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ABSTRACT
We present the design and analysis of a multi-level game-theoretic

model of hierarchical policy-making, inspired by policy responses

to the COVID-19 pandemic. Our model captures the potentially

mismatched priorities among a hierarchy of policy-makers (e.g.,

federal, state, and local governments) with respect to two main cost

components that have opposite dependence on the policy strength,

such as post-intervention infection rates and the cost of policy

implementation. Our model further includes a crucial third fac-

tor in decisions: a cost of non-compliance with the policy-maker

immediately above in the hierarchy, such as non-compliance of

state with federal policies. Our first contribution is a closed-form

approximation of a recently published agent-based model to com-

pute the number of infections for any implemented policy. Second,

we present a novel equilibrium selection criterion that addresses

common issues with equilibrium multiplicity in our setting. Third,

we propose a hierarchical algorithm based on best response dynam-

ics for computing an approximate equilibrium of the hierarchical

policy-making game consistent with our solution concept. Finally,

we present an empirical investigation of equilibrium policy strate-

gies in this game as a function of game parameters, such as the

degree of centralization and disagreements about policy priorities

among the agents, the extent of free riding as well as fairness in

the distribution of costs.
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1 INTRODUCTION
Democratic governments and institutions typically have a hierarchi-

cal structure. For example, policies in the U.S. emerge from complex

interactions among the federal and state governments, as well as

county boards and city councils and mayors. Similar structure exists

in Canada and in European democracies. Such policy interactions

are hierarchical, with higher levels in the hierarchy able to impose

some constraints on the policies immediately below (e.g., the U.S.

federal government can constrain what state policies can be). Vio-

lations of these constraints, in turn, entail a non-compliance cost

to the violator, such as legal costs, penalties, or reputation loss.

Many examples of such hierarchical policy structure commonly

arise, such as in educational and vaccination decisions, as well as

in devising policies for controlling a pandemic. Take COVID-19

social distancing policies as a concrete example. These policies com-

monly include recommendations at the national level, guidelines

and restrictions at the state/province/district level, and policies for

specific counties or cities. Moreover, a common feature of such

hierarchical policy-making is that what ultimately matters are the

policies actually deployed at the lowest level, since these are often

most practical to enforce.

In general, policies are contentious. Agents at all levels of the

policy-making hierarchy may disagree about the best policies, or

more fundamentally, about the particular tradeoffs made in devising

policies. For example, COVID-19 social distancing measures have

considerable costs, both economic and socio-psychological, but

lack thereof results in more people who become infected; different

institutions disagree on how to trade off these concerns.

We propose a general model of hierarchical policy-making as

a game among the policy-makers at all levels of the hierarchy. In

this game, policies at the higher levels have an impact by imposing

non-compliance costs on lower levels, but ultimate implementa-

tion of policies happens at the lowest level. Each agent in this

game trades off two types of costs: policy implementation cost (e.g.,
socio-psychological or economical impacts of lockdowns) and pol-
icy impact cost (e.g., number of COVID-19 infections). Besides the

impact on the structure of agent utilities, the hierarchy also impacts

the sequence of moves: agents at higher levels precede lower lev-

els (e.g. by announcing guidelines), with the latter observing and

reacting to the policy recommendations by levels above them.
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Figure 1: Hierarchy of policy-makers with 3 levels: Govern-
ment, States and Counties.

In our game-theoretic model, each agent’s action/pure strategy

is a single, bounded scalar that represents the degree of social dis-

tancing in the pandemic-response context. Our first contribution is

a novel solution concept which refines the subgame perfect Nash

equilibrium, accounting for commonly occurring indifferences. Our

second contribution is an analytic version of a recently proposed

agent-based model (ABM) for COVID-19 pandemic spread estima-

tion that accounts for social distancing [30]; we show that our

analytic model closely mirrors short-term behavior of the ABM

with a much shorter computational cost compared to the ABM.

We use our modeling framework to experimentally investigate

possible phenomena arising from decentralized policy-making.

One of our questions relates to policy free-riding: Is it possible
that (in equilibrium) a player lower in the hierarchy adopts a weak

policy with a low implementation cost while imposing a negative

externality on another player (perhaps on the same level) and hence

also enjoying lower infection numbers owing to the latter player’s

stronger policy? Can a higher-level policy-maker mitigate such

free-riding via non-compliance penalties? We show that the answer

depends in a complex manner on different parameters such as initial

infection rates, degree of contact among different parts of the pop-

ulation, weights on different types of cost, and the non-compliance

cost structure. Our second set of experiments measures the fairness
in the distribution of costs as a function of model parameters as

well as degrees of centralization.

1.1 Related work
Our work is related to the line of research applying the social and

behavioral sciences to the cost-benefit analysis of both centralized

and decentralized decision-making under pandemic/epidemic con-

ditions [26]. Some papers approach these trade-offs from an optimal
control perspective [5, 19–21]. Others study the equilibria of various
game-theoretic models of individuals deciding whether to follow

guidelines for preventive measures (distancing, vaccination, etc.)

and treatment, possibly against the (perceived) aggregate behavior

of the population, under various models of disease propagation; e.g.

the differential game model [17], the “wait and see" model of vac-

cinating behavior [1], evolutionary game-theoretic models [2, 11],

and various others [3, 4, 8, 24] (see, e.g. [25] for a summary). We

distinguish from these works by modeling the strategic interactions

among ideologically diverse, hierarchical policymakers with explicit

non-compliance penalties, and experimentally assess the impact of

such interactions upon the actually implemented policies under

various parameter settings.

