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Abstract
Influence maximization is a widely used model for
information dissemination in social networks. Re-
cent work has employed such interventions across
a wide range of social problems, spanning public
health, substance abuse, and international develop-
ment (to name a few examples). A critical but un-
derstudied question is whether the benefits of such
interventions are fairly distributed across different
groups in the population; e.g., avoiding discrimina-
tion with respect to sensitive attributes such as race
or gender. Drawing on legal and game-theoretic
concepts, we introduce formal definitions of fair-
ness in influence maximization. We provide an al-
gorithmic framework to find solutions which sat-
isfy fairness constraints, and in the process improve
the state of the art for general multi-objective sub-
modular maximization problems. Experimental re-
sults on real data from an HIV prevention interven-
tion for homeless youth show that standard influ-
ence maximization techniques oftentimes neglect
smaller groups which contribute less to overall util-
ity, resulting in a disparity which our proposed al-
gorithms substantially reduce.

1 Introduction
Influence maximization in social networks is a well-studied
problem with applications in a broad range of domains. Con-
sider, for example, a group of at-risk youth; outreach pro-
grams try to provide as many people as possible with useful
information (e.g., HIV safety, or available health services).
Since resources (e.g., social workers) are limited, it is not pos-
sible to personally reach every at-risk individual. It is thus
important to target key community figures who are likely to
spread vital information to others. Formally, individuals are
nodes V in a social network, and we would like to influence
or activate as many of them as possible. This can be done by
initially seeding k nodes (where k � |V |). The seed nodes
activate their neighbors with some probability, who activate
their neighbors and so forth. Our goal is to identify k seeds
such that the maximal number of nodes is activated. This
is the classic influence maximization problem [Kempe et al.,
2003], that has received much attention in the literature.

In recent years, the influence maximization framework has
seen application to many social problems, such as HIV pre-
vention for homeless youth [Yadav et al., 2018; Wilder et
al., 2018b], public health awareness [Valente and Pumpuang,
2007], financial inclusion [Banerjee et al., 2013], and more.
Frequently, small and marginalized groups within a larger
community are those who benefit the most from attention and
assistance. It is important, then, to ensure that the allocation
of resources reflects and respects the diverse composition of
our communities, and that each group receives a fair alloca-
tion of the community’s resources. For instance, in the HIV
prevention domain we may wish to ensure that members of
racial minorities or of LGBTQ identity are not disproportion-
ately excluded; this is where our work comes in.

Our Contributions: This paper introduces the problem
of fair resource allocation in influence maximization. Our
first contribution is to propose fairness concepts for influ-
ence maximization. We start with a maximin concept inspired
by the legal notion of disparate impact; formally it requires
us to maximize the minimum fraction of nodes within each
group that are influenced. While intuitive and well-motivated,
this definition suffers from shortcomings that lead us to in-
troduce a second concept, diversity constraints. Roughly,
diversity constraints guarantee that every group receives in-
fluence commensurate with its “demand”, i.e., what it could
have generated on its own, based on a number of seeds pro-
portional to its size. Here, to compute a group’s demand, we
allow it a number of seeds proportional to its size, but re-
quire that it spreads influence using only nodes in the group.
Hence, a small but well connected group may have a better
claim for influence than a large but sparsely connected group.

Our second contribution is an algorithmic framework for
finding solutions that satisfy either fairness concept. While
the classical influence maximization problem is submodular
(and hence easily solved with a greedy algorithm), fairness
considerations produce strongly non-submodular objectives.
This renders standard techniques inapplicable. We show that
both fairness concepts can be reduced to multi-objective sub-
modular optimization problems, which are substantially more
complex. Our key algorithmic contribution is a new method
for general multi-objective submodular optimization which
has substantially better approximation guarantee than the cur-
rent best algorithm [Udwani, 2018], and often better runtime
as well. This result may be of independent interest.



Our third contribution is an analytical exploration of the
price of group fairness in influence maximization, i.e., the
reduction in social welfare with respect to the unconstrained
influence maximization problem due to imposing a fairness
concept. We show that the price of diversity can be high in
general for both concepts and under a range of settings.

Our fourth contribution is an empirical study on real-world
social networks that have been used for a socially critical
application: HIV prevention for homeless youth. Our re-
sults show that standard influence maximization techniques
often cause substantial fairness violations by neglecting small
groups. Our proposed algorithm substantially reduces such
violations at relatively small cost to overall utility.

Related Work: Kempe et al. [2003] introduced influence
maximization and proved that since the objective is submod-
ular, greedily selecting nodes gives a

(
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)
-optimal so-

lution. There has since been substantial interest among the
AI community both in developing more scalable algorithms
(see Li et al. [2018] for a recent survey) , as well as in ad-
dressing the challenges of deployment in public health set-
tings [Yadav et al., 2016; Wilder et al., 2018a]. Recently,
such algorithms have been used in real-world pilot tests for
HIV prevention amongst homeless youth [Yadav et al., 2018;
Wilder et al., 2018b], driving home the need to consider fair-
ness as influence maximization is applied in socially sensi-
tive domains. To our knowledge, no previous work considers
fairness specifically for influence maximization. Some lit-
erature exists on targeted influence maximization problems
[Pasumarthi et al., 2015; Wen et al., 2018; Chen et al., 2019]
where the objective is to reach a specific set of nodes and
not others; by contrast, our goal is to ensure that every group
receives a fair amount of influence spread. The techniques
we introduce to optimize fairness metrics are related to re-
search on multi-objective submodular maximization (outside
the context of fairness), and we improve existing theoreti-
cal guarantees for this general problem [Chekuri et al., 2010;
Udwani, 2018].

