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Abstract. Gaussian processes (GPs) have been widely applied to machine learn-
ing and nonparametric approximation. Given existing observations, a GP allows
the decision maker to update a posterior belief over the unknown underlying func-
tion. Usually, observations from a complex system come with noise and decom-
posed feedback from intermediate layers. For example, the decomposed feedback
could be the components that constitute the final objective value, or the various
feedback gotten from sensors. Previous literature has shown that GPs can success-
fully deal with noise, but has neglected decomposed feedback. We therefore pro-
pose a decomposed GP regression algorithm to incorporate this feedback, leading
to less average root-mean-squared error with respect to the target function, espe-
cially when the samples are scarce. We also introduce a decomposed GP-UCB
algorithm to solve the resulting bandit problem with decomposed feedback. We
prove that our algorithm converges to the optimal solution and preserves the no-
regret property. To demonstrate the wide applicability of this work, we execute
our algorithm on two disparate social problems: infectious disease control and
weather monitoring. The numerical results show that our method provides signif-
icant improvement against previous methods that do not utilize these feedback,
showcasing the advantage of considering decomposed feedback.
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1 Introduction

Many challenging sequential decision making problems involve interventions in com-
plex physical or social systems, where the system dynamics must be learned over time.
For instance, a challenge commonly faced by policymakers is to control disease out-
breaks [16], but the true process by which disease spreads in the population is not
known in advance. We study such problems from the perspective of online learning,
where a decision maker aims to optimize an unknown expensive objective function [2].
At each step, the decision maker commits to an action and receives the objective value
for that action. For instance, a policymaker may implement a disease control policy [12,
9] for a given time period and observe the number of subsequent infections. This infor-
mation allows the decision maker to update their knowledge of the unknown function.
The goal is to obtain low cumulative regret, which measures the difference in objective
value between the actions that were taken and the true (unknown) optimum.
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This problem has been well-studied in optimization and machine learning. When
a parametric form is not available for the objective (as is often the case with complex
systems that are difficult to model analytically), a common approach uses a Gaussian
process (GP) as a nonparametric prior over smooth functions. This Bayesian approach
allows the decision maker to form a posterior distribution over the unknown function’s
values. Consequently, the GP-UCB algorithm, which iteratively selects the point with
the highest upper confidence bound according to the posterior, achieves a no-regret
guarantee [14].

While GP-UCB and similar techniques [3, 17] have seen a great deal of interest in
the purely black-box setting, many physical or social systems naturally admit an inter-
mediate level of feedback. This is because the system is composed of multiple inter-
acting components, each of which can be measured individually. For instance, disease
spread in a population is a product of the interactions between individuals in different
demographic groups or locations [19], and policymakers often have access to estimates
of the prevalence of infected individuals within each subgroup [4, 18]. The true objec-
tive (total infections) is the sum of infections across the subgroups. Similarly, climate
systems involve the interactions of many different variables (heat, wind, humidity, etc.)
which can be sensed individually then combined in a nonlinear fashion to produce out-
puts of interest (e.g., an individual’s risk of heat stroke) [15]. Prior work has studied
the benefits of using additive models [6]. However, they only examine the special case
where the target function decomposes into a sum of lower-dimensional functions. Mo-
tivated by applications such as flu prevention, we consider the more general setting
where the subcomponents are full-dimensional and may be composed nonlinearly to
produce the target. This general perspective is necessary to capture common policy set-
tings which may involve intermediate observables from simulation or domain knowl-
edge.

However, to our knowledge, no prior work studies the challenge of integrating such
decomposed feedback in online decision making. Our first contribution is to remedy
this gap by proposing a decomposed GP-UCB algorithm (D-GPUCB). D-GPUCB uses
a separate GP to model each individual measurable quantity and then combines the
estimates to produce a posterior over the final objective. Our second contribution is a
theoretical no-regret guarantee for D-GPUCB, ensuring that its decisions are asymp-
totically optimal. Third, we prove that the posterior variance at each step must be less
than the posterior variance of directly using a GP to model the final objective. This for-
mally demonstrates that more detailed modeling reduces predictive uncertainty. Finally,
we conduct experiments in two domains using real-world data: flu prevention and heat
sensing. In each case, D-GPUCB achieves substantially lower cumulative regret than
previous approaches.

