 ∈ H, S1 ⊂ S2, S2 ⊂ S1
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or S1 ∩ S2 = /0. H is said to be a bihierarchy if there exists hierarchies H1 and H2, such that

H = H1∪H2 and H1∩H2 = /0.

For any CAG, the row constraints ∑r∈R nc,r ≤ Nc form a hierarchy H1. However, the column

constraints, one for each resource r ∈ R, do not form a hierarchy: ∑a∈A ∑c∈Ca T r
a nc,r ≤ 1. As

mentioned earlier, the culprit lies in the T r
a coefficients, as they can be non-unitary, and to achieve

a hierarchy H2 on the column constraints, and thus give us a bihierarchy, all T r
a coefficients must

be removed.

5.4.1 Constraint Conversion

The T r
a coefficients admits possibly non-implementable marginal strategies to be returned. For

instance, in Figure 5.2(b) the marginal strategy is non-implementable, because it is impossible to

get nc1,r2 = 2.5 by mixing pure assignments. This is because constraints (5.1) and (5.3), force the

relevant pure strategy Pc1,r2 ≤ b1/0.4c = 2. The column constraints can be converted, namely:

∑a∈A ∑c∈Ca T r
a nc,r ≤ 1 into a hierarchy by removing the T r

a coefficients. The conversion can be

completed by grouping together all nc,r which have the same T r
a and introducing a new constraint

on these sets of nc,r. Specifically, each column constraint (equation 5.16) is replaced with |A|

constraints:

∑
c∈Ca

nc,r ≤ LCa
r (5.18)

This conversion must be done for all analysts r ∈ R for the column constraints to form a hierarchy

H2. LCa
r gives an upper bound on the number of alerts of type a that an analyst can solve. The

choices of LCa
r must satisfy the original capacity constraint, namely: ∑a∈A T r

a LCa
r ≤ 1 and LCa

r ∈Z.
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Figure 5.3: Conversion of Column Constraints on CAG

Conversion Example This example refers to the example CAG where the marginal strategy

is given in Figure 5.3. The column constraints must be converted to a hierarchy. This conversion

is shown for r1 (as r2 is converted in the same manner). Initially, for r1 we have the following

constraint:

T r1
a1

nc1,r1 +T r1
a2

nc2,r1 +T r1
a1

nc3,r1 +T r1
a2

nc4,r1 ≤ 1

The T r
a coefficients can be removed by grouping together all nc,r which share T r

a and introducing

two new constraints like (5.18). This leads to two new constraints:

nc1,r1 +nc3,r1 ≤ L
Ca1
r1 nc2,r1 +nc4,r1 ≤ L

Ca2
r1

These new constraints are shown for r1 in Figure 5.3 on the right of the arrow. Next, the LCa
r

variables must be set. One possible combination is H2 = {nc1,r1 + nc3,r1 ≤ 0,nc2,r1 + nc4,r1 ≤ 2}

(H2 also includes constraints on r2 which are not shown). This satisfies the original the original

analyst capacity constraints as: L
Ca1
r1 + 0.5 ·LCa2

r1 ≤ 1. However, there is another choice for LCa
r ,

H2 = {nc1,r1 +nc3,r1 ≤ 1,nc2,r1 +nc4,r1 ≤ 0}. Given either of the two hierarchies H2, the constraint
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structure is now a bihierarchy. The original marginals shown in Figure 5.3 do not satisfy these

new constraints; but solving the MSLP with these additional constraints in H2 is guaranteed to

give an implementable marginal.

Rounding T r
a Values In the conversion process, a hierarchy H2 is created on the column

constraints by introducing |A| LCa
r values for each resource. The conversion process then allows

for combinatorially many configurations of the LCa
r values which satisfy the original capacity

constraints for a resource, i.e. Constraint (5.16). To alleviate this search, an algorithm could take

advantage of Theorem 5.2 and round each T r
a to the nearest 1

wa
value which is greater than T r

a

where wa ∈ Z+. The marginal strategy n returned for this modified CAG is then guaranteed to be

implementable. However, as is shown next this can lead to a 1
2 loss for the defender in the worst

case.

Counter Example Consider a CAG with one system K = {k1}, two alert levels A = {a1,a2},

and one analyst r = {r1}. There are two alert categories C = {c1,c2}, where c1 = (k1,a1) and

c2 = (k1,a2). For the alert categories we have Nc1 = 1 and Nc2 = 1. For r1, assume T r1
a1

= 0.5+ ε

and T r1
a2

= 0.5−ε . If one rounds the T r
a values up to the nearest 1

wa
we would have the following:

T r1
a1

= 1 and T r1
a2

= 0.5.

Now assume the adversary has one attack method m1 with Er1
m1

= 1 and where β m1
a1

= 0.5+

ε and β m1
a2

= 0.5− ε . Assume Ud
δ ,c1

= Ud
δ ,c2

and Uu
δ ,c1

= Uu
δ ,c2

where Ud
δ ,c1

> Uu
δ ,c1
≥ 0. The

adversary has one choice and hence, chooses to use m1 to attack system k1. The modified CAG

would then assign the alert in c1 to r1 and receive a utility of v
′
= (0.5− ε)Uu

δ
+(0.5+ ε)Ud

δ
.

In the unmodified CAG, however, the defender would be able to assign both alerts to r1 and
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therefore, achieve a utility v∗ =Ud
δ

. In this case, the worst possible loss from the modification of

the CAG happens when Uu
δ
= 0. This results in the following:

v
′

v∗
=

(0.5− ε)Uu
δ
+(0.5+ ε)Ud

δ

Ud
δ

≤
(0.5+ ε)Ud

δ

Ud
δ

In the worst case, v
′
= (0.5+ ε)v∗. Hence, rounding the T r

a values means the defender can lose

up to 1
2 of the optimal utility. This amount of loss is not acceptable in cyber security domains

which have highly sensitive targets and therefore, algorithms must be devised which provide

better solutions that mitigate this loss.

5.4.2 Branch-and-Bound Search

So far, it has seen that a marginal strategy n for a CAG output from the MSLP may be non-

implementable. The goal is to ensure that the marginal strategy output by MSLP is implementable

by adding new column constraints, i.e., by realizing a bihierarchy. The addition of new constraints

as outlined above gives us a bihierarchy, but there are multiple ways to set the values of LCa
r

variables (as shown in the above example), creating a choice of what bihierarchy to create. Indeed,

one may need to search through the combinatorially many ways to convert the constraints of

CAG to a bihierarchy. Previous work [22] proposed the Marginal Guided Algorithm (MGA) for

creating bihierarchies, but MGA does not apply to CAGs as it does not deal with the non-unitary

coefficients present in CAGs.

