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Abstract

Improving health equity is an urgent task for our society. The
advent of mobile clinics plays an important role in enhancing
health equity, as they can provide easier access to preventive
healthcare for patients from marginalized populations. For
effective functioning of mobile clinics, accurate prediction
of demand (expected number of individuals visiting mobile
clinic) is the key to their daily operations and staff/resource
allocation. Despite its importance, there have been very lim-
ited studies on predicting demand of mobile clinics. To the
best of our knowledge, we are the first to explore this area,
using AI-based techniques. A crucial challenge in this task
is that there are no known existing data sources from which
we can extract useful information to account for the exoge-
nous factors that may affect the demand, while considering
protection of client privacy. We propose a novel methodol-
ogy that completely uses public data sources to extract the
features, with several new components that are designed to
improve the prediction. Empirical evaluation on a real-world
dataset from the mobile clinic The Family Van shows that, by
leveraging publicly available data (which introduces no extra
monetary cost to the mobile clinics), our AI-based method
achieves 26.4% − 51.8% lower Root Mean Squared Error
(RMSE) than the historical average-based estimation (which
is presently employed by mobile clinics like The Family Van).
Our algorithm makes it possible for mobile clinics to plan
proactively, rather than reactively, as what has been doing.

1 Introduction
The disproportionate impact of the COVID-19 pandemic
on marginalized populations has exemplified long-standing
health inequities in the United States (Mackey et al. 2021;
Zimmerman and Anderson 2019; Odlum et al. 2020). These
health disparities are often the result of marginalized pop-
ulations facing increased barriers to healthcare access, in-
cluding fear or mistrust of the medical system, and pro-
hibitive travel times (Syed, Gerber, and Sharp 2013; Bolen
et al. 2016). In response to both the pandemic and the health
disparities, healthcare providers and public health organiza-
tions have begun implementing novel solutions, including
the increased use of telecare and social media (Vance, Howe,
and Dellavalle 2009; Woolliscroft 2020). One such solution,
the mobile health clinic, is a large bus or van that has been

Copyright © 2022, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

converted to provide medical care at a location physically
and socially closer to at-risk communities (see Figure 1 as
an example of the studied mobile clinic The Family Van).1
These clinics attempt to address multiple barriers to health-
care access by reducing patient travel times and focusing on
providing culturally-competent care (Stephanie et al. 2017;
de Peralta et al. 2019).

Figure 1: Clients visiting The Family Van in Boston. Photo
source: The Family Van’s website.

A main benefit of using mobile clinics is their ability to
relocate to areas of high demand. Therefore, it is critical for
mobile clinic administrators to understand what key factors
affect client demand and what future demand might look
like. Predictive demand models could then be used to op-
timize van scheduling as well as the allocation of staff and
healthcare resources. Despite its importance, only a limited
number of studies discuss forecasting client demand for mo-
bile clinics. Existing works use either static features from
census data (Majeed et al. 2021) which do not reflect de-
mand dynamics, or patient survey data (Reed et al. 2019)
which may violate patient privacy requirements, suffer from
selection bias, or may not be available.

However, developing such demand prediction models in-
volves several unique challenges: i) It is not clear which fac-
tors affect demand. ii) Unlike hospitals, data from mobile
clinics are not as available. There are no known existing data
sources from which we can extract useful information for
exogenous factors that affect clinic demand while also pro-
tecting patient privacy. iii) For the factors that are identified
as good indicators of demand, we have no prior knowledge

1http://www.familyvan.org/



of their ground truth values on the forecast date. These chal-
lenges prevent us from directly applying off-the-shelf Ma-
chine Learning (ML) models.

We propose a novel prediction framework that addresses
the above challenges, with the following innovations. (i) We
find features from public data sources that we hypothesize to
be good indicators of demand. We determine which factors
should be included in the prediction model by performing
a correlation analysis of each factor with respect to mobile
clinic demand. Very interestingly and surprisingly, we find
that factors such as ferry and shared bike usage, which are
proxies of foot traffic, are highly correlated with client de-
mand. (ii) Though we can gain insights from the correlation
analysis, a major obstacle to using these insights to extract
features for the prediction model is that the values of these
features on the forecast date are not known a-priori. There-
fore, we propose to first make intermediate predictions for
the future values of these variables, and then use the pre-
dicted variables as features. (iii) We observe that the de-
mand patterns of repeat/non-repeat clients are distinct. To
further improve prediction, we separate out the demand pre-
dictions for each type of client, and then combine the predic-
tions. Finally, we integrate these components with different
ML models to make the final prediction. Whereas we do not
claim novelty for these ML models, our method is an inno-
vative combination of the known ML models with the above
mentioned components.

