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ABSTRACT

Stackelberg security games are a critical tool for maximizing the

utility of limited defense resources to protect important targets

from an intelligent adversary. Motivated by green security, where

the defender may only observe an adversary’s response to defense

on a limited set of targets, we study the problem of defending

against the same adversary on a larger set of targets from the same

distribution. We give a theoretical justification for why standard

two-stage learning approaches, where a model of the adversary is

trained for predictive accuracy and then optimized against, may

fail to maximize the defender’s expected utility in this setting. We

develop a decision-focused learning approach, where the adver-

sary behavior model is optimized for decision quality, and show

empirically that it achieves higher defender expected utility than

the two-stage approach when there is limited training data and a

large number of target features.

KEYWORDS

Noncooperative games; Single- and multi-agent planning; Machine

learning

1 INTRODUCTION

Many real-world settings call for allocating limited defender re-

sources against a strategic adversary, such as protecting public in-

frastructure [22], transportation networks [20], large public events

[28], urban crime [29], and green security [8]. Stackelberg security

games (SSGs) are a critical framework for computing defender strate-

gies that maximize expected defender utility to protect important

targets from an intelligent adversary [22].

In many SSG settings, the adversary’s utility function is not

known a priori. In domains where there are many interactions with

the adversary, the history of interactions can be leveraged to con-

struct an adversary behavior model: a mapping from target features

to values [14]. An example of such a domain is protecting wildlife

from poaching [8]. The adversary’s behavior is observable because

snares are left behind, which rangers aim to remove (Figure 1).

Various features such as animal counts, distance to the edge of the

park, weather and time of day may affect how attractive a particular

target is to the adversary.
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Figure 1: Snares removed by

rangers in Srepok National

Park, Cambodia.

We focus on the prob-

lem of learning adver-

sary models that general-

ize well: the training data

consists of adversary be-

havior in the context of

particular sets of targets,

and we wish to achieve

a high defender utility in

the situation where we

are playing against the

same adversary and new

sets of targets. In prob-

lem of poaching preven-

tion, rangers patrol a small portion of the park each day and aim to

predict poacher behavior across a large park consisting of targets

with novel feature values [10].

The standard approach to this problem [14, 19, 27] breaks the

problem into two stages. In the first, the adversary model is fit to

the historical data using a standard machine learning loss function,

such as mean squared error. In the second, the defender optimizes

her allocation of defense resources against the model of adversary

behavior learned in the first stage. Extensive research has focused

on the first, predictive stage: developing better models of human

behavior [1, 6]. We show that models that provide better predictions

may not improve the defender’s true objective: higher expected

utility. This was observed previously by Ford et al. [9] in the context

of network security games, motivating our approach.

We propose a decision-focused approach to adversary modeling

in SSGs which directly trains the predictive model to maximize

defender expected utility on the historical data. Our approach builds

on a recently proposed framework (outside of security games) called

decision-focused learning, which aims to optimize the quality of

the decisions induced by the predictive model, instead of focusing

solely on predictive accuracy [23]; Figure 2 illustrates our approach

vs. a standard two-stage method. The main idea is to integrate

a solver for the defender’s equilibrium strategy into the loop of

machine learning training and update the model to improve the

decisions output by the solver.

While decision-focused learning has recently been explored in

other domains (see related work), we overcome twomain challenges

to extend it to SSGs. First, the defender optimization problem is

typically nonconvex, whereas previous work has focused on convex

problems. Second, decision-focused learning requires counterfac-

tual data—we need to know what our decision outcome quality

would have been, had we taken a different action than the one
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Figure 2: Comparison between a standard two-stage approach to training an adversary model and our decision-focused ap-

proach.

observed in training. By contrast, in SSGs we typically only observe

the attacker’s response to a fixed historical mixed strategy.

In summary, our contributions are:

(1) We provide a theoretical justification forwhy decision-focused

approaches can outperform two-stage approaches in SSGs.

(2) We develop a decision-focused learning approach to adver-

sary modeling in SSGs, showing both how to differentiate

through general nonconvex problems as well as estimate

counterfactual utilities for subjective utility quantal response

[19] and related adversary models.

(3) We test our approach on a combination of synthetic and

human subject data and show that decision-focused learning

outperforms a two-stage approach in many settings.