Here a novel branch-and-bound search is proposed: out of the set of constraints that could be

added to MSLP, find the best that would give the defender the optimal utility v∗. At the root node,

are the original constraints (13) and (14); running MSLP potentially yields a non-implementable
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marginal strategy n. Then branches are created from this root, where at each level in the tree, new

constraints are added for an analyst r, and the children are expanded with the following rules:

1. Substitute ∑a∈A ∑c∈Ca T r
a nc,r ≤ 1 with |A| constraints: ∑c∈Ca nc,r ≤ LCa

r for all a ∈ A. The

|A| new constraints form a set H2(r). A branch is created for all combinations of LCa
r which

satisfy ∑a∈A T r
a ∗LCa

r ≤ 1.

2. Solve the MarginalStrategyLP at each node with the modified constraints.

Thus, at each level of the tree, the capacity constraint of some analysts have been substituted,

and for these, we have constraints of type (5.18), but for others, we still have constraint (5.16).

This set of constraints does not form a hierarchy H2 as T r
a coefficients are present in some analyst

constraints. Still, each intermediate node gives an upper bound on the defender’s utility v which

is stated in Proposition 5.2, as each conversion from (5.16) to (5.18) introduces new constraints

on the defender’s strategy space.

Proposition 5.2 Each intermediate node in the tree gives an upper bound on the defender’s utility

v for all subsequent conversions for the remaining analyst capacity constraints.

Proof 5.4 In an intermediate node there are two types of column constraints present: (1)

∑a∈A ∑c∈Ca T r
a nc,r ≤ 1 and (2) ∑a∈A nc,r ≤ LCa

r . At the next level of the tree a constraint of the

first type is replaced with constraints of the second type. These new constraints restrict the de-

fender’s marginal strategy space and hence, the defender’s utility v will either stay the same or

decrease.

A leaf in the search tree has column constraints only of the form: ∑a∈A nc,r ≤ LCa
r . Hence,

they form a hierarchy H2 as all nc,r have unitary coefficients and an integer upper bound. At a
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leaf, the MSLP can be solved with the resulting bihierarchical constraints to find a lower bound

on the defender’s utility v. Combining this with Proposition 5.2 gives the components needed for

a branch-and-bound search tree which returns the optimal bihierarchy for the defender.

5.4.2.1 Heuristic Search

The full branch-and-bound procedure struggles with large CAG. To find good bihierarchies, one

can take advantage of the optimal marginal strategy n∗ returned from MSLP at an intermediate

node to reduce the amount of branching done. The intuition for this strategy, is that the optimal

bihierarchy either contains, or is near, n∗. For example, in the conversion done in Figure 5.3, the

LCa
r values can be set close to n. Set L

Ca1
r2 = b1/.4c= 2, while the leftover capacity for r2 is used

to set L
Ca2
r2 = 1. L

Ca1
r2 could be set to another value, but our choice must stay close to n∗.

For the heuristic search, the following rules are used to expand child nodes which must set

the LCa
r values for an analyst r: (1) LCa

r = dnCa,re, (2) LCa
r = bnCa,rc or (3) LCa

r = b1−∑a∈A T r
a ∗LCa

r
T r

a
c,

where nCa,r = ∑c∈Ca nc,r. The third rule is used whenever an LCa
r value cannot be set to the roof or

floor of n∗, and is set to be the max value given the leftover analyst capacity. These choices are

done in an attempt to capture the optimal marginal strategy n∗. The set of all valid combinations

of the LCa
r values using the above rules which satisfy ∑a∈A T r

a LCa
r ≤ 1 constitute the search space

at each intermediate node. These rules then significantly reduce the branching at intermediate

nodes in the search tree.

5.4.2.2 Convex Hull Extension

The above searches return a set of good bihierarchies for obtaining a high value of v∗ for the de-

fender when solving MSLP, as each leaf contains a bihierarchy Hi. Each bihierarchy Hi contains
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Figure 5.4: Geometric view of the defender’s strategy space.

a portion of the defender’s mixed strategy space (due to new constraints). Thus, taking a convex

hull over these bihierarchies increases the size of the defender’s strategy space and hence, will

only improve the defender’s utility. In Figure 5.4 a geometric representation of the defender’s

strategy space is shown. Individual points represent the defender’s pure strategies and the region

contained in the convex hull of these points is the defender’s mixed strategy space, while the

outer region represents the defender’s relaxed marginal strategy space. Figure 5.4(a) shows how

individual bihierarchies capture portions of the defender’s mixed strategy space represented by

the shaded regions enclosed by the dashed lines. Figure 5.4(b) shows that by taking the convex

hull of the two bihierarchies H1 and H2 the size of the defender’s strategy space can be increased

without generating any new bihierarchies. Note, as each bihierarchy is implementable, the convex

hull will also be implementable [22].

To take the convex hull, first notice each bihierarchy Hi is a set of linear constraints and can

be written as Din ≤ bi for matrix Di and vector bi. Hence, by definition n(Hi) = {n|Din ≤ bi}.

Using a result from [11] that represents the convex hull using linear constraints, one can write:
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conv(n(H1), . . . ,n(Hl)) = {n|∑i ni,Dini≤ λibi,λi≥ 0,∑i λi = 1}. This allows for the convex hull

of the bihierarchies to be computed efficiently using an LP similar to MSLP.

In terms of the convex hull there are two options available: (1) Take the convex hull of

all bihierarchies or (2) build the convex hull iteratively. In some cases, the set of bihierarchies

available to the defender can be very large and hence, optimizing over all bihierarchies is not

feasible. To alleviate this issue, the convex hull can be built iteratively. This is done by first sorting

the bihierarchies by the defender utility v. Next, the convex hull of the top two bihierarchies is

taken which gives a utility v
′
to the defender. Bihierarchies are added to the convex hull while the

utility v
′
returned increases by at least some ε , and stops otherwise.

5.5 Evaluation

The CAG model and solution algorithms are evaluated with experiments inspired by the oper-

ations of the AFCYBER. The game payoffs are set to be zero-sum, i.e. Uu
δ ,c = −Uu

θ ,c, and the

defender’s payoffs are randomly generated with Uu
δ ,c uniformly distributed in [−1,−10]. The

rest of the game payoffs, Ud
δ ,c and Ud

θ ,c, are set to be zero. Each experiment is averaged over 30

randomly generated game instances.

5.5.1 Full vs Heuristic Search

Whether the heuristic approach of staying close to n∗ would yield the right solution quality-speed

tradeoff remains to be seen. To test this, the performance of the full branch-and-bound search

(Full) is compared to the heuristic search (Heur). For this experiment two variations of the full

search are tested: Full-1 which uses the full convex hull and Full-2 which uses the iterative convex
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Experimental Results
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Figure 5.5: Experimental Results for CAG instances.

hull. The Heuristic search the same two variations are tested, labeled as Heur-1 and Heur-2. Each

instance has 20 systems, 3 attack methods, and 3 alert types.

