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Abstract

Restless multi-armed bandits (RMABs) are an important
model to optimize allocation of limited resources in sequen-
tial decision-making settings. Typical RMABs assume the
budget — the number of arms pulled — to be fixed for each
step in the planning horizon. However, for realistic real-world
planning, resources are not necessarily limited at each plan-
ning step; we may be able to distribute surplus resources in
one round to an earlier or later round. In this paper we define a
general class of RMABs with flexible budget, which we term
F-RMABs, and provide an algorithm to optimally solve for
them. We derive a min-max formulation to find optimal poli-
cies for F-RMABs and leverage gradient primal-dual algo-
rithms to solve for reward-maximizing policies with flexible
budgets. We introduce a scheme to sample expected gradi-
ents to apply primal-dual algorithms to the F-RMAB setting
and make an otherwise computationally expensive approach
tractable. Additionally, we provide heuristics that trade off
solution quality for efficiency and present experimental com-
parisons of different F-RMAB solution approaches.

1 Introduction
Restless multi-armed bandits (RMABs), a model for con-
strained resource allocation among N evolving and inde-
pendent processes, are gaining increased attention, in part
for their ability to capture challenging real-world planning
problems. Salient examples include scheduling (Bagheri
and Scaglione 2015; Yu, Xu, and Tong 2018; Yang et al.
2018), machine replacement (Ruiz-Hernández, Pinar-Pérez,
and Delgado-Gómez 2020), aerial vehicle routing (Zhao,
Krishnamachari, and Liu 2008), anti-poaching patrol plan-
ning (Qian et al. 2016), and healthcare (Lee, Lavieri, and
Volk 2019; Mate et al. 2020; Killian et al. 2021; Biswas et al.
2021).

Most previous literature in RMABs assumes that resource
constraints are fixed at each step in the planning horizon, i.e.,
there are a fixed maximum number of arms we can pull in
each round. In some real-world settings, resources are not
strictly constrained at each planning round but rather over
multiple time steps. Existing RMAB planning techniques
are therefore unable to take advantage of such flexibility in
planning. Accordingly, applying the classic RMAB model
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in flexible-budget real-world settings may result in policies
that either do not make efficient use of resources or lead to
sub-optimal rewards.

We consider a general class of RMABs which we call
flexible budget restless multi-armed bandits, or F-RMABs.
In an F-RMAB instance, rather than the standard per-round
budget constraint, the total resources that can be used is bud-
geted over some time window. The classic RMAB is a spe-
cial case of the F-RMAB where the flexible window is a sin-
gle timestep, so a planner may act on some subset of the N
arms such that the total cost of acting is less than or equal to
B. In the F-RMAB class, the per-round budget may be flex-
ible over a time window of length F within the horizon H ,
where F ≤ H , but the total cost of all actions over that flex-
ible window must be less than or equal to FB, to preserve
the per-round budget constraint on average.

Solving an RMAB is PSPACE-hard in general (Papadim-
itriou and Tsitsiklis 1999). To overcome this complexity,
a common approach is to consider the Lagrangian relax-
ation of the problem in which the budget constraint is du-
alized (Hawkins 2003). Solving the relaxed problem gives
Lagrange multipliers which act as a greedy index heuris-
tic, known as the Whittle index, to solve the original prob-
lem. We show that introducing per-round budget variables
bt and total budget limit of FB over a flexible time window
F and performing Lagrangian relaxation results in a min-
max problem that upper bounds the original problem, can
be solved efficiently using primal-dual algorithms that we
provide, and performs well in practice.

To summarize, our key contributions in this paper are:
(i) We define the F-RMAB model; (ii) we provide an al-
gorithm to compute well-performing F-RMAB policies;
(iii) we introduce heuristics that trade off solution quality
for efficiency; and (iv) we experimentally compare different
F-RMAB solution approaches and show that our approach
achieves an increase in reward of up to 24%, 72%, and 11%
respectively for the three synthetic domains tested.

2 Related Work
Restless multi-armed bandits, introduced by Whittle (1988),
are known to be PSPACE-hard in their full generality (Pa-
padimitriou and Tsitsiklis 1994), but have a well-studied
heuristic solution known as the Whittle index policy, which
is asymptotically optimal (Weber and Weiss 1990). Many



works study the Whittle index policy across a wide vari-
ety of application settings (Mate et al. 2020; Biswas et al.
2021; Lee, Lavieri, and Volk 2019). However, all of the
settings where Whittle index policy has been studied, in-
cluding multi-action settings (Hodge and Glazebrook 2015;
Hawkins 2003; Killian, Perrault, and Tambe 2021) assume a
fixed budget for all rounds in the planning horizon.

A specific form of flexibility, i.e., expected budget con-
straints over complete horizons, has been studied under the
lens of Constrained Markov Decision Processes (CMDPs).
However, standard CMDP techniques (Altman 1999) have
exponential complexity for RMABs. CMDPs with weak
coupling have been studied to address this (Boutilier and Lu
2016) but consider only one resource constraint over the to-
tal horizon. Our formulation newly addresses settings where
the resource constraints are defined over shorter time periods
than the complete planning horizon, e.g., planning one year
of weekly interventions with per-month budget constraints.

Flexibility in decision making, including resource flexi-
bility, budget design and flexible strategies, have shown to
be useful for manufacturing processes and decision making
in production flow control (Benjaafar, Morin, and Talavage
1995; Tomlin and Wang 2005; Boyabatlı, Leng, and Toktay
2016). However, while these models aim to compute poli-
cies that are flexible in the face of new information, they are
not required to satisfy an overall resource constraint.

On the contrary, in our work, while the planner will take
steps to be flexible in the face of new information, e.g., after
observing the given state of arms, they must make choices
that reason over multiple timesteps to avoid violating the
multi-step budget constraint, making the problem more chal-
lenging.

In this sense, our work also relates to a broader literature
on optimization with look-ahead (Wu and Frazier 2019; Lam
and Willcox 2017; Atkinson 1994; Shmueli and Feitelson
2003), but these methods both do not consider multi-step
budget constraints and scale poorly in the length of the time
horizon, whereas our method is linear in the flexible horizon.

3 Flexible Budget RMABs
Here, we define restless multi-armed bandits with flexible
budget (F-RMABs) and provide algorithms to solve for re-
ward maximizing policies in this setting. In §3.1 we give
a background on classic RMABs and in §3.2 we define F-
RMABs as a general class of RMABs with flexible per-
round budget. We also quantify the benefits of F-RMAB
policies for two-state MDPs in §3.3.