The paper is laid out as follows. Section 2 gives background

on SSGs, learning in SSGs and introduces decision-focused learn-

ing. Section 3 provides a theoretical justification for why decision-

focused approaches can outperform two-stage approaches in SSGs.

Section 4 describes our technical approach to decision-focused

learning in SSGs, shows to perform decision-focused learning un-

der a smooth, nonconvex objective, and presents how we perform

counterfactual adversary estimates in SSGs. Section 5 provides ex-

perimental results of our approach in simulation and on human

subject data.

Related Work. There is a rich literature on SSGs, ranging from

information revelation [11, 15] to extensive-form models [5] to pa-

trolling on graphs [3, 4]. Adversary modeling in particular has been

a subject of extensive study. Yang et al. [27] show that modeling

the adversary with quantal response (QR) results in more accurate

attack predictions. Nguyen et al. [19] develops subjective utility

quantal response (SUQR), which is more accurate than QR. SUQR is

the basis of other models such as SHARP [14]. We focus on SUQR

in our experiments because it is a relatively simple and widely used

approach. Our decision-focused approach extends to other models

that decompose the attacker’s behavior into the impact of coverage

and target value. Sinha et al. [21] and Haghtalab et al. [12] study the

sample complexity (i.e., the number of attacks required) of learn-

ing an adversary model. Our setting differs from theirs because

their defender observes attacks on the same target set that their

defense performance is evaluated on. Ling et al. [16, 17] use a dif-

ferentiable QR equilibrium solver to reconstruct the payoffs of both

players from play. This differs from our objective of maximizing

the defender’s expected utility.

Outside of SSGs, Hartford et al. [13] and Wright and Leyton-

Brown [24] study the problem of predicting play in unseen games

assuming that all payoffs are fully observable; in our case, the

defender seeks to maximize expected utility and does not observe

the attacker’s payoffs. Hartford et al. [13] is the only other work

to apply deep learning to modeling boundedly rational players in

games.

Wilder et al. [23] and Donti et al. [7] study decision-focused

learning for discrete and convex optimization, respectively. Donti

et al. use sequential quadratic programming to solve a convex non-

quadratic objective and use the last program to calculate derivatives.

Here we propose an approach that works for the broader family of

nonconvex functions.

2 SETTING

We begin by providing a brief background on SSGs.

2.1 Stackelberg Security Games (SSGs)

Our focus is on optimizing defender strategies for SSGs, which

describe the problem of protecting a set of targets given limited

defense resources and constraints on how the resources may be

deployed [22]. Formally, an SSG is a tuple {T ,ud ,ua ,Cd }, where
T is a set of targets, ud ≤ 0 is the defender’s payoff if each target

is successfully attacked, ua ≥ 0 is the attacker’s, and Cd is the set

of constraints the defender’s strategy must satisfy. Both players

receive a payoff of zero when the attacker attacks a target that is

defended.

The game proceeds in two stages: the defender computes a mixed

strategy that satisfies the constraintsCd , which induces a marginal

coverage probability (or coverage) p = {pi : i ∈ T }. The attacker’s

attack function q determines which target is attacked, inducing an

attack probability for each target. The defender seeks to maximize

her expected utility:

max

p satisfying Cd
DEU (p;q) = (1)

max

p satisfying Cd

∑
i ∈T

(1 − pi )qi (ua ,p)ud (i).

The attacker’s q function can represent a rational attacker, e.g.,

qi (p,ua ) = 1 if i = argmaxj ∈T (1 − pj )ua (j) else 0, or a boundedly
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rational attacker. A QR attacker [18] attacks each target with prob-

ability proportional to the exponential of its payoff scaled by a

constant λ, i.e., qi (p) ∝ exp(λ(1 − pi )ua ). An SUQR [19] attacker

attacks each target with probability proportional to the exponential

of an attractiveness function:

qi (p,y) ∝ exp(wpi + ϕ(yi )), (2)

where yi is a vector of features of target i andw < 0 is a constant.

We call ϕ the target value function.

2.2 Learning in SSGs

We consider the problem of learning to play against an attacker

with an unknown attack function q. We observe attacks made by

the adversary against sets of targets with differing features, and

our goal is to generalize to new sets of targets with unseen feature

values.