Outside of influence maximization, the general idea of di-
versity as an optimization constraint has received consider-
able attention in recent years; it has been studied in multi-
winner elections (see [Bredereck et al., 2018; Faliszewski
et al., 2017] for an overview), resource allocation [Benabbou
et al., 2018], and matching problems [Ahmed et al., 2017;
Hamada et al., 2017]. We note that some of the above works
(e.g. Ahmed et al. [2017] and Schumann et al. [2017])
use a submodular objective function as a means of achiev-
ing diversity; interestingly, while the classic influence max-
imization target function is submodular, it is no longer so
under diversity constraints. Group fairness has been stud-
ied extensively in the voting theory literature, where the ob-
jective is to identify a committee of k candidates that will
satisfy subsets of voters (see a comprehensive overview in
[Faliszewski et al., 2017]). There have also been several
works on group fairness in fair division, defining notions of
group envy-freeness [Conitzer et al., 2019; Fain et al., 2018;
Segal-Halevi and Suksompong, 2018; Todo et al., 2011],
and a group maximin share guarantee [Barman et al., 2019;
Suksompong, 2018]. One line of work in operations research

uses mixed-integer programming to enforce that different
groups receive the equal utility (or at least that each group’s
utility satisfies some lower bound) [Bertsimas et al., 2013;
Azizi et al., 2018]. This manner of defining fairness is rela-
tively close to our own; e.g., our diversity constraints give one
way of instantiating what this lower bound should be. Com-
putationally, we introduce efficient algorithms specifically for
the submodular optimization instead of using mixed-integer
programming.

2 Model
Agents are embedded in a social network G = (V,E). An
edge (i, j) ∈ E represents the ability for agent vi to influence
or activate vj . G may be undirected or directed.
Diversity: Each agent in our network may identify with
one or more groups within the larger population. These rep-
resent different ethnicities, genders, sexual orientations, or
other groups for which fair treatment is important. Our goal is
to maximize influence in a way such that each group receives
at least a “fair” share of influence (more on this below). Let
us designate these groups as C = {C1, . . . Cm}. Each group
Ci represents a non-empty subset of V, ∅ 6= Ci ⊆ V . Each
agent must belong to at least one group, but may belong to
multiple groups; i.e. C1 ∪ C2 ∪ . . . Cm = V . In particular,
this allows for the expression of intersectionality, where an
individual may be part of several minority groups.
Influence maximization: We model influence using the
independent cascade model [Kempe et al., 2003], the most
common model in the literature. All nodes begin in the in-
active state. The decision maker then selects k seed nodes
to activate. Each node that is activated makes one attempt to
activate each of its inactive neighbors; each attempt succeeds
independently with probability p (all of our results also hold
for nonuniform probabilities). Newly activated nodes attempt
to activate their neighbors and so on, with the process termi-
nating once there are no new activations.

We define the influence of nodes A ⊆ V , denoted IG(A),
as the expected number of nodes activated by seeding A. Of
these, let IG,Ci(A) be the expected number of activated ver-
tices from Ci. Traditional influence maximization seeks a
set A, |A| ≤ k, maximizing IG(A). Using a slight abuse
of notation, let IG(k) be the maximum influence that can
be achieved by selected k seed nodes. That is, IG(k) =
max|A|=k IG(A). Analogously, we define IG,Ci(k) as the
maximum expected number of vertices from Ci that can be
activated by k seeds. We now propose two means of captur-
ing group fairness in influence maximization.
Maximin Fairness: Maximin Fairness captures the
straightforward goal of improving the conditions for the least
well-off groups. That is, we want to maximize the minimum
influence received by any of the groups, as proportional to
their population. This leads to the following utility function
based on seed nodes A:

UMaximin(A) = min
i

IG,Ci(A)

|Ci|
Subject to this maximin constraint, we seek to maximize

overall influence. Thus, we define IMaximin
G = IG(B) with



B = argmaxA⊆V,|A|=k U
Maximin(A). That is, IMaximin

G is
the expected number of nodes activated by a seed configura-
tion that maximizes the minimum proportional influence re-
ceived by any group. This corresponds to the legal concept of
disparate impact, which roughly states that a group has been
unfairly treated if their “success rate” under a policy is sub-
stantially worse than other groups (see [Barocas and Selbst,
2016] for an overview). Therefore, maximin fairness may
be significant to governmental or community organizations
which are constrained to avoid this form of disparity. How-
ever, optimizing for equality of outcomes may be undesirable
when some groups are simply much better suited than others
to a network intervention. For instance, if one group is very
poorly connected, maximin fairness would require that large
number of nodes be spent trying to reach this group, even
though additional seeds have relatively small impact.
Diversity Constraints: We now propose an alternate fair-
ness concept by extending the notion of individual rationality
to Group Rationality. The key idea is that no group should
be better off by leaving the (influence maximization) game
with their proportional allocation of resources and allocating
them internally. For each group Ci, let ki = dk|Ci|/|V |e
be the number of seeds that would be fairly allocated to the
group Ci based on the group’s size within the larger popula-
tion, rounded up to remove any doubt that this group receives
a fair share. ki is the fair allocation of seeds to the group.