3.1 Background: Restless Multi-Armed Bandits
An RMAB instance consists of N independent Markov De-
cision Processes (MDPs), each corresponding to an arm of
the instance (Puterman 2014). Each MDP is defined by the
tuple {S,A, R,P}. S denotes the state space, A is the set of
possible actions, R is the reward function R : S ×A×S →
R, and P : S×A×S → [0, 1] represents the transition func-
tion. We use P a

s,s′ to denote the probability of transitioning
from state s to state s′ under the action a.

We let st = [st1, s
t
2 . . . s

t
N ] denote the vector of states

of the N MDPs at time step t. A policy is a mapping
πt : SN → AN that informs the action to take at a given
state, at time step t. We consider the more general multi-
action case in which |A| ≥ 2 and define an action-cost ma-
trix c of size N × |A|, i.e., cnj is the cost of taking action
j ∈ A on arm n. Let 1πt(st) be the one-hot encoder of size
N × |A|, where each row n indicates which action to per-
form on arm n at time step t. The planner’s goal is to find
reward maximizing policies {πt}Ht=1 under the budget con-
straint 1πt(st) · c ≤ B for each t ∈ [H]. Here H is the
horizon length and · is the Frobenius inner product.

The total reward accrued can be measured using dis-
counted, average, or total reward criteria in the finite-
or infinite-horizon settings; we consider the total reward
criterion in the finite-horizon setting, which enables the
clearest analysis of our method. The expected total re-
ward from initial state s0 is defined as V 1

π (s
0) =

E
[∑H

t=1

∑N
n=1 R(st−1

n , [πt(st−1)]n, s
t
n)
]

where the next

state is drawn according to stn ∼ P
[πt(st−1)]n

st−1
n ,stn

. The plan-

ner’s goal is to find policies π = {πt}Ht=1 that maximize the
total reward.

3.2 Definition
In F-RMABs, we define the MDP followed by each arm
using the tuple {S,A, R,P} just as in the classic RMAB
setting. We now consider a flexible-budget time window
of length F where F ≤ H . Our goal is to find optimal
policies {πt}Ht=1 such that

∑F
t=1(1πt(st) · c) ≤ FB and

1πt(st) · c ≤ B for t = F + 1, . . . ,H . That is, we consider
an exhaustible budget FB that is available to spend over
the flexible window 1, . . . , F and think of B as the one-
step budget at every time step t after the flexible window
t = F + 1, . . . ,H .

3.3 Benefit of Flexible Budgets
We present theoretical results illustrating the benefits of
flexible budget RMABs by considering a two-state pro-
cess model, which has been previously used in many real-
world problems such as treatment adherence for tubercu-
losis (Mate et al. 2022), intervention planning for ma-
ternal health (Biswas et al. 2021), and multichannel ac-
cess/scheduling problems (Sombabu et al. 2020) (see Fig. 7
in Appendix). In this process, we model the MDP followed
by each arm using two states, good (s = 1) and bad (s = 0).
We consider a binary action space A = {0, 1} and reward
R(s, a, s′) = s′. We further assume the MDPs representing
all arms have the same transition probabilities: P(0, 0, 0) =
1,P(0, 1, 0) = 0,P(1, 0, 0) = p10,P(1, 1, 0) = 0. Here,
p10 ∈ (0, 1) is the problem hyper-parameter. Despite the
simplicity of this setting, analyzing RMABs and F-RMABs
turns out to be non-trivial.

Theorem 1. Suppose F = H , H → ∞ and p10 ≥
N−1/2. Moreover, suppose the cost of playing action 0
is 0 and action 1 is 1, and suppose the one-step budget
B =

(
(1+o(1))p10

1+p10

)
N . Define normalized cumulative re-



ward as 1
NH

∑N
n=1

∑H
t=1 E

[
R(s

(t−1)
n , a

(t−1)
n , s

(t)
n )

]
, where

s
(t)
n , a

(t)
n is the state and action of arm n at time t. Let

RF-RMAB
∗ and RRMAB

∗ be the maximum normalized cumulative
rewards that can be achieved under the budget constraints
imposed by F-RMAB and RMAB. Then,

RF-RMAB
∗ ≥ 1− o(1)

1 + p10
, RRMAB

∗ ≤ 1− c

1 + p10
.

Here o(1) goes down to 0 as H → ∞. c > 0 is a positive
constant that doesn’t depend on H .

The above Theorem proves for the first time the existence
of RMABs in which, when given flexibility over the amount
of resources to allocate at each decision step, one can design
policies that outperform optimal fixed-budget policies.

4 Solving Under Flexible Budgets
Existing RMAB solution approaches require a fixed budget
per round, leading to suboptimal performance. To make use
of budget flexibility, we extend Lagrangian relaxation to the
F-RMAB formulation and solve the resulting min-max prob-
lem with gradient algorithms. We also provide heuristics to
solve F-RMABs that trade off solution quality for computa-
tional efficiency.

4.1 Concave-Convex Optimization
Recall, the budget constraint for F-RMABs over the flexible
window is given by:

F∑
t=1

1πt(st) · c ≤ FB, (1)

where 1πt(st) is the one-hot encoded matrix of size N×|A|,
where each row n indicates the action recommended by the
policy πt on arm n, at time step t. Since this budget con-
straint is over multiple timesteps, formulating the optimal
Bellman equation requires expanding the state space of the
F-RMAB to capture the budget remaining after a given ac-
tion is taken. However, this expansion adds an additional
layer of combinatorial complexity over that involved in for-
mulating the optimal Bellman equation for classic RMABs.
Moreover, it is unclear how to relax this single budget con-
straint, which covers multiple timesteps, in a convenient or
informative manner.

We make the insight that Eq. 1 can be reformulated to the
following equivalent constraint structure, which introduces
per-round budget variables:

1πt(st) · c ≤ bt ∀t ∈ {1, . . . , F} (2)
F∑
t=1

bt ≤ FB . (3)

We will show this reformulated set of constraints is much
more convenient to solve. For this constraint structure, each
bt for t ∈ {1, . . . , F} is a variable that we must solve for
in the original maximization problem. The key idea is that
having a constraint in each round of the problem will allow

us to follow a per-round Lagrangian relaxation, enabling us
to convert the problem into a more tractable form.