In Figure 5.5(a) the number of resources are varied on the x-axis and the runtime in seconds

is shown on the y-axis. As can be seen the runtime of the full search explodes exponentially as

the number of resources is increased. However, the average runtime of the heuristic approach is

under 1 second in all cases and provides up to a 100x runtime improvement for 5 resources. In

Figure 5.5(b) the number of resources are on the x-axis while the y-axis shows the defender’s ex-

pected utility. This graph shows that all variations perform similarly, with the heuristic suffering

less than 1% solution in defender utility compared to the full search for all game sizes. Hence,
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Figure 5.6: Allocation Approach Comparison.

these results show that the heuristic significantly improves runtime without sacrificing solution

quality.
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Figure 5.7: Scaling Number of Systems

5.5.2 Solving large CAG

Another important feature of real-world domains are the larger number of cybersecurity analysts

available to investigate alerts. Accordingly, the next experiment tests the scalability of the heuris-

tic approach to large CAG instances. The parameters for these experiments are 100 systems, 10

attack methods, and 3 alert levels.
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In Figure 5.5(c) the runtime results are shown with the number of analysts on the x-axis and

the runtime in seconds on the y-axis. For example, Heur-1 takes an average of 40 seconds to

solve a CAG with 10 analysts. This graph shows the heuristic runs in under a minute, even as

the number of analysts is increased from 6 to 14. In Figure 5.5(d) the solution quality results

are shown with the number of analysts on the x-axis and the defender’s expected utility on the

y-axis. The solution quality is compared to the (potentially non-implementable) MSLP solution.

This graph highlights that the heuristic approach achieves a utility close to the theoretical optimal

value. Therefore, this experiment shows that game theoretic approaches scale to large CAG

without sacrificing much solution quality.

In the next experiment, the number of systems that have to be protected are varied. For this

experiment the defender has 5 cyber experts to assign. Figure 5.7 shows the runtime and solution

quality results. In Figure 5.7(a) the number of systems are varied on the x-axis and the runtime

in seconds is shown on the y-axis. For instance, for 50 systems Heur-1 takes an average of 1.78

seconds to finish running. This graph shows Heur-1 and Heur-2 show no issues in scaling to a

larger number of systems. In Figure 5.7(b) the x-axis shows the number of systems while the

y-axis gives the defender’s expected utility. The solution quality is again compared to the MSLP

solution. In all cases, the heuristic approaches suffer only a small loss in defender expected utility

compared to the MSLP value. As can be seen from the results, the heuristic approaches scale to

CAG with a larger number of systems without sacrificing much in the way of solution quality.
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5.5.3 Allocation Approach

The last experiment aim to show that the game theoretic apporach for CAGs outperform ap-

proaches used in practice. In addition to the heuristic approach, a greedy approach which inves-

tigates the highest priority alerts from the most critical bases first and a random approach for the

allocation are used for comparison. The parameters for this experiment are 20 systems, 5 attack

methods, and 10 analysts. In Figure 5.6(a) the solution quality results are shown with the number

of alerts on the x-axis and defender’s utility on the y-axis. For example, with 4 alert types the

heuristics achieve a utility of -7.52 while the greedy and randomized allocations give -9.09 and

-9.65, respectively. This difference is statistically significant (p < 0.05). In Figure 5.6(b), a so-

lution comparison for a specific CAG instance is shown. This graph gives intuition for why the

game theoretic approach performs so well. The greedy and random approaches tend to overpro-

tect some systems (system 4) while leaving others without adequate protection (system 2).

5.6 Chapter Summary

In this paper I address the pressing problem in cyber security operations of how to allocate cyber

alerts to a limited number of analysts. The Cyber-alert Allocation Game (CAG) is introduced to

analyze this problem and I show computing optimal strategies for the defender is NP-hard. I then

give special cases when the optimal strategy for a CAG is efficiently computable. To solve CAG,

a novel approach is presented to address implementability issues in computing the defender’s

optimal marginal strategy. Finally, I give heuristics to solve large CAGs, and give empirical

evaluation of the CAG model and solution algorithms.
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Chapter 6

General-sum Threat Screening Games

6.1 Problem Domain

Extending the CAG and TSG models to general-sum domains is important for real-world appli-

cability of these models as security domains commonly have non-symmetric payoffs between

defenders and adversaries. In this chapter, I investigate Bayesian general-sum Threat Screening

Games (TSG) and present an approach to solve these games which has additional applicability to

the CAG model presented in Chapter 5. It is suggested for the reader to familiarize themselves

of the details of the TSG model which is given in the background section. To highlight the use-

fullness of modeling general-sum payoffs, consider that for an adversary attacking an airport he

may receive a positive payoff even when getting caught as he gains notoriety for his attack. The

defender, however, would not receive any payoff given that she is only able to stop the attack and

no damage occurs. In this chapter, I present an approach that handles the computational com-

plexities arising from solving TSGs with non zero-sum payoffs which leverages a hierarchical

decomposition method for handling the adversary action tree and uses MGA [22] to compute

approximate marginal strategies for the defender.
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6.2 Approach

While it has been shown that Bayesian Stackelberg games are hard to solve [27], it is interesting

to observe that Bayesian general-sum TSGs are hard to solve even in the marginal strategy space

as is shown next. This result shows that finding the optimal marginal strategy n for Bayesian

general-sum TSGs is fundamentally more complex than the zero-sum case which can be solved

in polynomial time as an LP. Thus, it is not surprising that the solution approaches used in [22]

are not directly applicable to the general-sum case.

Theorem 6.1 Finding the optimal solution in Bayesian general-sum TSGs is NP-hard even in the

relaxed marginal strategy space.

Proof 6.1 The reduction is given from the knapsack problem to the TSG problem. Assume n items

with weights wi and value vi with a sack of capacity K. Wlog, assume wi and K are integers.

Construct a game with n adversary types |Θ| = n. Each type of adversary has two flights to

board: f0, f1. Thus, C = {(θi, f j) | 0 ≤ i ≤ n, j ∈ {0,1}}. Choose the other parameters of the

game as follows: two resources r1,r2 with capacities Lr1 = K and Lr2 = ∞. There have two teams

t1 = {r1} and t2 = {r2}. There is only one attack method m1. For this game Et1
m1

= 1 and Et2
m1

= 0,

i.e., t2 is not effective at all at detecting m1. The number of screenees for each screenee category

N(θi, f0) = wi and N(θi, f1) = 1 for all θi ∈Θ. Each type θi occurs with probability vi
∑θi vi

.

The utilities for the screener are Ud
s,(θi, f0)

= 0,Uu
s,(θi, f0)

= 0, ∀ θi and Ud
s,(θi, f1)

= 2,Uu
s,(θi, f1)

= 1,

∀ θi. Thus, the screener strictly prefers the adversary of every type to choose f1. The util-

ities for the adversary are set as follows: Ud
Θ,(θi, f0)

= 1,Uu
Θ,(θi, f0)

= 2, ∀ θi and Ud
Θ,(θi, f1)

=

0,Uu
Θ,(θi, f1)

= 1, ∀ θi. Thus, the adversary will choose (θi, f1) only when the probability of detec-

tion x(θi, f0) = 1,x(θi, f1) = 0 (breaking ties in favor of the screener). This happens only when all of
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the screenees N(θi, f0) = wi are screened by t1. Thus, we have from the capacity constraints that

∑θi chooses f1
wi ≤ K. Therefore, for the choice of f1 by adversary of type θi, the screener earns

vi
∑θi vi

and otherwise the screener earns 0. Given, the optimization problem maximizes this utility:

∑θi chooses f1

vi
∑θi vi

, the optimization provides a solution for the knapsack problem.