Let G[Ci] be the subgraph induced from G by the nodes
Ci. This represents the network formed by group Ci if they
were to separate from the original network. Now, we define
the group rational influence that each group Ci can expect
to receive as the number of nodes they expect to activate if
they left the network, with their fair allocation of ki seeds.
We denote this group rational influence for Ci as IG[Ci](ki).
Then, we devise a set of diversity constraints that any group
rational seeding configuration A with k seeds must satisfy:
IG,Ci(A) ≥ IG[Ci](ki),∀i. That is, the influence received by
each group is at least equal to what each group may accom-
plish on its own when given its fair share of ki seed nodes.

The diversity constraint objective function is to maximize
the expected number of nodes activated, subject to the above
diversity constraint. The utility for selecting seed nodes A is:

URational(A) =

{
IG(A), if IG,Ci(A) ≥ IG[Ci](ki),∀i.
0, otherwise.

The maximum expected influence obtained via a group
rational seeding configuration A is called the ratio-
nal influence IRational

G = IG(B), where B =
argmaxA⊆V,|A|=k U

Rational(A). Note that since even the
standard influence maximization problem is already NP-hard
and must be approximated, our computational guarantees will
relax the above constraint, requiring that each group receive
influence within some factor α of IG[Ci](ki).
Price of Fairness: To measure the cost of ensuring a fair
outcome for the diverse population, we will measure the Price
of Fairness, the ratio of optimal influence to the best achiev-
able influence under our two fairness criteria. Here optimal
influence IOPT

G = IG(k), which is the maximum amount of

expected influence that can be obtained using any choice of k
seed nodes. We omit the subscript where the context is clear.

PoFRational =
IOPT

IRational
PoFMaximin =

IOPT

IMaximin

3 Optimization
The standard approach to influence maximization is based on
submodularity. Formally, a set function f on ground set V
is submodular if for every A ⊆ B ⊆ V and x ∈ V \ B,
f(A∪{x})−f(A) ≥ f(B∪{x})−f(B). This captures the
intuition that additional seeds provide diminishing returns.
However, both of our fairness concepts are easily shown to
violate this property (proofs are deferred to the appendix):

Theorem 3.1. UMaximin and URational are not submodular.

We remark that each individual function IG,Ci , i.e., the
number of nodes in group i who are reached, is submodu-
lar. However, this property does not hold for the combined
objectives UMaximin and URational. Hence, we cannot ap-
ply the greedy heuristic to group-fair influence maximization.
Instead, we now show that optimizing either utility function
reduces to multiobjective submodular maximization, a more
general problem defined as follows. The input to the prob-
lem is a set of monotone submodular functions f1...fm and
corresponding target values W1...Wm. We assume that the fi
are normalized (fi(∅) ≥ 0). The multiobjective submodular
maximization problem is to find a set S satisfying |S| ≤ k
with fi(S) ≥Wi for all i, assuming that such an S exists.

3.1 Reduction to multiobjective submodular
maximization

We now show that each of the fairness-aware influence maxi-
mization objectives can be reduced to solving a small number
of instances of multiobjective submodular maximization with
appropriately chosen functions fi and targets Wi. Our re-
ductions leverage the property that the underlying influence
functions IG,Ci are submodular even though the group-fair
objectives are not. We start with UMaximin. Here, we de-
fine fi =

IG,Ci
|Ci| to be group i’s influence spread normalized

by the size of the group. All of the target values Wi will
be equal, i.e., W1 = W2 = ...Wm = W . Assume that we
have a subroutine for multiobjective submodular maximiza-
tion. If the multiobjective problem is feasible for a given
value of W , then the subroutine outputs a set S satisfying
UMaximin(S) ≥ W . Hence, we simply binary search for the
highest value of W for which the multiobjective problem re-
mains feasible.

For URational, we let fi = IG,Ci and set the target Wi =
IG[Ci](ki). This represent the constraint that group i must re-
ceive at least their group-rational share of utility. We then add
another objective function ftotal = IG representing the com-
bined utility and binary search for the highest value Wtotal
such that the targets W1...Wm,Wtotal are feasible. This rep-
resents the largest achievable total utility, subject to diversity
constraints. Having reduced both fairness concepts to mul-
tiobjective submodular maximization, we turn to algorithms



for this core problem. We present an algorithm with substan-
tially improved theoretical guarantees for the general multi-
objective problem, and then show how our algorithm can be
applied to fair influence maximization.

3.2 Previous techniques
The multiobjective submodular problem was introduced by
Chekuri et al. [2010], who gave an algorithm which guaran-
tees fi ≥ (1− 1

e )Wi for all i provided that the number of ob-
jectives m is smaller than the budget k (when m = Ω(k), the
problem is provably inapproximable [Krause et al., 2008]).
Unfortunately, this algorithm is of mostly theoretical inter-
est since it runs in time O(n8). Udwani [2018] recently in-
troduced a practically efficient algorithm; however it obtains
an asymptotic (1− 1

e )2-approximation instead of the optimal(
1− 1

e

)
. We remedy this gap by providing a practical algo-

rithm obtaining an asymptotic
(
1− 1

e

)
-approximation (Algo-

rithm 1). Its runtime is comparable to, and under many con-
ditions faster than, the algorithm of [Udwani, 2018].