2 Preliminaries

2.1 Noisy Black-box Optimization

Given an unknown black-box function f : X → R where X ⊂ Rn, a learner is able to
select an input x ∈ X and access the function to see the outcome f(x) – this encom-
passes one evaluation. Gaussian process regression [11] is a non-parametric method
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to learn the target function using Bayesian methods [5, 13]. It assumes that the target
function is an outcome of a Gaussian process with given kernel k(x,x′) (covariance
function). Gaussian process regression is commonly used and only requires an assump-
tion on the function smoothness. Moreover, Gaussian process regression can handle
observation error. It allows the observation at point xt to be noisy: yt = f(xt) + εt,
where εt ∼ N(0, σ2I).

2.2 Decomposition

In this paper, we consider a modification to the Gaussian process regression process.
Suppose we have some prior knowledge of the unknown reward function f(x) such
that we can write the unknown function as a combination of known and unknown sub-
functions:

Definition 1 (Linear Decomposition).

f(x) =
∑J

j=1
gj(x)fj(x) (1)

where fj , gj : Rn → R.

Here gj(x) are known, deterministic functions, but fj(x) are unknown functions that
generate noisy observations. For example, in the flu prevention case, the total infected
population can be written as the summation of the infected population at each age [4].
Given treatment policy x, we can use fj(x) to represent the unknown infected pop-
ulation at age group j with its known, deterministic weighted function gj(x) = 1.
Therefore, the total infected population f(x) can be simply expressed as

∑J
j=1 fj(x).

Interestingly, any deterministic linear composition of outcomes of Gaussian pro-
cesses is still an outcome of Gaussian process. That means if all of the fj are generated
from Gaussian processes, then the entire function f can also be written as an outcome
of another Gaussian process.

Next, we generalize this definition to the non-linear case, which we call a general
decomposition:

Definition 2 (General Decomposition).

f(x) = g(f1(x), f2(x), ..., fJ(x)) (2)

The function g can be any deterministic function (e.g. polynomial, neural network).
Unfortunately, a non-linear composition of Gaussian processes may not be a Gaussian
process, so we cannot guarantee function f to be an outcome of a Gaussian process.
We will cover the result of linear decomposition first and then generalize it to the cases
with general decomposition.

2.3 Gaussian Process Regression

Although Gaussian process regression does not require rigid parametric assumptions, a
certain degree of smoothness is still needed to ensure its guarantee of no-regret. We can
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model f as a sample from a GP: a collection of random variables, one for each x ∈ X .
A GP(µ(x), k(x,x′)) is specified by its mean function µ(x) = E[f(x)] and covariance
function k(x,x′) = E[(f(x) − µ(x))(f(x′) − µ(x′))]. For GPs not conditioned on
any prior, we assume that µ(x) ≡ 0. We further assume bounded variance k(x,x) ≤ 1.
This covariance function encodes the smoothness condition of the target function f
drawn from the GP.

For a noisy sample yT = [y1, ..., yT ]
> at points AT = {xt}t∈[T ], yt = f(xt) +

εt ∀t ∈ [T ] with εt ∼ N(0, σ2(xt)) Gaussian noise with variance σ2(xt), the posterior
over f is still a Gaussian process with posterior mean µT (x), covariance kT (x,x′) and
variance σ2

T (x):

µT (x) = kT (x)
>K−1T kT (x

′), (3)

kT (x,x
′) = k(x,x′)− kT (x)

>K−1T k(x′), (4)

σ2
T (x) = kT (x,x

′) (5)

where kT (x) = [k(x1,x), ..., k(xT ,x)]
>, and KT is the positive definite kernel ma-

trix [k(x,x′)]x,x′∈AT
+ diag([σ2(xt)]t∈[T ]).