Our main contributions are as follows: (i) Impact. We
are the first to develop ML tools to dynamically predict the
weekly/daily client demand of mobile health clinics. Except
for the demand data (which is accessible to parties in the
field), our model uses publicly available data to extract fea-
tures. Therefore, our model can be used by a vast range
of mobile health clinics, and have a huge impact on the
mobile health industry, where making demand predictions
is essential to proactive planning of their daily operations
and investment strategy. (ii) Technical novelty. We propose
a novel prediction model which has several novel compo-
nents that are designed to address the new challenges in
the demand prediction task of interest. (iii) Effectiveness.
We run experiments using real-world data from 4 locations
of the mobile health clinic The Family Van in the Boston
area. Results show that our new AI-based approach has a
26.4%−51.8% lower RMSE than the traditional practice of
The Family Van.

2 Related work
We provide a brief discussion of related work on health care
demand forecasting. Majeed et al. (2021) focus on predict-
ing demand for mobile clinics that provide free vaccination
services in schools and regional areas that are at high risk
of infection. They estimate the demand using non-temporal
(static) census features and school-level data. In contrast, our
work considers temporal features and makes real-time fore-
casting possible. Reed et al. (2019) strictly use patient sur-
vey data and focus only on the perception of clinic quality.
The paper examines associations between multiple features,
such as perceived quality of care, travel distance, and patient

utilization of alternative health care clinics, using multi-
regression models on the survey data. Although the percep-
tion of alternate health care has an impact on the demand of
mobile clinics, but relying on patient survey data may violate
patients’ privacy requirements. Moreover, such findings may
suffer from selection bias. Qian et al. (2009) focus on the
factors that influence the health care demand of public and
private clinics in rural areas of Gansu province, China. How-
ever, they do not consider mobile health clinics or temporal
features. Similarly, there are several papers that use multiple
regression models for demand/utilization prediction of tradi-
tional hospitals and healthcare centers using hospitalization
rates and ICU beds (Bhowmik and Eluru 2021), radiology
volume records (Côté and Smith 2018), surgeries and ad-
missions volume (Khaldi et al. 2017), and blood donation
records (Drackley et al. 2012). However, none of these stud-
ies can be directly used or mildly adapted for the task of
predicting the demand of mobile clinics. As far as we know,
our study is the first ML-based method to predict dynamic
weekly/daily patient demand of mobile health clinics.

3 Demand prediction for mobile clinics
We first formalize the demand prediction problem for our
studied mobile clinic, The Family Van, and then describe the
challenges in solving it. The Family Van is a non-profit mo-
bile health clinic in the Boston area, designed to increase ac-
cess to health care and improve the health of Boston’s most
under-served neighborhoods. It sends out medical vans to 4
major locations in the Boston area, one day per location, thus
operating 4 days per week. Our goal is to predict the demand
of the four locations for a future time (e.g., next week), given
the historical demand data.

Problem formulation Abstracting from the above sce-
nario, we are given a time series 1, . . . t, t + 1, . . ., where
each t is a week. There are various locations i = 1 . . . N ,
one for each day of a week t. The demand at time t and
location i is denoted as a non-negative integer yi,t ∈ Z+.
Suppose we are at time t − 1, our goal is then to predict
the mobile clinic’s demand yi,t for each of the N locations,
at the next time period t. Essentially, we want to learn the
following demand function fθ(·):

ŷi,t = fθ(yi,1, . . . , yi,t−1), ∀i = 1 . . . N. (1)

fθ(·) can be interpreted as a certain ML model. In the next
section, we will introduce our choice of the model.

