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Abstract 

Recent research in cybersecurity has begun to develop active 
defense strategies using game-theoretic optimization of the 
allocation of limited defenses combined with deceptive 
signaling. While effective, the algorithms are optimized against 
perfectly rational adversaries. In a laboratory experiment, we 
pit humans against the defense algorithm in an online game 
designed to simulate an insider attack scenario. Humans attack 
far more often than predicted under perfect rationality. 
Optimizing against human bounded rationality is vitally 
important. We propose a cognitive model based on instance-
based learning theory and built in ACT-R that accurately 
predicts human performance and biases in the game. We show 
that the algorithm does not defend well, largely due to its static 
nature and lack of adaptation to the particular individual’s 
actions. Thus, we propose an adaptive method of signaling that 
uses the cognitive model to trace an individual’s experience in 
real time, in order to optimize defenses. We discuss the results 
and implications of personalized defense. 
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Introduction 

Cybersecurity often involves passive defense strategies which 

fail to discover a threat before major damage is done to a 

network. However, recent work within the domain of 

cybersecurity has focused on developing active defense 

strategies based on cognitive principles of deception (Al-

Shaer et al., 2019; Cooney et al., 2019; Cranford et al., 2018). 

Deception is a form of persuasion where one intentionally 

misleads an agent into a false belief, in order to gain an 

advantage over the agent and achieve one’s goals (Rowe & 

Rushi, 2016). In this line of research, the goal for security is 

to assist human administrators defend networks from cyber-

attacks (Gonzalez et al., 2014). Limited defense resources 

cannot simultaneously protect all targets. In the event of an 

attack, truthful signals that divulge the protection status of a 

target can deter some attacks on protected targets. However, 

defenders can use a combination of truthful and deceptive 

signals to improve protection of the unprotected resources. 

Game-theoretic principles have been employed to optimize 

the allocation of limited defense resources and determine how 

often to send a deceptive signal before it loses its 

effectiveness (Xu et al., 2015). While deception may reduce 

attacks on uncovered targets compared to no deception, the 

algorithms are static and tailored to an entire population. They 

fail to take into account the individual and their particular set 

of knowledge, experiences, and biases. The goal of this paper 

is to develop a personalized signaling strategy that can 

outperform traditional static methods. 

Cranford et al. (2018) developed an instance-based learning 

(IBL) cognitive model (Gonzalez, Lerch & Lebiere, 2003) of 

attackers that accurately predicts human decision making 

from experience. We propose that such a model can be used 

to trace an individual’s knowledge and experiences, and 

exploit their biases, to determine on-the-fly the best signal 

given the situation, to further reduce attacks. 

The following section presents a line of research on game-

theoretic models that have proven to optimize deceptive 

signaling for perfectly rational adversaries, and initial efforts 

toward optimizing for boundedly rational adversaries. We 

then describe an online game developed to investigate 

attacker behavior against deceptive signaling algorithms and a 

cognitive model that accurately predicts human behavior. 

Next, we describe a method for deceptive signaling that uses 

the cognitive model to drive adaptive signaling, personalized 

to the individual attacker. We highlight its applicability for 

optimizing defense by tracking human knowledge, 

experience, and biases. Finally, we discuss the implications of 

this line of research and avenues for future research. 

Deceptive Signaling for Cybersecurity 

Research on Stackelberg Security Games (SSGs) led to the 

development of algorithms that have greatly improved 

physical security systems (e.g., protecting ports, scheduling 

air marshals, and mitigating poachers) through the optimal 

allocation of limited defense resources (Pita et al., 2008; 

Shieh et al., 2012; Sinha et al., 2018; Tambe, 2011). Xu et al. 