Formally, let ⟨q,Cd ,Dtrain,Dtest⟩ be an instance of a Stackelberg

security game with latent attack function (SSG-LA). q, which is not

observed by the defender, is the true mapping from the features

and coverage of each target to the probability that the attacker will

attack that target. Cd is the set of constraints that a mixed strategy

defense must satisfy for the defender. Dtrain are training games of

the form ⟨T ,y,A,ud ,phistorical⟩, where T is the set of targets, and

y,A,ud andp
historical

are the features, observed attacks, defender’s

utility function, and historical coverage probabilities, respectively,

for each target i ∈ T . Dtest are test games ⟨T ,y,ud ⟩, each contain-

ing a set of targets and the associated features and defender values

for each target. We assume that all games are drawn i.i.d. from the

same distribution. In a green security setting, the training games

represent the results of patrols on limited areas of the park and the

test games represent the entire park.

The defender’s goal is to select a coverage function x that takes

the parameters of each test game as input and maximizes her ex-

pected utility across the test games against the attacker’s true q:

max

x satisfying Cd
E

⟨T,y,ud ⟩∼Dtest

[DEU (x(T ,y,ud );q)] . (3)

To achieve this, she can observe the attacker’s behavior in the

training data and learn how he values different combinations of

features. We now explore two approaches to the learning problem:

the standard two-stage approach taken by previous work and our

proposed decision-focused approach.

2.3 Two-Stage Approach

A standard two-stage approach to the defender’s problem is to esti-

mate the attacker’s q function from the training data and optimize

against the estimate during testing. This process resembles mul-

ticlass classification where the targets are the classes: the inputs

are the target features and historical coverages, and the output is

a distribution over the predicted attack. Specifically, the defender

fits a function q̂ to the training data that minimizes a loss function.

Using the cross entropy, the loss for a particular training example

is

L(q̂(y,p
historical

),A) = −
∑
i ∈T

q̃ log(q̂i (y,phistorical)), (4)

where q̃ = Ai
|A |

is the empirical attack distribution and Ai is the

number of historical attacks that were observed on target i . Note
that we use hats to indicate model outputs and tildes to indicate the

ground truth. For each test game ⟨T ,y,ud ⟩, coverage is selected
by maximizing the defender’s expected utility assuming the attack

function is q̂:

max

x satisfying Cd
DEU (x(T ,y,ud ); q̂). (5)

2.4 Decision-Focused Learning

The standard approach may fall short when the loss function (e.g.,

cross entropy) does not align with the true goal of maximizing

expected utility. Ultimately, the defender just wants q̂ to induce the

correct mixed strategy, regardless of how accurate it is in a general

sense. The idea behind our decision-focused learning approach is

to directly train q̂ to maximize defender utility. Define

x∗(q̂) = argmax

x satisfying Cd
DEU (x ; q̂) (6)

to be the optimal defender coverage function given attack function

q̂. Ideally, we would find a q̂ which maximizes

DEU (q̂) = E
⟨T,y,ud ⟩∼Dtest

[
DEU (x∗(q̂);q)

]
. (7)

This is just the defender’s expected utility on the test games when

she plans her mixed strategy defense based on attack function q̂
but the true function is q. While we do not have access to Dtest,

we can estimate Eq. 7 using samples from Dtrain (taking the usual

precaution of controlling model complexity to avoid overfitting).

The idea behind decision-focused learning is to directly optimize

Eq. 7 on the training data instead of using an intermediate loss

function such as cross entropy. Minimizing Eq. 7 on the training

set via gradient descent requires the gradient, which we can derive

using the chain rule:

∂DEU (q̂)

∂q̂
= E

⟨T,y,ud ⟩∼Dtrain

[
∂DEU (x∗(q̂);q)
∂x∗(q̂)

∂x∗(q̂)
∂q̂

]
.

Here,
∂DEU (x ∗(q̂);q)

∂x ∗(q̂) describes how the defender’s true utility with

respect to q changes as a function of her strategy x∗.
∂x ∗(q̂)
∂q̂

de-

scribes how x∗ depends on the estimated attack function q̂, which
requires differentiating through the optimization problem in Eq. 6.

Suppose that we have a means to calculate both terms. Then we

can estimate
∂DEU (q̂)

∂q̂
by sampling example games from Dtrain and

computing gradients on the samples. If q̂ is itself implemented in a

differentiable manner (e.g., a neural network), this allows us to train

the entire system end-to-end via gradient descent. Previous work

has explored decision-focused learning in other contexts [7, 23], but

SSGs pose unique challenges that complicate the process of com-

puting both of the required terms above. In Section 4, we explore

these challenges and propose solutions.