Previous algorithms [Chekuri et al., 2010; Udwani, 2018]
start from a common template in submodular optimization,
which we also build on. The main idea is to relax the dis-
crete problem to a continuous space. For a given submod-
ular function f , its multilinear extension F is defined on n-
dimensional vectors x where 0 ≤ xj ≤ 1 for all j ∈ V . xj
represents the probability that item j is included in the set.
Formally, let S ∼ x denote a set which includes each j in-
dependently with probability xj . Then, we define F (x) =
ES∼x[f(S)], which can be evaluated using random samples.

3.3 Algorithm overview
The main challenge is to solve the continuous optimization
problem, which is where our technical contribution lies. Al-
gorithm 1 describes the high-level procedure, which runs our
continuous optimization subroutine (line 2) and then rounds
the output to a discrete set (line 3). Line 1, which ensures that
all items with value above a threshold τ are included in the
solution, is a technical detail needed to ensure the rounding
succeeds. The rounding process captured in lines 1 and 3 is
fairly standard and used by both previous algorithms [Chekuri
et al., 2010; Udwani, 2018]. Our main novelty lies in an im-
proved algorithm for the continuous problem, MULTIFW.

Algorithm 1 Multiobjective Optimization(γ, τ, T, T ′, η)

1: S1 = {j : fi({j}) ≥ τ for some i}
2: x =MULTIFW(k − |S1|, {γ (Wi − fi(S))}mi=1)
3: S2 =SWAPROUND(xint) //see [Chekuri et al., 2010]
4: return S1 ∪ S2

MULTIFW implements a Frank-Wolfe style algorithm to
simultaneously optimize the multilinear extensions F1...Fm
of the discrete objectives. The algorithm proceeds over T
iterations. Each iteration first identifies vt, a good feasible
point in continuous space (Algorithm 2, line 3). Then, the
current solution xt is updated to add 1

T v
t (line 4). Since each

point vt is feasible, xt is a convex combination of feasible
points and hence always remains feasible. The key to the

Algorithm 2 Multiobjective Frank-Wolfe(k, {Wi})
1: x0 = 0
2: for t = 1...T do
3: vt = S-SP-MD(x, {i : Wi − Fi(xt−1) ≥ ε})
4: xt = xt−1 + 1

T v
t

5: return APPROXDECOMPOSITION(xT ) //see [Mirrokni
et al., 2017]

6: function S-SP-MD(x, I)
7: Initialize v s.t. ||v||1 = k and y ∈ ∆(I) arbitrarily
8: for ` = 1...T ′ do
9: Sample i ∼ y; set ∇̂v = 1

Wi−Fi(x)A
i
grad(x)

10: Sample j ∼ v; ∇̂y = k·diag
(

1
~W−~F (x)

)
Ajitem(x)

11: y = ye−η∇̂y

||ye−η∇̂y ||1

12: v = k
min{veη∇̂v ,1}
||min{veη∇̂v ,1}||1

algorithm is a good choice of the direction vt at each iteration.
Roughly, we would like to choose vt in a way that ensures we
make progress towards meeting the target Wi for each Fi. If
our current solution quality Fi(xt−1) is very far fromWi then
vt should focus heavily on improving the value of Fi. By
contrast, if Fi(xt−1) is already close to Wi, then vt should
focus on improving other objectives instead. This process is
formally accomplished via a subroutine S-SP-MD which we
introduce in the subsection below.

The output of Algorithm 2 is the final point xT produced
after T iterations. There is one technical detail to take care
of, reflected in line 5. Common rounding algorithms for sub-
modular maximization require not just the fractional point
xT , but also a representation of xT as a convex combina-
tion of integral points, i.e., as a combination of binary vec-
tors representing feasible sets. The rounding algorithm will
then merge these binary vectors together to produce the final
output set. Producing this convex combination is the well-
known Caratheodory problem of decomposing a point in a
polytope into a combination of vertices. While the problem
can be solved exactly via convex optimization, doing so may
incur unnecessarily high runtime. To reduce the time com-
plexity of the algorithm, we find the decomposition via an
approximate method recently introduced by [Mirrokni et al.,
2017]. The details of this method are unimportant (we use it
just as a black-box; any method for solving the Caratheodory
problem would suffice). In our theoretical analysis, we show
that the loss in solution quality due to using an approximate
decomposition is negligible (formally, an arbitrarily small ε).

3.4 Choosing the direction vt

The key challenge is to efficiently find a vt that makes suffi-
cient progress towards every objective simultaneously. We
accomplish this by introducing the subroutine S-SP-MD
(lines 6-12), which runs a carefully constructed version of
stochastic saddle-point mirror descent [Nemirovski et al.,
2009]. We first motivate and formalize the problem that S-
SP-MD attempts to solve. Then, we give some background
on mirror descent and explain the steps of the algorithm.