Challenges This prediction task is challenging because of
three aspects. First, it is unknown which exogenous factors
affect mobile clinics’ demand and to what extent. It remains
a question whether to introduce exogenous factors to the ML
model, or merely use a time-series model. Second, unlike
regular hospitals, the mobile clinic data are not as accessible
(partly due to the need to protect patient privacy). There is
no known existing data source for the exogenous factors that
may affect demand. Last, for the factors that are identified as
good indicators of demand, we have no prior knowledge of
their ground truth values of the forecast date.



Figure 2: Architecture of our proposed prediction method. The main innovations are 1) using completely public data sources to
obtain features, especially the bike and ferry usage features which are surprisingly good indicators of demand dynamics, 2) the
intermediate predictions component, and 3) separate predictions for repeat/non-repeat clients.

4 Methodology
We now introduce the techniques for addressing the chal-
lenges. We refer to Figure 2 for a high-level illustration of
our solution architecture.

4.1 Location specific model
Before determining the right ML model for prediction, our
first observation, as shown in Fig. 3, is that the demand
curves of different locations are distinct from each other. For
example, the demand scales of different locations are differ-
ent – the demand of location 1 can reach 30+, whereas the
demand of location 2 is mostly under 15. In addition, the
demand trend of location 3 is generally decreasing, whereas
such a trend is not obvious for the other locations. Because
of this, though a uniform and generalized model that works
for all locations is desirable from a technical perspective, we
choose to use a location specific model instead. In this case,
Eq.(1) can be re-written as:

ŷi,t = fθi(yi,1, . . . , yi,t−1), ∀i = 1 . . . N. (2)

In other words, we will learn one separate model fθi(·) for
each location i = 1 . . . N .

4.2 Time-series model
Without considering the exogenous factors, time-series
models seem to be the immediate fit to our task. Autoregres-
sive integrated moving average (ARIMA) (Percival, Walden
et al. 1993; Hamilton 2020) is arguably the most classical
model for predicting time series data. The underlying ideas
of ARIMA include auto-regression (i.e., the output variable
is regressed on its own historical values), moving average
(i.e., the regression error is a linear combination of error
terms whose values occurred currently and at various times
in the past), and integration (i.e., the data values have been
replaced with the difference between their values and the

Figure 3: Distinct demand curves of different locations. The
x-axis is the date, and the y-axis is the demand.

previous values). Each fθi(·) can be represented as the fol-
lowing ARIMA(p,d,q) model (Nau 2020):

ŷi,t = µi + ϕi,1ẏi,t−1 + . . .+ ϕi,pẏi,t−p

− φi,1ei,t−1 − . . .− φi,qei,t−q
(3)

Here µi is a location specific constant, p is the number of
autoregressive terms, and q is the number of lagged forecast
errors in the prediction equation. ẏi,t is the dth order differ-
ence of yi,t to make it stationary. For example, when d = 1,
ẏi,t = yi,t − yi,t−1.

Table 1: ARIMA model results

Location 1 2 3 4
Model (0, 0, 0) (0, 0, 0) (2, 2, 4) (0, 2, 4)
RMSE 7.112 4.284 5.714 3.177
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Figure 4: Scatter plots of demand vs different factors. x-axis is the normalized value of the underlying factor, y-axis is demand.

Table 2: P-values of univariate linear regression. Features with p-values smaller than 0.05 are highlighted.

Feature Solar radiation Humidity Temperature Wind Ferry Library Blue Bike
p-value 0 0 0 0.597 0 0.732 0.007
Feature Snow cover Snow depth Snowfall Snowmelt Surface pressure Precipitation Cloud coverage
p-value 0.072 0.235 0.373 0.100 0.324 0.636 0.077

Preliminary results The prediction results of the ARIMA
model in terms of RMSE are shown in Table 1. We can see
that for locations 1 and 2, the best prediction is obtained
by ARIMA(0,0,0), meaning that the fitted model is a con-
stant value plus a white noise. This indicates that there is
no significant trend in the demand time series for the two
locations. For locations 3 and 4, the best results are respec-
tively obtained by ARIMA(2,2,4) and ARIMA(0,2,4), indi-
cating that there may be a certain trend that is captured by
the model. Considering the scales of demand for different
locations in Figure 3, the ARIMA-based predictions are rea-
sonable for some locations (e.g., 3 and 4), but can be sub-
stantially improved for the other locations. We will revisit
this in Section 5 where we discuss the final results.