Thus for the finite-horizon problem with total time hori-
zon of length H and flexible time window of length F , the
F-RMAB problem can be formulated as the following opti-
mization problem:

max
π1,...,πH

b1,...,bF

E

[
H∑
t=1

N∑
n=1

R(st−1
n , [πt(st−1)]n, s

t
n)

]
(4)

s.t. 1πt(st) · c ≤ bt, ∀t ∈ {1, . . . , F} (5)

1πt(st) · c ≤ B, ∀t ∈ {F + 1, . . . ,H} (6)
F∑
t=1

bt ≤ FB (7)

Since the optimal policies for all arms are still coupled
by budget constraints, this problem is still at least as hard
as standard RMABs. However, we carry out a Lagrangian
relaxation that gives a new problem that upper bounds Eq. 4,
but is in a far more tractable form, as we show in Theorem 2.
Theorem 2. The Lagrangian relaxation of Eq. 4 gives a
new first-order primal-dual optimization problem which up-
per bounds Eq. 4 and has structure:

min
x∈X

max
y∈Y

⟨Kx, y⟩+G(x)−H∗(y), (8)

where X and Y are finite-dimensional vector spaces
equipped with inner product ⟨·, ·⟩. K : X → Y is a linear
operator and G : X → R ∪ {∞} and H∗ : Y → R ∪ {∞}
are convex functions.

Proof. Throughout the proof, we use the shorthand notation
at to denote a vector of actions [at1, . . . a

t
N ] taken at time step

t. We let 1at ∈ RN×|A| denote the one-hot encoding of at,
where the nth row encodes the action atn. We first rewrite the
objective in Eq. (4) as follows. Define J t(st−1), the maxi-
mum expected reward from time steps [t,H], starting from
state st−1 as:

J t(st−1) = max
at

N∑
n=1

E
[
R(st−1

n , atn, s
t
n) + J t+1(st)

]
s.t. 1at · c ≤ b̃t,

where we follow the convention JH+1(sH) = 0, and define
b̃t = bt if t ≤ F , and B otherwise. The objective in Eq. (4)
can be expressed in terms of J1 as

max
b1...bF

J1(s0) s.t.
F∑
t=1

bt ≤ FB. (9)

Then, by attaching Lagrange multipliers for constraints (5)
and (6) to the recursive definition of the objective function,
we get:

J t(st−1) =

max
at

min
λst−1≥0

N∑
n=1

E
[
R(st−1

n , atn, s
t
n) + J t+1(st)

]
+λst−1(b̃t − 1at · c).



We now make two transformations that give us a new
objective that upper bounds the original objective: (a)
we swap the min and max in J t and in Eq. (9). Since
minx maxy f(x, y) ≥ maxy minx f(x, y) for any f , this
gives us a new problem that upper bounds Eq. (4), and (b)
we enforce the Lagrangian multipliers to be constant across
states: λst−1 = λt−1. This constraint on λ makes the prob-
lem much more tractable. We note that similar approxima-
tions have been studied in the literature of coupled dynamic
systems (Hawkins 2003). This further allows decoupling
per-arm value functions (Thm. 3, (Hawkins 2003)) giving:

min
λ⪰0

max
b

N∑
n=1

L1
n(s

0
n;λ) +

F∑
t=1

λtbt +

H∑
t=F+1

λtB

s.t.
F∑
t=1

bt ≤ FB (10)

where b = (b1, . . . , bF ), and λ = (λ1, . . . , λH) is the vector
of Lagrange multipliers, one per time step, and

over. (11)

Since L1
n(s

0
n;λ) is a supremum of linear functions in λ, it

is convex in λ. So, the overall problem is a convex-concave
min-max problem which can be solved efficiently. We now
dualize the budget constraint over the flexible time window
(constraint in Eq. 10). This gives us the following uncon-
strained min-max problem:

min
λ⪰0,µ≥0

max
b

{
N∑

n=1

L1
n(s

0
n;λ) +

F∑
t=1

λtbt

+

H∑
t=F+1

λtB + µ
(
FB −

F∑
t=1

bt

)}
.

(12)
What remains then is to show that Eq. 12 can be rewritten

in the structure of Eq. 8. First, let (λ, µ) be x and let b be
y. Now, let K be such that ⟨K(λ, µ), b⟩ =

∑F
t=1(λt − µ)bt

and define H⋆(b) = 0, and

G(λ, µ) =

N∑
n=1

L1
n(s

0
n;λ) +

H∑
t=F+1

λtB + µFB (13)

Then we can rewrite the min-max problem in Eq. 12 as

min
λ,µ

max
b

⟨K(λ, µ), b⟩+G(λ, µ)−H∗(b) (14)

which gives us the claim.

The key benefit of Theorem 2 is that, if G is convex, there
are efficient algorithms for solving optimization problems
with this structure.
Proposition 1. G(λ, µ) is convex in λ and µ.

Now that we have demonstrated the underlying structure
of our problem, in the next section we describe our approach
for solving the Lagrangian sub-problem optimally, and using
that to derive good policies for the F-RMAB.

4.2 Solving F-RMABs with a Gradient Algorithm
We now build our algorithm for solving F-RMABs. The first
step is to solve Eq. 14. The key idea is that, for a given state
in a given round, the solution will contain information about
how budget within a flexible window would be best allo-
cated, and what actions are best to take. We use that informa-
tion to actually take actions each round in the environment.

We solve Eq. 14 by building from the proximal optimiza-
tion method of Chambolle and Pock (2011), which is desir-
able for its convergence properties on concave-convex min-
max optimization problems such as Eq. 14. The key chal-
lenge in implementing their approach is in efficiently com-
puting the proximal steps.

Note first that the proximal operator (or proximal map-
ping) of a convex function F is

proxσF (x) = argmin
u

(
F (u) +

1

2σ
||u− x||22

)
.

Following the notation in Chambolle and Pock (2011),
proxσF (x) = (I + σ∂F )−1. Then, the proximal operator
of H⋆(b) is proxσ

H⋆(x) = argminu

(
1
2σ ||u − x||22

)
= x.

Hence, the proximal operator of the zero function H⋆ is
the identity. The proximal operator of G does not have
any analytical form. However, it is a piecewise-liear func-
tion. Since the proximal operator of linear functions is sim-
ply x − σ∇F (x), a good approximation of proxσG(x) is
x − σ∇G(x). Though an approximation, as we show next,
computing ∇G is convenient, and performs well in practice.

Proposition 2. The gradient of G at (λ, µ) is given by
∇G((λ, µ)) = [D1, D2, . . . , DF , DF+1 + B, . . . ,DH +
B,FB] where Dt = E[

∑
n∈[N ] −ctn] is the expected sum of

costs over all arms in step t under the optimal policy for λ.

The main challenge then is in computing Dt which has no
convenient closed form. However, as long as we can com-
pute the optimal policy π∗(λ) for λ, we can get unbiased
samples of each Dt via Monte Carlo simulation of π∗(λ).

Combining each of these steps, we have a complete algo-
rithm for solving Eq. 14 to our desired level of convergence
(Chambolle and Pock 2011). We name this approach, which
includes our derived gradient sampling method, primal-dual
gradient sampling (PDGS) and provide pseudocode in Al-
gorithm 1.