3 IMPACT OF TWO-STAGE LEARNING ON

DEU

We demonstrate that, for natural two-stage training loss functions,

decreasing the loss may not lead to increasing the DEU . This indi-

cates that we may be able to improve decision quality by making
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use of decision-focused learning because a decision-focused ap-

proach uses the decision objective as the loss. Thus, reducing the

loss function increases the DEU in decision-focused learning.

We begin with a simple case: two-target games with a rational

attacker and zero-sum utilities.

Theorem 3.1. Consider a two-target SSG with a rational attacker,

zero-sum utilities, and a single defense resource to allocate, which is

not subject to scheduling constraints (i.e., any nonnegative marginal

coverage that sums to one is feasible). Let z0 ≥ z1 be the attacker’s
values for the targets, which are observed by the attacker, but not the

defender, and we assume w.l.o.g. are non-negative and sum to 1.

The defender has an estimate of the attacker’s values (ẑ0, ẑ1) with
mean squared error (MSE) ϵ2. Suppose the defender optimizes cov-

erage against this estimate. If ϵ2 ≤ (1 − z0)
2
, the ratio between the

highestDEU under the estimate of (ẑ0, ẑ1)with MSE ϵ2 and the lowest
DEU is:

(1 − (z0 − ϵ))z0
(1 − (z1 − ϵ))z1

. (8)

Proof. Given the condition that ϵ2 ≤ (1 − z0)
2
, there are two

configurations of ẑ that havemean squared error ϵ2: ẑ0 = z0±ϵ, ẑ1 =
z1 ∓ ϵ . Using Lemma 3.2, the configurations have defender utility

−(1 − (z1 − ϵ))z1 and (1 − (z0 − ϵ))z0, respectively, because the

attacker always attacks the target with underestimated value. The

condition on ϵ2 is required to make both estimates feasible. Because

z0 ≥ z1, −(1 − (z0 − ϵ))z0 ≤ −(1 − (z1 − ϵ))z1. □

Lemma 3.2. Consider a two-target, zero-sum SSG with a ratio-

nal attacker, and a single defense resource, which is not subject to

scheduling constraints. The optimal defender coverage is x0 = z0 and
x1 = z1, and the defender’s payoff under this coverage is −(1−z0)z0 =
−(1 − z1)z1.

Proof. The defender’s maximum payoff is achieved when the

expected value for attacking each target is equal, and we require

that x0 + x1 ≤ 1 for feasibility. With x0 = z0 and x1 = z1, the
attacker’s payoff is (1 − z0)z0 if he attacks target 0 and (1 − z1)z1 =
(1 − (1 − z0))(1 − z0) = z0(1 − z0) if he attacks target 1. □

The reason for the gap in defender expected utilities is that the

attacker attacks the target with value that is underestimated by

(ẑ0, ẑ1). This target has less coverage than it would have if the de-

fender knew the attacker’s utilities precisely, allowing the attacker

to benefit. When the defender reduces the coverage on the larger

value target, the attacker benefits more, causing the gap in expected

defender utilities.

Note that because (8) is at least one (since DEU are negative),

decreasing the MSE does not necessarily lead to higher DEU . For

ϵ > ϵ ′, the learned model at MSE=ϵ2 will have higher DEU than

the model at MSE=(ϵ ′)2 if the former underestimates the value

of z1, the latter underestimates the value of z0 and ϵ , and ϵ ′ are
sufficiently close. In decision-focused learning, the DEU is used as

the loss directly—thus, a model with lower loss must have higher

DEU .

Figure 3 shows theDEU of the highest and lowestDEU estimates

of z as z1 is varied at two different loss levels: ϵ2 = 0.01 and

ϵ2 = 0.02. A larger gap in target values results in a larger impact

on decision quality, and the largest gap occurs when z1 → 0.

Figure 3: DEU as z1 and ϵ2 vary. A larger gap in target val-

ues increases the difference inDEU between the highest and

lowest DEU at a particular loss level ϵ2.

In the case of Theorem 3.1, the defender can lose value z0ϵ , or
ϵ as z0 → 1, compared to the optimum because of an unfavorable

distribution of estimation error. We show that this carries over to a

boundedly rational QR attacker, with the degree of loss converging

towards the rational case as λ increases.