The resulting TSG instance from the knapsack problem has two flights, two resources, two

teams, and as many adversary types as the number of items n in the knapsack problem. The

screenee types assigned to t1 gives the knapsack solution. Therefore, the reduction from the

knapsack problem is overall polynomial in the number of items n.

The optimal marginal strategy for a Bayesian general-sum TSG can be obtained by solving

the mixed integer linear program MarginalStrategyMILP, provided below.

max
n,s,x,a

]quad ∑
θ∈Θ

zθ sθ (6.1)

s.t. sθ −Us(aθ ,w
c,m )≤ (1−aθ ,w

c,m ) ·Z ∀θ ,w,c,m (6.2)

0≤ kθ −Uθ (aθ ,w
c,m )≤ (1−aθ ,w

c,m ) ·Z ∀θ ,w,c,m (6.3)

xw
c,m = ∑

t∈T
Et

m
nw

c,t

Nw
c

∀w,c,m (6.4)

∑
t∈T

It
r ∑

c∈C
nw

c,t ≤ Lw
r ∀w,r (6.5)

∑
t∈T

nw
c,t = Nw

c ∀w,c (6.6)

nw
c,t ≥ 0 ∀w,c, t (6.7)

aθ ,w
c,m ∈ {0,1} ∀θ ,w,c,m (6.8)

∑
w,c,m

aθ ,w
c,m = 1 ∀θ (6.9)
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Equations (6.8) and (6.9) force each adversary type θ to choose a pure strategy. Equation

(6.1) is the objective function which maximizes the screener expected utility as a weighted sum-

mation of screener expected utility against adversary type θ , sθ , multiplied by the probability of

encountering adversary type θ , zθ . Equation 6.2 defines the screener’s expected payoff against

each adversary type, contingent on the choice of pure strategies by the adversary types. The con-

straint places an upper bound of Us(a
θ ,w
c,m ) on sθ , but only if aθ ,w

c,m = 1, as Z denotes an arbitrarily

large constant. For all other pure strategies of adversary type θ , the RHS is arbitrarily large.

Similarly, Equation (6.3) places an upper bound of Uθ (a
θ ,w
c,m ) on the utility of adversary type θ ,

kθ , for aθ ,w
c,m = 1. Additionally, Equation (6.3) also lower bounds kθ by the largest Uθ (a

θ ,w
c,m ) over

all aθ ,w
c,m . Taken together these upper and lower bounds ensure that the pure strategy selected by

adversary type θ is a best response to the screener marginal strategy n. Equations (6.5) and (6.7)

requires that n satisfies the resource type capacity constraints and screenee category assignment

constraints.

Even though MarginalStrategyMILP represents a NP-hard problem, solving it does not nec-

essarily produce an implementable marginal screener strategy, i.e., the marginal strategy may

not map to a probability distribution over pure strategies. The issue of implementability was

addressed in [22] for TSGs by introducing the Marginal Guided Algorithm (MGA), which uses

the (potentially non-implementable) marginal strategy to additionally restrict the constraints of a

TSG to obtain a provably implementable marginal strategy though it can possibly lose solution

quality in the process.
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6.3 GATE: Solving Bayesian General-Sum TSG

Despite operating in the marginal screener strategy space, solving the MarginalStrategyMILP is

computationally expensive due to the presence of the integer variables that encode the adversary

strategy space. Therefore, to solve Bayesian general-sum TSGs a clever algorithmic is needed

to explore the adversary strategy space. An example of the adversary strategy space for two

adversary types and two actions per type is shown in Figure 6.1(a). The leaf nodes in this tree

represent all possible joint pure strategy combinations for the two adversary types.

(b) Hierarchical Adversary Type Tree – Binary Partitioning (a) Two Adversary Type Game Tree 

[*,*] 

[1,*] [2,*] 

[1,1] [1,2] [2,1] [2,2] 

Type 1 

Type 2 

 

{1, 2} {3, 4} 

{4} {1} {2} {3} 

Branch & Guide 

Figure 6.1: Bayesian Adversary Strategy Space

As mentioned previously a standard algorithmic approach that could be used to solve

Bayesian general-sum TSGs is Multiple LPs [27]. This technique exploits the fact that, by fixing

the joint adversary pure strategy, the underlying optimization problem is converted from a MILP

to an LP. Thus, an LP can be solved for each leaf node in the adversary strategy tree to obtain

the best marginal screener strategy which induces that joint adversary pure strategy as a best

response. The marginal strategy with the highest screener utility is returned as the solution for

the TSG. However, the number of joint adversary pure strategies is exponential in the number of

adversary types Θ and thus Multiple LPs is not scalable for large problem instances. Therefore,

the General-sum Algorithm for Threat screening game Equilibria (GATE) is proposed and in this
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section an intuitive, high level description is provided. In Section 6.4 a detailed algorithm is given

as the experimental results show GATE does not scale leading to the need for heuristics to further

speed up computation.

6.3.1 Hierarchical Type Trees

At a high level GATE seeks to exploit the structure of TSGs and reduce the number of joint

adversary pure strategies that need to be evaluated. GATE achieves this reduction by building

off intuition from the HBSA algorithm [39], which involves constructing a hierarchical type tree.

Such a tree decomposes the game with each node in the tree corresponding to a restricted game

over a subset of adversary types. The idea is to solve these smaller, restricted games to efficiently

obtain (1) infeasibility information to eliminate large sets of joint adversary pure strategies, and

(2) utility upper bound information that can be used to terminate the evaluation of joint adversary

pure strategies.

GATE operates on restricted TSGs, where T SG(Θ
′
) is defined to be a TSG with a subset of

adversary types Θ
′ ⊂ Θ. It is important to note that, despite not including all adversary types,

T SG(Θ
′
) does not ignore the screenee categories associated with adversary types Θ\Θ

′
. Indeed,

T SG(Θ
′
) must still satisfy the constraint that all screenees in each category must be assigned to

a screening team type, i.e., Equation 6.6. By continuing to enforce these constraints, the upper

bounds generated will be tighter as the screener cannot focus all the screening resources on just a

subset of screenee categories, helping to improve the ability of GATE to prune out joint adversary

pure strategies.

The subsets of adversary types are decomposed such that each level in the hierarchical type

tree forms a partition over Θ satisfying Θ
′
i∩Θ

′
j = /0,∀i,∀ j, i 6= j as well as∪iΘ

′
i =Θ. Additionally,
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the set of adversary types in each parent node is the union of the sets of adversary types of all

of its children, with the root node of the hierarchical type tree corresponding to the full problem.

Figure 6.1(b) shows an example of a hierarchical tree structure with full binary partitioning for

a game with four adversary types. The root node is the parent to two restricted games with two

adversary types, each of which is a parent to two restricted games for individual adversary types.