Also related is the literature on ABM for pandemic spread and

response policies that account for preferences/incentives of indi-

viduals [6, 10, 30]. [30] is of particular importance since our policy

impact cost is computed by a closed-form approximation to their

model. Other recent work includes the assessment of the impact of

prevention and containment policies on the spread COVID-19 via

causal analysis [13], Gaussian processes [16], and state-of-the-art

data-driven non-pharmaceutical intervention models [22].

Instead of an analytic treatment, we empirically compute the

(approximate) equilibrium of our complex, multi-level, continuous-

action game using algorithmic approaches that exploit the structure

of the problem. Thus, our methods belong to the category of empir-
ical game-theoretic analysis (see, e.g. [7, 27–29]).

2 A MODEL OF HIERARCHICAL
POLICY-MAKING

2.1 The Game Model
Consider as a running example COVID-19 hierarchical policy-

making with three levels of decision-makers: Government (a single

agent), States, and Counties. Each agent is a player in a game and

chooses a social distancing policy (recommended or enforced). Next,

we present a formal game theoretic model of this kind of hierarchi-

cal policy-making, focusing on strategic interactions among players

both within and across the levels in this hierarchy.

Let [𝑚] denote the set {1, 2, . . . ,𝑚} for any𝑚 ∈ Z+. We represent

the players in the hierarchical policy-making game (HPMG) by nodes
in a directed rooted tree (we will use the terms players and nodes

interchangeably), as illustrated in Figure 1 for our running example.

A general HPMG has 𝐿 > 1 levels or layers. Each level 𝑙 ∈ [𝐿] is
associated with a set of nodes/players, denoted by L𝑙 , with 𝑛𝑙 =

|L𝑙 | the number of players in level 𝑙 . Without loss of generality,

let 𝑛1 = 1 (we can always add a dummy layer with a single player

who has a single strategy); we call the player in level 1, denoted

by 𝑎1 the root-node. The 𝑖th node/player in an arbitrary level 𝑙 is

denoted by 𝑎𝑙,𝑖 . For each player in each level 𝑙 < 𝐿, 𝑎 ∈ L𝑙 , let 𝜒 (𝑎)
be the set of its children in the tree; clearly, |𝜒 (𝑎) | ≥ 0 for every

𝑎, and
∑
𝑎∈L𝑙

|𝜒 (𝑎) | = 𝑛𝑙+1 for each 𝑙 . Likewise, for every player

𝑎 ∈ L𝑙 and for each 𝑙 > 1, let 𝜋 (𝑎) be its unique parent in the

tree, where a directed edge goes from a parent to its child. In our

running example in Figure 1, 𝑎1 is the Government in level 1, level

2 consists of two States, both children of 𝑎1, 𝜒 (𝑎1) = {𝑎2,1, 𝑎2,2},
and level 3 consists of Counties.

Each player 𝑎 can take a scalar action 𝛼𝑎 ∈ [0, 1]. 𝛼 denotes the

profile of actions of all players, and 𝛼𝑙 the restriction of this profile

to a particular level 𝑙 . In our pandemic-response policy-making

example, 𝛼𝑎 is an abstraction of the policy adopted by 𝑎, capturing

the the extent of overall activity (conversely, 1 − 𝛼𝑎 represents the

extent of social distancing implemented/recommended by 𝑎). Thus,

small 𝛼𝑎 corresponds to the greatest reduction in infection spread

(due to stricter social distancing). On the other hand, a large 𝛼𝑎 will

entail a higher policy implementation cost, such as socio-economic

and psychological costs of social distancing. At the extremes of

our illustration, 𝛼𝑎 = 1 signifies no intervention, while 𝛼𝑎 = 0

corresponds to a complete lockdown.

HPMG is a sequential game in which players make strategic

decisions following the sequence of layers. Specifically, the player



in level 1 moves (i.e., chooses a strategy) first, followed by all players

in level 2, who first observe the strategy of 𝑎1 and simultaneously

choose a joint strategy profile in response. This is then followed by

all players in level 3, and so on. Thus, all players in the same level 𝑙

make strategic choices simultaneously.

Because all the utilities in our main application of this model

(COVID-19 social distancing policies) are negative (i.e., costs), we

next define the general model in terms of costs (negative utilities).

