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ABSTRACT
Kilkari is a mobile health (mHealth) program operated by ARM-
MAN, a non-profit organization based in India, which uses IVR
technology to deliver time-sensitive audio information to pregnant
women and mothers to reduce maternal and child mortality rates.
To improve beneficiary retention, we present a preliminary study
aimed at targeting interventions for beneficiaries with low listener-
ship. We model this problem as a time series prediction task and
assess the efficacy of different machine learning (ML) models. Our
experiments reveal that ML models can improve the prediction of
low listenership from 5% (as obtained through random selection) to
25%. However, more sophisticated ML algorithms do not perform
any better than logistic regression, at least based on the inputs
and context as discussed in this paper,. These results highlight
the need for novel machine learning research to help better target
ARMMAN’s limited intervention resources.
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1 INTRODUCTION
“Pregnancy is not a disease. Childhood is not an ailment.
Dying due to a natural life event is not acceptable.”

(Aparna Hegde, Founder, ARMMAN)
Maternal mortality is a serious issue that remains a global concern
even today. Shockingly, the World Health Organization reported
that 287,000 women died due to complications from pregnancy or
childbirth in 2020 alone [20]. Most of these deaths are preventable
and are disproportionately concentrated in Sub-Saharan Africa and
Southern Asia. In response to this challenge, ARMMAN, a non-
profit organization based in India, is using mobile health (mHealth)
interventions to improve access to preventive information and
services for pregnant women and mothers, to reduce maternal and
child mortality rates.

∗ Work done as an intern at ARMMAN..

The Ministry of Health & Family Welfare (MoHFW) launched
the Kilkari [2] program, a free mHealth education service that
sends women preventive care information during pregnancy and
infancy, in 2016. Kilkari is an IVR service designed to deliver weekly
pre-recorded, stage-specific audio messages to pregnant women
and mothers with children under the age of 1 year (72 weeks).
Currently operational in 18 states and UTs, Kilkari has reached
over 30 million women and their children to date, and has 3 million
active subscribers. ARMMAN is a technical, content & creative
production, and implementation partner to the MoHFW in making
Kilkari available pan-India.

However, like all mHealth programs, ensuring the beneficiaries’
continued participation in the program is challenging, especially
over an extended period of time. In the past, ARMMANhas usedMa-
chine Learning (ML) to target expensive interventions [13, 15, 19]
aimed at improving beneficiary retention in a similar program—
mMitra. However, unlike Kilkari, the mMitra program has a much
richer set of demographic information that allows ML models to tai-
lor predictions to individual beneficiaries. In this paper, we present
a preliminary study to see if ML can help target expensive inter-
ventions even without rich demographic information.

The objective of our study is to predict a subset of beneficiaries
who may have ’low-listenership’ in the future, as defined by domain
experts, on whom we can intervene beforehand. We model this
problem as a time series prediction task and assess the efficacy of
different ML models with varying degrees of sophistication. Our
experiments reveal that ML models can improve Precision@5%
from 5% (as obtained through random selection) to 25%, a five-fold
increase. However, our findings indicate that the more sophisticated
ML algorithms, at least based on the inputs and context as discussed
in this paper, do not perform any better than Logistic Regression.
This implies that the data may not have much complex structure
that can be utilized for improved predictions. This contrasts with
the results of Nishtala et al. [15] who found that complex models
work better for listenership prediction in mMitra.



This suggests that there are fundamentally different research
challenges in targeting interventions for Kilkari. Some possible
directions for future work include:

(1) Feature Engineering: The most obvious way by which to
improve predictions is to gather demographic information
that will allow us to personalize predictions to individual
users. On the technical side, this may involve combining
weak sources of signal (e.g., the district in which the bene-
ficiary lives) with other datasets (e.g., the census) to create
richer demographic information.