Algorithm 1: GP Regression

1 Input: kernel k(x,x′), noise function σ(x), and previous samples
{(xt, yt)}t∈[T ]

2 Return: kT (x,x′), µT (x), σ2
T (x)

2.4 Bandit Problem with Decomposed Feedback

Considering the output value of the target function as the learner’s reward (penalty),
the goal is to learn the unknown underlying function f while optimizing the cumu-
lative reward. This is usually known as an online learning or multi-arm bandit prob-
lem [1]. In this paper, given the knowledge of deterministic decomposition function g
(Definition 1 or Definition 2), in each round t, the learner chooses an input xt ∈ X
and observes the value of each unknown decomposed function fj perturbed by a noise:
yj,t = fj(xt)+εj,t, εj,t ∼ N(0, σ2

j ) ∀j ∈ [J ]. At the same time, the learner receives the
composed reward from this input xt, which is yt = g(y1,t, y2,t, ..., yJ,t) = f(xt) + εt
where εt is an aggregated noise. The goal is to maximize the sum of noise-free re-
wards

∑T
t=1 f(xt), which is equivalent to minimizing the cumulative regret RT =∑T

t=1 rt =
∑T
t=1 f(x

∗)−f(xt), where x∗ = argmaxx∈X f(x) and individual regret
rt = f(x∗)− f(xt).

This decomposed feedback is related to the semi-bandit setting, where a decision is
chosen from a combinatorial set and feedback is received about individual elements of
the decision [10, 10]. Our work is similar in that we consider an intermediate feedback
model which gives the decision maker access to decomposed feedback about the under-
lying function. However, in our setting a single point is chosen from a continuous set,
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rather than multiple items from a discrete one. Additional feedback is received about
components of the objective function, not the items chosen. Hence, the technical chal-
lenges are quite different.

3 Problem Statement and Background

Using the flu prevention as an example, a policymaker will implement a yearly disease
control policy and observe the number of subsequent infections. A policy is an input
xt ∈ Rn, where each entry xt,i denotes the extent to vaccinate the infected people in
age group i. For example, if the government spends more effort xt,i in group i, then the
people in this group will be more likely to get a flu shot.

Given the decomposition assumption and samples (previous policies) at points xt ∀t ∈
[T ], including all the function values f(xt) (total infected population) and decomposed
function values fj(xt) (infected population in group j), the learner attempts to learn the
function f while simultaneously minimizing regret. Therefore, we have two main chal-
lenges: (i) how best to approximate the reward function using the decomposed feedback
and decomposition (non-parametric approximation), and (ii) how to use this estimation
to most effectively reduce the average regret (bandit problem).

3.1 Regression: Non-parametric Approximation

Our first aim is to fully utilize the decomposed problem structure to get a better ap-
proximation of f(x). The goal is to learn the underlying disease pattern faster by us-
ing the decomposed problem structure. Given the linear decomposition assumption
that f(x) =

∑J
j=1 gj(x)fj(x) and noisy samples at points {xt}t∈[T ], the learner

can observe the outcome of each decomposed function fj(xt) at each sample point
xt ∀t ∈ [T ]. Our goal is to provide a Bayesian update to the unknown function which
fully utilizes the learner’s knowledge of the decomposition.

3.2 Bandit Problem: Minimizing Regret

In the flu example, each annual flu-awareness campaign is constrained by a budget,
and we assume policymaker does not know the underlying disease spread pattern. At
the beginning of each year, the policymaker chooses a new campaign policy based on
the previous years’ results and observes the outcome of this new policy. The goal is to
minimize the cumulative regret (all additional infections in prior years) while learning
the underlying unknown function (disease pattern).

We will show how a decomposed GP regression, with a GP-UCB algorithm, can be
used to address these challenges.

4 Decomposed Gaussian Process Regression

First, we propose a decomposed GP regression (Algorithm 2). The idea behind decom-
posed GP regression is as follows: given the linear decomposition assumption (Def-
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(a) Decomposed functions f1, f2 and their GP regression posteriors.

(b) Entire target function f = f1 + f2 and its
sampled values

(c) The posteriors of decomposed GP
regression and GP regression

Fig. 1: Illustration of the comparison between decomposed GP regression (Algorithm
2) and standard GP regression. Decomposed GP regression shows a smaller average

variance (0.878 v.s. 0.943) and a better estimate of the target function.

inition 1), run Gaussian process regression for each fj(x) individually, and get the
aggregated approximation by f(x) =

∑J
j=1 gj(x)fj(x) (illustrated in Figure 1).

