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Abstract

More than 5 million children under five years die
from largely preventable or treatable medical con-
ditions every year, with an overwhelmingly large
proportion of deaths occurring in under-developed
countries with low vaccination uptake. One of
the United Nations’ sustainable development goals
(SDG 3) aims to end preventable deaths of new-
borns and children under five years of age. We
focus on Nigeria, where the rate of infant mortal-
ity is appalling. We collaborate with HelpMum, a
large non-profit organization in Nigeria to design
and optimize the allocation of heterogeneous health
interventions under uncertainty to increase vacci-
nation uptake, the first such collaboration in Nige-
ria. Our framework, ADVISER: AI-Driven Vacci-
nation Intervention Optimiser, is based on an inte-
ger linear program that seeks to maximize the cu-
mulative probability of successful vaccination. Our
optimization formulation is intractable in practice.
We present a heuristic approach that enables us to
solve the problem for real-world use-cases. We also
present theoretical bounds for the heuristic method.
Finally, we show that the proposed approach out-
performs baseline methods in terms of vaccination
uptake through experimental evaluation. HelpMum
is currently planning a pilot program based on our
approach to be deployed in the largest city of Nige-
ria, which would be the first deployment of an AI-
driven vaccination uptake program in the country
and hopefully, pave the way for other data-driven
programs to improve health outcomes in Nigeria.

1 Introduction
The state of maternal and infant health in Nigeria is appalling.
The estimated maternal mortality rate in Nigeria is about 814
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per 100,000 live births; in comparison, Poland and Italy’s ma-
ternal mortality rate is 2 deaths per 100,000 live births. In
fact, Nigeria alone accounts for more than 10% of mater-
nal deaths globally, while only accounting for 2.6% of the
world’s population [World Health Organization, 2014]. In-
fant deaths in the country are also shockingly high—Nigeria
loses 2300 children under five years of age daily [Okwuwa
and Adejo, 2020]. The sustainable development goals (SDG
1 and SDG 3) aim to mobilize resources to the developing
world to address inequity due to poverty and end preventable
deaths of infants completely [United Nations, 2020]. How-
ever, we are far from achieving these goals.

In collaboration with HelpMum, a large non-profit organi-
zation based in Nigeria, we identify three significant chal-
lenges contributing to high mortality rates among mothers
and infants. First, with an immunization rate of 13% for chil-
dren between 12-23 months, Nigeria has the lowest vaccina-
tion rate in Africa. While vaccination is available for free in
Nigeria, lack of awareness about the importance of vaccina-
tion is one of the major concerns for the low uptake of vac-
cination. Second, HelpMum identified that a primary driver
for mothers not taking their children for vaccination is the
high transportation cost relative to their income; we found
that 46% of families analyzed as a part of this study earned
less than $25 per month. Third, although several organiza-
tions, such as HelpMum, strive to design interventions for at-
risk mothers and children, there is a gross imbalance between
resource availability and demand for healthcare services.

HelpMum works closely with several local and state gov-
ernments in Nigeria. Even though it uses a vaccination track-
ing system to remind mothers of upcoming vaccination, it has
proven to be ineffective in practice. As part of this project,
four new interventions were designed to increase vaccina-
tion uptake in Nigeria. HelpMum (including its advisory
board) and domain experts guided the design of each inter-
vention. The interventions (described later in the paper) are
geared towards increasing the awareness of vaccination, re-
minding mothers about upcoming vaccinations for their chil-
dren, providing accessibility to vaccination centers by operat-
ing a pick-up and drop-off service, and conducting a door-to-
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Figure 1: (a) HelpMum reaches out to low-income neighborhoods to distribute clean birth kits and increase awareness of getting vaccinated.
(b) A high-level overview of ADVISER: AI Driven Vaccination Intervention OptimiSER. We formulate the allocation of heterogeneous
resources as an integer linear program (ILP). We use a greedy pruning strategy to make the ILP tractable and use guided local search to
generate promising vehicle routes.