(2) Decision-Focused Learning: If the goal is only to reach out
to a small subset of beneficiaries because interventions are
expensive, perhaps there are sub-populations of beneficia-
ries for whom it is possible to find models that have higher
accuracy. One way to do this would be to train these models
on custom loss functions that try to maximize this objective
(as opposed to more general predictive accuracy) [16, 17].

(3) Incorporating Intervention Effects: In mMitra, past work
has found that it was important not only to find low-listeners,
but rather the subset of those that would respond most posi-
tively to interventions [13, 19].

More broadly, we believe that innovation in this space will help AR-
MMAN better target limited intervention resources and help realize
their vision – to create a world where every mother is empowered
and every child is healthy.

2 RELATEDWORK
Kilkari. Before the responsibility of operating the Kilkari program
was transitioned to ARMMAN in 2019, it was being operated by
a different non-profit [2]. During this time, a number of articles
that analyzed the impact and efficacy of the program were pub-
lished [3–5, 14]. However, these did not focus on creating possible
intervention strategies for the program.

Low-Listenership Prediction. As highlighted in the introduction,
there has been past work on creating intervention strategies for
ARMMAN’s mMitra program [13, 15, 19]. More broadly, there has
also been work on medication adherence prediction in various
public health contexts like Tuberculosis [12], mental health [1] and
HIV/AIDS [7]. However, the technical challenges in each of these
papers is very domain-dependent; the challenges are even different
even for our closest related work, i.e., Nishtala et al. [15].

3 PROBLEM FORMULATION
3.1 Data
The Kilkari program runs for 72 weeks, from the second trimester
of pregnancy till when the child is one year old. During each of
these weeks, the beneficiary receives one voice message a week
using an IVR system. The messages cover a range of topics from
nutritional information for the mother and child to immunization
and family planning. The call logs for these messages are captured
in an internal database and, post-anonymization, form the basis of
our dataset.

For each message, a beneficiary receives up to 9 attempted calls
until they pick up the phone. Each of these attempts as well as their
outcomes is logged in the database. To create our dataset, we create

a list of all the beneficiaries who received call attempts in the first
week of January 2022 in the state of Orissa ( 240K beneficiaries). We
then pull up all the call records associated with these beneficiaries.
Then, for each of the 72 weeks, we document how many attempts
it took to reach a given beneficiary in that week of the program,
along with how long they listened to that call if/when they did pick
up the call. Finally, we split the beneficiaries into train (80%) and
test (20%) cohorts.

3.2 Low-Listenership Prediction

Figure 1: Problem Formulation. Here, we use the previous 12
weeks of listenership data as features and use that to predict low-
listenership 8 weeks in advance.

Domain experts have defined ‘low-listeners’ in the Kilkari program
to be those that have listened to less than 30 seconds of the audio
messages for 6 weeks in a row. The goal, then, is to predict such
‘low listeners’ ahead of time. We formulate this as the time-series
task described in Figure 1—for some point in time (‘today’, in the
figure), we use 𝑁features weeks of historical data as features to
predict low-listenership 𝑁offset weeks in the future.

To convert the raw dataset from the previous section into a
dataset for the time-series prediction task, we use a rolling window
of length (𝑁features +𝑁offset + 6) over the 72 weeks of data to create
samples for each beneficiary. Specifically, we use the following in-
formation for each weekly message—(a) number of attempted calls
before the first call that was picked up, and (b) the duration of the
successful call (or 0, if there was no successful call). This results in
2 ∗𝑁features features and a binary 𝑛𝑜𝑡𝑙𝑜𝑤 − 𝑙𝑖𝑠𝑡𝑒𝑛𝑒𝑟, 𝑙𝑜𝑤 − 𝑙𝑖𝑠𝑡𝑒𝑛𝑒𝑟
target. It is important here to note that most beneficiaries are not
enrolled at the beginning of the program, and some may have even
dropped out of the program at some point. In addition, there may
be weeks in which beneficiaries receive no call attempts because
of technical issues. In creating the samples, we ignore those which
contain weeks in which no attempts have been made (for any of
the reasons above).