Assuming we have T previous samples with input x1,x2, ...,xT and the noisy
outcome of each individual function yj,t = fj(xt) + εj,t ∀j ∈ [J ], t ∈ [T ], where
εj,t ∼ N(0, σ2

j ), the outcome of the target function f(x) can be computed as yt =∑J
j=1 gj(xt)yj,t. Further assume the function fj(x) is an outcome of GP (0, kj) ∀j.

Therefore the entire function f is also an outcome of GP (0, k) where k(x,x′) =∑J
j=1 gj(x)kj(x,x

′)gj(x
′).

We are going to compare two ways to approximate the function f(x) using existing
samples. (i) Directly use Algorithm 1 with the composed kernel k(x,x′) and noisy
samples {(xt, yt)}t∈[T ] – the typical GP regression process. (ii) For each j ∈ [J ],
first run Algorithm 1 with kernel kj(x,x′) and noisy samples {(xt, yj,t)}t∈[T ]. Then
compose the outcomes with the deterministic weighted function gj(x) to get f(x). This
is shown in Algorithm 2.

Algorithm 2: Decomposed GP Regression

1 Input: kernel functions kj(x,x′) to each fj(x) and previous samples
(xt, yj,t) ∀j ∈ [J ], t ∈ [T ]

2 for j = 1, 2..., J do
3 Let µj,T (x), kj,T (x,x′), σ2

j,T (x) be the output of GP regression with
kj(x,x

′) and (xt, yj,t).

4 Return: kT (x,x′) =
∑J
j=1 g

2
j (x)kj,T (x,x

′)g2j (x
′),

µT (x) =
∑J
j=1 gj(x)µj,T (x), σ

2
T (x) = kT (x,x)
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In order to analytically compare Gaussian process regression (Algorithm 1) and
decomposed Gaussian process regression (Algorithm 2), we are going to compute the
variance (uncertainty) returned by both algorithms. We will show that the latter variance
is smaller than the former. Proofs are in the Appendix for brevity.

Proposition 1. The variance returned by Algorithm 1 is

σ2
T,entire(x) = k(x,x)−

∑
i,j

z>i (
∑
l

DlKl,TDl)
−1zj (6)

where Dj = diag([gj(x1), ..., gj(xT )]) and zi = Dikj,T (x)gj(x) ∈ RT .

Proposition 2. The variance returned by Algorithm 2 is

σ2
T,decomp(x) = k(x,x)−

∑
l
z>l (DlKl,TDl)

−1zl (7)

In order that our approach has lower variance, we first recall the matrix-fractional
function and its convex property.

Lemma 1. Matrix-fractional function h(X,y)=y>X−1y is defined and also convex
on domf={(X,y) ∈ ST+ × RT }.

Now we are ready to compare the variance provided by Proposition 1 and Proposi-
tion 2.

Theorem 1. The variance provided by decomposed Gaussian process regression (Al-
gorithm 2) is less than or equal to the variance provided by Gaussian process regression
(Algorithm 1), which implies the uncertainty by using decomposed Gaussian process
regression is smaller.

Proof (Proof sketch). In order to compare the variance given by Proposition 1 and
Proposition 2, we calculate the difference of Equation 6 and Equation 7. Their differ-
ence can be rearranged as a Jensen inequality with the form of Matrix-fractional func-
tion (Lemma 1), which turns out to be convex. By Jensen inequality, their difference
is non-negative, which implies the variance given by decomposed GP regression is no
greater than the variance given by GP regression.

Theorem 1 implies that decomposed GP regression provides a posterior with smaller
variance, which could be considered the uncertainty of the approximation. In fact, the
posterior belief after the GP regression is still a Gaussian process, which implies the
underlying target function is characterized by a joint Gaussian distribution, where a
smaller variance directly implies a more concentrated Gaussian distribution, leading to
less uncertainty and smaller root-mean-squared error. Intuitively, this is due to Algo-
rithm 2 adopts the decomposition knowledge but Algorithm 1 does not. This contribu-
tion for handling decomposition in the GP regression context is very general and can be
applied to many problems. We will show some applications of this idea in the following
sections, focusing first on how a linear and generalized decompositions can be used to
augment the GP-UCB algorithm for multi-armed bandit problems.
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5 Decomposed GP-UCB Algorithm

The goal of a traditional bandit problem is to optimize the objective function f(x) by
minimizing the regret. However, in our bandit problem with decomposed feedback, the
learner is able to access samples of individual functions fj(x). We first consider a linear
decomposition f(x) =

∑J
j=1 gj(x)fj(x).