door vaccination delivery program. However, matching the
interventions to specific individuals presents a challenge—
there exist far too many eligible recipients for the interven-
tions as compared to the available resources. Indeed, the
state in Nigeria where HelpMum is based has approximately
1.7 million children under five years of age. In contrast,
HelpMum has only 4 buses at their disposal for picking up
mothers, and only a limited number of healthcare workers are
available for conducting door-to-door interventions. More-
over, the interventions do not necessarily guarantee success-
ful vaccination. For example, HelpMum has observed that,
at times, parents fail to bring their children for immuniza-
tion despite repeated phone calls about upcoming vaccination
schedules. These domain-specific challenges require that the
allocation of limited resources is optimized under uncertainty
of the outcomes.

We present a principled framework for optimizing the
allocation of heterogeneous health interventions under un-
certainty. Our approach, named ADVISER: AI Driven
Vaccination Intervention OptimiSER, can guide non-profit
organizations and government agencies to increase vaccina-
tion uptake in resource-constrained geographies, that are cru-
cial to achieving key goals outlines in SDG 1 and SDG 3 of
the United Nations [United Nations, 2020]. Our approach is
based on formulating an integer linear program (ILP) to max-
imize the cumulative probability of success of heterogeneous
interventions under uncertainty. However, in our setting, it is
infeasible to solve the ILP directly (even if the inputs were
generated). In this paper, we tackle the challenges in a prin-
cipled manner. Specifically, we make the foll owing contri-
butions: 1) We present a formulation for optimizing the al-
location of heterogeneous health resources under uncertainty.
2) We present a heuristic approach to prune the decision space
of the ILP by leveraging the structure of the problem. We also
present a theoretical bound on the objective value attainable
by the heuristic with respect to the optimal solution to the ILP.
3) We show how guided local search can be used to gener-
ate promising vehicle routes based on the probability of spe-
cific individuals requiring the pickup service for vaccination.
4) We estimate the success of interventions through historical
data and community surveys. 5) We test our algorithmic ap-
proach using the data collected by HelpMum. Experimental
results demonstrate that the proposed approach significantly
outperforms baseline approaches. 6) Finally, HelpMum is

currently developing a pilot plan to deploy ADVISER in the
largest city in West Africa. To the best of our knowledge, our
solution would be the first AI-enabled program for increasing
vaccination uptake in Nigeria.

2 Related Work
We discuss prior work related to combinatorial resource allo-
cation under uncertainty for achieving health outcomes. The
optimization of resources can be either done in a single-
shot manner or by considering the sequential nature of the
decision-making problem. The specific paradigm for re-
source allocation depends on the specific problem domain.
For example, the optimization of patient admissions in hospi-
tals [Hulshof et al., 2013], allocating home healthcare ser-
vices [Aiane et al., 2015], and redistribution of patients
among hospitals in case of a surge in demand (e.g., in case
of a pandemic) [Parker et al., 2020] have been modeled as
single-shot optimization problems. Specifically, Parker et al.
solve the problem of finding optimal demand and resource
transfers to minimize the surge capacity and resource short-
age during a period of heightened demand due to COVID-
19 [Parker et al., 2020]. Aiane et al. work on allocating
services such as medical, paramedical, and social services
delivered to patients in their homes modeled using an MILP
formulation [Aiane et al., 2015]. Our problem setting and for-
mulation is most similar to theirs in principle; but the problem
setting considered by Aiane et al. only accounts for travel
times by resources as part of the objective and does not ac-
count for uncertainty in the outcomes after resource alloca-
tion [Aiane et al., 2015]. Moreover, their approach is not
scalable to our setting; the number of decision variables and
constraints in our problem is 105 times higher.

Prior work has also explored performing sequential
decision-making in the context of resource allocation in
healthcare settings. For example, Mate et al. [Mate et al.,
2021] and Nishtala et al. [Mate et al., 2021] model the allo-
cation of targeted phone calls as a restless multi-armed ban-
dit problem (RMAB). In such an approach, historical data is
used to estimate the effect of interventions (similar to our ap-
proach). Then, the RMAB model is used for planning in-
terventions over multiple decision epochs with limited re-
sources.Tsoukalas et al. present a data-driven probabilistic
framework for clinical decision support by using partially ob-



servable Markov decision processes (POMDP) [Tsoukalas et
al., 2015]. The POMDP model is based on clinical prac-
tice, expert knowledge and data representations in emergency
healthcare settings.