Additionally, the resulting dataset can be quite unbalanced. For
example, for our results in Table 1, only 5% of samples correspond
to low listenership. To address this, we tried a variety of standard
techniques like Random Under Sampling, Random Over Sampling,
SMOTE [6] and Adasyn [9]. However, we found no significant
differences in performance by using these methods and, as a result,
report the results on the dataset as-is in the next section. We also
clean the data by removing outlier values and then normalizing the
input features.

4 EXPERIMENTS
4.1 Overall Results
We use the dataset from Section 3 to try to predict low-listenership
using a variety of different models:



• Logistic Regression
• Random: Randomly guess whether the beneficiary is a low
listener or not using a 50-50 coin flip.

• KNN: A k-Nearest Neighbors implementation that uses a
majority vote on the 5 nearest points in the training set.

• XGBoost: An implementation of gradient-boosted trees us-
ing the XGBoost library.

• Feedforward NN: A 4-layer Neural Network with a hid-
den dimension of 128 trained using Adam [11] and early-
stopping.

• Sequential NNs: Keras [8] implementations of LSTMs [10],
Bidirectional LSTMs (BiLSTMs), and BiLSTMs with an At-
tention head [18], in increasing order of complexity. These
have a hidden dimension of 128 and are followed by three
128-dimensional feedforward layers.

We evaluate these models on two metrics:
• Precision@K%: This is the precision if the threshold is set
to the (100 − 𝐾)th percentile of values. Given that we want
to target expensive interventions and will likely only have a
small budget (𝐾 = 5%), this is our primary metric of interest.
In simpler terms, a Precision@5% score of 25% implies that,
among the group of individuals predicted by the model to be
in the top 5% at risk of dropping out, 25% of them actually
ended up dropping out.

• Balanced Accuracy: This is an extension of the notion of
accuracy to imbalanced classes. It is the arithmetic mean of
the recall of each class. We use this as a secondary metric.

In Table 1, we present the results of using 𝑁features = 12 weeks
of information as features for prediction and try to predict low
listenership 𝑁offset = 8 weeks in advance. Firstly, we find that
choosing people to intervene on randomly has a Precision@5% of
only 5%, the underlying fraction of low-listeners. However, using
MLmodels allows us to increase that 5-fold to≈ 25%. This highlights
the benefit of using ML. Secondly, we find that Logistic Regression
has the best results, which suggests that there aren’t any complex
patterns in the data for our models to find. Lastly, we find that both
our metrics are fairly well correlated, suggesting that these findings
are not sensitive to our choice of metric.

Visualizing what Logistic Regression Learns. If there are no complex
patterns in the underlying data and Logistic Regression performs
best, what exactly is it that logistic regression learns? In Figure 2
we see the learned coefficients for every input feature. A positive
coefficient denotes a positive correlation with low listenership,
and a negative value denotes the opposite. The magnitude of the

Model Type Precision@5% (↑) Balanced Accuracy (↑)
Random 5.03% 50.05%
KNN 17.49% 66.90%
LSTM 21.83% 75.07%
BiLSTM 24.79% 77.16%
BiLSTM with Attention 24.63% 77.19%
XGBoost 23.37% 77.52%
Feedforward NN 24.13% 77.72%
Logistic Regression 25.35% 78.19%

Table 1: Overall Results in increasing order of performance.

Figure 2: Coefficients of the Logistic Regression model. The
x-axis shows the different input features and the y-axis shows the
corresponding learned coefficients. The first 12 features correspond
to the number of attempts made before the first call was picked
up in each of the prior weeks, while the next 12 correspond to the
duration of the call listened for each week.

coefficient highlights its degree of impact on the probability of low
listenership.We find that requiringmore attempts to contact a given
beneficiary is slightly correlated with low-listenership. However,
more importantly, it seems that the predictions are being driven
by the duration of calls listened to, with longer and more recent
listenership correlating with a lower probability of low listenership.