The evaluation of the hierarchical tree starts at the leaf nodes and works up the tree such that

all child nodes are evaluated before the parent nodes are evaluated. Every node is processed by

evaluating the pure strategies of the restricted game and propagating up only the feasible pure

strategies (i.e., pure strategies inducible as an adversary best response). [39] proved that if a pure

strategy aθ ′ can never be a best response for adversary type θ ′ in a restricted game T SG(Θ′) with

Θ′= {θ ′} then any joint pure strategy containing aθ ′ can never be a best response in any T SG(Θ′′)

with Θ′ ⊂ Θ′′. Thus, at a given node, it is only necessary to consider joint pure strategies in the

cross product of the sets of feasible pure strategies passed up from the child nodes.

For each pure strategy to be propagated, the corresponding utility with respect to the restricted

game is also passed up. [39] also proved that it is possible to upper bound the screener utility

for joint adversary pure strategy aΘ in T SG(Θ) by ∑θ∈Θ zθ β (aθ ) where zθ is the normalized

probability of adversary type θ in T SG(Θ′) and β (aθ ) is the upper bound on the screener utility

for adversary pure strategy aθ in the restricted game T SG({θ}). These upper bounds can be used

to determine the order to evaluate joint pure strategies as well as when it no longer necessary to

evaluate joint pure strategies. This propagation of pure strategies and upper bounds continues

until the root node is solved to obtain the best solution for the game.

Example Consider a game with four adversary types Θ = {θ1,θ2,θ3,θ4}, like in Fig-

ure 6.1(b), where each adversary type has two actions available, a1
θi
,a2

θi
. The full game is broken
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down into the restricted games and the leaf nodes in the hierarchical tree are solved first. Suppose

that after all of the leaf nodes are solved we get the following action sets for the adversaries:

θ1 = {a1
θ1
}, θ2 = {a1

θ2
,a1

θ2
}, θ3 = {a1

θ3
}, θ4 = {a1

θ4
} (as the other actions are found to be infea-

sible). Then, in the node {θ1,θ2} we evaluate [a1
θ1

,a2
θ2

] and [a1
θ1

,a1
θ2

] while for node {θ3,θ4} we

evaluate [a2
θ3

,a1
θ4

]. Now, at the root node (Θ) one only has to evaluate two joint adversary pure

strategies (i.e., [a1
θ1

,a1
θ2

,a2
θ3

,a1
θ4

] and [a1
θ1

,a2
θ2

,a2
θ3

,a1
θ4

]) instead of 16 (cross product of all adversary

type strategy sets) in order to find the optimal strategy for the game.

6.3.2 Advantages of GATE

As mentioned earlier, security games techniques do not apply to TSGs directly, and thus, HBSA

is not well suited for this problem. In particular, HBSA utilizes a Branch-and-Price framework

[14] which requires running column generation (given the large number of defender strategies in

complex domains) to evaluate every single adversary joint pure strategy in the hierarchical type

tree. While Branch-and-Price is a general approach frequently used for Bayesian Stackelberg

games, column generation has been shown to be incapable of scaling for large-scale TSGs even

in the zero-sum case due to the massive number of screener pure strategies [22]. Thus, having to

repeatedly run column generation for the Bayesian general-sum TSGs is a non-starter.

To efficiently evaluate the joint adversary pure strategies in the nodes of the hierarchical

tree, Branch-and-Guideis introduced, which combines branch-and-bound search with MGA to

simultaneously mitigate the challenges of both scalability and implementability when solving

Bayesian general-sum TSGs. Branch-and-Guide may be run at the root node of the hierarchical

type tree, so that given a large of joint adversary pure strategies, a large portion of them can

be pruned using upper-bounds, speeding up the computation. Furthermore, Branch-and-Guide
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exploits the fact that for a fixed joint adversary pure strategy, an implementable marginal screener

strategy can be obtained quickly (even if it not necessarily optimal) and thus can avoid having to

rely on column generation.

An example of the adversary strategy tree explored in Branch-and-Guide is shown in Figure

6.2, with the size and ordering of the tree based on the feasible joint adversary pure strategies

and corresponding upper bounds propagated up by the child nodes. Branches to the left fix the

joint adversary pure strategy, converting MarginalStrategyMILP into a linear program which can

be solved efficiently. However, the resulting marginal strategy may not be implementable and

thus MGA is run on the marginal while ensuring that the selected joint adversary pure strategy

is still a best response. This two-step process produces an implementable marginal strategy that

gives a lower bound on the overall solution quality. Branches to the right represent the upper

bound on the screener utility for the next best joint adversary pure strategy which is calculated

using the solution quality information passed up from the child nodes. If the screener utility for

the best solution found thus far is higher than the upper bound than the next best joint adversary

pure strategy, then the execution of Branch-and-Guide can be terminated without exploring the

remaining joint adversary pure strategies.

6.4 Scaling Up GATE

While GATE incorporates state-of-the-art techniques to solve MarginalStrategyMILP, it fails to

scale up to real world problem sizes for TSGs (see comparison in Evaluation). Thus, intuitive

heuristics are employed that further narrows down the search space for GATE, thereby enabling

up to 10X run time improvement with only 5-10% solution quality loss. There are two distinct
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         UB1  UB2  …  UB|a| 

LB1, … , LB|a|: Possibly Not Ordered  
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Last leaf: a|a| = 1, arest = 0 

Figure 6.2: Branch-and-Guide Tree

steps in GATE where additional heuristics can help: the processing step at the leafs of the hi-

erarchical type tree and the processing step at the intermediate and root nodes. In this section

GATE-H (GATE with heuristics) is presented first formally and then the heuristics used to speed

up the computation are described.

6.4.1 GATE-H: GATE with Heuristics

GATE-H solves TSGs efficiently by limiting both the number of adversary pure strategies passed

up the hierarchical adversary type tree from restricted games and by limiting the number of adver-

sary strategies evaluated in the individual nodes. Each node in the hierarchical tree is solved using

Algorithm 3, beginning at the leaf nodes. The feasible adversary pure strategy set, denoted as A
′
,

is passed up to the parent nodes as each child is solved. Notice that not all strategies need be eval-

uated at a given node for the computation to terminate as either the Branch-and-Guide heuristic

or K cutoff heuristic, both introduced later in this section, can end the computation early.
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Algorithm 3: GATE−H−NODE(Θ,Ai
Θ,B

i,Us,UΘ,K)

//Ai
Θ

: Pruned feasible pure strategy set for all adversary types
1. A

′′
:= all-Joint-Adversary-Pure-Strategies()

2. B
′
(aΘ) := getBound(aΘ,Bi) ∀aΘ ∈∏Θ Ai

Θ

3. sort(A
′′
,B
′
(aΘ)) //sort aΘ in descending order of B

′
(aΘ)

4. aΘ := [A1
Θ
(1),A2

Θ
(1), ...,A|Θ|

Θ
(1)]