The cost function of each player 𝑎 has three components: policy
impact cost, Cinc𝑎 (𝛼), policy implementation cost, Cdec𝑎 (𝛼), and, for
each player in levels 𝑙 > 1, non-compliance cost, CNC𝑎 (𝛼𝑎, 𝛼𝜋 (𝑎) ). In
the COVID-19 example, policy impact cost is a measure of infec-

tion spread (number of people infected in the player’s geographic

area, say), while implementation cost can be a psychological and

economic costs of a lockdown. The non-compliance cost, in turn,

is a penalty imposed by a policy-maker upon an agent within its

jurisdiction for deviating from its recommendation (e.g., a fine, liti-

gation costs, or reputational harm). An important piece of structure

to the policy implementation and impact costs is that they directly

depend for a player 𝑎 not on the full profile of strategies by all

players, but only on the layer 𝑙 of the player 𝑎 if 𝑙 = 𝐿, and only

the layer immediately below otherwise. To formalize, we introduce

for each player 𝑎 the notion of its share 𝜇𝑎 ∈ [0, 1]. In our running

example, a node’s share can be interpreted as the proportion of the

total population of the country that is under the jurisdiction of the

corresponding player (e.g., the share of a state is the proportion

of the total population that resides in this state). Thus, 𝜇 (𝑎1) = 1,

while the shares of the nodes in the lowest level 𝐿 are arbitrary,

except for the constraint Σ𝑎∈L𝐿
𝜇𝑎 = 1. For a level 1 < 𝑙 < 𝐿, we

have 𝜇𝑎 = Σ𝑎′∈𝜒 (𝑎) 𝜇𝑎′ for every 𝑎 ∈ L𝑙 . We now use the notion of

shares to formally define the impact and implementation costs of

policies.

• For each lowest-level player𝑎 ∈ L𝐿 , Cinc𝑎 (𝛼) depends only on
𝛼𝐿 , lies in [0, 1], and is non-decreasing in each 𝛼𝑎 ∈ 𝛼𝐿 ; we
provide further specifics of this function for our pandemic-

response example in Section 2.3. For a higher-level player

𝑎 ∈ L𝑙 , 𝑙 < 𝐿, this cost is the share-weighted aggregate of

those of its child-nodes:

Cinc𝑎 (𝛼) = 1

𝜇𝑎
Σ𝑎′∈𝜒 (𝑎) 𝜇𝑎′C

inc

𝑎′ (𝛼) .

• For each 𝑎 ∈ L𝐿 , Cdec𝑎 (𝛼) ∈ [0, 1] depends only on, and is

non-increasing, in𝛼𝑎 ; in particular, in our pandemic-response

example, we simply focus on the function Cdec𝑎 (𝛼) = 1 − 𝛼𝑎 .
Also, for each 𝑎 ∈ L𝑙 , 𝑙 < 𝐿,

Cdec𝑎 (𝛼) = 1

𝜇𝑎
Σ𝑎′∈𝜒 (𝑎) 𝜇𝑎′C

dec

𝑎′ (𝛼) .

Finally, we consider two variants of the non-compliance cost: one-
sided under which there is no penalty for an 𝛼 lower than that of the

parent (capturing scenarios such as a policy-maker only punishing

policy responses weaker than its recommendation), and two-sided
under which any deviation is penalized regardless of direction [18],

with the discrepancy being measured by the Euclidean distance for

either variant:

CNC𝑎 (𝛼, 𝛼 ′) =
{
(max{0, 𝛼 − 𝛼 ′})2, if one-sided;

(𝛼 − 𝛼 ′)2, if two-sided.

Finally, each player 𝑎 ∈ L𝑙 for 𝑙 > 1 has an idiosyncratic set of

weights 𝜅𝑎 ≥ 0 and 𝜂𝑎 ≥ 0 that trade its three cost components

off against each other via a convex combination, and account for

differences in ideology. Thus, the overall cost of such a player 𝑎 is

given by

C𝑎 (𝛼) := 𝜅𝑎C
inc

𝑎 (𝛼) + 𝜂𝑎Cdec𝑎 (𝛼) + 𝛾𝑎CNC (𝛼𝑎, 𝛼𝜋 (𝑎) ),
where 𝛾𝑎 = 1 − 𝜅𝑎 − 𝜂𝑎 . The player 𝑎1 obviously has no non-

compliance issues, hence it has only one weight 𝜅𝑎1 > 0, its overall

cost being

C𝑎1 (𝛼) := 𝜅𝑎1C
inc

𝑎1
(𝛼) + (1 − 𝜅𝑎1 )Cdec𝑎1

(𝛼) .

2.2 Solution Concept
The solution concept we are primarily interested in is a pure-
strategy subgame perfect Nash equilibrium (PSPNE) [23] of our

continuous-action game which is sequential-move between lev-

els and simultaneous-move within a level. However, the game may

have multiple such equilibria, leading to an equilibrium selection
problem.

An extreme but simple motivating scenario which gives rise to a

multiplicity of equilibria, many of which are unreasonable, is when

a lowest-level player 𝑎 has non-compliance weight 𝛾𝑎 = 1 under a

one-sided cost structure: player 𝑎 would be indifferent among all

values 𝛼𝑎 ∈ [0, 𝛼𝜋 (𝑎) ] since any such value induces an overall cost

of 0. Such indifference could also characterize the best response of

a higher-level player. Consider a two-level variant of the game in

Figure 1 (e.g., when counties are constrained to be compliant with

the respective states); for each state 𝑎 ∈ {𝑎2,1, 𝑎2,2}, let 𝜅𝑎 = 0 and

𝜂𝑎 = 0.6, hence 𝛾𝑎 = 0.4. Straightforward calculations show that

the local minimum 𝛼∗𝑎 of the overall cost of any such any state 𝑎

over [0, 𝛼𝑎1 ] is 𝛼∗𝑎 = 𝛼𝑎1 with a cost of 0.6(1 − 𝛼𝑎1 ) and that over

(𝛼𝑎1 , 1] is

𝛼∗𝑎′ =

{
1, cost = 0.4(1 − 𝛼𝑎1 )2, 𝛼𝑎 ≥ 0.25;

𝛼𝑎1 + 0.75, cost = 0.375 − 0.6𝛼𝑎1 , otherwise.