Theorem 3.3. Consider the setting of Theorem. 3.1, but in the case

of a QR attacker. For any 0 ≤ α ≤ 1, if λ ≥ 2

(1−α )ϵ log
1

(1−α )ϵ , the

defender’s loss compared to the optimummay be as much as α(1−ϵ)ϵ
under a target value estimate with MSE ϵ2.

Proof. Let f (p) denote the defender’s utility with coverage prob-
ability p against a perfectly rational attacker and д(p) denote their
utility against a QR attacker. Suppose that we have a bound

д(p) − f (p) ≤ δ

for some value δ . Let p∗ be the optimal coverage probability under

perfect rationality. Note that for an alternate probability p′ > p∗

д(p′) ≤ f (p′) + δ

= f (p∗) − (p′ − p∗)ϵ + δ

≤ д(p∗) − (p′ − p∗)ϵ + δ (since f (p) ≤ д(p) holds for all p)

and so anyp′ > p∗+ δϵ is guaranteed to haveд(p′) < д(p∗), implying

that the defender must have p′ ≤ p∗+ δ
ϵ in the optimal QR solution.

We now turn to estimating how large λ must be in order to get

a sufficiently small δ . Let q be the probability that the attacker

chooses the first target under QR. Note that we have f (p) = ϵp and

д(p) = (1 − p)(1 − ϵ)q + pϵ(1 − q). We have

д(p) − f (p) = (1 − p)(1 − ϵ)q + pϵ(1 − q) − ϵp

= [(1 − p)(1 − ϵ) − pϵ]q

≤ q

For two targets with value 1 and ϵ , q is given by

eλ(1−ϵ )(1−p)

eλϵp + eλ(1−ϵ )(1−p)
=

1

1 + eλ[ϵp−(1−ϵ )(1−p)]
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Provided that λ ≥ 1

ϵp−(1−ϵ )(1−p) log
1

δ =
1

p−(1−ϵ ) log
1

δ , we will

have д(p) − f (p) ≤ δ . Suppose that we would like this bound to

hold over all p ≥ 1 − αϵ for some 0 < α < 1. Then, p − (1 − ϵ) ≥
(1 − α)ϵ and so λ ≥ 1

(1−α )ϵ log
1

δ suffices. Now if we take δ ≤

(1 − α)ϵ2, we have that for λ ≥ 2

(1−α )ϵ log
1

(1−α )ϵ , the QR optimal

strategy p′ must satisfy p′ ≤ 1 − αϵ , implying that the defender

allocates at leastαϵ coverage to the target with true value 0. Suppose
the attacker chooses the target with value 1 with probability q∗.
Then, the defender’s loss compared to the optimum is q∗αϵ . By a

similar argument as above, it is easy to verify that under our stated

conditions on λ, and assuming α ≥ 1

2
, we have q∗ ≥ (1 − ϵ), for

total defender loss (1 − ϵ)αϵ . □

4 DECISION-FOCUSED LEARNING IN SSGS

WITH AN SUQR ADVERSARY

We now present our technical approach to decision-focused learn-

ing in SSGs. As discussed above, we useDEU (q̂), the expected utility
induced by an estimate q̂, as the objective for training. The key idea
is to embed the defender optimization problem into training and

compute gradients of DEU with respect to the model’s predictions.

In order to do so, we need two quantities, each of which poses a

unique challenge in the context of SSGs.

First, we need
∂x ∗(q̂)
∂q̂

, which describes how the defender’s strat-

egyx∗ depends on q̂. Computing this requires differentiating through

the defender’s optimization problem. Previous work on differen-

tiable optimization considers convex problems [2]. However, typical

bounded rationality models for q̂ (e.g., QR, SUQR, and SHARP) all

induce nonconvex defender problems. We resolve this challenge by

showing how to differentiate through the local optimum output by

a black-box nonconvex solver.

Second, we need
∂DEU (x ∗(q̂);q)

∂x ∗(q̂) , which describes how the de-

fender’s true utility with respect to q depends on her strategy x∗.
Computing this term requires a counterfactual estimate of how

the attacker would react to a different coverage vector than the

historical one. Unfortunately, typical datasets only contain a set

of sampled attacker responses to a particular historical defender

mixed strategy. Previous work on decision-focused learning in other

domains [7, 23] assumes that the historical data specifies the utility

of any possible decision, but this assumption breaks down under

the limited data available in SSGs. We show that common models

like SUQR exhibit a crucial decomposition property that enables

unbiased counterfactual estimates. We now explain both steps in

more detail.

