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ABSTRACT
In the real world, real-time data are nowwidely available, especially
in security domains. Security cameras, aerial imagery, and even
social media keep defenders informed when protecting important
events, locations, and people. Further, advances in artificial intelli-
gence have led to tools that can interpret these data automatically.
Game theoretic models, for example, have shown great success in se-
curity. However, most of them ignore real-time information. In this
paper, we demonstrate the potential to use real-time information
from imagery to better inform our decisions in game theoretic mod-
els for security. As a concrete example, a conservation group called
Air Shepherd uses conservation drones equipped with thermal in-
frared cameras to locate poachers at night and alert park rangers.
They have also used lights aboard the drones, or signaled, to warn
poachers of their presence, which often deters the poachers. We
propose a system that (i) allocates drones and humans strategically
throughout a protected area, (ii) detects poachers in the thermal
infrared videos recorded by the conservation drones flying through
the protected area in the predetermined location, and (iii) recom-
mends moving to the location and/or signaling to the poacher that
a patroller is nearby depending on real-time detections. View the
demonstration: http://bit.ly/aamas19-demo-bondi-et-al.
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1 INTRODUCTION
In conservation, we can optimize limited conservation security re-
sources to protect endangered wildlife and forests using the green
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security games (GSG) framework. Specifically, the GSG framework
has shown success in the task of allocating patrollers in a protected
area [5, 7]. The patrollers can log any signs of poaching they may
encounter while patrolling, which may be useful in determining
future patrols. However, by incorporating real-time data, we may
be able to do more for current patrols. Consider using conservation
drones during patrols, for example. They can make real-time detec-
tions of poachers and notify patrollers of the detection location, and
they can send signals to notify poachers that a patroller is nearby.
Although these signals may deter poachers, eventually the poachers
will likely attack if warning signals are always sent without any
response from human patrollers. To maintain a deterrence effect, it
is necessary to signal truthfully at least some of the time. A game
theoretic model can be used to determine when signaling should be
done, as shown in [8]. It may even be used to plan for false negative
(i.e., missed) image detections [4]. In fact, in this demonstration,
we present a system to make recommendations based on real-time
image detection with uncertainty in the domain of conservation.

2 SPOT: USING REAL-TIME INFORMATION
Thermal infrared cameras are used aboard these conservation drones
in order to detect poachers at night when poaching typically occurs.
However, aerial thermal infrared imagery is quite different from
the eye-level, visible spectrum photos used to train deep learning
algorithms like Faster RCNN. Therefore, VIOLA [3] was used to
label objects of interest, such as wildlife and poachers, in historical
thermal infrared imagery from Air Shepherd. SPOT [2] was devel-
oped by training Faster RCNN on these data, and was the first (to
our knowledge) aerial thermal detector for wildlife and poachers.

To evaluate SPOT’s performance, precision and recall were mea-
sured for historical videos and a field test run by Air Shepherd in
the field. SPOT outperformed Air Shepherd’s previous application
in both precision and recall for large-sized poachers and animals,
and in the field test video. By adding simulated data generated using
AirSim-W [1], a simulator for UAVs, SPOT achieves 0.7799 preci-
sion and 0.0374 recall on the large-size poacher historical video,
as opposed to the previous algorithm which achieved only 0.0052
precision and 0.0159 recall. It is important to note that there is still
ample detection uncertainty using SPOT with real and simulated
data, which we address in our game theoretic model [4].
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Figure 1: Steps in demonstration.

Figure 2: Google Earth snapshot showing potential poaching
hotspots in a protected area in South Africa.

3 DEMONSTRATION
We demonstrate a software tool that could be deployed in the real
world to detect poachers and respond to poaching incidents strategi-
cally, thereby easing the burden on Air Shepherd and park rangers.
The demonstration will consist of the steps shown in Fig. 1 that
integrate SPOT and game theoretic models to provide real-time
detections in images and real-time recommendations to users.

First, the user can select poaching hotspots in the protected
area. The poaching hotspots could be chosen based on a predictive
model for poaching incidents, such as [6], or from domain expert
knowledge. In our example, we are using potential hotspots in a
protected area in South Africa. This is shown in Fig. 2. Users would
be able to select their own hotspots.

Next, the user would enter details about the resources available
to them, such as the number of human and drone patrollers and
the approximate distance that could be traversed to respond to a
poaching incident. This determines if a patroller could respond if a
poacher was detected nearby, or if signaling was the only option,
for example. These details are directly input to the game theoretic
model, and then a randomized (mixed) strategy is determined to
cover the park. At that point, a (pure) strategy is selected for the
current night based on the mixed strategy. In the real world, the
option to select from a previously computed mixed strategy would
be provided, but for the purposes of the demonstration, the strategy
will be recomputed and a pure strategy will be selected each time
we use this software tool. We will then report this to the user.

Figure 3: After detecting and confirming a poacher, provide
recommendation, which in this case is sending a signal.

Figure 4: Read in the poaching hotspots and gather informa-
tion about the protected area’s security resources.

Then, in the field, the drone(s) would start flying in the location
to which it was assigned, and video would be transmitted to the
base station in real time. In the demonstration, we have several
historical videos associated with various potential hotspots in the
park. We then start the SPOT detection system with the signaling
and response recommendation enabled. The user is also prompted
for other options of the SPOT system, such as whether the video as-
signs warm objects white or black in the grayscale images, whether
there is a border or any text (e.g., altitude, time) on the video feed,
whether sound should be made when there is a detection, etc.

SPOT then alerts the user when a poacher is detected. It first
asks whether the detection is true (i.e., if it is really a poacher), and
if so, a recommendation is made based on the pure strategy and the
location of the drone. For example, if there is a human patroller near
the drone, they should respond and a signal should likely also be
sent notifying the poachers that someone is coming. If no human
patroller is within the distance in which they could reasonably
respond, it may be beneficial to send a deceptive signal to deter the
poaching. An example of the detections and the recommendation
are shown in Fig. 4. In assembling this system, we combine real-time
information from thermal infrared cameras and SPOT with a game
theoretic model to provide real-time security recommendations.
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