Thus, the unique best response of either state (whose costs are in-

dependent of each other) to any government policy 𝛼𝑎1 ≥ 0.25 is 1,

i.e., there are infinitely many equilibria with the government recom-

mending any 𝛼𝑎1 ≥ 0.25 but each state choosing 1 regardless. The

fact that the government would recommend a policy intervention

(which could be as strong as 𝛼𝑎1 = 0.25) knowing fully well that

both states would choose no intervention even under the threat of

a non-compliance penalty seems absurd, but this absurdity cannot

be eliminated by the above solution concept.

With this in mind, we propose and use the following equilibrium

selection criterion. For any player 𝑎 ∈ L𝑙 , 𝑙 < 𝐿, define its social
cost SC𝑎 (𝛼 𝜒 (𝑎) ) for any action profile 𝛼 𝜒 (𝑎) of its children as the

share-weighted aggregate of the overall costs of its children, that

is: SC𝑎 (𝛼 𝜒 (𝑎) ) := 1

𝜇𝑎

∑
𝑎′∈𝜒 (𝑎) 𝜇𝑎′C𝑎 (𝛼). Evidently, this quantity is,

in general, distinct from C𝑎 (𝛼).
If multiple values of 𝛼𝑎 induce equilibria for a particular 𝛼 𝜒 (𝑎) ,

then we will pick the 𝛼𝑎 which minimizes SC𝑎 (𝛼 𝜒 (𝑎) ), breaking
further ties in favor of a higher 𝛼𝑎 (i.e., smaller policy impact). We

refer to this solution concept, which is a refinement of PSPNE, as

minimal-impact pure-strategy subgame perfect Nash equilibrium
(MI-PSPNE).



In general, a MI-PSPNE will not exist. Consequently, we will seek

to compute an 𝜖-MI-PSPNE, where 𝜖 is the highest benefit from

deviation by any player 𝑎. Below (Section 3) we present a general

approach for finding such approximate equilibria in our setting.

2.3 Infection Dynamics and Cost
We now come to the particular instantiation of Cinc𝑎 (·) for each of

the lowest-level players 𝑎 ∈ L𝐿 (Counties in Figure 1). Recently,

Wilder et al. [30] developed and analyzed an agent-based model

(ABM) for COVID-19 spread that accounts for the degree of contact
(both within and between households) among individuals from

different parts of a population.
1
However, this ABM is computa-

tionally expensive, making its use for equilibrium computation

impractical at scale. In this section, we will derive a closed-form

model of infection spread that (as we show below) relatively closely

mirrors the expected number of infections of the ABM over a short

horizon.

Let 𝑁𝑎 and 𝐼0𝑎 denote the fixed population of County 𝑎 and the

number of infections in 𝑎 before policy intervention respectively.

An individual who is not currently infected but can develop an

infection on contact with someone infected is susceptible. We call

an individual from County 𝑎′ active in County 𝑎 if that individual

is capable of making contact (through travel etc.) with a susceptible

individual in County 𝑎; if 𝑎′ = 𝑎, we say that the individual is active

within County 𝑎. A major parameter of the ABM is the transport
matrix 𝑅 = {𝑟𝑎𝑎′}𝑎,𝑎′∈L𝐿

, where 𝑟𝑎𝑎′ ≥ 0 is the proportion of the

population of County 𝑎′ that is active in County 𝑎 in the absence

of an intervention. Thus, in the absence of policy intervention, the

total number of individuals from County 𝑎′ active in County 𝑎 ≠ 𝑎′

is 𝑁𝑎′𝑟𝑎𝑎′ and the total number of infected individuals from County

𝑎′ active in County 𝑎 ≠ 𝑎′ is 𝐼0
𝑎′𝑟𝑎𝑎

′ .

The policy 𝛼𝑎 affects the population in two ways: it scales down

both the susceptible and active sub-populations. In other words,

under the policy intervention, County 𝑎 has (𝑁𝑎−𝐼0𝑎 )𝛼𝑎 susceptible

individuals, and there are 𝑁𝑎′𝛼𝑎′𝑟𝑎𝑎′ active individuals in County

𝑎 from County 𝑎′, out of whom 𝐼0
𝑎′𝛼𝑎

′𝑟𝑎𝑎′ are (initially) infected.

Hence, the proportion of infected active individuals in County 𝑎 is

given by

𝜌𝑎 (𝛼𝐿) :=
∑
𝑎′∈L𝐿

𝐼0
𝑎′𝛼𝑎

′𝑟𝑎𝑎′∑
𝑎′∈L𝐿

𝑁𝑎′𝛼𝑎′𝑟𝑎𝑎′
.