(2015) extended these models by incorporating elements of 

signaling, in which a defender (sender) strategically reveals 

information about their strategy to the attacker (receiver) in 

order to influence the attacker’s decision making (Battigalli, 

2006; Cho & Kreps, 1987). Their solution, the Strong 

Stackelberg Equilibrium with Persuasion (peSSE), improves 



defender utility against a perfectly rational attacker compared 

to strategies that do not use signaling. For a given target, the 

peSSE finds the optimal combination of bluffing (sending a 

deceptive message that the target is covered when it is not) 

and truth-telling (sending a truthful message that the target is 

covered) so the attacker continues to believe the bluff. 

The goal of the peSSE is to reduce attacks on uncovered 

targets. Attackers earn a reward for successful attacks, suffer 

a loss for failed attacks, and earn zero for withdrawing. When 

a target is covered, the peSSE will always send a truthful 

signal. When uncovered, the peSSE will send a deceptive 

signal with a probability that brings the attacker’s expected 

value of attacking, given a signal, to zero. This makes it equal 

to the utility of withdrawing the attack and, based on standard 

game-theoretic assumptions of perfect rationality, the attacker 

will break ties in favor of the defender and withdraw. 

The peSSE is suitable for cyber defense where optimizing 

the probability of sending a deceptive signal can mitigate 

attacks on uncovered targets with little overhead. However, it 

is based on the assumption of perfect rationality while 

humans exhibit, at best, bounded rationality (Simon, 1956). 

To address this weakness of the peSSE, researchers have 

begun to develop signaling algorithms for security against 

boundedly rational attackers (Cooney et al., 2019). However, 

these algorithms do not offer substantial improvement over 

the peSSE in terms of reducing attacks and minimizing 

defender loss. 

In what follows, we present an IBL cognitive model that 

accurately predicts human attacker behavior playing against 

the peSSE in a laboratory experiment. We propose that a 

personalized deceptive signaling scheme based on insights 

from the IBL model, in combination with model-tracing 

mechanisms, can be used to adapt defense signaling to the 

individual experiences of attackers at each point in time. 

Cognitive Models of Human Attackers Playing 

Against Deceptive Signaling Algorithms 

The Insider Attack Game (IAG) was designed to investigate 

the interaction between an attacker and defender in a 

cybersecurity scenario (Cranford et al., 2018). As shown in 

Figure 1, players take the role of the attacker (a company 

employee) and their goal is to score points by “hacking” 

computers to steal proprietary data. There are six potential 

computers to attack, but only two security analysts (defenders 

controlled by a computer algorithm) that can monitor one 

computer each. If the player attacks a computer that is 

monitored, they lose points, but if the computer is not 

monitored then they win points. Each computer shows its 

reward for winning, penalty for losing, and the probability 

that the computer is being monitored (reflecting the SSE for 

the game). On each turn, the player must select a computer to 

attack; after which, the signaling algorithm determines 

whether to send a truthful signal or a deceptive signal (with 

the signal, the player is presented the probability that the 

given signal is deceptive). The player must decide whether to 

continue their attack or withdraw and earn zero points. 

Players play four rounds of 25 trials each (after an initial 5 

trials of practice). The payoff structures and monitoring 

probabilities of the targets are different in each round. 

Coverage and signaling of targets were precomputed for each 

trial. Therefore, each individual player experiences the same 

coverage and signaling schedule. 

 

 
 

Figure1: Screenshot of the IAG. The attacker is in the center 

surrounded by six targets. The monitoring probability is 

displayed as a percentage in text and represented visually by 

red bars, the yellow stars represent the potential reward, and 

the red stars represent the potential penalty. 

Attacker Cognitive Model 

Cranford et al. (2018) developed an IBL cognitive model of 

the attacker using the ACT-R cognitive architecture 

(Anderson & Lebiere, 1998; Anderson et al, 2004). Following 

collection of human data in the peSSE condition, we modified 

this model to better represent human behavior playing the 

IAG. For brevity, details of the model described below, and 

its underlying equations, can be found in Cranford et al., 

while specific changes are footnoted. 

