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Abstract

As machine learning models are increasingly be-
ing deployed in critical domains such as criminal
justice and healthcare, there has been a growing
interest in developing algorithms that are inter-
pretable and fair. While there has been a lot of
research on each of these topics in isolation, there
has been little work on their intersection. In this
paper, we present an empirical study for under-
standing the relationship between model inter-
pretability and fairness. To this end, we propose
a novel evaluation framework and outline appro-
priate evaluation metrics to determine this rela-
tionship across various classes of models in both
synthetic and real world datasets.

1. Introduction

Over the past decade, there has been an increasing interest
in leveraging machine learning (ML) models to aid decision
making in critical domains such as healthcare and criminal
justice. However, the successful adoption of these mod-
els in the real world relies heavily on how well decision
makers are able to understand and trust their functionality
(Doshi-Velez and Kim, 2017; Lipton, 2016). Consequently,
there has been a growing emphasis on building ML models
and algorithms that are not only accurate, but also fair and
interpretable. This, in turn, has resulted in the emergence
of two exciting areas of research within the ML community,
model interpretability (Lakkaraju et al., 2016; Ribeiro et al.,
2016) and algorithmic fairness (Berk et al., 2018; Dwork
et al., 2012; Hardt et al., 2016). While these two areas share
several similarities with respect to their end goals, they have
often been treated as separate threads by prior literature.

Model interpretability is advocated as a mean to debug ex-
isting ML models, and detect potential biases. On the other
hand, the literature on algorithmic fairness argues that solely
optimizing for predictive accuracy is one of the predominant
causes for the discriminatory behavior of algorithms (Berk
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et al., 2018). In spite of the extensive research on model
interpretability and algorithmic fairness, there has been little
work connecting these two directions. While there is a rea-
sonable understanding of the trade-offs between accuracy
and interpretability (Ribeiro et al., 2016), and accuracy and
fairness (Berk et al., 2017; Feldman et al., 2015; Fish et al.,
2016), there has been little work on exploring the trade-offs
between fairness and interpretability. A notable exception is
the work of Kleinberg and Mullainathan (2019) which we
discuss in detail in Section 2.

Our Work To study the trade-offs between model inter-
pretability and fairness, we propose a novel evaluation
framework and outline appropriate evaluation metrics to
effectively tease apart various confounding effects and de-
termine the relationship between interpretability and fair-
ness across various classes of models (e.g., linear vs. tree
based models). More specifically, we carefully construct a
variety of synthetic datasets to study the effect of various
factors that impact the interpretability-fairness trade-offs,
e.g., correlations between the protected, non-protected at-
tributes and class labels, and group imbalance with respect
to the protected attributes.

We show that the relationship between interpretability and
fairness is complex. More specifically, we found that the
trade-offs between fairness and interpretability follow four
different trends depending on the correlations between pro-
tected, non-protected attributes and class labels. Our anal-
ysis reveals that the interpretability-fairness trade-offs do
not depend on group imbalance. We further validate our
insights on real world datasets. We view our work as a
first step in understanding the trade-offs between fairness
and interpretability. Our work leaves open several exciting
directions for future work which we discuss in Section 4.

2. Related Work

Below, we briefly discuss related work pertaining to inter-
pretability, fairness and their intersection.

Interpretability Many approaches have been proposed to
directly learn interpretable models for classification and
clustering (Kim et al., 2014; Lakkaraju and Leskovec, 2016;
Lakkaraju et al., 2016; Letham et al., 2015). To this end,
various classes of models such as decision trees, decision
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lists (Letham et al., 2015), decision sets (Lakkaraju et al.,
2016), prototype based models (Bien and Tibshirani, 2009),
and generalized additive models (Caruana et al., 2015; Lou
et al., 2012) are proposed. However, complex models such
as deep neural networks and random forests are often shown
to achieve higher accuracy than simpler interpretable mod-
els (Ribeiro et al., 2016); thus, there has been an interest
in constructing post hoc explanations to understand their
behavior (Lundberg and Lee, 2017; Ribeiro et al., 2016;
Selvaraju et al., 2017).