5. r∗,r
′
=−∞ //Save best and iterative solutions

repeat
6. (feasible, n, r) := MGA(aΘ)

if feasible then
7. A

′
:= A

′ ∪aΘ

if r > r∗ then
8a. r∗ := r
8b. n∗ := n

9. B
′
(aΘ) := r

else
10. A

′′
:= A

′′\aΘ

11. Every K iterations
if r

′
= r∗ 6=−∞ then
12. break

else
13. r

′
:= r∗

14. aΘ := getNextStrategy(aΘ,r∗,Ai
Θ
,Bi)

until aΘ = NULL
return (n∗,r∗,A

′
,B
′
)
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When solving a given node in GATE-H the adversary set (Θ) is given and the screener’s

and adversary’s utilities (Us and UΘ, respectively), with the feasible strategies (Ai
Θ

) and bound

information (Bi) is acquired from the children of that node as shown in Algorithm 3. In the case

of solving a leaf node in the tree all of that adversary type’s strategies are enumerated with bound

information given by solving an upper bound LP, described in Section 6.4.2. After constructing

the joint adversary pure strategy set (Line 1), the set is ordered by their upper bound values (Line

3) and each strategy is evaluated one by one (main loop starts after Line 5). Heuristics are used

inside of this loop, leading to GATE-H.

Algorithm 4: getNextStrategy(aΘ, r
∗,Ai

Θ,B
i)

for i = |Θ| to 1 Step-1 do
j := index-of(aΘ,Ai

Θ
)

//Set each adversary type strategy equal to left most leaf

ai
Θ

:= [A1
Θ
(1), ...,A|Θ|−1

Θ
(1),A|Θ|

Θ
( j+1)]

if r∗ < getBound(aΘ,B) then
return aΘ

return NULL

The first of the two heuristics used is the Branch-and-Guide approach (Line 14 - getNextStrat-

egy()) which ends the computation early if the value of the current best strategy is greater than

the next highest upper bound. The second heuristic, discussed in more detail in Section 6.3, is the

K cutoff (Line 11) which ends the computation early if the current best solution is not improving

after K iterations.

Algorithm 4 describes the getNextStrategy function in detail. Essentially the function builds

the next strategy to be evaluated by iterating through all of the adversary types and grabbing the

highest valued strategy in their respective pure strategy lists.
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6.4.2 Tuning Leaf Node Computation

At the leaf nodes in the hierarchical type tree the restricted game for each adversary type is

solved. For GATE to be exact, all feasible adversary strategies from each leaf node must be

returned. Returning a portion of the feasible pure strategies gives a heuristic approach, which

may run well in practice but is not guaranteed to be optimal. Nonetheless, in some cases even

for optimality it might suffice for us to return only some promising strategies. Below a special

condition is highlighted under which it is optimal to just consider one adversary strategy at each

leaf in the hierarchical tree.

Lemma 6.1 Let nθ represent the optimal allocation against type θ at the leaf. Let nθ [Cθ ] be

the part of the allocation that is assigned to screenees in screenee category Cθ . If the strategy n

formed by putting together all nθ [Cθ ]: n = ∑θ nθ [Cθ ] is feasible then n is the optimal defender

strategy and the single adversary best response for each single type is the adversary best response

in the overall game.

Proof 6.2 (Proof Sketch) First, note that the strategy n achieves the payoff ∑θ zθ s∗
θ

, where s∗
θ

is

the defender utility in the restricted game with just the type θ . Also, clearly s∗
θ

is an upper bound

on the defender utility for the restricted game. By the result from [39], the upper bound on the

defender utility is ∑θ zθ s∗
θ

which is achieved by n.

Branch-and-Guide can be used as described earlier to return fewer promising adversary strate-

gies, but the question that arises when using Branch-and-Guide at the leaf nodes is how to com-

pute the upper bounds for the nodes on the right of the tree (Recall for non-leaf nodes this upper

bound is computed from the upper bounds that are propagated up from each child). One ap-

proach to compute this upper bound is to adapt the ORIGAMI [43] approach; ORIGAMI is the
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fastest technique for solving non-Bayesian general-sum security games without resource schedul-

ing constraints. The underlying idea is to solve an LP to minimize the utility of the adversary by

inducing the largest possible attack set (set of targets that are equally and most attractive for the

attacker) and [43] shows this provides the optimal defender utility in games without scheduling

constraints. However, even for a TSG with a single time window and a single adversary type,

ORIGAMI may not provide the optimal solution.

Therefore, ORIGAMI cannot be applied directly to find upper bounds on the adversary pure

strategies at the leaf nodes. Thus, UpperBoundLP is provided, shown below, to calculate the

upper bound at the leaf nodes in the hierarchical tree.

min
n,q,s,x

k
θ
′ (6.10)

s.t. k
θ
′ ≥ xw

c,mUd
θ
′
,c +(1− xw

c,m)U
u
θ
′
,c ∀w,∀c,∀m (6.11)

xw
c,m = ∑t∈T Et

m
nw

c,t
Nw

c
∀w,∀c,∀m (6.12)

∑t∈T It
r ∑c∈C nw

c,t ≤ Lw
r ∀r,∀w (6.13)

∑t∈T nw
c,t ≤ Nw

c , nw
c,t ≥ 0 ∀c,∀w (6.14)

The objective function (6.10) minimizes the attacker’s utility for the adversary type θ
′
. Equa-

tion (6.11) enforces that the adversary payoff be the maximal payoff for the adversary given a

marginal strategy n. Equations (6.12)-(6.14) enforce the resource constraints from the original

game. This LP uses a slightly modified formulation when enforcing the capacity constraints.

Namely, replace Equation (6.5) with (6.14), i.e., the constraint that every passenger in a given

category c for a time window w must be screened is relaxed.
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Theorem 6.2 UpperBoundLP provides an upper bound on the screener utility d
θ
′ for a non-

Bayesian TSG.

Proof 6.3 By relaxing constraint (6.5) to constraint 6.14, the attack set of the adversary can only

be expanded from the original formulation. This happens as Equation 6.14 allows for an adver-

sary to not be screened which can only increase their utility for targets, thus possibly increasing

their attack set. Since the adversary breaks ties in the screener’s favor this can only increase the

screener’s possible utility.

The above approach serves two purposes: it enormously reduces the set of strategies that are

sent up to the parent even if all the adversary strategies are evaluated in the Branch-and-Guide

tree, as the attack set is much smaller than the set of all feasible strategies. The running time is

also reduced, given the small attack set and the efficient LP to obtain this attack set and upper

bounds.

6.4.3 Tuning Non-leaf Node Computation

Section 6.4.2 focused on reducing the number of adversary pure strategies returned from the leaf

nodes. However, another very important area to prune the search space is at the interior nodes

in the binary tree. One way to approach this problem is using Branch-and-Guide in these nodes

and stopping the search once the current best solution is better than the next highest upper bound.

