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ABSTRACT
We consider the problem of selecting a subset of nodes (individuals)
in a (social) network that can act as monitors capable of “watching-
out” for their neighbors (friends) when the availability or perfor-
mance of the chosen monitors is uncertain. Such problems arise
for example in the context of “Gatekeeper Trainings” for suicide
prevention. We formulate this problem as a two-stage robust opti-
mization problem that aims to maximize the worst-case number of
covered nodes. Our model is capable of incorporating domain spe-
cific constraints, e.g., fairness constraints. We propose a practically
tractable approximation scheme and we provide empirical results
that demonstrate the effectiveness of our approach.
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1 INTRODUCTION
Motivation. Social networks are the substrate for a wide range

of multiagent systems [1, 11, 12, 22]. In this regard, a notable prob-
lem consists in identifying, among all heterogeneous “actors” (or
“agents”) in the network, a suitable subset to most efficiently or
effectively fulfill a particular task. In particular, we consider the
problem of selecting a subset of nodes (individuals) in a (social)
network that can act as “peer-monitors” capable of “watching-out”
for their neighbors (e.g., friends) when the availability or perfor-
mance of the chosen monitors is uncertain. Such problems arise
for example in the context of “gatekeeper” trainings [15] which are
considered best practice among suicide prevention professionals.
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Gatekeepers trained in suicide prevention and intervention are able
to recognize warning signs of suicidal behavior among their peers
and refer them to appropriate professionals as needed. Yet, when
an individual is selected as a candidate to attend the training, they
may be unwilling or unable to participate in the training or they
may perform poorly as gatekeepers.

Traditional models and solutions for the monitoring problem
on graphs under uncertainty assume that nodes are characterized
solely by their position in the network, that the distribution of node
availabilities is known, or only allow for budget constraints on the
total number of monitors, see the literature review section.

These assumptions fail to hold in many real-world domains in
which we are faced with heterogeneous agents (e.g., individuals
with different races, genders, etc.). In such problems, and specially
in socially sensitive domains such as gatekeeper training, it is cru-
cial to ensure that agents of different types are treated fairly and
equally (e.g., fairness by race). Finally, in many real-world contexts,
very little information (historical data) is available to help inform
or estimate the likelihood that a particular node will be available,
should it be selected as a monitor. These characteristics motivate
us to formulate the peer-monitoring problem on graphs under un-
certainty in monitor performance as a robust optimization problem
where we seek to maximize the worst-case coverage when some of
the selected monitors do not succeed in the monitoring task (e.g.,
do not attend the training or do not perform well following train-
ing). Our contributions can be summarized as (i) modeling “robust
peer-monitoring” problem as a novel two-stage robust optimization
problem; (ii) providing a tractable approximation scheme, where
the approximation level is adjustable by a single design parameter;
(iii) a solution scheme that can handle arbitrary constraints of the
domain, including fairness constraints.

Related Work. This problem is related to robust sub-modular
optimization. In this regard, Orlin et al. [19] studied a a problem, in
which one chooses a set of up to I items, and nature counteracts
by eliminating at most J of those items. This work was followed
by [7, 24], where in [24], the authors propose another greedy-based
algorithm with a bound based on the curvature of the sub-modular
function. Although these greedy algorithms are computationally
efficient, they are not always implementable in practice due to
domain specific constraints such as fairness restrictions.



Coverage (%) Fairness Rate (%)
Size (N) Exact K=1 K=2 K=3 Greedy[24] Exact K=1 K=2 K=3 Greedy[24]

30 43.0 15.3 24.7 33.0 38.0 100 100 100 100 80
50 - 30.0 41.0 53.8 59.0 - 100 100 100 70
70 - 28.5 31.5 41.3 45.2 - 100 100 100 30

Table 1: Solution quality and fairness satisfiability of Exact, BD-forK (K=1,2,3) and a greedy heuristic, in real network samples

Our solution approach most closely relates to the robust opti-
mization paradigm and specifically to the class of two-stage robust
optimization with binary second-stage decisions. To approximate
the solution to these problems, finite adaptability has been pro-
posed. In particular, in [14], the authors show that for uncertainty
sets as a bounded polyhedron, a two-stage robust optimization, can
be approximately reformulated as anMILP. Later, [21] extended this
result to a special case of discrete uncertainty sets. Finally, we note
that robustness has been explored in different areas of multiagent
systems as well. Notably, [10, 13, 18]. We note that this problem is
conceptually different than the one we wish to investigate.