Fairness The initial literature on algorithmic fairness em-
phasize heavily on outlining the precise definitions of fair-
ness (Hardt et al., 2016). Several competing and contrasting
notions of fairness emerge during this phase which can be
broadly categorized into: 1) group fairness which empha-
sizes that protected groups should receive similar treatment
as that of advantaged groups (Hardt et al., 2016) 2) individ-
ual fairness which requires that similar individuals to be
treated similarly (Dwork et al., 2012), and 3) counterfactual
fairness which captures the intuition that a decision pertain-
ing to an individual is fair if it is the same in the actual world
and a counterfactual world where the individual belonged
to a different demographic group (Kusner et al., 2017). We
refer the reader to a recent survey (Berk et al., 2018).

Connections between Fairness and Interpretability
Most relevant to this paper is the work by Kleinberg and
Mullainathan (2019). They consider a selection problem in
which a decision maker aims to select a fixed fraction of
applicants e.g., to give them loans. This is quite different
than a classification setting where there is no restriction
on the fraction of instances that are positively labeled by
a classifier. Kleinberg and Mullainathan (2019) assume
each applicant has a true score (e.g., a true credit-worthiness
score in the context of loan applications) and that this true
score is independent of the sensitive attribute. This assump-
tion also does not typically hold in a classification setting.
Furthermore, they propose a notion of advantage which
states that the ratio of the advantaged applicants to disad-
vantaged applicants is increasing as we focus on applicants
with higher and higher scores. Under these assumptions
they demonstrate theoretically that simpler (and hence more
interpretable) models are strictly improvable i.e., there exists
a more complex model that is both strictly more accurate
and also strictly improves the fairness (or equity) of the
simpler model in terms of admitting a higher number of
disadvantaged applicants. Although our setting is not di-
rectly comparable to them, we show that simpler models
can indeed be fairer than more complex models in certain
situations. Kleinberg and Mullainathan (2019) also show
that simpler models create incentives to use information
about individuals’ membership in the disadvantaged group.

3. Results

Preliminaries We focus on binary classification tasks and
assume that the data points are divided into two groups us-
ing a binary protected attribute. In our analysis, we focus on
two commonly used definitions of fairness: statistical par-
ity (Pedreshi et al., 2008) and equality of opportunity (Hardt
et al., 2016). We leave the study of other fairness measures
for future work. For interpretability, instead of choosing
a context-specific metric, we use the number of features
available to the classifier as our measure of model complex-
ity. Fewer the number of features available to the classifier,
lower the complexity of the classifier and higher the inter-
pretability. This measure is also generic enough to cater to
the diverse model classes we study in this work. We note
that using the number of features as a measure of inter-
pretability is rather too strong and simplistic, but we believe
that this assumption is a good starting point in exploring
the trade-offs between fairness and model interpretability
especially when focusing on simple classification techniques
such as linear models or decision trees.

Generating Synthetic Data We generate synthetic datasets
with two classes (lables) and each class is allocated one
normally-distributed cluster of data points. This construc-
tion allows us the flexibility to vary the center and standard
deviation o2 of each cluster and thereby explore the effect
of the separability of the classes. We then add a new binary-
valued feature which corresponds to the protected attribute
using the following procedure. We assign each data point
with a positive class label to the advantaged (disadvantaged)
group with probability p (1 — p). Similarly, for each neg-
atively labeled data point, we assign the point to belong
to the advantaged (disadvantaged) group with probability
1 — p (p). This construction coupled with the fact that we
have equal number of positively and negatively labeled data
points guarantees that the number of the data points that
belong to the advantaged group is equal to the number of
the data points that belongs to the disadvantaged group. Fur-
thermore, focusing on values of p > 1/2 ensures that the
advantaged group has a higher fraction of positively labeled
data points compared to the disadvantaged group.

1-p

P

Negative Label Cluster
H a=0 H a=1

Positive Label Cluster

Figure 1. An illustration of how we assign the protected attribute
to the clusters when o2 ~ 0.

The conditional group membership probability p controls
the correlation between the protected attribute and the class
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label as p determines how predictive the protected attribute
is of the class label. When p — 1/2, the protected attribute
reveals less information about the class label and hence the
predictive power of the protected attribute is lower. On the
other hand, as p — 1, the protected attribute fully deter-
mines the class label. See Figure 1 for an illustration.