In [14], they proposed the GP-UCB algorithm for classic bandit problems and
proved that it is a no-regret algorithm that can efficiently achieve the global optimal
objective value. A natural question arises: can we apply our decomposed GP regression
(Algorithm 2) and also achieve the no-regret property? This leads to our second con-
tribution: the decomposed GP-UCB algorithm, which uses decomposed GP regression
when decomposed feedback is accessible. This algorithm can incorporate the decom-
posed feedback (the outcomes of decomposed function fj), achieve a better approx-
imation at each iteration while maintaining the no-regret property, and converge to a
globally optimal value.

Algorithm 3: Decomposed GP-UCB

1 Input: Input space X ; GP priors µj,0, σj,0, kj ∀j ∈ [J ]
2 for t = 1,2,... do
3 Compute all mean µj,t−1 and variance σ2

j,t−1∀j
4 µt−1(x) =

∑J
j=1 gj(x)µj,t−1(x)

5 σ2
t−1(x) =

∑J
j=1 g

2
j (x)σ

2
j,t−1

6 Choose xt = argmaxx∈X µt−1(x) +
√
βtσt−1(x)

7 Sample yj,t = fj(xt) ∀j ∈ [J ]
8 Perform Bayesian update to obtain µj,t, σj,t ∀j∈ [J ]

Theorem 2. Let δ ∈ (0, 1) and βt = 2 log(|X |t2π2/6δ). Running decomposed GP-
UCB (Algorithm 3) for a composed sample f(x) =

∑
j=1 gj(x)fj(x) with bounded

variance kj(x,x) ≤ 1 and each fj ∼ GP (0, kj(x,x
′)), we obtain a regret bound

of O(
√
T log |X |

∑J
j=1B

2
j γj,T ) with high probability, where Bj = maxx∈X |gj(x)|.

Precisely,

Pr
{
RT ≤

√
C1TβT

∑J

j=1
B2
j γj,T ∀T ≥1

}
≥ 1− δ (8)

where C1 = 8/ log(1 + σ−2) with noise variance σ2.

We present Algorithm 3, which replaces the Gaussian process regression in GP-
UCB with our decomposed Gaussian process regression (Algorithm 2). According to
Theorem 1, our algorithm takes advantage of decomposed feedback and provides a
more accurate and less uncertain approximation at each iteration. We also provide a
regret bound in Theorem 2, which guarantees no-regret property to Algorithm 3.
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According to the linear decomposition and the additive and multiplicative properties
of kernels, the entire underlying function is still an outcome of GP with a composed
kernel k(x,x′) =

∑J
j=1 gj(x)kj(x,x

′)gj(x
′), which implies that GP-UCB algorithm

can achieve a similar regret bound by normalizing the kernel k(x,x′) ≤
∑J
j=1B

2
j =

B2. The regret bound of GP-UCB can be given by:

Pr{RT ≤
√
C1TβTB2γentire,T ∀T ≥ 1} ≥ 1− δ (9)

where γenitre,T is the upper bound on the information gain I(yT ; fT ) of the composed
kernel k(x,x′).

But due to Theorem 1, D-GPUCB can achieve a lower variance and more accurate
approximation at each iteration, leading to a smaller regret in the bandit setting, which
will be shown to empirically perform better in the experiments.

5.1 No-Regret Property and Benefits of D-GPUCB

Previously, in order to guarantee a sublinear regret bound to GP-UCB, we require an
analytical, sublinear bound γentire,T on the information gain. [14] provided several ele-
gant upper bounds on the information gain of various kernels. However, in practice, it is
hard to give an upper bound to a composed kernel k(x,x′) and apply the regret bound
(Inequality 9) provided by GP-UCB in the decomposed context.