As explained earlier, vt must be chosen so that it makes
progress towards those objectives for which Wi − Fi(xt−1)
is large (i.e., we are far from the target). As a first step, we
will ignore all i for which Wi − Fi(x

t−1) < ε, since for
these objectives the current solution is already sufficiently
good. Let I denote the set of remaining objectives where
Wi − Fi(xt−1) ≥ ε. For each i, let ∇Fi(xt−1) denote the
gradient of Fi. We will use the gradients of the functions in I
to choose vt. Specifically, our goal is to find a feasible v such
that

∇Fi(xt−1) · v ≥Wi − Fi(xt−1) ∀i ∈ I. (1)

It can be shown that such a v always exists whenever the over-
all multiobjective problem is feasible. If we can find this v,
the progress we make at each iteration is proportional to our
current gap from the targets, resulting in the desired (1−1/e)-
approximation after sufficiently many iterations. Note that
the LHS of Problem 1 is linear in the decision variable v,
while the RHS is constant with respect to v. This implies that
we could (in principle) find a feasible v via linear program-
ming. Naively however, this approach would entail O(n3)
runtime per iteration.

Our first step towards an efficient solution is to convert
Problem 1 into a single maxmin problem. Specifically, we
can solve the problem

max
||v||1≤k

min
i∈I

∇Fi(xt−1) · v
Wi − Fi(xt−1)

(2)

and it is easy to see that if a solution v has objective value
at least 1 for the maxmin Problem 2, then it is also feasible
for Problem 1. We now make a final reformulation to obtain
a problem amenable to optimization. Specifically, let ∆(I)
denote the set of all distributions over I. We will consider
the saddle-point problem

max
||v||1≤k

min
y∈∆(I)

∑
i∈I

yi
∇Fi(xt−1) · v
Wi − Fi(xt−1)

(3)

where the min now ranges over all distributions over ∆(I)
instead of single elements. It is easy to see that the solutions
of the two problems are equivalent (since the minimizing dis-
tribution will always put probability one on a single element).
However, replacing the discrete min with one over a contin-
uous set allows us to draw on continuous optimization tech-
niques to obtain an efficient solution, as explained in the next
section.

3.5 Stochastic saddle-point method
We employ a method based on stochastic saddle-point mirror
descent (S-SP-MD), introduced by [Nemirovski et al., 2009].
Essentially, this algorithm views Problem 3 as a game be-
tween a max player and a min player. Both players update
their decision variables (v and y respectively) by using gradi-
ent updates based on the objective in Problem 3. Intuitively,
the min player will put large weights where the max player is
doing badly, forcing the max player to improve v. The algo-
rithm uses two key ideas to make this process efficient. The

first is that, instead of using standard gradient descent, mirror
descent modifies the updates to better exploit the structure of
the feasible set. For our case, this results in the exponentiated
gradient updates given in lines 11-12 of Algorithm 2. Essen-
tially, each player multiplies their current solution by e−η∇,
where ∇ is that player’s current gradient and η is a learning
rate. Then, they rescale to maintain feasibility.

However, this process assumes that the gradients∇ are eas-
ily available, an assumption that does not hold in common
submodular problems. For instance, for influence maximiza-
tion the gradients depend on the random influence process
and cannot be calculated exactly. Hence, the second key idea
uses stochastic methods to efficiently estimate the gradients
(e.g., using simulations of influence spread). Formally, in-
stead of assuming that∇Fi can be computed exactly, we will
instead make the much weaker assumption that we can obtain
an unbiased estimate of it, i.e., a random vector ∇̂ satisfying
E[∇̂] = ∇Fi. Efficient estimates of this form are known
for many submodular problems (e.g., coverage functions or
facility location [Karimi et al., 2017]), and we show below
how to create one for influence maximization. However, even
using stochastic gradients may entail unnecessarily high run-
time since we still have to compute the estimated gradients
for every objective i with respect to every item (node) j. Ac-
cordingly, our proposed updates use more restricted oracles
that return stochastic estimates of only a subset of the full
gradients. This is a key element of obtaining near-linear run-
time.

Specifically, we assume access to two gradient oracles.
First, a stochastic gradient oracle Aigrad for each multilinear
extension Fi. Given a point x, Aigrad(x) satisfies E[Aigrad] =

∇xFi(x). Second, a stochastic gradient oracle Ajitem corre-
sponding to each item j ∈ [n] (in influence maximization,
the items are the potential seed nodes). Ajitem(x) satisfies
E[Ajitem(x)] =

[
∇xjF1(x)...∇xjFm(x)

]
. We assume that

||Aigrad(x)||∞, ||Ajitem(x)||∞ ≤ c for some constant c.
Our algorithm calls Aigrad and Ajitem for only a single i and

j each iteration (instead of enumerating over all i, j as would
be naively required). The results are then scaled so that they
remain unbiased estimates of the true gradients. The process
is formally shown in lines 8-9 of Algorithm 2. Line 8 com-
putes gradients with respect to v for the maximizing player,
a process which works as follows. Differentiating Equation 2
with respect to v, we obtain

∇v =
∑
i∈I

yi
∇Fi(xt−1)

Wi − Fi(xt−1)

= E
i∼y

[
∇Fi(xt−1)

Wi − Fi(xt−1)

]
(4)

where i ∼ y denotes drawing i at random according to
the probability distribution y. From this expression, we see
that an unbiased estimate of Equation 4 can be obtained
by first sampling a single i ∼ y, and then calling Aigrad

to obtain an unbiased estimate of ∇Fi(xt−1). We then re-
turn 1

Wi−Fi(xt−1)A
i
grad, which has expectation equal to Equa-



tion 4. The reasoning behind the gradients for the min player,
calculated in line 9, is analogous: we sample a single j and
return an appropriately scaled call to Ajitem.