The o2 represents the spread of the data points around the
cluster centers and can model the correlation between the
non-protected attributes and the class label. In the extreme
case where 02 — 0, the data points pertaining to each
cluster are very tightly knit and the non-protected attributes
completely determine the class labels of the data points (see
Figure 1). On the other hand, when 02 = o, the data points
pertaining to each cluster are spread out almost randomly
across the feature space and the non-protected attributes
do not convey any information about the class labels. By
varying o2, we can interpolate between these two extremes.

The group membership ratio r denotes the fraction of data
points belonging to the advantaged vs. disadvantaged
groups, and thereby models group imbalance. Group im-
balance is often touted to be one of the primary causes of
bias in algorithmic decision making in practice (Kleinberg
et al., 2017). We only focus on values of » > 1 and the
higher the value of r, the more imbalanced the resulting
dataset. This choice guarantees that the advantaged group
also has a higher number of data points than the disad-
vantaged group. Therefore, we use the terms advantaged
(disadvantaged) with majority (minority) interchangeably.
To simulate group imbalances, we randomly choose data
points to delete from the minority group until the desired
ratio r is achieved. While doing so, we ensure that the cor-
relation between the protected attribute and the class label
remains unaffected by only deleting those randomly chosen
data points that do not change this correlation significantly.

Classifiers An important factor that affects the trade-offs
between interpretability and fairness is the classifier C'. We
experiment with several classifiers such as logistic regres-
sion, naive Bayes, decision trees, SVMs, neural networks,
and random forests. These classifiers span a variety of model
classes such as linear vs. non-linear models, rule-based vs.
feature-importance based models, ensemble vs. stand alone
models. We use scikit-learn implementations with default
parameter settings to construct these classifiers.

Plotting Trade-Off Curves The fundamental building
block of our analysis is a trade-off curve which is a plot
depicting how model fairness is affected as we vary model
complexity (or interpretability) under different conditions.
We use the number of features available to a classifier as a
measure of model complexity in this work. To track fairness,
we keep track of the fairness violation ¢ i.e., the degree in
which the fairness definitions are violated — the higher the §
is the more the fairness is violated by the classifier.

Given these metrics, the trade-off curves can be plotted
by having the number of features available to the classifier
(complexity) on the x-axis and fairness violation § on the y-
axis. Each plot has a curves for statistical parity and another
for equality of opportunity. We can make one such plot for
each combination of C, p, o2, and r. For a given fixed set of
values for the four parameters, we first generate a synthetic
dataset. Then, we allow the classifier C' to use at most
one feature (complexity = 1). To this end, we perform a 5-
fold cross validation and choose the feature that maximizes
accuracy. We then train the classifier using this one feature
and compute §. We repeat the above step K times. At each
step 1 < k < K, we choose k best features that maximize
the accuracy using 5-fold cross validation, train the classifier
C using those features only, and compute the corresponding
fairness violations so that we can track these quantities to
understand their trends. We also track other metrics such
as accuracy and F'-1 score of the classifier. All results are
out-of-sample and averaged using 5-fold cross validation.

We study the effects of varying p, o2 and r on the trade-off
curves. For space considerations we only consider the effect
of varying r in this manuscript. We wrap up by extending
our observations to the real world datasets.

3.1. Correlation between Protected Attribute & Class
Label

To model the correlation between the protected attribute and
class label, we vary p while fixing other parameters to track
the trends in accuracy, F'-1 score, and fairness violations
as a function of the number of allowed features. Figure 2
shows the trade-off curves for o2 = 10, r = 10, C' =
logistic regression and different values of p.
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Figure 2. The effect of increasing the predictive power of the pro-
tected attribute p. C' = logistic regression. o2 = 10 and r = 2.
p = 0.6 (upper left), p = 0.8 (upper right), p = 0.9 (lower left)
and p = 0.999 (lower right).

As expected, F'-1 scores and accuracies of classifiers in-
crease monotonically as their complexity increases. On
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the other hand, we found that diverse trends emerge with
respect to fairness violations. In particular, we see 4 differ-
ent trends in Figure 2: (1) fairness violation increases as
model complexity increases (upper left), (2) fairness vio-
lation increases initially and then decreases (upper right),
(3) fairness violation decreases (lower left), and (4) fairness
violation remains constant (lower right).