We will now focus on an arbitrary susceptible individual in

County 𝑎 and lay down our assumptions on the process why which

she may contract an infection: This individual makes actual contact

with a random sample of𝑋 active individuals drawn from a Poisson

distribution with mean 𝐶 , which is a parameter in our model [30];

this distribution is fixed across all individuals in all Counties, and

all these contacts are mutually independent. The next assumption

is that, in this sample of 𝑋 contacts for a susceptible individual in

County 𝑎, the proportion of infected individuals is 𝜌𝑎 (𝛼𝐿).
Let 𝑝 ∈ (0, 1) denote the probability that a susceptible individual

becomes infected upon contact with an infected individual, i.e. the

probability that contact with an infected individual does not infect a

susceptible individual is (1 − 𝑝). Since all 𝑋𝜌𝑎 (𝛼) infected contacts
1
The model in Wilder et al. [30] is an individual-level variant of the well-known

susceptible-exposed-infectious-recovered or SEIR model but this paper assumes that

every exposed person eventually becomes infected after an incubation period.

(a) New infections vs. policy (shared by Counties).

(b) New infections vs. initial infection rate (shared by
Counties).

Figure 2: Comparison of ABM output (solid lines) with
closed-form approximation (dashed lines).

of an arbitrary susceptible individual are mutually independent,

the probability that the susceptible individual develops an infection

is 1 − (1 − 𝑝)𝑋𝜌𝑎 (𝛼)
. We also interpret this as the proportion of the

(𝑁𝑎 − 𝐼0𝑎 )𝛼𝑎 susceptible individuals in County 𝑎 who end up getting

infected. Let Infect𝑎 (𝛼) denote the expected number of additional,
post-intervention infections in County 𝑎. Thus,

Infect𝑎 (𝛼) = E𝑋 [(𝑁𝑎 − 𝐼0𝑎 )𝛼𝑎 (1 − (1 − 𝑝)𝑋𝜌𝑎 (𝛼) )]

= (𝑁𝑎 − 𝐼0𝑎 )𝛼𝑎 (1 − E𝑋 [((1 − 𝑝)𝜌𝑎 (𝛼) )𝑋 ]).

Define𝑦𝑎 (𝛼𝐿) := (1−𝑝)𝜌𝑎 (𝛼) . Since𝑋 ∼ Poisson(𝐶), we can show
from the properties of the Poisson distribution that

Infect𝑎 (𝛼) = (𝑁𝑎 − 𝐼0𝑎 )𝛼𝑎 (1 − 𝑒−𝐶 (1−𝑦𝑎 (𝛼𝐿)) ) . (1)

Finally, we define the infection cost to be Cinc𝑎 (𝛼) = Infect𝑎 (𝛼)/𝑁𝑎 .

We ran some preliminary experiments comparing Equation (1)

with the actual output of the ABM [30]; partial results are shown

in Figure 2. Note that Equation (1) is a one-shot formula, whereas

the ABM computes contacts and infections recursively over several

time-periods with an initial incubation period so that the effect of

the first-period contacts are manifested only after a delay. Hence,

we contrast the ABM output after 8 periods (to account for the av-

erage incubation period of 7 days [12]) with the above closed-form

estimation. In the experiments we report, we have 2 States under

the Government, each State having 2 Counties (4 Counties in total);

each County 𝑎 has a population of 𝑁𝑎 = 250; the transport matrix is

symmetric, given by 𝑟𝑎𝑎′ = 0.25 for every pair of Counties 𝑎, 𝑎′. We

set 𝑝 = 0.047 [30] and 𝐶 = 15 (calculated based on Prem et al. [14]).

For each set of experiments (represented by a separate color in



Figure 2), each County has the same initial infection rate 𝐼0𝑎/𝑁𝑎 and

applies the same policy 𝛼 . In Figure 2a, we vary 𝛼 on the x-axis, for

different (fixed) values of 𝐼0𝑎/𝑁𝑎 which is the same for all Counties;

similarly, in Figure 2b, for different policies, we vary the initial

infection rates. The plots indicate qualitative similarity between the

ABM and our approximation; a salient point of similarity is that the

additional number of infections decreases as the initial infection

rate gets higher or lower than a middling point, everything else

remaining the same. This is because a higher infection rate implies

less “room for growth” due to a fixed population, whereas a lower

value of the same rate causes fewer further infections over the same

horizon.

3 SOLUTION APPROACH
Our HPMG model is essentially an extensive-form game model

endowed with one-dimensional action space for each agent result-

ing in a non-convex strategic landscape. To seek for PSPNE in the

hierarchical game(HG), we propose a backward induction algo-

rithm incorporated with a payoff point query interface and a best

response computation component solving for a joint-policy profile

in equilibrium. The algorithm exploits the hierarchical structure

by propagating strategic information between consecutive levels,

detailed as follows. Given a joint action profile at levels 1, . . . , 𝑙 − 1,
the players at level 𝑙 compose a simultaneous-move game whose

payoffs emerge from the strategic interactions from levels below

them. To obtain payoffs for a certain action profile at level 𝑙 , we

recursively call to the next level 𝑙 + 1 till we reach the bottom level

𝐿. Then at level 𝑙 , we use these payoffs to solve for an approxi-

mate Nash equilibrium. Since every such simultaneous-move game

lacks the tractable analytic payoff structure for gradient-based op-

timization, in our current implementation we discretize the infinite

strategy space and adopt best response dynamics (BRD) for equilib-
rium computation.