4.3 Heuristics: Compressing F Steps into One
The main difference between classic RMABs and F-RMABs
is that the latter considers budget constraints over periods of
length F with F ≥ 1 and the former considers budget con-
straints at each round (F = 1). Therefore, we propose a
natural heuristic, which is not generally optimal but is well-
performing. The compress steps heuristic first simplifies an
F-RMAB to a classical multi-action RMAB by considering
all possible sequences of binary actions in each window F
and forcing all bt = FB, then computes policies using ex-
isting multi-action RMAB techniques (Hawkins 2003).

However, this baseline has no means to reason about flex-
ible budget. To create such a baseline, we also develop a
heuristic that reasons about the expected value of future



Algorithm 1: PDGS
Input: Flexible window F , horizon H , initial values b0 ∈
RF , λ0 ∈ RH , µ0 ∈ R, gradient steps τ, σ > 0, transition
probability P , per-round budget B, and number of gradient
samples Ns for each state s

1: ν̄0 = [λ0, µ0]
2: while not converged do
3: bn+1 = bn + σKν̄n

4: ν̂n+1 = νn − τK ′bn+1 // ν̂n+1 = [λ̂n+1, µ̂n+1]

5: πn+1 = FINITEHBELLMANLP(P, λ̂n+1, H) // LP
to compute value func given λ.

6: ∇G(ν̂n+1) = SAMPLEGRADS(Ns, π
n+1, P,H, F )

7: νn+1 = ν̂n+1 + τ∇G(ν̂n+1)
8: ν̄n+1 = 2νn+1 − νn

9: end while

Algorithm 2: SAMPLEGRADS

Input: Number of gradient samples Ns, policy π : SN →
AN , transition function P , planning horizon H , flexible
time window F

1: for i ∈ {1, ..., Ns} do
2: xi = (x1,i, . . . , xH,i) = MonteCarlo(π, P ) // Sim-

ulate π in environment P , return cost at t ∈ [H]
3: end for
4: D =

1

Ns

∑Ns

i=1 xi

5: return [D, BF ] // ∇G

chains of flexible actions for each arm. This allows us to
use existing tools to encode a flexible budget, though this
method is exponential in F , and thus not very scalable.
These heuristics are presented in detail in Algorithms 4 and
5 in the Appendix.

Finally, given our method and the above two baselines,
we decide which actions to take each round by solving the
ACTIONKNAPSACK (see appendix B) which takes in the Q-
values and budget for the given round. For our method, the
budget is determined by PDGS. For COMPRESSSTEPS, the
budget at each round is the entire remaining flexible bud-
get. After a set of actions is taken, we step the environment
forward, reduce the horizon by 1, and reduce the total flexi-
ble available by the amount of budget used in the last round.
This guarantees that all methods spend the same total budget
over all rounds in our evaluation.

4.4 Complexity Analysis
The computational complexity of PDGS has desirable scal-
ing properties. It consists of three major steps, namely, the it-
erative updates, the computation of π⋆ and the gradient sam-
pling, all inside the convergence loop. The updates involv-
ing multiplications of K have complexity O(FH). Comput-
ing π⋆ depends on the computational complexity of build-
ing and solving an LP. Specifically, there is linear cost in
setting up constraints and quadratic cost in the number of
variables to solve (Jiang et al. 2020). The FINITEBELL-
MANLP has NSH value function variables, H Lagrange

variables, and NS2HA constraints. That gives LP complex-
ity of O(NS2HA + N2S2H2). Finally, SAMPLEGRADI-
ENTS loops over all arms and timesteps, sampling from an
S-length distribution for each next state, and so has com-
plexity O(NSH × Nsteps). Putting this all together, inside
the convergence loop with Z steps gives the following com-
putational complexity for PDGS:

O(Z(FH +NS2HA+N2S2H2 +NSHNs)) . (15)

Notably, the linear scaling in F is desirable, especially
compared to the COMPRESS heuristic which computes all
possible sequences of actions of length F and thus has ex-
ponential complexity of O(NFAFS3).

5 Experimental Evaluation
We evaluate the algorithms presented in sections 4.2 and 4.3
on three synthetic domains. Our results show these domains
all benefit from per-round budget flexibility.

5.1 Domains Aided by Flexibility
Dropout State This first domain characterizes settings
with potential urgent interventions, such as clinical health
settings in which patients are likely to never return after
dropping out of a program (Biswas et al. 2021). We con-
sider three states: dropout (s = 0), at-risk (s = 1), and
safe (s = 2). We consider a binary action set A = {0, 1}
corresponding to a passive action (a = 0) and active action
(a = 1). The reward function R : S → R is defined as
R(0) = 0 and R(1) = R(2) = 1. Once an arm reaches
the dropout state, it can not transition to any other state, i.e.
P a
0,0 = 1 for all a ∈ A. Fig. 1 illustrates the remaining active

and passive transition probabilities in this domain.
In this dropout domain, interventions may be more ur-

gent in certain rounds depending on the combined state of
all arms. For example, if at time t, k arms are at risk of tran-
sitioning to a dropout state, i.e. k arms are in state 1 as shown
in Figure 1, acting on these k arms at t is more urgent than
acting on them at t + 1 or other near future steps. Thus this
domain illustrates a key instance when the F-RMAB class
introduces essential flexibility.

Immediate Recovery This setting models maintenance-
style RMAB problems. Each arm corresponds to one item
that gradually decays over time, and intervention is guar-
anteed to restore that item to peak condition (see Fig. 5 in
Appendix). For example, a bikeshare program must main-
tain a fleet of bikes, and a mechanic could fully restore any
bike, but only if that item has not decayed beyond the point
of repair. There is a good state, a dropout state, and S − 2
intermediate states. An active action on all states other than
s = 0 will transition back to the good state with probabil-
ity 1. We consider the first half of the states, closer to the
dropout state, to have reward −1 and the second half, closer
to the good state, to have reward 1. If the amount of states is
odd then we consider the median state to have reward 0.

Two-state Process The two-state process models ap-
proaches in health intervention planning such as maternal
health care (Mate et al. 2022). This domain models an en-
tity with two states, a good and a bad state, with reward
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Figure 1: Drop out state domain with three states: drop out
(s = 0), risk (1), and safe (2). Passive transition probabilities
are presented in Figure (a) and active transition probabilities
are shown in Figure (b). We take p00,0 ∈ [0.85, 0.95], p10,0 =

0, p01,1 ∈ [0.35, 0.5] and p11,1 = 1 in our experiments.