3.6 Approximation guarantee
With these techniques in hand, our theoretical analysis shows
that S-SP-MD ensures rapid convergence to an ε-optimal so-
lution for Problem 2. This convergence property for the inner
subroutine then, in turn, allows us to show that the overall
strategy employed in Algorithm 1 attains the desired approx-
imation guarantee. Formally, our main theoretical result is
given by the following theorem. Here, b = maxi,j fi({j}) is
the maximum value of a single item.

Theorem 3.2. Given a feasible set of target values W1...Wn,
Algorithm 1 outputs a set S such that fi(S) ≥ (1 −
ε)
(

1− m
k(1+ε′)ε3

) (
1− 1

e

)
Wi − ε with probability at least

1 − δ. Asymptotically as k → ∞, the approximation
ratio can be set to approach 1 − 1/e so long as m =
o(k log3 k). The algorithm requires O(nm) ε′-accurate
value oracle calls, O(m bk2

ε log 1
δ ) ε-accurate value oracle

calls, O
(
bk4c2

ε5 log
(
n+ bk

δε

))
calls to Agrad and Aitem, and

O
(
nk2b2

ε2 + mk2b
ε + k3b2

ε2

)
additional work.

This says that Algorithm 1 asymptotically converges to
a
(
1− 1

e

)
-approximation when the budget k is larger than

the number of objectives m (i.e., the conditions under which
the problem is approximable). All terms in the approxima-
tion ratio are identical to Udwani [2018], except that we im-
prove their factor

(
1− 1

e

)2
to
(
1− 1

e

)
. The runtime is also

identical apart from the time to solve the continuous prob-
lem (MULTIFW vs their corresponding subroutine). This is
difficult to compare since our respective algorithms use dif-
ferent oracles to access the functions. However, both kinds
of oracles can typically be (approximately) implemented in
timeO(n). Udwani’s algorithm usesO(n) oracle calls, while
our’s requires O(bk4c2 log n). For large-scale problems, n
typically grows much faster than k, b, and c (all of which are
often constants, or near-so). Hence, trading O(n2) runtime
for O(n log n) can represent a substantial improvement. We
present a more detailed discussion in the appendix.

3.7 Instantiation for influence maximization
To instantiate Algorithm 1 for influence maximization, we
just need to supply appropriate stochastic gradient oracles.
To our knowledge, no such oracles were previously known
for influence maximization, which is substantially more com-
plicated than other submodular problems because of addi-
tional randomness in the objective; naive extensions of pre-
vious methods require O(n2) time. We provide efficient
O(kn log n) time stochastic gradient oracles by introducing a
randomized method to simultaneously estimate many entries
of the gradient at once. Details may be found in the appendix.
The main idea is to use simulations of the influence process
to estimate the marginal contribution that seeding each node
would make towards the objective. Even to produce a noisy
estimate, a naive method would require two simulations per

node: one where the node is chosen as a seed and one where
it is not. Since each simulation takes O(n) runtime this re-
quires O(n2) time overall. Our proposed method uses only
O(k log n) simulations, but shares information across them
in order to simultaneously estimate the marginal contribution
made by all n nodes. .

4 Price of Fairness
In this section, we show that both definitions for the Price of
Fairness can be unbounded; moreover, allowing nodes to join
multiple groups can, counter-intuitively, worsen the PoF. The
proofs in this section show undirected examples demonstrat-
ing the worst case. The results naturally serve as examples in
a directed setting.

Theorem 4.1. As n→∞ and p→ 0, there exists a family of
graphs such that PoFRational →∞.

Proof. We construct a graph G with two parts. In Part L, we
have s − 1 vertices all disjoint except for two vertices; label
one of these x3. In Part S, we have a star with s + 1 nodes.
Label a leaf node x1 and the central node x2. We define two
groups: C1 is comprised of the s degree-1 vertices of S, and
C2 for the remaining s vertices, which includes the vertices of
L and the central vertex x2 of the star. There are k = 2 seeds,
and since |C1| = |C2|, they each have a fair allocation of
k1 = k2 = 1 seeds. The figure below illustrates this network.

Since the subgraph induced by C1

is comprised of isolated vertices,
they have a rational allocation of
IG[C1](1) = 1. The subgraph induced
by C2 is a collection of isolated ver-
tices and a K2, its rational allocation is
IG[C2](1) = 1 + p.

We are interested in two seeding configurations: A =
{x1, x3} and B = {x2, x3}. We can verify that configu-
ration A is fair. The A activates 1 + p nodes in Part L,
and 1 + p + (s − 1)p2 in Part S, for a total of IG(A) =
2 + 2p+ (s− 1)p2.

Now consider configuration B. C1 receives ps influence,
and since p < 2

n = 1
s , C1 does not receive its group rational

share of influence. However, we can verify that this seeding is
optimal. Part L receives (1+p) influence, and Part S receives
1 + ps. Therefore, IG(B) = 2 + p+ ps.