A simple calculation shows the statistical parity violation is
p—(1—p) = 2p—1 which is increasing in p. If the clusters
are perfectly separable i.e., 02 = 0, we expect the statistical
parity violation to reach 2p — 1 when all the features are
accessible to the classifier. Figure 2 shows that the statistical
parity violation gets close to 2p — 1 for different values of
p but does not always reach that exact value (as o2 is fairly
small but still non-zero). While we cannot as easily quantify
the value that the equality of opportunity violation should
converge to, it is evident from the Figure 2 that this violation
also exhibits a similar trend and increases as p increases.

In trend (1) (upper left), both fairness violations increase
as we allow the classifier access to more features. We note
that the protected attribute only becomes part of the feature
set when we allow the model complexity to be very high
indicating that it is not strongly predictive of the class label.
This, in turn, implies that adding the protected attribute to
the feature set of the classifier will not drastically change
the fairness violations.

In trend (2) (upper right), the fairness violations increase
initially but then decrease as complexity becomes larger.
We note that the protected attribute is chosen as the second
feature (sharp increase in the fairness violations). In contrast
to trend (1), adding the protected attribute in this case results
in a significant increase both in accuracy and fairness viola-
tions. After the addition of the protected attribute, adding
more features does not seem to affect things by much.

In trend (3) (lower left), the fairness violations decrease as
the model complexity increases. As p gets closer to 1, the
protected attribute becomes the strongest predictor of the
class label and hence would be selected first. This results
in statistical parity and equality of opportunity violations
of 1 initially. This is because, when using the protected
attribute as the only feature, all the data points in the minor-
ity group are labeled positively by the classifier while all
the data points in the majority group are labeled negatively.
Furthermore the false negative rate in the minority group is
0 while the false negative rate in the majority group is 1. It
can also be seen that adding other non-protected features
after this point decreases the fairness violations.

In trend (4) (lower right), the fairness violations do not
change as we increase the complexity. At p = 0.999, the
protected attribute (almost) perfectly predicts the class la-
bel. This also implies that adding any other non-protected

features has no impact on fairness violations.

We observe a phase transition from trend (1) to (4) as we
increase p. We also experimented with other values of 2
and r and observe a similar transition as p increases. While
the experimental results reported here were with logistic
regression, there is robustness in our results when using
other classifiers such as naive Bayes or decision trees.

3.2. Varying Several Parameters Simultaneously

While we have omitted the experimental results regarding
varying o2 and r, we describe the high level insights. We
observe a similar phase transition from trend (1) to trend (4)
as we increase o2, Our observations also exhibit robustness
with respect to the choice of classification algorithm C. The
trade-off curves seem to be independent of the imbalance
parameter 7. While this is surprising at first glance, it can
be explained by the observation that the distribution of non-
protected attributes is the same for both groups. For future
work, we plan to modify our data generation process to
study the role of r in a more meaningful way.
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Figure 3. An illustration of the transition between trends as a func-
tion of p and o®. The classification algorithm that is used is logistic
regression and r = 2.

Since our trade-off curves are independent of the choice
of imbalance parameter r and classification algorithmC),
to study all parameters simultaneously, we only consider
varying p and o2. Figure 3 shows the results for logistic
regression and 7 = 2. The x-axis captures various values
of p, and the y-axis captures different values of o2. For
each pair of p and o2 values, we plot the trade-off curves
for fairness violations and label them with one the 4 trends
we discussed in Section 3.1. For any fixed o2 (p), we see
a smooth transition between trends as we increase p (2).
While the exact threshold where the transition happens de-
pends on the specific values of p and o2, for moderately low
values of p and o2 (bottom left) the trade-off curves are in
trend (1). We will discuss this in more details next.
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3.3. Validating Our Insights with Real World Datasets

We start our real world experiments by introducing the
datasets. Our first dataset is COMPAS which is collected by
ProPublica (Kaggle, b) and captures detailed information
about the criminal history, jail and prison time, demographic
attributes, and COMPAS risk scores for 7214 defendants.
The protected attribute in this dataset is race with African-
Americans being the minority group and whites being the
majority group. Each defendant in the data is labeled either
as high-risk or low-risk for recidivism.