In the current model, decisions are made by generalizing 

across past experiences, or instances, that are similar to the 

present situation. For the IAG, instances include slots to 

represent the context of the selected target, the decision, and 

the outcome. The context includes the monitoring probability 

[0.0, 1.0], reward [1, 10], penalty values [-1, -10], and 

warning signal [present, absent]. The possible decisions are 

attack or withdraw, and the outcome is the reward or penalty 

based on the decision. In a given situation, for each possible 

decision, an associated utility is computed through blended 

memory retrieval weighted by contextual similarity to past 

instances. The decision with the highest utility is made. In the 

present game there are two decisions: attack or withdraw. 

However, withdrawing always results in zero points. 

Therefore, the model only needs to determine the utility of 

attacking in order to make a choice. 

In ACT-R, the retrieval of past instances is based on the 

activation strength of the relevant instance in memory and its 



similarity to the current context. The activation of an instance 

reflects the power law of practice and forgetting, and includes 

a partial matching process1 reflecting the similarity between 

the current context elements and the corresponding context 

elements for the instance in memory. A variance parameter s 

introduces stochasticity in retrieval. Similarities between 

numeric slot values are computed on a linear scale from 0.0, 

an exact match, to -1.0. Symbolic values are either an exact 

match or maximally different, -2.5, to prevent bleeding 

between memories for different actions and signal types. 

A Boltzmann softmax equation2 determines the probability 

of retrieving an instance based on its activation strength. The 

IBL model uses ACT-R’s blending mechanism (Lebiere, 

1999; Gonzalez et al., 2003) to calculate an expected outcome 

of attacking a target based on similarity to past instances. The 

expected outcome is the value that best satisfies the 

constraints of all matching instances weighted by their 

probability of retrieval. 

In summary, the outcomes of past instances are weighted 

by their recency, frequency, and similarity to the current 

instance to produce an expected outcome. If the value is 

greater than zero then the model attacks, else it withdraws. 

 

IBL Model Procedure To begin the IAG, the model is 

initialized with seven instances3: five represent a simulated 

practice round, and two represent knowledge gained from 

instructions (one instance had a signal value of absent and an 

outcome of 10, representing that attacking when a signal is 

absent will result in a reward; another instance had signal 

value of present and an outcome of 5, representing that 

attacking when a signal is present could result in either a 

penalty or a reward). On a given trial, the model first selects a 

target to attack. The model cycles through each target and 

generates an expected outcome of attacking via blending. The 

model selects the target with the highest expected outcome. 

Target selection is a passive process; therefore, no instances 

are saved in memory that could influence future decisions. 

After selecting a target, the context is augmented with the 

value of the signal4 (i.e., present or absent). The model then 

decides whether to attack or withdraw by generating an 

expected outcome via blended retrieval. The similarity of the 

selected target’s context to past instances is based solely on 

the value of the signal5 (monitoring probability, reward, and 

penalty values are ignored). In the IAG, the pop-up warning 

                                                           
1 The mismatch penalty parameter for the activation equation was 

originally set high at 2.5, but was reduced to the ACT-R default 1.0. 
2 The temperature parameter was changed from the ACT-R 

default of √2 ∗ 𝑠 to a neutral value of 1.0 which results in retrieval 

probability reflecting the original presentation probability. 
3 The model was originally initialized with 8 instances 

representing edges of the decision space, but we believe the current 

method is a more accurate representation of participants’ experience. 
4 Representing the deception probability as an additional context 

slot in the instance resulted in a poorer model fit. It appears that 

humans do not consider, or know how to utilize, the information. 

Therefore, the deception probability was excluded from the context. 
5 In the original model, the full context was used, but this resulted 

in an over-selection and reduced attack rate of high-reward targets. 

message covers all information about the selected target. 

Therefore, we inferred that humans base their decisions only 

on the value of the signal and ignore, or forget, the occluded 

target information. 

After determining the expected outcome, an instance is 

saved in memory that represents the model’s expectations6. 