Instead, D-GPUCB and the following generalized D-GPUCB provide a clearer ex-
pression to the regret bound, where their bounds (Theorem 2, 3) only relate to upper
bounds γj,T of the information gain of each kernel kj(x,x′). This resolves the prob-
lem of computing an upper bound of a composed kernel. We use various sublinear upper
bounds of different kernels, which have been widely studied in prior literature [14].

5.2 Generalized Decomposed GP-UCB Algorithm

We now consider the general decomposition (Definition 2):

f(x) = g(f1(x), f2(x), ..., fJ(x))

To achieve the no-regret property, we further require the function g to have bounded par-
tial derivatives |∇jg(x)| ≤ Bj ∀j ∈ [J ]. This corresponds to the linear decomposition
case, where |∇jg| = |gj(x)| ≤ Bj .

Since, a non-linear composition of Gaussian processes is no longer a Gaussian pro-
cess, the standard GP-UCB algorithm does not have any guarantees for this setting.
However, we show that our approach, which leverages the special structure of the prob-
lem, still enjoys a no-regret guarantee:

Theorem 3. By running generalized decomposed GP-UCB with hyperparameter βt =
2 log(|X |Jt2π2/6δ) for a composed sample f(x) = g(f1(x), ..., fJ(x)) of GPs with
bounded variance kj(x,x) ≤ 1 and each fj ∼ GP (0, kj(x,x

′)). we obtain a regret
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Algorithm 4: Generalized Decomposed GP-UCB

1 Input: Input space X ; GP priors µj,0, σj,0, kj ∀j ∈ [J ]
2 for t = 1,2,... do
3 Compute the aggregated mean and variance bound:
4 µt−1(x) = g(µ1,t−1(x), ..., µJ,t−1(x))

5 σ2
t−1(x) = J

J∑
j=1

B2
jσ

2
j,t−1(x)

6 Choose xt = argmaxx∈X µt−1(x) +
√
βtσt−1(x)

7 Sample yj,t = fj(xt) ∀j ∈ [J ]
8 Perform Bayesian update to obtain µj,t, σj,t ∀j∈ [J ]

bound ofO(
√
T log |X |

∑J
j=1B

2
j γj,T ) with high probability, whereBj = max

x∈X
|∇jg(x)|.

Precisely,

Pr
{
RT ≤

√
C1TβT

∑J

j=1
B2
j γj,T ∀T ≥ 1

}
≥ 1− δ (10)

where C1 = 8/ log(1 + σ−2) with noise variance σ2.

The intuition is that so long as each individual function is drawn from a Gaussian
process, we can still perform Gaussian process regression on each function individu-
ally to get an estimate of each decomposed component. Based on these estimates, we
compute the corresponding estimate to the final objective value by combining the de-
composed components with the function g. Since the gradient of function g is bounded,
we can propagate the uncertainty of each individual approximation to the final objective
function, which allows us to get a bound on the total uncertainty. Consequently, we can
prove a high-probability bound between our algorithm’s posterior distribution and the
target function, which enables us to bound the cumulative regret by a similar technique
as Theorem 2.

The major difference for general decomposition is that the usual GP-UCB algo-
rithm no longer works here. The underlying unknown function may not be an outcome
of Gaussian process. Therefore the GP-UCB algorithm does not have any guarantees
for either convergence or the no-regret property. In contrast, D-GPUCB algorithm still
works in this general case if the learner is able to attain the decomposed feedback.

Our result greatly enlarges the feasible functional space where GP-UCB can be ap-
plied. We have shown that the generalized D-GPUCB preserves the no-regret property
even when the underlying function is a composition of Gaussian processes. Given the
knowledge of decomposition and decomposed feedback, based on Theorem 3, the func-
tional space that generalized D-GPUCB algorithm can guarantee no-regret is closed
under arbitrary bounded-gradient function composition. This leads to a very general
functional space, showcasing the contribution of our algorithm.
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5.3 Continuous Sample Space

All the above theorems are for discrete sample spaces X . However, most real-world
scenarios have a continuous space. [14] used the discretization technique to reduce
the compact and convex continuous sample space to a discrete case by using a larger
exploration constant:

βt = 2 log(2t2π2/(3δ)) + 2d log(t2dbr
√

log(4da/δ))

while assuming Pr{supx∈X |∂f/∂xi|>L}≤ae−(L/b)
2

. (In the general decomposition
case, βt = 2 log(2Jt2π2/(3δ))+2d log(t2dbr

√
log(4da/δ))). All of our proofs directly

follow using the same technique. Therefore the no-regret property and regret bound also
hold in continuous sample spaces.