4.3 Extract information from public data based
on correlation analysis

Training a model solely from historical demand would miss
contextual information about demand dynamics, where the
exogenous factors are completely neglected. This could lead
to arbitrarily bad predictions, especially when there is no
significant trend of any order (e.g., for locations 1 and 2).
After discussing with practitioners from The Family Van,
we identify two important types of exogenous factors that
can affect demand dynamics, i.e., weather and foot traffic.

It is intuitive that weather can affect the client demand.
For example, people usually tend not to go out when the tem-
perature is either too high or too low. To extract weather in-
formation, we use the public weather data from the (US) Na-
tional Oceanic and Atmospheric Administration (NOAA)2

and Copernicus.3 These include weather attributes such as
temperature, precipitation, solar radiation, humidity, snow-
fall, etc (see Table 2 for a complete list that we use).

In the meanwhile, we observe that the client demand is
higher when there is more crowd around the vans. This in-
dicates that foot traffic is an important factor of demand.
Unfortunately, to the best of our knowledge, no foot traf-
fic data in Boston are publicly available. Therefore, we use

2https://www.noaa.gov/
3https://www.copernicus.eu/en

3 other types of traffic information as surrogates of foot traf-
fic, namely the public library usage data which is obtained
from Analyze Boston,4 the Massachusetts Bay Transporta-
tion Authority (MBTA) ferry usage data from Open Data
MBTA,5 and Blue Bike usage data from Bluebikes.6

Though we have a long list of features that could be po-
tentially useful for prediction, it is often harmful to include
any feature in a model, especially when a feature is not or
very weakly correlated to the output. To measure the depen-
dency of demand w.r.t. the features and therefore filter out
informative features, we perform an Ordinary Least Squares
(OLS) linear regression of demand vs each individual fea-
ture. Figure 4 shows the scatter plots of demand vs the fea-
ture value for some selected features. Each dot in the scatter
plots represents a day’s data point. The fitted linear curves
are shown as the lines in the scatter plots. The p-values of
the fitted univariate linear regression models are shown in
Table 2. We then extract features whose associated p-values
of the linear regression are smaller than 0.05. This returns 5
features: solar radiation, humidity, temperature, ferry usage
and Blue Bike usage.7 Surprisingly, 2 of the 3 features (Blue
Bike usage ferry usage) that we consider as proxies for the
foot traffic factor are highly correlated with demand.

4.4 Intermediate predictions
The previous section shows important insights on which fea-
tures are informative of the mobile clinics demand. Though
these features are desirable, the main barrier from actually
using these features is that, the future values of these fea-
tures are not available at the time of prediction. For example,
when making predictions on Sunday, the blue bike usage in-
formation of the next Wednesday is not known a-priori.

For weather related features, fortunately, we can obtain
reasonably accurate weather forecasts as the estimated fu-

4https://data.boston.gov/
5https://massdot.maps.arcgis.com/home/group.html?id=

c5397b0d18d844c6a63b195a75ddf39b#overview
6https://www.bluebikes.com/
7Note that correlation does not imply causation. To analyze

causal relations, a causal inference procedure is needed.
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Figure 5: Curves of ground truth variable values (blue) and values based intermediate predictions (red).

ture values. However, there are no known tools or sources to
obtain the estimated future values for the surrogate foot traf-
fic features. To overcome this issue, instead of assuming the
future values are available, we first use the time series mod-
els (e.g., ARIMA) to make intermediate predictions of the
future values for these features, and then use the predicted
values as input. Formally, the intermediate predictions are
represented as:

x̂i,t = µXi + ϕXi,1ẋi,t−1 + . . .+ ϕXi,pẋi,t−p

− φXi,1eXi,t−1 − . . .− φXi,qeXi,t−q,
(4)

where the superscript X is used to distinguish the notations
for ŷ in Eq.(3). xi,t is a generic representation of any fea-
tures that are used as intermediate variables, and ẋi,t is the
corresponding dth order difference of xi,t for stationarity.