Humans tend to remember not only the actual experience, but 

also their expectations prior to the experience (Gonzalez et 

al., 2003). This serves as an implementation of confirmation 

bias, in which one’s preconception of winning/losing can 

increase the likelihood of attacking/withdrawing on future 

trials (i.e., generating positive/negative expected outcomes). 

After generating an expected outcome, a decision is made, 

and the action and outcome slots of the current instance are 

updated to reflect the action taken by the model and the 

ground-truth outcome. This final instance is saved in memory 

and thereby influences future decisions. 

The model continues for four rounds of 25 trials each. The 

model behavior reflects its experiences. If an action results in 

a positive/negative outcome, then its future expectations will 

be increased/decreased, and the model will be more/less 

likely to select and attack that target in the future. Also, the 

impact of a particular past experience on future decisions 

strengthens with frequency and weakens with time. 

IBL Model Evaluation Against Human Players 

The attacker IBL model was compared to human behavior in 

the IAG. In a laboratory experiment, human participants (i.e., 

“attackers”) played against the peSSE signaling scheme. 

Participants were recruited via Amazon Mechanical Turk. All 

participants resided in the United States. For completing the 

experiment and submitting a completion code, participants 

were paid $1 plus $0.02 per point earned in the game, up to a 

maximum of $5.50. Four participants were removed from 

analysis because they had incomplete data (e.g., data 

recording errors) or restarted the experiment after gaining 

experience, resulting in a final sample size of 100. 

The data was analyzed for the probability of attack and the 

number of points earned by attackers across rounds. The 

probability of attack was calculated as the proportion of 

players that continued the attack on a given trial. Points were 

separated into mean losses and gains per round. Losses/gains 

were calculated as the total number of points lost/gained per 

round by attacking targets that were/weren’t monitored. 

The model played the IAG 1000 times to generate stable 

predictions of the probability of attack and total number of 

points obtained per round. At the end of each run, the model 

was reset to its initial state and its memory cleared. Due to the 

stochastic nature of the model, and the influence its 

experiences have on its future decisions, the model behaves 

differently on each run and can therefore represent a diverse 

population of human attackers without the need to 

parameterize for individual differences. 

                                                           
6 The model did not originally save this instance in memory and 

attacked far less often than humans. Saving this instance increased 

the mean probability of attack. This insight was key to understanding 

the biases humans have in the game and why they attacked so often. 



 
 

Figure 2: Probability of attack across trials and rounds (left side) and mean gains/losses per round (right side) for the humans 

compared to the IBL model. For probability of attack, RMSE and correlations (r) between human and model data are displayed 

under each round, and the aggregate values across the entire game are on the right under the legend. 

 

Figure 2, left side, shows the mean probability of attack 

across trials and rounds for humans compared to the model. 

The dashed, gray line represents the peSSE predictions under 

assumptions of perfect rationality. Humans attack far more 

than perfectly rational attackers. Meanwhile, compared to the 

human data, the model is an excellent predictor of 

performance. RMSE and correlations, comparing the model 

to human data, are included at the bottom of the graph. The 

model is sensitive to the schedule of coverage, just as humans 

are, which produces the spiking pattern across trials. 

Figure 2, right side, shows the average gains/losses for the 

humans compared to the model. Humans attack at a high rate, 

earning many points from attacks on uncovered targets, while 

incurring fewer losses. Moreover, the model accurately 

predicts this behavior. The peSSE suffers because human 

biases (e.g., recency, frequency, and confirmation) lead them 

to attack at higher rate, resulting in more experiences of wins 

than losses. The IBL model captures these biases, and 

therefore, can feasibly be used as a predictive tool for 

personalizing deceptive signals for an individual attacker. 

Notably, the model has accurately predicted human 

performance against other signaling algorithms (not reported 

here) prior to collection of human data. 