2 PROBLEM STATEMENT
A social network is represented as a directed graph G = (N , E),
where N is the set of nodes (individuals) and E is the set of edges.
An edge from u to v exists if v reports u as a friend. For a node
u, δ (u) := {v ∈ N : (v,u) ∈ E} indicates its set of neighbors in
G. We aim to maximize the coverage by selecting a set X ⊆ N

of at most I nodes. Next, “nature” selects a subset of at most ⌊γ I⌋
nodes to be unavailable, where γ is the participation rate. A node is
covered if at least one of its neighbors is chosen and available. Next,
we provide the mathematical formulation of this problem.

2.1 Two-stage Robust Peer-Monitoring
First, we note that in the worst case, nature will choose the unavail-
able nodes from the set of chosen individuals, even if it is given the
option to choose any node. This intuition allows us to formulate
the peer monitoring problem as (1).

max
x ∈X

min
ξ ∈Ξ

max
y∈{0,1}N


∑
n∈N

yn :
∑

n′∈δ (n)

ξn′xn′ ≥ yn ,∀n
 , (1)

in which Ξ is defined, independently of decision x , as:

Ξ :=

{
ξ ∈ {0, 1} |N | :

∑
n∈N

(1 − ξn ) ≤ ⌊γ I⌋

}
(2)

In this formulation, x is a binary vector and xn = 1 if and only
if node n is chosen. Also, ξn = 1 if and only if node n is available.
Binary vector y indicates which nodes are covered. Set X = {x :∑
n∈N xn ≤ I } is the set of all feasible node selections. We note

this this set can also include arbitrary linear constraints. The first
maximization problem decides which nodes x to invite. Following
that, in the inner minimization problem, nature chooses the un-
available nodes. The set of all possible scenarios (nature’s actions),
is expressed as set Ξ. According to the definition of Ξ, at most ⌊γ I⌋
can be unavailable. Finally, the inner-most maximization problem
determines the covered nodes, where the constraints stipulate that

a node can be covered if out of its chosen neighbors, at least one of
them is available.

2.2 Solution Approach: K-Adaptability
K-Adaptability has been proposed to approximate the two-stage
robust optimization problems with binary second-stage decisions.
In K-Adaptability, K non-adjustable second-stage covering poli-
cies yk ,k ∈ K (K := {1, · · · ,K}) are chosen before the uncertain
parameters are known. ykn = 1 indicates that node n is covered
according to that policy. Once the node availabilities are observed,
the best policy among the feasible ones will be implemented. Math-
ematically, the K-Adaptability counterpart problem is modeled as:

max
yk ∈{0,1}N

x ∈X

min
ξ ∈Ξ

max
k ∈K

{ ∑
n∈N

ykn : ykn ≤
∑

n′∈δ (n)

ξn′xn′ ,∀n}.
(3)

In the K-adaptability problem, instead of considering each realiza-
tion of the uncertain parameters, and finding the (robustly) optimal
y for each scenario, we pre-commit to only K covering policies,
decided in the first stage. Each policy encodes a possible network
coverage, but it is decided before observing who among the chosen
nodes is unavailable. The main contribution of this work is that
we reformulate the K-adaptability problem exactly as a moderately
sized mixed-integer linear program even though the set Ξ is dis-
crete. We also, propose a Bender’s decomposition based algorithm
to efficiently solve this MILP formulation. Our algorithm augments
the standard implementation with symmetry breaking cuts which
significantly reduce the search of the K covering policies.

2.3 Results
Webenchmark our approach against an exact approach, based on ex-
plicit enumeration of scenarios, and the greedy algorithm of [24], in
terms of constraints satisfaction, and coverage. We evaluate on real
social network samples of college students. We impose constraints
to ensure different communities in the network will have equal
representation in the gatekeeper training. We consider training
capacity proportional to the network size (B = 0.3N ), and failure
rate equal to γ = 0.3B. The time limit is 2 hours for all approaches.
Table 1 compares the number of times that the heuristics satisfy
the fairness constraints. As expected, the K-adaptability solution is
always feasible. In contrast, the heuristics are greatly challenged in
the face of new domain constraints specially as the network size
increases. We also investigate the performance of our algorithm
for K = 1, 2, 3, where we observe we obtain competitive perfor-
mance against greedy as the values ofK increases. Finally, the exact
approach does not scale beyond N = 30.
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