Algorithm 1 computes the 𝜖− equilibrium among players at a

single level 𝑙 given tunable parameters. An 𝜖− equilibrium at level 𝑙

is an action profile 𝛼𝑙 where no agent 𝛼𝑎𝑙,𝑖 can decrease their cost by

more than 𝜖 by a unilateral deviation (Lines 3–6). Let 𝜶 𝑙1:𝑙2 denote

the sequence of actions 𝛼𝑙1 , ..., 𝛼𝑙2 ; 𝑻 𝑙 :𝐿 = 𝑇𝑙 , ...,𝑇𝐿 the maximum

numbers of steps of BRD at each level 𝑙 > 1; 𝒆𝑙 :𝐿 = 𝑒𝑙 , ..., 𝑒𝐿 the

limits of 𝜖 for each level. At each round 𝑡 < 𝑇 , we randomly select

a subset of 𝑘𝑙 out of 𝑛𝑙 agents to best respond simultaneously to

the existing profile; we call the variant with 𝑘𝑙 = 𝑛𝑙 synchronous
BRD. To analyze the dependence of the number of BRD steps to

reach equilibrium on the sample size 𝑘𝑙 , we performed a small

set of experiments on a 2-level game with 1 Government and a

variable number 𝑛2 of States. We focused on symmetric settings, i.e.

all states have equal population, equal initial infections, and equal

weight vectors. The transportmatrix is also symmetric (see Section 4

for details). Figure 3 shows that setting 𝑘2 = 𝑛2 in Algorithm 1

(synchronous BRD) results in fastest convergence to equilibrium for

several choices of 𝑛2. To increase efficiency, we should pick a subset

of agents that can improve their payoffs after best-responding (Line

7). The synchronous BRD might get trapped in a cycle of moves.

The way we solve this issue is to keep a memory of the moves, then

check whether the new profile already exists in the memory and, if

yes (i.e. a cycle is detected), we jump to a new profile and resume
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Figure 3: The number of best response steps (y-axis) as a
function of the fraction of players that are best responding
(x-axis). Each curve corresponds to a game with 𝑛2 players
(ranging from 5 to 45) in the second level which is also the
lowest level of game.

ALGORITHM 1: HG-PSPNE
Input: 𝜶

1:𝑙−1.
Parameter:param𝑙 = {𝑻 𝑙 :𝐿,𝒌𝑙 :𝐿, 𝒆𝑙 :𝐿 }.
1: Let 𝑡 ← 1, 𝜖𝑙 ←∞. Initialize 𝛼𝑙 randomly.

2: while 𝑡 ≤ 𝑇𝑙 or 𝜖𝑙 ≤ 𝑒𝑙 do
3: for 𝑎𝑙,𝑖 in L𝑙 do
4: if 𝑙 is the lowest level 𝐿 then
5: 𝛼′𝑎𝑙,𝑖 ← argmin𝛼𝑙,𝑖

C𝑎𝑙,𝑖 (𝛼)
6: else
7: 𝛼′𝑎𝑙,𝑖 ← argmin𝛼𝑙,𝑖

C𝑎𝑙,𝑖 (HG-PSPNE(𝜶 1:𝑙 ))
8: end if
9: end for
10: Calculate 𝜖𝑙 for profile 𝛼𝑙 and update 𝜖𝑙 if lower than the current

value.

11: Pick 𝑘𝑙 agents to best respond to 𝛼′
𝑙,𝑖
.

12: 𝑡 ← 𝑡 + 1.
13: end while
14: return 𝛼∗ where 𝛼∗

𝑙
has the lowest 𝜖𝑙 .

the BRD. Finally, the algorithm returns the profile with the lowest

𝜖𝑙 when the termination condition is met.

To search for the best strategy, we discretize the continuous

strategy space and use grid search with tie-breaking (smaller policy

impact) to recover the optimum value. However, in the experiments

shown Figure 2a, we observe that our approximation of the infec-

tion cost is nearly linear. Although we have no guarantees, it is

reasonable to ask whether the overall cost of a lowest-level player

is almost convex in its policy (given the particular closed forms we

use for the implementation and non-compliance costs) and hence

whether we could use binary search (i.e. the bisection methods) to

speed up our BRD. Figure 4 shows the run-time of a two-level game

for 𝑛2 = 10 to 100 players in the second level when we replace

the grid search in the lowest level with the binary search under a
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Figure 4: Run-time in secs (y-axis) of binary search and grid
search as a function of 𝑛2 (x-axis) in a symmetric setting.

symmetric setting (i.e. equal populations and symmetric transport

matrix in level 2). In those experiments, we all find the PSPNEs

with 𝜖2 = 0. Binary search yields same results as grid search, but is

more efficient.

4 EXPERIMENTS
In this section, we describe two sets of experiments on our HPMG

framework using the methodology discussed in Section 3. Given

the large and complex set of game parameters, we report the most

insightful experimental results we obtained, deferring additional

results to the full version. In Section 4.1, we quantify the notion of

free-riding and explore conditions under which free-riding appears

in equilibrium and can be circumvented by non-compliance penal-

ties. In Section 4.2, we study how different degrees of centralization

and mismatched priorities of players in HPMG can impact fairness

in the distribution of costs. In all our experiments, we use the 3-level

HPMG of Figure 1 with 2 States, denoted simply by 1 and 2 (also in

subscripts), and a number of Counties (to be specified) with equal

population. Moreover, we say that a setting has transport symmetry
if the transport matrix 𝑅 is proportional to an identity matrix i.e.