4.1 Decision-Focused Learning for Nonconvex

Optimization

Under nonconvexity, all that we can (in general) hope for is a

local optimum. Since there may be many local optima, it is unclear

what it means to differentiate through the solution to the problem.

We assume that we have black-box access to a nonconvex solver

which outputs a fixed local optimum. We show that we can obtain

derivatives of that particular optimum by differentiating through a

convex quadratic approximation around the solver’s output (since

existing techniques apply to the quadratic approximation).

We prove that this procedure works for a wide range of non-

convex problems. Specifically, we consider the generic problem

minx ∈X f (x ,θ ) where f is a (potentially nonconvex) objective

which depends on a learned parameter θ . X is a feasible set that

is representable as {x : д1(x), . . . ,дm (x) ≤ 0,h1(x), . . . ,hℓ(x) = 0}

for some convex functionsд1, . . . ,дm and affine functionsh1, . . . ,hℓ .
We assume there exists some x ∈ X with д(x) < 0, where д is the

vector of constraints. In SSGs, f is the defender objective DEU , θ is

the attack function q̂, andX is the set of x satisfyingCd . We assume

that f is twice continuously differentiable. These two assumptions

capture smooth nonconvex problems over a nondegenerate convex

feasible set.

Suppose that we can obtain a local optimum of f . Formally, we

say that x is a strict local minimizer of f if (1) there exist µ ∈ Rm+
and ν ∈ Rℓ such that ∇x f (x ,θ ) + µ⊤∇д(x) + ν⊤∇h(x) = 0 and

µ ⊙ д(x) = 0 and (2) ∇2 f (x ,θ ) ≺ 0. Intuitively, the first condition

is first-order stationarity, where µ and ν are dual multipliers for

the constraints, while the second condition says that the objective

is strictly convex at x (i.e., we have a strict local minimum, not a

plateau or saddle point). We prove the following:

Theorem 4.1. Let x be a strict local minimizer of f over X. Then,

except on a measure zero set, there exists a convex set I around

x such that x∗
I
(θ ) = argminx ∈I∩X f (x ,θ ) is differentiable. The

gradients of x∗
I
(θ ) with respect to θ are given by the gradients of solu-

tions to the local quadratic approximationminx ∈X
1

2
x⊤∇2 f (x ,θ )x+

x⊤∇f (x ,θ ).

Proof. By continuity, there exists an open ball around x on

which ∇2 f (x ,θ ) is negative definite; let I be this ball. Restricted to

X∩I, the optimization problem is convex, and satisfies Slater’s con-

dition by our assumption on X combined with Lemma 4.2. There-

fore, the KKT conditions are a necessary and sufficient description

of x∗
I
(θ ). Since the KKT conditions depend only on second-order

information, x∗
I
(θ ) is differentiable whenever the quadratic approx-

imation is differentiable. Note that in the quadratic approximation,

we can drop the requirement that x ∈ I since the minmizer over

x ∈ X already lies inI by continuity. Using Theorem 1 of Amos and

Kolter (2017), the quadratic approximation is differentiable except

at a measure zero set, proving the theorem. □

Lemma 4.2. Let д1...дm be convex functions and consider the set

X = {x : д(x) ≤ 0}. If there is a point x∗ which satisfies д(x) < 0,

then for any point x ′ ∈ X, the set X ∩ B(x ′,δ ) contains a point xint
satisfying д(x) < xint and d(xint ,x

′) < δ .