R(1) = 1 for each arm in the good state and R(0) = 0 for
the bad state. See Figure 7 in Appendix for a diagram of the
model, with four transition probability parameters.

5.2 Baselines
We compare our algorithms against Lagrange-based policies
for classic RMABs presented in Hawkins (2003): Hawkins
2003 computes values of Lagrange multipliers after re-
laxing per round budget constraints with fixed budget B,
then solves a knapsack with budget B per round over Q-
values adjusted for the solved Lagrange multipliers. Com-
press (static) (Algorithm 5 in Appendix B) plans across the
flexible window F in each timestep and executes the first
action before recomputing. Compress (closing) (Algorithm
4 in Appendix B) plans across a flexible window of size F ,
then F − 1, and so on until a window of size 1, repeating
every F steps.

Our method, PDGS-N, solves the primal-dual optimiza-
tion problem presented in Theorem 2 using Algorithm 1 with
N iterations. Then solves a knapsack with the solved bud-
get variables bt over Q-values adjusted for the solved La-
grange multipliers. Planning is done using the closing win-
dow framework.

5.3 Results
We test PDGS (Algorithm 1) and Compress heuristics (Al-
gorithms 4 and 5 in appendix B) to solve for F-RMABs and
compare them against a classic RMAB solution algorithm
with fixed per round budget on the three domains described
above. For each domain we consider a planning horizon of
length H , an initial per round budget of B = 1, and vary the
length of the flexible time window F .

In Fig. 2 [left] we see that optimal policies that allow for
budget flexibility attain higher reward than optimal policies

restricted to a fixed budget at every round. The Hawkins
approach demonstrates the optimal reward achieved with
a fixed budget. Our PDGS algorithm to solve for optimal
policies in F-RMABs attains higher cumulative reward than
Hawkins across all settings. Notably, PDGS progressively
obtains higher rewards with longer flexible time windows,
especially in the immediate recovery domain (Fig. 2(b)),
demonstrating the additional planning power that can be
gained with wider windows of flexibility.

As shown in Fig. 2(a), the flexible algorithms Compress
(closing) and PDGS-200 obtain a maximum increase in re-
ward of 21.50% and 23.56% respectively for F = 5 com-
pared to the reward obtained by Hawkins. This increase in
reward is obtained by designing a more efficient allocation
of resources over a planning horizon of length H = 30.
This allocation is done by mostly assigning 0 to 2 resources
at each step of the planning horizon, even for F = 3 and
F = 5, in contrast to Hawkins which is restricted to use 1
resource at each step (see Fig. 6(a.1)–(a.3) in appendix D.3).

For the immediate recovery domain with S = 5 states
(one dropout state, one fully recovered state, and three inter-
mediate states), the average cumulative reward significantly
increases as the length of the flexible window increases up
to the point where the whole planning horizon is flexible,
as shown in Fig. 2(b). PDGS-200 attains an increase in av-
erage cumulative reward of 15.57%, 63.28% and 72% for
F = 2, 5, 10 respectively compared to Hawkins.PDGS at-
tains higher rewards by allocating up to 2 to 5 resources at
different steps even for flexible windows as wide as F = 10
(see Fig. 6(b.1)–(b.3) in appendix D.3).

As shown in Fig. 2(c) for the two-state process domain,
our method to solve for policies with flexible budget (PDGS-
200) attains an increase in reward of 6.71%, 5.66%, and
11.32% for flexible time windows of length F = 2, 3, 6 re-
spectively in contrast to the per round budget policy derived
by Hawkins. We observe that RMABs can also benefit from
flexibility in settings with as few as two states, which are rel-
evant settings for health intervention planning, in contrast to
the other two domains considering more than two states and
having intermediate states that directly characterize waiting
steps until reaching a bad state.

For flexible time windows as short as F = 2, our pro-
posed heuristic on compressing from F to 1 steps into one
round by closing the flexible time window Compress (clos-
ing) (algorithm 4 in appendix B) attains almost as much re-
ward as the near optimal algorithms (PDGS) under signifi-
cantly smaller runtime (Fig. 2 [right]), implying that the ex-
ponential factor of F is relatively negligible for such small
windows. One limitation from Compress (closing) is that,
when reasoning on what actions to take at F − t, i.e. when
the flexible window is t steps closed, it maximizes for the
reward obtained at the last step of the current window and
does not reason about the cumulative reward obtained at all
intermediate steps of the window. This limitation explains
the increase in gap between Compress (closing) and PDGS-
200 as F increases, suggesting that for flexible windows as
small as F = 2, Compress (closing) may be used to obtain
almost as much reward as optimal algorithms under signifi-
cantly less runtime as shown in Fig. 2 [right].



Figure 2: [Left] Cumulative reward for (a) dropout state with H = 30, N = 10, B = 1, (b) immediate recovery with 5 states,
H = 10, N = 10, B = 1, and (c) two-state process with H = 6, N = 10, B = 1.The cumulative reward axis range in (a) and
(b) starts at the average value for a policy taking B random actions. The horizontal gray line in (c) denotes this same value for
the two-step process domain. [Right] Runtime for flexible budget algorithms with F = 2. Plotted on a log scale.

5.4 Scale-Up Results

We extend our experimental results to settings with greater
amount of arms (N ) and longer time horizon (H). As seen
in Fig. 3, flexible budget policies solved via PDGS obtain
higher or equal reward than optimal fixed budget policies
when scaling up the amount of arms to N = 10, 20, 50 for
the three domains considered. The highest reward is attained
at the maximum length of the flexible window (F = 10),
where the complete planning horizon of length H = 10 is
flexible.

In the dropout state and immediate recovery domains,
PDGS’s superior performance (see Fig. 3) shows that there
continues to be benefit from flexibility as the number of
arms increases. However, in the two state domain, the benefit
from flexibility seems to decrease with the number of arms.
Promisingly though, policies computed via PDGS attain
equally as much reward as the optimal fixed budget policies
solved with Hawkins, demonstrating its robustness. More-
over, PDGS has no significant increase in runtime when in-
creasing the flexible time window F as seen in Fig. 3 (bot-
tom row). Most of the increase in runtime comes from in-
creasing the amount of arms N which we expected to result
in a quadratic increase in runtime (see §4.4).

Figure 3: Average reward per arm (top row) and runtime in
seconds (bottom row) for Hawkins and PDGS with flexible
windows of length F , time horizon H = 10 and per-round
budget B = N

10 .

Figure 4: Two-state process domain. Relative increase in re-
ward compared to Hawkins over total horizon H for policy
solved via PDGS.