We may then calculate our Price of Fairness:

PoFRational =
IOPT
G

IRational
G

=
2 + p+ ps

2 + 2p+ (s− 1)p2

And if we take the limit as n→∞, s→∞, PoF → 1/p.
Finally, as as p→ 0, PoF →∞.

The appendix details a similar result for Maximin Fairness:

Theorem 4.2. As n→∞ and p→ 0, there exists a family of
graphs such that PoFMaximin →∞.



Frequently, an individual may identify with multiple
groups. Intuitively, we might expect such multi-group mem-
bership to improve the influence received by different groups
and make group-fairness easier to achieve (see the appendix
for an example). However, in the following, we show that this
is not always true — giving even a single node membership
in a second group can cause the Price of Fairness to worsen
by an arbitrarily large amount.
Theorem 4.3. Let G be a graph with groups C1 and C2, and
G′ with groups C ′1 and C ′2, where G′ = G, C ′1 = C1 and C ′2
is obtained from C2 by the addition of one vertex x1 (x1 ∈
C1, x1 /∈ C2). There exists a family of such graphs such that

lim
n→∞

PoFRational
G′

PoFRational
G

=∞.

Proof. Consider a graph G with two components: one com-
ponent K contains 2 vertices joint by an edge, the other com-
ponent S is a star with s + 1 vertices (s ≥ 1/p). There are
two groups: C1 contains all degree-1 vertices from S and one
vertex from K; C2 contains the other vertex x1 from K and
the central vertex x2 from S. There is one seed (k = 1), and
the fair allocation of seeds to each group is k1 = k2 = 1.

G with Disjoint Groups. G′ with Overlapping Groups.

Since the induced subgraphs for both groups comprise only
of isolated nodes, the group rational influence for each group
is IG[C1] = IG[C2] = 1. Therefore, the seed set {x2} is both
fair and optimal, giving an expected influence of IG({x2}) =
1 + ps.

Now, let us modify G by letting x1 belong to both commu-
nities to obtain G′, and communities C ′1 and C ′2. The group
rational influence for C ′2 remains the same (its members have
not changed) but IG′[C′1] has increased to 1 + p (by seeding
x1). In fact, this forces the fair allocation to seed x1 instead
of x2, for a fair influence of IG′({x1}) = 1 + p.

As n→∞, lim
n→∞

PoFRational
G′

PoFRational
G

= lim
s→∞

1+ps
1+p =∞.

A slightly weaker result can be obtained for Maximin Fair-
ness where the construction of the graphs depend on p. The
proof is provided in the appendix.
Theorem 4.4. Let G be a graph with groups C1 and C2,
and G′ with groups C ′1 and C ′2, where G′ = G, C ′1 = C1

and C ′2 is obtained from C2 by the addition of one vertex
x1 (x1 ∈ C1, x1 /∈ C2). Given propagation probabil-
ity p, we may construct a family of such graphs such that

lim
n→∞

PoFMaximin
G′

PoFMaximin
G

→∞.

5 Experimental results
We now investigate the empirical impact of considering fair-
ness in influence maximization. We start with experiments

Table 1: Network characteristics.

Characteristic Net. 1 Net. 2 Net. 3 Net. 4

Density 0.012 0.032 0.022 0.034
Modularity 0.803 0.713 0.604 0.537
Median group size 13.0 9.5 16.0 9.5

on a set of four real-world social networks which have been
previously used for a socially critical application: HIV pre-
vention for homeless youth. Each network has 60-70 nodes,
and represents the real-world social connections between a
set of homeless youth surveyed in a major US city. Each
node in the network is associated with demographic informa-
tion: their birth sex, gender identity, race, and sexual orien-
tation. The networks can be made available upon request;
all code is available at (link withheld for anonymity). Ta-
ble 1 gives some aggregate statistics for each network. Each
demographic attribute gives a partition of the network into
anywhere from 2 to 6 different groups. For each partition,
we compare three algorithms: the standard greedy algorithm
for influence maximization, which maximizes the total ex-
pected influence (Greedy), Algorithm 1 used to enforce di-
versity constraints (DC), and Algorithm 1 used to find a max-
imin fair solution (Maximin). We set the propagation prob-
ability to be p = 0.1 and fixed k = 15 seeds (varying these
parameters had little impact). We average over 30 runs of
the algorithms on each network (since all of the algorithms
use random simulations of influence propagation), with error
bars giving bootstrapped 95% confidence intervals.

Figure 1 (top) shows that the choice of solution concept
has a substantial impact on the results. For the diversity con-
straints case, we summarize the performance of each algo-
rithm by the mean percentage violation of the constraints over
all groups. For the maximin case, we directly report the min-
imum fraction influenced over all groups. We see that greedy
generates substantial unfairness according to either metric: it
generates the highest violations of diversity constraints, and
has the smallest minimum fraction influenced. Greedy actu-
ally obtains near-zero maximin value with respect to sexual
orientation. This results from it assigning one seed to a mi-
nority group in a single run and zero in others.