Proof. By convexity, for any t ∈ [0, 1], the point (1 − t)x∗ + tx ′

lies in X, and for t < 1, satisfies д((1 − t)x∗ + tx ′) < 0. Moreoever,

for t sufficiently large (but strictly less than 1), we must have d((1−
t)x∗ + tx ′,x ′) < δ , proving the existence of xint . □

This states that the local minimizer within the region output by

the nonconvex solver varies smoothly with θ , and we can obtain gra-
dients of it by applying existing techniques [2] to the local quadratic

approximation. It is easy to verify that the defender utility maxi-

mization problem for an SUQR attacker satisfies the assumptions

of Theorem 4.1 since the objective is smooth and typical constraint

sets for SSGs are polytopes with nonempty interior (see [25] for a
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8 Targets

24 Targets

Figure 4: DEU −Unif across the three strategies as we vary the number of features, number of training games and number of

observed attacks per training game. When not varied, the parameter values are 100 features, 50 training games and 5 attacks

per game. DF receives higher DEU than 2S for most parameter values.

list of examples). In fact, our approach is quite general and applies

to a range of behavioral models such as QR, SUQR, and SHARP

since the defender optimization problem remains smooth in all.

4.2 Counterfactual Adversary Estimates

We now turn to the second challenge, that of estimating how well a

different strategy would perform on the historical games. We focus

here on the SUQR attacker, but the main idea extends more widely

(as we discuss below). For SUQR, if the historical attractiveness

values ϕ(yi ) were known, then
∂DEU
∂x ∗ could be easily computed

in closed form using Eq. 2. The difficulty is that we typically only

observe samples from the attack distribution q, where for SUQR,
qi ∝ exp(wpi + ϕ(yi )). ϕ(yi ) itself is not observed directly.

The crucial property enabling counterfactual estimates is that

the attacker’s behavior can be decomposed into his reaction to the

defender’s coverage (wpi ) and the impact of target values (ϕ(yi )).
Suppose that we knoww and observe sampled attacks for a particu-

lar historical game. Because we can estimate qi and the termwpi is
known, we can invert the exp function to obtain an estimate ofϕ(yi )
(formally, this corresponds to the maximum likelihood estimator

under the empirical attack distribution). Note that we do not know

the entire function ϕ, only its value at yi , and that the inversion

yields ϕ(yi ) that is unique up to a constant additive factor. Hav-

ing recovered ϕ(yi ), we can then perform complete counterfactual

reasoning for the defender on the historical games.

5 EXPERIMENTS

We compare the performance of decision-focused and two-stage

approaches across a range of settings both simulated and real (using

data fromNguyen et al. [19]).We find that decision-focused learning

outperforms two-stage when the number of training games is low,

the number of attacks observed on each training game is low, and

the number of target features is high. We compare the following

three defender strategies:

(1) Decision-focused (DF) is our decision-focused approach. For

the prediction neural network, we use a single layer with

ReLU activations with 200 hidden units on synthetic data

and 10 hidden units on the simpler human subject data. We

do not tune DF.

(2) Two-stage (2S) is a standard two-stage approach, where a

neural network is fit to predict attacks, minimizing cross-

entropy on the training data, using the same architecture as

DF. We find that two-stage is sensitive to overfitting, and

thus, we use Dropout and early stopping based on a valida-

tion set.

(3) Uniform attacker values (Unif) is a baseline where the de-

fender assumes that the attacker’s value for all targets is

equal and maximizes DEU under that assumption.

5.1 Experiments in Simulation

We perform experiments against an attacker with an SUQR target

attractiveness function. Raw features values are sampled i.i.d. from

the uniform distribution over [-10, 10]. Because it is necessary that

the attacker target value function is a function of the features,

we sample the attacker and defender target value functions by

generating a random neural network for the attacker and defender.

Our other parameter settings are chosen to align with Nguyen

et al.’s [19] human subject data. We rescale defender values to be

between -10 and 0.

We choose instance parameters to illustrate the differences in

performance between decision-focused and two-stage approaches.

We run 28 trials per parameter combination. Unless it is varied in

an experiment, the parameters are:

(1) Number of targets = |T | ∈ {8, 24}.

(2) Features per target = |y |/|T | = 100.

(3) Number of training games = |Dtrain | = 50. We fix the number

of test games = |Dtest | = 50.

(4) Number of attacks per training game = |A| = 5.

(5) Defender resources is the number of defense resources avail-

able. We use 3 for 8 targets and 9 for 24.

(6) We fix the attacker’s weight on defender coverage to be

w = −4 (see Eq. 2), a value chosen because of its resemblance

to observed attacker w in human subject experiments [19,

26]. All strategies receive access to this value, which would

require the defender to vary her mixed strategies to learn.

(7) Historical coverage = p
historical

is the coverage generated by

Unif, which is fixed for each training game.
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Figure 5: DEU −Unif from human subject data for 8 and 24 targets, as the number of attacks per training game is varied and

number of training games is varied. DF receives higher DEU for most settings, especially for 24-target games.