Finally, we evaluate the performance of PDGS for longer
time horizons reaching values where F ≪ H in the two-
state process domain. PDGS consistently attains higher re-
ward than Hawkins when extending the time horizon, show-
ing that our proposed algorithm is able to arrive at policies
that find benefit in flexibility even when F ≪ H , e.g. F = 2
and H = 100 (see 4). However, the relative increase in re-
ward decreases as F/H decreases, suggesting wider lengths
of flexibility could be considered for longer time horizons to
obtain higher benefits from flexible budgets.

6 Conclusion

We introduce the flexible budget restless multi-armed ban-
dits (F-RMAB) problem and derive a method, which we
call PDGS, for optimally solving Lagrangian-relaxation in
the F-RMAB formulation via a gradient primal-dual algo-
rithm, which translates into a scalable approach for com-
puting well-performing policies in this new domain. Fur-
ther, we empirically verify that our method outperforms a
suite of challenging baselines across a range of scenarios
inspired by classic RMAB applications and real-world set-
tings, emphasizing the additional planning power that F-
RMABs represent over traditional RMAB methods. We de-
fine heuristics that trade off solution quality for efficiency
in runtime. These heuristics perform almost as good as the
optimal methods (PDGS) for small flexible time windows
requiring significantly less runtime. We hope that this work
further contributes to the real-world applicability of RMAB
methods.



Ethical Statement
We propose an algorithm to solve for reward-maximizing
policies under flexible per round budget. The per round bud-
get flexibility is solved under the assumption that there ex-
ists a flexible time window of length F for which a planner
can allocate FB resources. Our approach is limited to con-
sider complete flexibility over the flexible time window of
length F , i.e. for each t = 1, . . . , F , the per round budget
bt can take values from 0 to FB. This approach could be
limiting in settings where it is not desirable to not spend any
resource at some step or to spend all available resources at
only one step. For instance, one could consider admitting up
to (α, β)–flexibility and imposing the additional constraint
αFB ≤ bt ≤ βFB where α, β ∈ [0, 1] and α < β.
However, solving the optimization problem in Eq. 4-7 with
this additional constraint is non-trivial. Our algorithm takes
a major step towards solving for reward-maximizing poli-
cies under real-world characteristics such as budget flexibil-
ity but is limited to complete flexibility over a given time
window.

The characteristic on having budget flexibility has been
thought as desirable from a planner’s perspective. However,
when the resources at hand are humans —human working
time—, the capacity of human employees to be flexible with
their working hours should also be taken into account. One
ethical concern would be imposing flexibility that arises in
negative impacts from having longer shifts, or being unfair
among different workers in terms of their work load dis-
tribution. Accordingly, choosing a value for F and B that
takes these considerations into account is an important ethi-
cal consideration for planners potentially using our tool. Ad-
ditionally, imposing additional constraints such as the one
described previously in this section could help tackle this
ethical consideration.
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A Theory

A.1 Proof of Proposition 1

Proposition 1. G(λ, µ) is convex in λ and µ.

Proof. G(λ, µ) is given by

G((λ, µ)) =

N∑
n=1

L1
n(s

0
n;λ) +

H∑
t=F+1

λtB + µFB .

The second and third terms are linear in λ and µ and thus are
convex. Each of the first terms, i.e., L1

n(s
0
n;λ) are a maxi-

mum over piece-wise linear convex functions of λ and thus
are also piece-wise linear convex functions λ. Since G is a
sum of functions that are convex in (λ, µ), G is also convex
in (λ, µ).

A.2 Proof of Theorem 1

Theorem 1. Suppose F = H , H → ∞ and p10 ≥
N−1/2. Moreover, suppose the cost of playing action 0
is 0 and action 1 is 1, and suppose the one-step budget
B =

(
(1+o(1))p10

1+p10

)
N . Define normalized cumulative re-

ward as 1
NH

∑N
n=1

∑H
t=1 E

[
R(s

(t−1)
n , a

(t−1)
n , s

(t)
n )

]
, where

s
(t)
n , a

(t)
n is the state and action of arm n at time t. Let

RF-RMAB
∗ and RRMAB

∗ be the maximum normalized cumulative
rewards that can be achieved under the budget constraints
imposed by F-RMAB and RMAB. Then,

RF-RMAB
∗ ≥ 1− o(1)

1 + p10
, RRMAB

∗ ≤ 1− c

1 + p10
.

Here o(1) goes down to 0 as H → ∞. c > 0 is a positive
constant that doesn’t depend on H .

Proof. Let Nt,0, Nt,1 be the number of arms in states 0, 1 at
time t respectively. The normalized cumulative reward can
be expressed in terms of Nt,0, Nt,1 as follows

1

NH

N∑
n=1

H∑
t=1

E
[
R(s(t−1)

n , a(t−1)
n , s(t)n )

]
=

1

NH

H∑
t=1

E [Nt,1] .

This follows from the following fact

R(s(t−1)
n , a(t−1)

n , s(t)n ) = s(t)n .

Lower bound on RF-RMAB
∗ . To derive a lower bound,

we carefully construct a policy that satisfies the budget
constraints imposed by F-RMAB and compute its normal-
ized cumulative reward. Since RF-RMAB

∗ is the maximum
achievable normalized cumulative reward, it should be lower
bounded by the normalized cumulative reward of this policy.

At any round, our policy simply selects the arms that are
in state 0 and plays action 1 for the arms. For the rest of the
arms, the policy plays action 0. So, the budget bt used in
round t by this policy is equal to Nt,0. In the proof, we show

that this policy satisfies the budget constraint of F-RMAB
with high probability1

We first derive recurrences for how Nt,0, Nt,1 evolve with
time for the policy defined above. Let bt be the budget used
in round t (note that bt = Nt,0). From the definition of the
MDP, we have

Nt+1,1 = Nt,0 + Bin(N −Nt,0, 1− p10),

where Bin(N, p) is a Binomial random variable with N tri-
als and success probability of p. Rewriting this, we get

Nt+1,1 = N − Bin(Nt,1, p10)

Here, we used the facts that Nt,0 + Nt,1 = N, and

Bin(N, p)
(d)
= N − Bin(N, 1− p). This shows that

E [Nt+1,1] = N − p10E [Nt,1] .

Summing the LHS and RHS over all possible values of t
gives us

1

H

H−1∑
t=0

E [Nt+1,1] = N − p10
H

H−1∑
t=0

E [Nt,1] .

Rearranging the terms in the above expression gives us

1

H

H∑
t=1

E[Nt,1] =
N

1 + p10
− p10N0,1

H(1 + p10)
+

p10NH,1

H(1 + p10)
.

As H → ∞, the last two terms in the RHS above approach
0. So we have

lim
H→∞

1

H

H∑
t=1

E[Nt,1] =
N

1 + p10
.