This can possibly provide significant speed-ups in terms of the computation speed of GATE but

it is not quite enough. Unfortunately, in the experiments it turned out that most of the joint

adversary pure strategies were evaluated in the interior nodes by MGA as the stopping condition

for Branch-and-Guide was almost never met.
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Thus, inspiration is taken from column generation and security games literature [76] where

column generation is stopped if the solution quality does not change much with new columns

being added. This heuristic almost always provides a very good approximation. This same prin-

ciple is adopted so that when evaluating adversary strategies in the Branch-and-Guide approach

if the current solution quality does not change over the next K strategies then the computation can

be stopped and the current solution is declared as the final solution with the adversary strategies

evaluated so far propagated to the parent. This approach can also be adopted at the root. Here

K is a parameter that can be varied, but K = 30 is used for the experiments as it seems to work

the best for this problem. This approach serves two purposes: (1) it reduces the run time at each

intermediate node and the root node and (2) it reduces the number of adversary pure strategies

propagated up the tree.

GATE-H then allows us to solve large-scale Bayesian general-sum TSGs. Further, empiri-

cally these heuristics maintain high solution quality while decreasing the runtime by an order of

magnitude.

6.5 Evaluation

GATE-H is evaluated using synthetic examples from the passenger screening domain as real

world data is not available. The LPs and MILPs are solved using CPLEX 12.5 with the bar-

rier method, as this was found to work the best, on USC’s HPC Linux cluster limited to one

Hewlett-Packard SL230 node with 2 processors. The adversary and screener payoffs are gener-

ated uniformly at random with Uu
a ∈ [2,11] and Uu

s ∈ [−1,−10]. For both the adversary and the

screener Ud = 0. The default values for the experiments are 6 adversary risk levels, 5 screening
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resource types, 10 screening teams, 2 attack methods and 3 time windows unless otherwise spec-

ified. For all experiments the capacity resource constraints also remain constant. All results are

averaged over 20 randomly generated game instances.

6.5.1 Scaling Up and Solution Quality

The first experiment tests the scalability of each approach and provides solution quality informa-

tion for GATE-H relative to the MarginalStrategyMILP. This experiment provides information

about the trade-off between runtime and solution quality for the heuristic algorithm. The four

different variations of GATE that were tested are: (1) GATE which evaluates all adversary pure

strategies in each of the restricted games and only uses Branch-and-Guide at the root, (2) GATE-

H-BG which uses the Branch-and-Guide heuristic in all nodes, (3) GATE-H-K which uses the

K = 30 cutoff in all nodes and (4) GATE-H-BG-K which uses both Branch-and-Guide and the K

cutoff in all nodes. In Figure 6.3(a) the runtime results are shown for all of the algorithms. On

the x-axis the number of flights are varied from 60 to 120 in increments of 20. On the y-axis is

the runtime in seconds. For example, for 80 flights MarginalStrategyMILP takes almost 10,000

seconds to finish. GATE did not finish in any of the instances showing it cannot scale to large

TSG instances. GATE-H-BG also does not perform well as it fails to beat the average runtime of

the MILP over all of the instances. As can be seen GATE-H-BG-30 and GATE-H-30 significantly

reduce the runtime with an average of a 10 fold improvement over all cases and GATE-H-BG-30

providing a 20 fold speed up at 120 flights.

In Figure 6.3(b) the solution quality of the MILP is compared with GATE-H-BG-30 and

GATE-H-30. GATE and GATE-H-BG are not included as they did not finish in a majority of

instances making it difficult to compare the solution quality. On the x-axis the number of flights
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Figure 6.3: In Figure 6.3(a) is a runtime comparison between the MILP and GATE. In Fig-
ure 6.3(b) is a solution quality comparison of the MILP and GATE.

are varied from 60 to 120 in increments of 20. On the y-axis is the screener’s utility. For instance,

for 60 flights GATE-H-BG-30 returns an average screener utility of -0.5974. As the graph shows

the average solution quality loss over these game instances is always less than .0411 for both

GATE-H-BG-30 and GATE-H-30 compared to the MILP. These results show that both GATE-H-

BG-30 and GATE-H-30 provide good approximations for large scale TSGs.

The next experiment aimed to test the ability of GATE-H-BG-30 and GATE-H-30 to scale up

to much larger TSG instances. The results are shown in Figure 6.4. On the x-axis the number of

flights is increased from 160 to 220. On the y-axis the average runtime in seconds is shown to

solve each of the TSG instances. For example, GATE-H-BG-30 took on average 2,396 seconds to

solve a game with 200 flights. An interesting trend here is that the runtime peaks at 180 flights and

starts to decrease afterward. This trend could be related to the resource saturation problem as seen

in other security games [38], where the observation is that resource optimization is easiest when

the resources available are comparatively small or equal to the number of targets and becomes

difficult when this is not the case.
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Figure 6.5: Solution Quality - Moving to Zero Sum

6.5.2 Moving Towards Zero Sum

The last experiment aimed to test what happens to the solution quality of GATE-H-BG-30 and

GATE-H-30 as the game payoffs move toward zero-sum. For this experiment, 40 flights are used

and there is one time window as the MILP does not scale in these instances. An r-coefficient is

varied from 0 to -0.9 in increments of -0.1, where r = 0 means there is no correlation between the

attacker’s and screener’s payoffs and r =−1 means the game is zero-sum (Note: -1 is not tested

as there is a specialized algorithm to deal with that case where the techniques in this chapter are

not useful). In previous experiments a correlation between the adversary’s and screener’s payoffs
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is not explicitly set. On the x-axis is the r-coefficient and the y-axis shows the screener’s utility.

For example, when r = 0 the MarginalStrategyMILP returns a screener utility -0.889, GATE-H-

BG-30 returns a screener utility -0.917 and GATE-H-30 returns a solution quality of -0.931. In

this experiment an interesting trend appears. As the game moves toward zero-sum payoffs the

relative performance of both GATE-H-BG-30 and GATE-H-30 progressively worsens. However,

until the game payoffs are nearly zero-sum (r =−0.9) both GATE-H variations do have a solution

quality loss greater than 11.385%. This experiment again shows that both GATE-H-BG-30 and

GATE-H-30 provide good approximations in general-sum TSGs. (A careful reader might notice

in Figures 6.3(b) and 6.3(b) that there are slight differences in solution quality between GATE-

H-BG-30 and GATE-H-30, however these are not statistically significant.)

6.6 Chapter Summary

The TSG model provides an extensible and adaptable model for game-theoretic screening in the

real world. It improves upon previous models in security games that fail to capture important

properties of the screening domain, e.g., the presence of non-player screenees in the game and

complex team capacity constraints. The model also improves on work done on threat screen-

ing, such as screening stadium patrons [68], cargo container screening [6], and screening airport

passengers [58, 57].

Previous work done on TSGs [22] focused on the bayesian zero-sum case and in this chap-

ter zero-sum TSGs are extended to the Bayesian general-sum case. Four contributions are

provided to accomplish this task: (1) the GATE algorithm which efficiently solves large scale
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Bayesian general-sum TSGs, (2) the Branch-and-Guide approach which combines branch-and-

bound search and MGA in order to efficiently solve nodes in the hierarchical tree, (3) heuristics

that speed up the computation of GATE, and (4) experimental evaluation of GATE showing the

scalability of the game theoretic algorithm.