Results (Simulations). Figure 4 shows the results of the exper-

iments in simulation, comparing DF and 2S across a variety of

problem types. DF yields higher DEU than 2S across most tested

parameter settings and DF especially excels in problems where

learning is more difficult: more features, fewer training games and

fewer attacks. The vertical axis of each graph is median DEU mi-

nus the DEU achieved by Unif. Because Unif does not perform

learning, its DEU is unaffected by the horizontal axis parameter

variation, which only affects the difficulty of the learning problem,

not the difficulty of the game. The average DEU (Unif) = −2.5 for

8 targets and DEU (Unif) = −4.2 for 24.

The left column of Figure 4 compares DF to 2S as the number

of attacks observed per game increases. For both 8 and 24 targets,

DF receives higher DEU than 2S across the tested range. 2S fails to

outperform Unif at 2 attacks per target, whereas DF receives 75%

of the DEU it receives at 15 attacks per target.

The center column of Figure 4 compares DEU as the number

of training games increases. Note that without training games, no

learning is possible and DEU (2S) = DEU (DF) = DEU (Unif). DF

receives equal or higher DEU than 2S, except for 24 targets and 200

training games.

The right column of Figure 4 compares DEU as the number of

features decreases. A larger number of features results in a harder

learning problem, as each feature increases the complexity of the

attacker’s value function. Of the the parameters we vary, features

has the largest impact on the relative performance of DF and 2S.

DF performs better than 2S for more than 50 features (for 8 targets)

and 100 features (for 24 targets). For more than 150 features, 2S fails

to learn for both 8 and 24 targets and performs extremely poorly.

5.2 Experiments on Human Subject Data

We use data from human subject experiments performed by Nguyen

et al. [19]. The data consists of an 8-target setting with 3 defender

resources and a 24-target setting with 9. Each setting has 44 games.

Historical coverage is the optimal coverage assuming a QR attacker

with λ = 1. For each game, 30-45 attacks by human subjects are

recorded.

We use the attacker coverage parameterw calculated by Nguyen

et al. [19]: −8.23. We use maximum likelihood estimation to calcu-

late the ground truth target values for the test games. There are four

features for each target: attacker’s reward and defender’s penalty

for a successful attack, attacker’s penalty and defender’s reward for

a failed attack. Note that to be consistent with the rest of the paper,

we assume the defender receives a reward of 0 if she successfully

prevents an attack.

Results (Human Subject Data). We find that DF receives higher

DEU than 2S on the human subject data. Figure 5 summarizes our

results as the number of training attacks per target and games are

varied. Varying the number of attacks, for 8 targets, DF achieves

its highest percentage improvement in DEU at 5 attacks where it

receives 28% more than 2S. For 24 targets, DF achieves its largest

improvement of 66% more DEU than 2S at 1 attack.

Varying the number of games, DF outperforms 2S except for

fewer than 10 training games in the 8-target case. The percent-

age advantage is greatest for 8-target games at 20 training games

(33%) and at 2 training games for 24-target games, where 2S barely

outperforms Unif.

The theorems of Section 3 suggest that models with higher DEU
may not have higher predictive accuracy. We find that, indeed, this

can occur. The effect is most pronounced in the human subject

experiments, where 2S has lower test cross entropy than DF by

2–20%. Note that we measure test cross entropy against the attacks

generated by Unif, the same defender strategy used to generate

the training data and that 2S received extensive hyperparameter to

improve validation cross entropy and DF did not.

6 CONCLUSION

We present a decision-focused approach to adversary modeling in

security games. We provide a theoretical justification as to why

training an attacker model to maximize DEU can provide higher

DEU than training the model to maximize predictive accuracy. We

extend past work in decision-focused learning to smooth noncon-

vex objectives, accounting for the defender’s optimization in SSGs

against many attacker types, including SUQR. We show empirically,

in both synthetic and human subject data, that our decision-focused

approach outperforms standard two stage approaches.

We conclude that improving predictive accuracy does not guar-

antee increasedDEU in SSGs. We believe this conclusion has impor-

tant consequences for future research and that our decision-focused

approach can be extended to a variety of SSG models where smooth

nonconvex objectives and polytope feasible regions are common.
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