4.2 Ablations
In the experiments above, we use a specific set of values for hy-
perparameters 𝑁features = 12, 𝑁offset = 8, and a specific definition
of low-listenership based on insights from the Kilkari program
team. However, in this section, we investigate how our results may
change if we vary these hyperparameters. Given the computational
overhead of more complex models, we run these

Varying the amount of training information. Can we get away with
using less historical information? The benefits of this are twofold—
(a) we can intervene on beneficiaries earlier in the program; we
don’t have to wait 12 weeks to gather enough data, and (b) we
exclude fewer people from our analysis; currently, we exclude those
who don’t receive a call attempt in any of the 12 historical weeks. In
Table 2 we find that performance does not degrade too much (≈ 2%
according to Precision@5%) if we use only 4 weeks of historical
data rather than 12, suggesting that we may be able to intervene
earlier in the program at little to no cost.

Train Weeks Precision@5% (↑) Balanced Accuracy (↑)
4 24.69% 74.56%
8 26.01% 76.84%
12 26.94% 78.34%
16 24.41% 78.60%
20 24.10% 79.08%

Table 2: Varying number of weeks used as features. The re-
sults in Table 1 correspond to using 12 historical weeks of data for
training.



Varying the length of offset. How important is it to respond rapidly?
In the experiments above, we use an offset of 8 weeks to allow AR-
MMAN sufficient time to intervene on beneficiaries. However, the
cost of doing so is a higher variance in outcomes—the beneficiaries’
behavior may change significantly in the interim. In Table 3, we
analyze how much better/worse we would do if we changed ARM-
MAN’s expected response time. We see that this has a much bigger
impact on the results than the amount of historical data used; we
can do up to ≈ 6% better if we could intervene immediately based
on the model’s suggestions.

Offset Weeks Precision@5% (↑) Balanced Accuracy (↑)
0 32.75% 80.76%
4 30.61% 79.69%
8 26.94% 78.34%
12 22.83% 77.16%
16 19.98% 75.40%

Table 3: Varying the number of offset weeks. The results in
Table 1 correspond to using 8 weeks of offset.

Relaxing the low-listenership definition. What happens if we make
the definition of low-listenership less strict? In our experiments
above, we use a very strict definition of low-listenership, which only
includes beneficiaries who listen to 0 calls for more than 30 seconds
in 6 weeks. What happens if we change this threshold, i.e., define
beneficiaries as low listeners if they listen to 𝐾 or fewer calls for
more than 30s in 6 weeks? In Table 4, we document the results for
this relaxed definition of low listenership and find that we can find
up to ≈ 88% of low-listeners if we define it as listening to 3 or fewer
calls in a 6-week period. However, the relative improvement of our
ML models over random sampling decreases as we increase the
threshold, i.e., 8837 < 27

5 .

Threshold Low-Listener
Fraction

Precision@5%
(↑)

Balanced
Accuracy (↑)

0 5.10% 26.94% 78.34%
1 14.17% 55.54% 77.72%
2 25.12% 75.74% 77.16%
3 37.45% 87.77% 76.03%

Table 4: Varying the definition of low-listenership. Here,
‘threshold’ 𝐾 defines the low-listenership threshold—beneficiaries
are low listeners if they listen to 𝐾 or fewer calls for more than 30
seconds in 6 weeks. The low-listener fraction defines the fraction
of low-listeners in the test dataset for a certain threshold.

5 CONCLUSIONS
In this preliminary work, we find that ML can add value to targeting
interventions for Kilkari, but recent advances in ML don’t seem to
help improve the quality of results in this problem. This motivates
a new line of ML research and we propose three new directions
based on our experience with the problem–(1) feature engineering,
(2) decision-focused learning, and (3) incorporating intervention
effects.
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