6 Experiments

In this section, we run several experiments to compare decomposed Gaussian process
regression (Algorithm 2), D-GPUCB (Algorithm 3), and generalized D-GPUCB (Al-
gorithm 4). We also test on both discrete sample space and continuous sample space.
All of our examples show a promising convergence rate and also improvement against
the GP-UCB algorithm, again demonstrating that more detailed modeling reduces the
predictive uncertainty.

6.1 Decomposed Gaussian Process Regression

For the decomposed Gaussian process regression, we compare the average standard
deviation (uncertainty) provided by GP regression (Algorithm 1) and decomposed GP
regression (Algorithm 2) over varying number of samples and number of decomposed
functions. We use the following three common types of stationary kernel [11]:

– Square Exponential kernel is k(x,x′) = exp(−(2l2)−1 ‖x− x′‖2), l is a length-
scale hyper parameter.

– Matérn kernel is given by k(x,x′)=(21−ν/Γ (ν))rνBν(r), r=(
√
2ν/l) ‖x− x′‖,

where ν controls the smoothness of sample functions and Bν is a modified Bessel
function.

– Rational Quadratic kernel is k(x,x′) = (1+‖x− x′‖2 /(2αl2))−α. It can be seen
as a scale mixture of square exponential kernels with different length-scales.

For each kernel category, we first draw J kernels with random hyper-parameters. We
then generate a random sample function fj from each corresponding kernel kj as the
target function, combined with the simplest linear decomposition (Definition 1) with
gj(x) ≡ 1∀j. For each setting and each T ≤ 50, we randomly draw T samples as the
previous samples and perform both GP regression and decomposed GP regression. We
record the average improvement in terms of root-mean-squared error (RMSE) against
the underlying target function over 100 independent runs for each setting. We also run
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(a) Square exponential
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(b) Matern kernel
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(c) Rational quadratic
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(d) Flu domain
Fig. 2: Average improvement for different kernels (with trend line) using decomposed

GP regression and GP regression, in RMSE
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(a) Synthetic data
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(c) Perceived temperature
Fig. 3: Comparison of cumulative regret: D-GPUCB, GP-UCB, and various heuristics

on synthetic (a) and real data (b, c)

experiments on flu domain with square exponential kernel based on real data and SIR
model [4], which is illustrated in Figure 2(d).

Empirically, our method reduces the RMSE in the model’s predictions by 10-15%
compared to standard GP regression (without decomposed feedback). This trend holds
across kernels, and includes both synthetic data and the flu domain (which uses a real
dataset). Such an improvement in predictive accuracy is significant in many real-world
domains. For instance, CDC-reported 95% confidence intervals for vaccination-averted
flu illnesses for 2015 range from 3.5M-7M and averted medical visits from 1.7M-3.5M.
Reducing average error by 10% corresponds to estimates which are tighter by hundreds
of thousands of patients, a significant amount in policy terms. These results confirm our
theoretical analysis in showing that incorporating decomposed feedback results in more
accurate estimation of the unknown function.

6.2 Comparison between GP-UCB and D-GPUCB

We now move the online setting, to test whether greater predictive accuracy results in
improved decision making. We compare our D-GPUCB algorithm and generalized D-
GPUCB with GP-UCB, as well as common heuristics such as Expected Improvement
(EI) [8] and Most Probable Improvement (MPI) [7]. For all the experiments, we run 30
trials on all algorithms to find the average regret.