This shows that the normalized cumulative reward ac-
crued by the policy is 1

1+p10
. It remains to be shown

that this policy indeed satisfies the budget constraint of
F-RMAB. To this end, we rely on martingale concentra-
tion inequalities (Chung and Lu 2006). Since the budget
used in each round is bt = Nt,0, it needs to be shown
that 1

H

∑H−1
t=0 Nt,0 ≤ B with high probability. Let Zt =

Nt,0 − Es<t[Nt,0]. Note that Zt is a bounded random vari-
able with variance bounded by p10N . Moreover, {Zt}Ht=1 is
a martingale difference sequence. Using standard concentra-
tion inequalities for martingale difference sequences, we get
the following, which holds with probability at least 1− δ

1

H
|

H∑
t=1

Zt| ≤

√
p10N log 1

δ

H
.

Next, note that Es<t[Nt,0] = p10(N − Nt−1,0). This gives
us the following bound on the cost of the policy

1

H

H−1∑
t=0

Nt,0 =
1

H

H−1∑
t=0

Zt +
1

H

H−1∑
t=0

Es<t[Nt,0]

(a)
= p10N +

1

H

H−1∑
t=0

Zt −
p10
H

H−1∑
t=0

Nt,0,

1In case the low-probability event where the policy violates the
budget constraint happens at some time step t, we simply play ac-
tion 0 for all arms, for the rest of the rounds.



where (a) follows from the expression for Es<t[Nt,0] de-
rived above. Rearranging the terms in the above expression
and substituting the above concentration inequality gives us

lim
H→∞

1 + p10
H

H−1∑
t=0

Nt,0 ≤

√
p10N log 1

δ

H
+ p10N.

This shows that

lim
H→∞

1

NH

H−1∑
t=0

Nt,0 ≤ (1 + o(1))p10
1 + p10

.

This shows that with high probability, the algorithm satis-
fies the budget constraints. In case the low-probability event
(where the policy violates the budget constraint) happens at
some time step t, we simply play action 0 for all arms, for
the rest of the rounds. It is easy to see that this only changes
the normalized cumulative regret of the policy by o(1) fac-
tors. This shows that RF-RMAB

∗ is lower bounded by 1−o(1)
1+p10

Upper bound on RRMAB
∗ . In this setting, we have a fixed

budget of B at each round. Since the MDPs of all the arms
are the same, it is easy to see that the following policy is
optimal for the RMAB problem: (a) if Nt,0 ≤ B, then play
action 1 for all the arms that are in state 0 and for (B−Nt,0)
randomly selected arms that are in state 1. For the rest of the
arms, play action 0, (b) on the other hand, if Nt,0 ≥ B, then
play action 1 for B randomly selected arms that are in state
0. For the rest of the arms, play action 0. For this policy, we
have the following recurrences for Nt,0, Nt,1

Nt+1,1 =

{
B + Bin(N −B, 1− p10), if B ≥ Nt,0,

B + Bin(Nt,1, 1− p10), otherwise.
(16)

This recurrence again follows from the definition of the
MDP. From the above equations, it is easy to see that the
conditional expectation E[Nt+1,1|history] has the following
recurrence

E[Nt+1,1|history] = p10B + (1− p10)N (17)
+ (p10 − 1)max{0, Nt,0 −B} (18)

Since the last term is always non-positive, we have the fol-
lowing upper bound for E[Nt+1,1|history]

E[Nt+1,1|history] ≤ p10B + (1− p10)N =
1 + o(1)

1 + p10
N.

where the last equality follows from our definition of B. This
shows that as H → ∞

RRMAB
∗ =

1

NH

H∑
t=1

E[Nt,1] ≤
1

1 + p10

This also shows that as H → ∞ RRMAB
∗ ≤ RF-RMAB

∗ , thus
showing that flexibility is helpful in this setting.

We can further show that FRMAB strictly improves upon
standard RMAB by deriving a tighter upper bound for

RRMAB
∗ . To this end, consider the stochastic process in Equa-

tion (16). It can be rewritten as follows

Nt+1,1 =

{
B + Bin(N −B, 1− p10), if Nt,1 ≥ N −B

B + Bin(Nt,1, 1− p10), otherwise.

The process {Nt,1}∞t=1 is supported on a finite state space
of {B, . . . , N}. Let P ∈ R(N−B+1)×(N−B+1) be the transi-
tion matrix of this process, where Pij denotes the probability
of transitioning from state (B + i− 1) to state (B + j − 1).
For any pair of states s, s′, it is easy to see that there is a non-
zero probability of the process going from s to s′ in ⌈N/B⌉
rounds (this follows from the fact that in every round, there is
a non-zero probability of Nt,1 increasing by B). This shows
that all the elements of the matrix P ⌈N/B⌉ are non-zero. Ap-
plying Wielandt’s theorem for our choice of p10 shows that
the stochastic process is ergodic (Wielandt 1950).

From theory of ergodic processes, we know that our pro-
cess visits each of the states inifintely many times. Let
π : {B, . . . , N} → R>0 be the stationary distribution of
the process, where π(s) is the long-run proportion of time
the process is in state s. RRMAB

∗ can be written in terms of π
as

RRMAB
∗ =

1

N

N∑
s=B

π(s)s.

We already know that limH→∞ RRMAB
∗ ≤ 1

1+p10
. To show

that this is strictly less than 1
1+p10

, consider the following

E[Nt+1,1] =

P(Nt,1 ≥ N −B) (B + (N −B)(1− p10))

+ P(Nt,1 < N −B)E [B +Nt,1(1− p10)|Nt,1 < N −B] .

This follows from Equation (16). From our definition of B,
we have B + (N − B)(1 − p10) = N

1+p10
. Moreover, we

have

E [B +Nt,1(1− p10)|Nt,1 < N −B]

< B + (N −B)(1− p10) =
N

1 + p10
.

Since our process is ergodic, we know that
limH→∞

1
H

∑H
t=1 P(Nt,1 < N − B) > 0. Combin-

ing these results and plugging them into the previous
display gives us

lim
H→∞

H∑
t=1

1

NH
E[Nt+1,1] <

1

1 + p10
.

This shows that RRMAB
∗ ≤ 1−c

1+p10
, where c > 0 is a positive

constant that is independent of H2. This finishes the proof
of the Theorem.

2a more careful analysis can be used to show that c =
1/poly(N)



FRMAB vs RMAB with large budget. The simple
setting considered in this Theorem also sheds light on
when flexibility is helpful. One can show that for B ≥(

p10

1+p10

)
N +

√
p10N logH , both FRMAB and RMAB

achieve the same reward. This is because with such high
budget, the number of arms in state 0 at any point in time
is lower than B with very high probability. Consequently,
both RMAB and FRMAB can perform action 1 on all the
arms whose state is 0 in all the rounds. Consequently, both
achieve the same rewards.