The advantage of intermediate prediction vs an end-to-
end architecture where Eq.(4) is directly incorporated into
Eq.(2) is two-fold. First, the model is trained with loss de-
fined directly on the intermediate variable, instead of the fi-
nal client demand. The latter introduces more noise. Second,
we can use more data (rather than the target time period) to
train the intermediate models.

Figure 5b shows the predicted and ground truth curves
for the 5 selected features. We can see that the predictions
are overall reasonably capturing the trends of the ground
truth curves. For temperature, solar radiation and humidity,
the intermediate predictions (obtained from weather fore-
cast) are highly aligned with the ground truth values. This
demonstrates that the weather forecasts are reliable. The
same holds for ferry usage, where the prediction curve is
also highly aligned with the ground truth. For bike usage in-
termediate prediction, there is a noticeable bias due to the
discrepancy between the training and test data. Nonetheless,
the trend is still largely captured by the prediction.

4.5 Integrating with different ML models
With the intermediate predictions, we show how we inte-
grate these intermediate variables with different types of ML
models to make the demand prediction. For non-time-series
(NTS) models, this means

ŷi,t = fθ(x̂i,t; t), (5)

where x̂i,t is the estimated feature values based on the in-
termediate predictions in Eq.(4). Note that we still feed the
time information t to this model to compensate for the loss
of temporal information. Alternatively, we have also used

recurrent neural networks which combine the historical de-
mand and (estimated) contextual features:

ŷi,t = fθ(yi,1, . . . , yi,t−1; x̂i,t). (6)

4.6 Separating predictions for repeat and
non-repeat clients

Another important observation, as shown in Fig. 6, is that
the demand patterns of the repeat and non-repeat clients for
different locations are distinct. Take location 2 as an exam-
ple, the demand curve of the non-repeat clients has a sig-
nificantly larger fluctuation over time, whereas the demand
of the repeat clients is more stationary. Inspired by this, we
propose an alternative training method, where we first train 2
separate models for each group of the repeat and non-repeat
clients, and then sum the predictions of the two models as
the final prediction. This essentially means that we will train
a model for each of ŷRi,t (repeat client demand) and ŷNi,t (non-
repeat client demand) in either Eq.(5) or Eq.(6).

Figure 6: Demand curves of repeat vs non-repeat clients

5 Main results
Experiment settings Our demand dataset from The Fam-
ily Van spans from July 2019 to March 2020. It contains
daily demand data for 4 locations in Boston. The Family
Van operates on 4 days a week, one day per location. There-
fore, we have one aggregated data point per week per lo-
cation during the target time period, totalling 20-30 data
points per location and 110 data points for all locations. We
use the first 80% of the data to train a model for each lo-
cation and evaluate it on the rest 20% of data. In practice,



Table 3: Demand prediction using our proposed techniques. For the set of NTS and RNN models, the result of the best model
is given. The best result for each location is highlighted.

row number method \ location Location 1 Location 2 Location 3 Location 4
1 Historical average 7.06 4.20 8.91 4.45
2 ARIMA 7.11 4.28 5.71 3.18
3 NTS-AB 6.14± 0.0000 3.95± 0.0000 6.47± 0.0000 3.17± 0.3776
4 NTS-Ab 6.17± 0.0000 3.09± 0.5938 6.48± 0.0000 2.90± 0.0000
5 NTS-aB 3.40± 0.0000 3.77± 0.4502 6.80± 0.0000 3.39± 0.0000
6 NTS-ab 3.65± 0.0000 3.93± 0.0000 6.69± 0.0000 3.31± 0.0199

7 RNN-AB 7.96± 1.8481 10.31± 1.1406 6.03± 0.2806 4.96± 0.3454
8 RNN-Ab 7.64± 0.7485 7.39± 1.4918 6.66± 0.2225 6.75± 1.0613
9 RNN-aB 8.33± 0.7146 10.28± 1.2289 7.38± 0.6014 5.31± 0.3027

10 RNN-ab 7.47± 0.5451 7.11± 1.8134 6.53± 0.1624 5.63± 0.4278

the set of NTS models we implement are: Linear regression,
Ridge regression, Lasso regression, Lasso LARS, Tweedie
regression, SGD, Logistic regression, MLP, Adaboost, De-
cision Tree (these are implemented via scikit-learn8) as well
as XGBoost (Chen et al. 2015). For RNNs, we use 3 struc-
tures: the vanilla RNN, LSTM (Hochreiter and Schmidhuber
1997) and GRU (Cho et al. 2014). For these models, we run
20 times of training, and report the average RMSE and stan-
dard deviation of RMSE of the best NTS or RNN model,
respectively.