Using the aforementioned contributions this chapter presents a practical approach for solving

Bayesian general-sum TSGs that scales up to problem sizes encountered in the real world. Thus,

with this research I hope to increase the applicability of TSGs by providing techniques for solving

large scale Bayesian general-sum TSGs.
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Chapter 7

Conclusion

7.1 Contributions

Protecting an organization’s cyber assets from malicious actors is one of the most significant and

pressing challenges for cybersecurity in the coming years. Previous research completed in cyber-

security has presented numerous approaches for resolving and mitigating problems the defender

faces throughout the phases of the Cyber Kill Chain. As alluded to earlier, however, these ap-

proaches do not adequately consider the adversarial component of cybersecurity which is crucial

in devising strong protection strategies against motivated and intelligent adversaries. My thesis

explores the use of game theory in the cybersecurity domain and resolves deficiencies in previous

game theoretic approaches for security domains to handle the complex challenges in allocation

problems faced by a network administrator. Crucially, my thesis advances the state of the art in

game theoretic approaches and algorithms for deceiving cyber adversaries and prioritizing cyber

alert resolution which provides a network administrator with more tools to thwart cyber adver-

saries.
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First, to deceive cyber adversaries I introduce the novel Cyber Deception Game model that

provides a basis for strategic deception of an intelligent and motivated adversary conducting re-

connaissance on an enterprise network. This model gives an additional tool to the network admin-

istrator which allows them to thwart an adversary in the initial phase - the reconnaissance phase

- of the Cyber Kill Chain and increases the difficulty of successfully breaching the defender’s

network. To solve this problem, I show how to formulate the adversary’s knowledge acquisition

phase in a game framework. This gives us a way to then strategically interact with an adversary

attempting to hack our network, and most importantly, provides a way to strategically deceive

the adversary. I take (1) a robust approach to solve this problem by making the assumption that

that we are facing a powerful adversary, e.g., a nation-state, who has distributional information

about the defender’s deceptive response scheme and (2) I consider a naive adversary, e.g., a script

kiddie, with a fixed set of preferences over the set of possible responses from systems on the net-

work. This initial formulation provides valuable insight into future work which will investigate

the interesting problem of varied adversarial knowledge states of the defender’s network.

Second, for prioritizing alerts raised from IDS across a defender’s network I provide the

novel Cyber-alert Allocation Game (CAG) model. This model gives a framework for how to

randomize the resolution of alerts by cyber analysts and makes it more difficult for a stealthy

adversary’s attack to go undetected. To achieve this advance, I solve fundamental problems in

the field of game theory for threat screening. An important previous model, the Threat Screening

Game (TSG), introduced a zero-sum Stackelberg game formulation to solve a problem where a

defender must allocate a set of “screening” resources to detect a possible attack coming into a

secure area that attempts to pose as a regular, i.e., “non-adversarial”, object. The CAG model

makes two important advances by considering screening resources with heterogeneous screening
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times for the incoming objects and allows for an attack by the adversary to appear as probability

distributions over alert types. The CDG framework provides a network administrator with a

useful tool in impeding cyber adversaries and protecting from massive breaches of sensitive user

information.

Lastly, I extend the applicability of the CAG framework to non zero-sum domains with the in-

troduction of the GATE algorithm. This work additionally applies to physical security domains as

it significantly improves the scalability of computing optimal SSE equilibria in Bayesian general-

sum TSGs. The GATE algorithm leverages the Marginal Guided Algorithm (MGA) given in [22]

which solves for an optimal marginal strategy for the defender in Bayesian zero-sum TSGs. From

here, I use a branch and bound algorithmic approach and a hierarchical decomposition adversary

type tree to prune a large portion of the adversary’s strategy space and solve larger-scale Bayesian

general-sum TSGs. Importantly, GATE allows for the application of Bayesian general-sum TSG

to problems with non-symmetric payoffs between the defender and an adversary which applies to

a wide array of screening domains. Looking to future work, it is important to solve other difficult

challenges arising for varying screening domains and problems in cybersecurity along with other

threat screening domains, and my work provides significant results to broaden the applicability

of the current state-of-the-art.

7.2 Future Work and Directions

One of the most interesting areas for future work beyond my thesis lies in the application of

the deceptive techniques to several other domains in cybersecurity. In this thesis, I explored the

use of deception for thwarting adversaries in the reconnaissance phase of a cyber attack. These
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ideas, however, could be extended to conceal the true features of a network to adversaries who

may have already compromised systems in the defender’s enterprise network. In this situation,

the adversary would leverage the compromised nodes to complete further recon of the defender’s

network to identify machines which may be hidden from the outside. Deception here then could

be used to alter the network views [26] which are observed through network reconnaissance

conducted from the compromised nodes. In this way, the defender increases the uncertainty

throughout all phases of an adversary’s attack from recon to moving throughout the defender’s

network to identify important systems to compromise and subnets in the enterprise network.

In the future, it will also be important to better quantify the advantage gained by the defender

utilizing deceptive algorithms and techniques. This can be achieved through the development

of a test-bed network scenario where different deceptive algorithms can be tested against human

players. To this end, there has been some initial ground work on developing a network scenario

with a realistic network recon experience using the CyberVAN test-bed [25]. This environment

makes it easier as well to study how an adversary plays the game of network reconnaisance.

With this information, future research can learn strategies employed by cyber adversaries during

reconnaissance and gives better insight into quantifying the informational gain for adversaries

from network recon and attacks.

Beyond network defense, another interesting area of application lies in applying deceptive

principles to mitigate social engineering attacks which represents an area of significant impor-

tance for cybersecurity defenses. Organizations that suffer from targeted social engineering at-

tacks could leverage the use of deception to make it difficult for an adversary to ascertain the

true employees within an organization. This allows a defender to recognize when a particular
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department, e.g., financial department, is under attack from an adversary’s campaign and mount

a better defense to protect against breaches by sending out timely warnings to its employees.

My work on cyber alert allocation is a crucial first step in applying game theory to real world

cyber security settings, but there remain significant challenges which need to be addressed in

future work. Firstly, I assume the time to resolve an alert is known exactly, but in the real world

there is uncertainty for how long it would take to resolve an alert. Second, the CAG model

assumes that attacks show up as known alert categories, but it is possible that in the real-world

some attacks may show up as “unknown” categories. The question then is how to assign these

alerts to analysts given we do not know which expert may have an expertise in dealing with this

type of attack. Lastly, in CAG’s there is not an overflow of alerts from one time period to the

next. Overflow of passengers for screening has been explored in the context of TSGs [56], but in

the context of cybersecurity, overflow also includes the possibility of unexpected alerts flooding

the system along with the expected alerts. In the real-world resolving alerts in a timely manner is

crucially important to limit the possible damage from a network intrusion.
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