Our second dataset is the Adult dataset (Kaggle, a) with
information about the income level, demographic and socio-
economic attributes of 48, 842 individuals. The protected
attribute in this case is gender with females being the minor-
ity group and males being the majority group. Each indi-
vidual in this dataset is labeled with “> 50K” or “< 50K”
depending on the individual’s income level.

Similar to our synthetic data experiments, we vary the num-
ber of features and also apply a 5-fold cross validation in
the real world experiments. Since we consider all possible
subsets of features of size k£, when choosing k best features,
our computations become intractable quickly in case of real
world datasets. To remedy this, we use the built-in func-
tion SelectKBest from scikit-learn library to select the
K most informative features for each of the datasets from
which the & best features will in turn be chosen using 5-fold
cross validation. We set K = 7 in our experiments.
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Figure 4. The trade-off curves in real world data using logistic
regression as a classifier. Adult dataset (left) and COMPAS (right).

Figure 4 shows the trade-off curves for the Adult dataset
(left) and the COMPAS dataset (right). These curves follow
trends (1) and (4), respectively. To better understand these
observations, we put them in the context of our synthetic
experiments . More specifically, we estimate p and ¢ on
the real world datasets and determine if the trade-off curves
on these real world datasets match those of the synthetic
datasets with similar properties.

In Table 1, Corr-Protected corresponds to the cor-
relation between the protected attribute and the class
label and is computed as the Pearson product-moment
correlation coefficient. p denotes the conditional group
membership probability and corresponds to the value of
Corr-Protected for each dataset. This is obtained by
first generating synthetic datasets with various values of p

and then computing the Pearson product-moment correla-
tion coefficient for each of those datasets, and picking the
p whose corresponding correlation coefficient on the syn-
thetic dataset matches with that of the real world dataset’s
Corr-Protected value. Pred-Non-Protected de-
notes how well the non-protected attributes can predict the
class label. This is analogous to the o parameter in the case
of the synthetic data experiments. To compute the value of
Pred-Non-Protected for a particular dataset, we train
Gradient Boosted Trees, a highly expressive classifier, using
only the non-protected attributes and the resulting accuracy
is the Pred-Non-Protected value of that dataset.

Let us consider the Adult dataset for which trade-off curves
are shown in Figure 4 and key characteristics are summa-
rized in Table 1. As shown in Figure 3, multiple trends
can emerge when p = 0.6 depending on o2. Similar to the
computation of p above, we can leverage synthetic datasets
to check what value of o2 will result in the same predictive
power as Pred-Non-Protected. It turns out that the
corresponding o2 in case of the Adult dataset is 10. We
can see from Figure 3 that when p = 0.6 and 02 = 10,
the corresponding trade-off curves follow trend (1). It is
easy to see that trade-off curves for the Adult dataset also
follow the same trend (Figure 4 (left)). Performing a similar
analysis as above, we find out that p = 0.55 and o2 =12
for COMPAS dataset. We can see from Figure 3 that when
p = 0.55 and 02 = 12, the neighboring trade-off curves
follow trend (1) or trend (4). Figure 4 (right) shows that
the trade-off curve for COMPAS follows trend (4), there by,
validating our understanding of the fairness violations.

Dataset Corr- P Pred-
Protected Non-Protected

COMPAS -0.12 0.55 0.84

Adult -0.21 0.6 0.86

Table 1. Information about the datasets. See text for more details.

4. Future Work

There are many possible areas for future work in addition
to what we point out earlier. First, it would be valuable
to develop a theory to accompany our experimental results.
This theory can be used to explain under what circumstances
we observe each of the trade-off trends. Second, we should
extend our experimental results to more complex real-world
domains. The state of the art classification algorithms for
COMPAS and Adult datasets use a small set of features
so the set of possible trade-offs are limited to begin with.
Lastly, it would be insightful to study more complicated
correlations in the data e.g., between protected and non-
protected attributes. This is useful in practice where the
protected attributes are prohibited to be used by law.
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