Toward Personalized Deception 

To personalize deception, we can run the IBL model 

alongside the human to predict an individual’s behavior and 

optimize the rate of deceptive signals. To make accurate 

predictions of an individual, two methods have proven useful 

to align the model behavior with the human’s decisions: 

model-tracing and knowledge-tracing. Model-tracing aligns 

the model’s actual actions and outcomes to those observed of 

the human. Knowledge-tracing aligns the expected actions 

and outcomes to match those inferred of the human. 

Model-tracing 

Model-tracing is a method used to align a model’s behavior 

with that of the human and is commonly used to adjust 

feedback provided to the student in intelligent tutoring 

systems (see Anderson et al., 1995). The alignment helps in a 

way that future model predictions are adapted and optimized 

to the interaction with the human. For example, geometry 

tutors use model-tracing to keep track of where errors are 

made so that the learning experience can be tailored to the 

individual (Anderson, Boyle, & Yost, 1986). 

We use model-tracing to synchronize the IBL model with 

the human’s observed actions and experience in the IAG task. 

After each trial, the instance saved in memory that represents 

the model’s decision and outcome is changed to reflect the 

human’s action and outcome (i.e., the action and outcome 

slots are changed to match the human’s). Therefore, on the 

next trial the model makes predictions based on the exact 

experience of the human and not on what it would have done 

based on its own past instances. With more trials, the model is 

expected to make more accurate predictions of a particular 

human’s actions, as the model’s memory aligns better with 

that of the human. Model-tracing changes the instances 

representing the observed ground truth decision and outcome. 

However, in order to generate accurate predictions, we must 

also align the model’s expectations to those of the human. 

Knowledge-tracing 

The model produces instances that represent the expected 

outcome of attacking, which contributes to confirmation bias, 

and these must also be changed. Knowledge-tracing can be 

used to infer the expectations humans had prior to making a 

decision that would contribute to confirmation bias. For 

example, if the model and human both decided to attack (or 

both withdraw), then nothing need change and the expected 

outcome generated by the model can be used to infer the 

human’s expectation. However, if the model expects a 

positive outcome for attacking, but the human withdrew the 

attack, then we can infer that the human expected to lose (or 

vice versa). For these instances, we can modify the expected 

outcome slot to match the expectations of the player. We 

cannot infer this expectation precisely, so we set the expected 

outcome to either the reward or penalty of the selected target. 



Model Predictions with Model & Knowledge-tracing 

To test the effectiveness of model- and knowledge-tracing for 

predicting human decision making, the model was run 

alongside human data in the peSSE condition. On each trial, 

the model simply makes a decision, which is recorded, and is 

then updated via model-tracing and knowledge-tracing. The 

model decision was then compared to the decision the human 

made to generate a probability of agreement between the 

model and human. The mean probability of agreement for 

rounds 1-4 are 86.4% (SD = 12.3%), 90.8% (SD = 11.4%), 

89.6% (SD = 12.4 %), and 86.8% (SD = 15.5%), respectively. 

The trial-to-trial agreement is highly accurate, just short of 

accounting for the entirety of human stochasticity. In fact, 

even at the 1st trial the model is accurate to 83.3%. Moreover, 

the model adapts well to the individual’s probability of attack. 

Figure 3 shows the overall probability of attack of individual 

model runs compared to the human it traced. The model is 

exceptionally accurate in adapting to the human, r2 = 0.95. 

Using techniques of model-tracing and knowledge-tracing, 

the model makes very accurate predictions and could feasibly 

be used in designing a personalized signaling scheme. 

 

 
 

Figure 3: Overall mean probability of attack comparing 

individual humans to the model run that traced him/her, in the 

peSSE condition using personalized signaling. 

A Personalized Deceptive Signaling Scheme 

The peSSE signaling scheme uses deceptive signals on 

uncovered targets but not on covered targets. These schemes 

invite attacks with impunity when no signal is given. 

Therefore, a broader and more symmetrical approach may be 

warranted, as has been explored in recent game-theoretic 

research (Cooney et al., 2019). The following signaling 

scheme also uses deceptive signals when a target is covered. 