For intermediate features, we can either train with ground
truth feature values, and test with predicted feature values
(with Eq.(4)), or both train/test with predicted feature values.
We use A to denote the former setting and a to denote the
latter. Similarly, we can either train a single model for both
types of the repeat and non-repeat clients, or train 2 separate
models. We denote them as B and b, respectively. Therefore,
a training method Ab means we train with ground truth fea-
ture values, and test with predicted feature values, and at the
same time train 2 separate models for the repeat/non-repeat
clients. The main results are shown in Table 3. We will ex-
plore the answers to the questions in the following.

Are predictions accurate in general? Comparing the
best result and the historical average in row 1 (which is
the current practice of The Family Van), we can see that
the RMSE respectively decreases by 51.8%, 26.4%, 35.9%,
34.8% for the 4 locations. Combing the overall scales of the
demand for the 4 locations (see Figure 3), this demonstrates
that our proposed method is a reasonably reliable tool for
demand prediction.

What is the best ML model (if there is any)? Most
surprisingly, RNN models are dominated by the NTS and
ARIMA models. Our understanding is that deep models
have more parameters, and thus tend to overfit in small
datasets like ours. Second, NTS models are significantly bet-
ter than ARIMA, except for location 3. Our understanding is
that the demand curve (see Figure 3) for location 3 is notice-
ably declining, whereas this is not obvious for other loca-
tions, especially 1 and 2. This is also aligned with the obser-

8https://scikit-learn.org/stable/

vations of the best ARIMA configuration in Table 1. There
is no uniformly the best model for all the locations. The time
series model is the best fit for location 3, whereas the NTS
models are the best fit for the other locations.

Are exogenous factors and the intermediate predictions
helping? Comparing the best results for each location in
Table 3 and the results obtained by the pure time-series
ARIMA model in Table 1 (the same as row 2 in Table 3),
we can see that there are substantial improvements for 3
out of the 4 locations. Notably, for location 1, the RMSE of
the ARIMA model is more than twice of the feature-based
model. ARIMA performs slightly better in location 3. This
shows that exogenous factors are critical to the demand pre-
diction. Another interesting observation is that, when both
training and testing on the intermediate feature values, there
is a substantial gain in accuracy for location 1 (comparing
row 3 vs row 5 or row 4 vs row 6). Our hypothesis is that
the intermediate prediction of features like Blue Bike usage
is biased. Therefore, when training on observed features and
testing on predicted features, there is a gap between the two
values. This gap is somehow removed when both training
and testing on the intermediate feature values.

Is separating predictions for repeat and non-repeat
clients helping? Comparing row 3 vs row 4, we can see
that separating predictions leads to substantial improve-
ments in locations 2 (3.95 to 3.09) and location 4 (3.17 to
2.9), while maintaining very close results in the other 2 lo-
cations. Our hypothesis for the improvement is that for lo-
cations 2 and 4, the demand patterns of the repeat and non-
repeat clients are more distinct, as shown in Figure 6. Com-
paring row 5 vs row 6, we can see that the results are close
for both training methods in all of the locations (separate
prediction is slightly better in locations 3 and 4, and slightly
worse in locations 1 and 2). This shows that separate pre-
diction helps in improving the overall prediction accuracy.

6 Conclusion
As far as we know, we are the first to explore weekly/daily
dynamic demand prediction of mobile clinics using AI. We
propose a novel learning framework that uses publicly avail-
able data for prediction, together with multiple innovations



that are customized into solving the demand prediction prob-
lem. Empirical results on real-world datasets from The Fam-
ily Van demonstrate that our proposed approach has substan-
tial improvement in accuracy compared to the experience-
based estimation. Our study provides a brand-new angle to
mobile clinics demand prediction with completely public
data, which has a huge potential impact when broadly de-
ployed. As a future work, we are actively exploring how our
prediction algorithm can be deployed to help The Family
Van’s daily scheduling of staff and healthcare resources.
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