Synthetic Data (Linear Decomposition with Discrete Sample Space): For synthetic
data, we randomly draw J = 10 square exponential kernels with different hyper-
parameters and then sample random functions from these kernels to compose the entire
target function. The sample noise is set to be 10−4. The sample space X = [0, 1] is
uniformly discretized into 1000 points. We follow the recommendation in [14] to scale
down βt by a factor 5 for both GP-UCB and D-GPUCB algorithm. We run each algo-
rithm for 100 iterations with δ = 0.05 for 30 trials (different kernels and target functions
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(a) Synthetic data
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(b) Flu prevention
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(c) Perceived temperature
Fig. 4: Comparison of average regret: D-GPUCB, GP-UCB, and various heuristics on

synthetic (a) and real data (b, c)

each trial), where the cumulative regrets are shown in Figure 3(a), and average regret in
Figure 4(a).

Flu Prevention (Linear Decomposition with Continuous Sample Space): We con-
sider a flu age-stratified SIR model [4] as our target function. The population is stratified
into several age groups: young (0-19), adult (20-49), middle aged (50-64), senior (65-
69), elder (70+). The SIR model allows the contact matrix and susceptibility of each
age group to vary. Our input here is the vaccination rate x ∈ [0, 1]5 with respect to
each age group. Given a vaccination rate x, the SIR model returns the average sick
days per person f(x) within one year. The model can also return the contribution to
the average sick days from each age group j, which we denote as fj(x). Therefore we
have f(x) =

∑5
j=1 fj(x), a linear decomposition. The goal is to find the optimal vac-

cination policy which minimizes the average sick days subject to budget constraints.
Since we do not know the covariance kernel functions in advance, we randomly draw
1000 samples and fit a composite kernel (composed of square exponential kernel and
Matérn kernel) before running UCB algorithms. We run all algorithms and compare
their cumulative regret in Figure 3(b) and average regret in Figure 4(b).

Perceived Temperature (General Decomposition with Discrete Sample Space): The
perceived temperature is a combination of actual temperature, humidity, and wind speed.
When the actual temperature is high, higher humidity reduces the body’s ability to cool
itself, resulting a higher perceived temperature; when the actual temperature is low, the
air motion accelerates the rate of heat transfer from a human body to the surrounding at-
mosphere, leading to a lower perceived temperature. All of these are nonlinear function
compositions. We use the weather data collected from 2906 sensors in United States
provided by OpenWeatherMap. Given an input location x ∈ X , we can access to the
actual temperature f1(x), humidity f2(x), and wind speed f3(x). In each test, we ran-
domly draw one third of the entire data to learn the covariance kernel functions. Then
we run generalized D-GPUCB and all the other algorithms on the remaining sensors
to find the location with highest perceived temperature. The result is averaged over 30
different tests and is also shown in Figure 3(c) and Figure 4(c).

Discussion: In the bandit setting with decomposed feedback, Figure 3 shows a 10%−
20% improvement in cumulative regret for both synthetic (Figure 3(a) and real data
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(Figure 3(b), 3(c)). As in the regression setting, such improvements are highly signif-
icant in policy terms; a 10% reduction in sickness due to flu corresponds to hundreds
of thousands of infections averted per year. The benefit to incorporating decomposed
feedback is particularly large in the general decomposition case (Figure 3(c)), where a
single GP is a poor fit to the nonlinearly composed function. Figure 4 shows the av-
erage regret of each algorithm (as opposed to the cumulative regret). Our algorithm’s
average regret tends to zero. This allows us to empirically confirm the no-regret guar-
antee for D-GPUCB in both the linear and general decomposition settings. As with the
cumulative regret, D-GPUCB uniformly outperforms the baselines.

7 Conclusions

We propose algorithms for nonparametric regression and online learning which exploit
the decomposed feedback common in real world sequential decision problems. In the
regression setting, we prove that incorporating decomposed feedback improves predic-
tive accuracy (Theorem 1). In the online learning setting, we introduce the D-GPUCB
algorithms (Algorithm 3 and Algorithm 4) and prove corresponding no-regret guar-
antees. We conduct experiments in both real and synthetic domains to investigate the
performance of decomposed GP regression, D-GPUCB, and generalized D-GPUCB.
All show significant improvement against GP-UCB and other methods that do not con-
sider decomposed feedback, demonstrating the benefit that decision makers can realize
by exploiting such information.
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