DC performs well across the board: it reduces constraint
violations by approximately 55-65% while also performing
competitively with respect to the maximin metric (even with-
out explicitly optimizing for it). As expected, the Maximin
algorithm generally obtains the best maximin value. DC ac-
tually attains slightly better maximin value for one attribute
(birthsex); however, the difference is within the confidence
intervals and reflects slight fluctuations in the approxima-
tion quality of the algorithms. However, Maximin performs
surprisingly poorly with respect to diversity constraint vio-
lations. This indicates that optimizing exclusively for equal
influence spread may force the algorithm to focus on poorly
connected groups which exhibit severe diminishing returns.
DC is able to attain almost as much influence in such groups
but is then permitted to focus its remaining budget for higher
impact. Interestingly, the price of fairness is relatively small
for both solution concepts, in the range 1.05-1.15 (though
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Figure 1: Average performance on homeless youth social networks (top) and simulated Antelope Valley networks (bottom).

it is higher for maximin than for DC). This indicates that
while standard influence maximization techniques can intro-
duce substantial fairness violations, mitigating such viola-
tions may be substantially less costly in real world networks
than the theoretical worst case would suggest.

Finally, the rightmost plot in the top row of Figure 1 ex-
plores an example with overlapping groups. Specifically, we
consider the race and birthsex attributes so that each node
belongs to two groups. Constraint violations are somewhat
higher than for either attribute individually, but the price of
fairness remains small (1.07 for DC and 1.13 for Maximin).

In Figure 1 (bottom), we examine 20 synthetic networks
used by Wilder et al. [2018c] to model an obesity preven-
tion intervention in the Antelope Valley region of California.
Each node in the network has a geographic region, ethnicity,
age, and gender, and nodes are more likely to connect to those
with similar attributes. Each network has 500 nodes and we
set k = 25. Overall the results are similar to the homeless
youth networks. One exception is the high price of fairness
that maximin suffers with respect to the “region” attribute
(over 1.4), but the other PoF values are relatively low (be-
low 1.2). We also observe that greedy obtains the (slightly)
best maximin performance for gender, likely because the net-
work is sufficiently well-mixed across genders that fairness is
not a significant concern (as confirmed by the extremely low
DC violations). Absent true fairness concerns, greedy may
perform slightly better since it solves a simpler optimization
problem. However, in the last figure, we examine overlapping
groups given by region and ethnicity and observe that greedy
actually obtains zero maximin value, indicating that there is
one group that it never reached across any run.

6 Conclusions
In this paper, we examine the problem of selecting key fig-
ures in a population to ensure the fair spread of vital infor-
mation across all groups. This problem modifies the clas-
sic influence maximization problem with additional fairness
provisions based on legal and game theoretic concepts. We
examine two methods for determining these provisions, and
show that the “Price of Fairness” for these provisions can be
unbounded. We propose an improved algorithm for multiob-

jective maximization to examine this problem on real world
data sets. We show that standard influence maximization
techniques often neglect smaller groups, and a diversity con-
straint based algorithm can ensure these groups receive a
fair allocation of resources at relatively little cost. As au-
tomated techniques become increasingly prevalent in society
and governance, our technique will help ensure that small and
marginalized groups are fairly treated.

Acknowledgments
This work was supported by ARO MURI W911NF1810208
and the California HIV Research Program. Wilder is sup-
ported by a NSF Graduate Research Fellowship. Tsang and
Zick are supported by a Singapore MOE grant #R-252-000-
625-133 and the Singapore NRF Fellowship #R-252-000-
750-733.

References
[Ahmed et al., 2017] F. Ahmed, J. P. Dickerson, and

M. Fuge. Diverse weighted bipartite b-matching. In Proc.
of the 26th IJCAI, pages 35–41, 2017.

[Azizi et al., 2018] M. Azizi, P. Vayanos, B. Wilder, E. Rice,
and M. Tambe. Designing fair, efficient, and interpretable
policies for prioritizing homeless youth for housing re-
sources. In CPAIOR, 2018.

[Banerjee et al., 2013] A. Banerjee, A. Chandrasekhar,
E. Duflo, and M. O. Jackson. The diffusion of microfi-
nance. Science, 341(6144), 2013.

[Barman et al., 2019] S. Barman, A. Biswas, S. K. Krishna-
murthy, and Y. Narahari. Groupwise maximin fair alloca-
tion of indivisible goods. In Proc. of the 32nd AAAI, 2019.

[Barocas and Selbst, 2016] S. Barocas and A. Selbst. Big
data’s disparate impact. California Law Review, 104:671,
2016.

[Benabbou et al., 2018] N. Benabbou, M. Chakraborty,
V. Ho, J. Sliwinski, and Y. Zick. Diversity constraints in
public housing allocation. In Proc. of the 17th AAMAS,
pages 973–981, 2018.



[Bertsimas et al., 2013] D. Bertsimas, V. Farias, and
N. Trichakis. Fairness, efficiency, and flexibility in
organ allocation for kidney transplantation. Operations
Research, 61(1):73–87, 2013.

[Bredereck et al., 2018] R. Bredereck, P. Faliszewski,
A. Igarashi, M. Lackner, and P. Skowron. Multiwinner
elections with diversity constraints. In Proc. of the 32nd
AAAI, pages 933–940, 2018.

[Chekuri et al., 2010] C. Chekuri, J. Vondrák, and R. Zen-
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