𝑟𝑎𝑎′ = 1/𝑛𝐿 for any two lowest-level players 𝑎, 𝑎′. There are infinite
ways in which 𝑅 could be asymmetric; we focus on a particular

type of asymmetry where one subset of Counties (or more gener-

ally lowest-level players) F are globally favorite destinations (and
equally popular) and all others are equally (un)popular, i.e. for each

County 𝑗 , 𝑟𝑖 𝑗 = 𝑟𝐻 > 𝑟𝐿 = 𝑟𝑘 𝑗 for each 𝑖 ∈ F and each 𝑘 ∈ L3 \ F
for some 0 < 𝑟𝐿 < 𝑟𝐻 < 1, and

∑
𝑖∈L3

𝑟𝑖 𝑗 = 1.

4.1 Free-riding
We begin with the rationale for our measurement and visualiza-

tion of free-riding. Suppose State 2 has a higher initial infection

(than State 1); then, intuitively, it may prefer a weak distancing

policy (𝛼2 ≫ 0) to reduce its implementation cost as most of its

population is already infected; at the same time, since infection can

spread from State 2, State 1 could still suffer a large infection cost

unless it employs a strong distancing policy (𝛼2 ≪ 1). This creates

the possibility for State 2 to free-ride off State 1; but, whether this

actually happens depends on the combination of parameters (in-

cluding non-compliance issues with the Government above and

Counties below) and the same possibility may be created by other

conditions. We use this difference between policy strengths of the

States as an indicator of the degree of free-riding. Intuitively as

𝛼1 − 𝛼2 approaches −1 (1), the degree of free-riding of State 2 (1)

off State 1 (2) increases.

In our reported experiments, we assume Government indiffer-

ence between infection and implementation (i.e. 𝜅𝑎1 = 0.5) and an

even split of the population between States (i.e. 𝑁1 = 𝑁2 = 500,

hence 𝜇1 = 𝜇2 = 0.5); both States use the same weight vector which

we vary. The crucial difference between States is in the initial infec-

tion rate 𝐼0𝑎/𝑁𝑎 (as we discuss shortly).
2
In all experiments, each

State consists of 5 Counties.

Figure 5 depicts our results under transport symmetry and other

conditions which we will now detail. First, we assume that all Coun-

ties are constrained to comply with their respective States so that

the policies set by States 1 and 2 actually get implemented in their

respective jurisdictions (i.e. we essentially have a 2-level HPMG,

hence the number and weights of Counties are immaterial). In Fig-

ure 5a, we plot the variation in this policy-difference against the

States’ shared non-compliance weight 𝛾𝑎 under the following con-

ditions: State 1’s initial infection rate is fixed at 0.1 (low) while that

of State 2 varies over {0.7, 0.8, 0.9}; for either State 𝑎 ∈ {1, 2}, we
have 𝜅𝑎 = 0.9(1 − 𝛾𝑎) and 𝜂𝑎 = 0.1(1 − 𝛾𝑎) for each value of the

non-compliance weight. We observe that free-riding is exacerbated

as State 2’s initial infection rate becomes larger, although a high

enough non-compliance weight will mitigate the problem. How-

ever, interestingly, lower values of the non-compliance weight also

exhibit a lower degree of free-riding. Increasing the non-compliance

weight forces both States to monotonically weaken their policies

(towards 1) but State 1 is more conservative, maintaining a strict

policy (at 0) up to a non-compliance weight of (at least) 0.15 and

only then weakening its policy to the level of State 2, as shown

in Figures 6 and 7. This accounts for the non-monotonic depen-

dence of free-riding on non-compliance cost weight as observed in

Figure 5a.

What happens when we allow Counties to not comply with

the respective States? We report results for a setting where each

County’s initial infection rate and weight vector is identical to that

of its corresponding State. Recall that, with Counties no longer

constrained to comply, State policies are recommendations policies
whereas those that are implemented are County actions. With this

mind, we report in Figures 5b and 5c the difference in State policies

𝛼1−𝛼2 aswell as the difference ⟨𝛼1⟩−⟨𝛼2⟩, where ⟨𝛼𝑎⟩ is the average
of the equilibrium policies set by all Counties ins State 𝑎 ∈ {1, 2},
over the same combinations of weights and initial infection rates

as Figure 5a. We find virtually no evidence of free-riding from

either measure (in the extreme case represented by the lowest curve

Figure 5c is perhaps better interpreted as State 2 giving up on policy

intervention rather than free-riding off State 1). This indicates that

distributing autonomous policy-making among several smaller-

scale actors may also have a mitigating effect on free-riding, making

2
We only report results for two-sided compliance costs at all levels; we did not observe

any evidence of free-riding mitigation using the one-sided variant in our experiments.



(a) Counties constrained to comply. (b) Counties free to not comply. (c) Counties free to not comply.