If the goal is to minimize the probability of attack as a 

function of the warning signal then it can be shown that we 

must reach an equilibrium where the probability of attack 

given a warning, P(A|W), is equal to the probability of attack 

given no warning, P(A|NW). A signal must be generated at a 

rate that preserves this equality. We can examine the impact 

of the presence or absence of a signal in various situations. 

For example, given an attack, if a target is covered, the 

attacker will lose, and their future probability of attack will be 

lower. If a target is uncovered, the attacker will win, and their 

future probability of attack will be higher. Each outcome thus 

increases or decreases one of the attack probabilities. In 

particular, the change in attack probability (decrease or 

increase) is determined by whether the selected target is 

covered or not, respectively, while the probability impacted 

(signal or no signal) is determined by the presence or absence 

of a signal, respectively. This results in the following 

algorithm for signal generation: if the selected target is 

covered, if P(A|W) is greater than the P(A|NW) then generate 

a signal, otherwise do not generate a signal; but if the selected 

target is not covered, if P(A|W) is greater than the P(A|NW) 

then do not generate a signal, otherwise generate a signal. 

The role of the cognitive model in this algorithm is to 

determine P(A|W) and P(A|NW). We know the model 

generates expected outcomes of attacking and decides to 

attack if the value is greater than zero. Therefore, we can 

simply generate the expected outcome of attacking given the 

presence or absence of a signal and compare them to compute 

the conditions used in the algorithm above. An essential point 

is that those expected values are not the true expected values, 

but the model’s subjective expected value given its limited 

experience and its reflection of human cognitive biases. 

Intuitively, if the selected target is covered, then we decide 

on whether to generate a signal or not depending on which 

condition is most likely to lead to an attack. This corresponds 

to trying to catch the attacker when the target is covered, 

lowering the future probability of attack. Conversely, if the 

selected target is not covered, select the condition (signal or 

not) least likely to lead to an attack. Again, the accuracy of 

the cognitive model is essential in this approach to capture the 

subject’s intention to attack or not. We can use the current 

model to track an individual’s decisions and generate 

predictions of their probability of attack given the situation. 

Effectiveness of Personalized Signaling Scheme 

To generate predictions of the effectiveness of this 

personalized signaling scheme, we ran the IBL model through 

the IAG while using the personalized signaling scheme 

described above to make predictions about the expected 

outcome of attacking, given a signal and given no signal. 

Based on those predictions and the underlying coverage of the 

selected target, the scheme determined whether or not to give 

a signal on each trial. 

Compared to the human performance in peSSE, the 

personalized signaling method is expected to reduce the 

probability of attack by an average of 2.7% (RMSE = 6.6%). 

Meanwhile, Figure 4 shows that personalized signaling will 

result in fewer gains and more losses. Looking further into the 

data, Figure 5 plots the probability of attack across the 

various targets, based on their monitoring probability. 

Compared to human performance, the personalized signaling 

method seems to shift the distribution of attacking toward 

targets with a higher monitoring probability, and therefore the 

IBL model incurs more penalties. 



 
 

Figure 4: Comparing the mean gains/losses across rounds in 

the personalized signaling model to humans in the peSSE. 

 

 
 

Figure 5: Mean probability of attack across targets, by their 

monitoring probability, comparing the personalized signaling 

model to humans in the peSSE condition. 

Conclusions 

The present research shows that we can leverage the 

predictive power of a generalizable IBL model to infer an 

individual’s knowledge, trace their experience, and exploit 

their biases to design an adaptive signaling scheme that is 

personalized for an individual. The current method is an 

initial attempt toward developing a personalized deceptive 

signaling scheme for cyber defense. Although the current 

scheme did not greatly reduce the probability of attack, the 

cognitive model proved to be an accurate predictor of human 

behavior. Future research will test the personalized signaling 

scheme against human attackers. Insight gained from human 

experiments will provide information about how to modify 

the signaling logic to create a more effective scheme. 
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