B ≥
(

p10
1 + p10

)
N +

√
p10N logH

B Algorithms

Algorithm 3: COMPRESSSTEPS

Input: F,N,S,A, P

1: AF = {(ai)i∈[F ] | ai ∈ A}
2: for n ∈ [N ] do
3: for a ∈ AF do
4: P̂F−1

n =
∏

i∈[F−1] Pn(s, ai, zi)

5: PF
n (s,a, s′) =

∑
z∈SF−1

P̂F−1
n ·Pn(zF−1, aF−1, s

′)

6: end for
7: end for
8: return AF , PF

Algorithm 4: COMPRESSSTEPS + HAWKINS with closing
flexible window
Input: N , MDP ⟨S,A, c, P, r⟩, B,H, F, s0 //H mod F =
0

1: for t = 1, . . . ,H do
2: F ′ = F − t mod F // Close window
3: if F ′ = 0 then
4: u = 0 // Used budget in current window
5: end if
6: AF ′

, PF ′
= COMPRESSSTEPS(F ′, N,S,A, P )

7: B′ = F ′B − u
8: λmin, Q = HAWKINS(S,AF ′

, PF ′
, B′)

9: a = ACTIONKNAPSACK(Q(st−1, ·, λmin), c, B
′) //

a = (a1, . . . ,aF′)
10: st+1 = STEP(a1, st, P )
11: u += a1 · c
12: end for

Algorithm 5: COMPRESSSTEPS + HAWKINS with static
flexible window
Input: N , MDP ⟨S,A, c, P, r⟩, B,H, F, s0 //H mod F =
0

1: AF , PF = COMPRESSSTEPS(F,N,S,A, P )
2: for t = 0, F, 2F, . . . ,H do
3: Q,λmin = HAWKINS(S,AF , PF , FB)
4: (a1, . . . ,aF) = ACTIONKNAPSACK

(Q(st−1, ·), c, TB)
5: for i = 1, . . . , F do
6: si+1 = STEP(a1, si, P )
7: end for
8: end for

C Experimental Domain Diagrams
We present the diagrams for the Immediate recovery
(Fig. 5) and Two-state process (Fig. 7) domains. Please see
section 5 for additional descriptions.

D Experiment Setup Details
All algorithms were implemented in Python 3.7.10 and
mathematical programs were solved using Gurobi version
9.0.3 via the gurobipy interface (Gurobi Optimization 2021).
Experiments were run on a cluster running CentOS with In-
tel(R) Xeon(R) CPU E5-2683 v4 @ 2.1 GHz with 8GB of
RAM and 8 processors.

D.1 Experimental domains
For our experimental setups we consider the three synthetic
domains described in Section 5.1 with the following char-
acteristics.

Dropout state This domain takes a planning horizon of
length H = 30, N = 10 arms, initial per round budget of
B = 1 and vary the flexible window length F = 2, 3, 5. As
shown in Fig. 1, each arm n ∈ [N ] has random transition
probabilities p00,0 ∈ [0.85, 0.95], p10,0 = 0, p01,1 ∈ [0.35, 0.5]

and p11,1 = 1. Results are averaged over 30 seeds.

Immediate recovery This domain takes a planning hori-
zon of length H = 10, N = 10 arms, S = 5 states with
rewards R(s) = −1 for s = 0, 1, R(s) = 0 for s = 2, and
R(s) = 1 for s = 3, 4, an initial per round budget of B = 1
and vary the flexible window length F = 2, 5, 10. Transi-
tion probabilities for each arm n ∈ [N ] are p1s′,S−1 = 1,
p00,0 = p10,0 = 1, p0s,s ∈ [0.5, 0.7] are sampled uniformly
and p0s,s−1 = 1 − p0s,s for all s = 1, . . . , S − 1 as shown in
Fig. 5. The rest of the transition probabilities are set to 0.
Results are averaged over 30 seeds.

Two-state process This domain takes a planning horizon
of length H = 6, N = 10 arms, initial per round budget
of B = 1 and vary the flexible window length F = 2, 3, 6.
Transition probabilities for each arm n ∈ [N ] are p10,1 =

p11,1 = 1, p00,0 ∈ [0.85, 0.95] and p01,1 ∈ [0.5, 0.85] are uni-
formly sampled, and p00,1 = 1− p00,0 and p01,0 = 1− p01,1 as
shown in Fig. 7. Results are averaged over 30 seeds.
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Figure 5: Immediate recovery domain.

Figure 6: Frequency of used resources at each step
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Figure 7: Two-state process domain with pas,s′ the transition
probability from state s to s′ after taking action a.

D.2 Algorithms
The following algorithms with the given hyper parameters
were tested in the three synthetic domains.

Hawkins [2003] Computes values of Lagrange multipliers
after relaxing per-round budget constraints with fixed bud-
get B. Then solves a knapsack with budget B per round
over Q-values adjusted for the solved Lagrange multipli-
ers. The only set hyperparameter is the discounting factor
(gamma) of 0.95. See algos/hawkins methods and
algos/hawkins actions in the supplementary code
material for detailed implementation.

Compress (static) and compress (closing) Simplifies an
F-RMAB to a classical multi-action RMAB by consider-
ing all possible sequences of binary actions in each window

F and forcing all bt = FB, then computes policies using
existing classic multi-action RMAB techniques. Compress
(static) follows Alg. 5 and compress (closing) follows Alg.
4. Both algorithms use a discounting factor (gamma) of 0.95
in the HAWKINS function (lines 7 and 3 of Alg. 5 and Alg.
4 respectively). See algos/compressing methods in
the supplementary code material for detailed implementa-
tion.

PDGS-N Implements Alg. 1 with N iterations, τ = 0.1,
σ = 0.1, x0 = 0⃗, y0 = 1⃗, and Nsteps = 50. Follow-
ing Theorem 1 in Chambolle and Pock (2011), we choose
τ and σ such that τσL2 < 1 to assure that the algorithm
will converge to a saddle point (x∗, y∗), where L = ||K|| =
max{||Kx|| : x ∈ X with ||x|| ≤ 1} for K as defined in
the proof of Theorem ??. See algos/minmax methods
in the supplementary code material for detailed implemen-
tation.

D.3 Results: frequency of used resources
Figure 6 shows the frequency with which 0 to FB resources
are assigned at each step of the planning horizon for the three
synthetic domains considered: (a) dropout state, (b) imme-
diate recovery, and (c) two-state process. These results are
discussed in Section 5.3.