Figure 5: Free-riding (y-axis) as a function of non-compliance cost weight (x-axis). Each curve corresponds to a different initial
infection rate of State 2 (Init Inf) as indicated in the legend.

Figure 6: The Policy of State 1 (y-axis) as a function of non-
compliance weight (x-axis) under transport symmetry. Each
curve corresponds to a different initial infection rate for
State 2 as specified in the legend.

the impact on free-riding of non-compliance penalties from the

highest level weaker.

We now repeat these experiments but in a specific setting violat-

ing transport symmetry with Counties constrained to comply: we

make State 1 the favorite destination with 𝑟𝐻 = 0.8 (equivalently,

all Counties in State 1 are equally favored as destinations). Figure 8

shows results when the States’ infection weights are𝜅1 = 0.8(1−𝛾1)
and 𝜅2 = 0.9(1−𝛾2) respectively (still with 𝛾1 = 𝛾2), State 1’s initial

infection rate is fixed at 0.5 (moderate) while that of State 2 varies in

{0.1, 0.5, 0.6, 0.7, 0.8, 0.9}, and Counties are constrained to comply.

While it is true that the States’ aversion to non-compliance is able

to lessen free-riding monotonically and more readily as State 2’s

initial infection rate grows, the most salient feature is the sudden

reversal in the status of the apparent free-rider as State 2’s initial

infection rate crosses a (high) threshold. Further inspection reveals

that, although State 1 has a higher proportion of active individu-

als even from State 2 and cares about infections only slightly less

than State 2 (but still with 𝜅 as high as 0.8), the initial infection

rate of 0.5 is high enough for it to respond weakly (𝛼1 ≈ 1) while

Figure 7: The Policy of State 2 (y-axis) as a function of non-
compliance weight (x-axis) under transport symmetry. Each
curve corresponds to a different initial infection rate for
State 2 as specified in the legend.

Figure 8: Free-riding (y-axis) as a function of non-
compliance cost weight (x-axis). Each curve corresponds
to a different initial infection rate of State 2 (Init Inf) as
indicated in the legend.
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other scenario. Error bars show one standard error.

State 2 weakens its policy more gradually with increase in the

non-compliance weight 𝛾𝑎 , enabling State 1 to free-ride. However,

once State 2’s initial infection rate becomes sufficiently high, it

gives up on distancing policy even for low 𝛾𝑎 , forcing State 1 to

strengthen its policy — this is reflected in the sign reversal and

increased magnitude of the policy difference (figures deferred to

the full version).

4.2 Fairness
Another property of the equilibria of an HPMG worth studying is

how fair the distribution of costs is among the Counties for different

degrees of centralization and different priorities of the States. Of

the many fairness concepts that exist in the literature, we apply the

popular measure, the Gini coefficient [9], to Counties’ overall costs

at profile 𝛼 returned by Algorithm 1:

Gini(𝛼) =
∑
𝑎∈L3

∑
𝑎′∈L3

|C𝑎 (𝛼) − C𝑎′ (𝛼) |
2𝑛𝐿

∑
𝑎∈L3

C𝑎 (𝛼)
.

We report experiments with 5 Counties under each of 2 States,

all non-compliance costs being one-sided. For the Government,

𝜅𝑎1 = 𝜂𝑎1 = 0.5; for each State 𝑏 ∈ {1, 2}, 𝛾𝑏 = 0.5, and there

are two different scenarios of the full game based on the ratios

𝜅𝑏/𝜂𝑏 : (1) Misaligned States if this ratio is 20/80 for State 1 and

80/20 for State 2, (2) Aligned States if it is 50/50 for either state.

A third scenario we study is full decentralization where we set

each County’s non-compliance weight to 0 so that HPMG degen-

erates into a simultaneous-move game among Counties. For each

scenario, we apply two treatments with respect to the transport

matrix: transport symmetry and a specific asymmetry where each

State has 1 County that is (universally) favorite with 𝑟𝐻 = 0.35. In

each situation, we vary the shared non-compliance weight 𝛾𝑎 of

every County 𝑎 as an independent variable (unless it is fixed at 0),

draw a uniform random sample 𝜅 ′𝑎 ∼ U[0, 1], and set the infection

weight at 𝜅𝑎 = 𝜅 ′𝑎 (1 − 𝛾𝑎). Each set of draws for all Counties con-

stitutes one trial. Figure 9 provide Gini coefficient scatter plots for

transport symmetry and our specific asymmetry respectively. The

distribution of overall costs seems reasonably and comparably fair

(lower is better) across scenarios.

5 DISCUSSION AND FUTUREWORK
We have initiated the study of a new game-theoretic model moti-

vated by decentralized policy-making under pandemic conditions,

and experimentally uncovered interesting aspects of its equilibria.

Directions for future work are: more extensive experimentation

over parameter configurations (with the formulation and testing of

causal hypotheses); using the actual ABM [30] instead of our closed-

form infection estimation and handling the resulting computational

efficiency issues; considering more complex policies (e.g. adaptive

strategies) and invoking more sophisticated EGTA approaches. It

would also be interesting to apply HPMG or its natural variants to

other problems of hierarchical decision-making such as within a

corporation or political organization, or in the interplay of domes-

tic and international politics Putnam [15], where “superiors” can

impose a non-compliance penalty or offer a compliance bonus.
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