3 Problem Formulation
Problem Setting: Our problem setting involves resource al-
location to M individuals (e.g., mothers) over T days. We
use [M ] and [T ] as shorthand for [1, . . . ,M ] and [1, . . . , T ]
respectively. While our goal is to ensure that children get vac-
cinated, mothers typically take their children for vaccination
in our geographic area of interest. As a result, we say that the
interventions are designed for mothers. We assume that each
mother is eligible for an intervention for a fixed number of
contiguous days within these T days (depending on the last
date when her child was vaccinated). The binary variable amt
denotes whether mother m ∈ [M ] is eligible at time t ∈ [T ];
amt = 1 if and only if the mother is eligible on day t, and
is 0 otherwise. In order to get vaccinated, mothers can either
travel to designated health centers, or healthcare officials can
visit a mother’s house. We divide the region of interest into
a grid G consisting of equally sized cells. Each mother’s res-
idence and each health center therefore map to unique cells
in G. We use dmg to denote the distance of mother m’s resi-
dence from cell g ∈ G.
Interventions: In collaboration with HelpMum and domain
experts, we design four new interventions: 1) Phone call: A
phone call is made to the mother reminding her about upcom-
ing vaccination. We denote this intervention by ic. 2) Travel
Voucher: A travel voucher is provided to the mother to com-
mute to vaccination centers. We denote this intervention by
it. 3) Bus Pickup: A bus can pick up a mother (and her
child) from her residence and drop them at a vaccination cen-
ter. Each bus has a capacity of γ` (for ease of exposition,
we assume that γ` denotes the number of mothers that a bus
can accommodate with their children). We denote this inter-
vention by i`. F denotes the set of buses. 4) Vaccine Drive:
A health worker goes to a designated locality and vaccinates
mothers (children) living nearby who are eligible for vaccina-
tion. Naturally, there is a cap on the number of vaccinations
a health worker can provide in a day. We denote this cap by
γv , and denote this intervention by iv .
We use I to denote the set of interventions, and for nota-
tional convenience, add no-intervention/empty-intervention,
denoted as in, to this set. HelpMum considers iv to be highly
effective in practice, followed by ib, it and ic (in decreasing
order of effectiveness). Each intervention has a cost associ-
ated with it; we use ej to denote the cost associated with inter-
vention ij ∈ I . Naturally en = 0 (the cost of no-intervention
is 0), and e` > ev � et > ec. In particular, employing a bus
pickup or the cost of conducting a vaccine drive is relatively
much more expensive than giving a travel voucher or making
a phone call to a single mother.
Outcomes: Let pmj be the probability of mother m taking
her child for vaccination given intervention ij ∈ I . Decision
Variables: Given grid G, mothers M , and a time horizon of
[T ] days, we optimize over the allocation of interventions I .
We use g and t to denote an arbitrary cell in G and an arbi-

trary day in [T ] respectively. Let xtg be a binary variable that
denotes the decision to conduct a vaccine drive, i.e., xtg is 1
if and only if there is a vaccine drive at cell g on day t, and 0
otherwise. We point out that a vaccination drive at a cell does
not necessarily target every mother in that cell. A health-
care official can only visit a fixed number of households, and
our optimization formulation must optimize which mothers to
target during a drive. If possible, the healthcare worker will
travel to nearby cells as well.

Let Rf denote the set of routes that a bus f ∈ F can op-
erate (we explain constraints specific to routes later; we first
present our optimization formulation here for ease of expo-
sition). We use a binary variable qtfr to denote the routes
that are chosen for operation, i.e., qtfr = 1 if bus f operates
on route r ∈ Rf on day t ∈ [T ]. Note that a specific route
can only potentially target a subset of the mothers based on
their locations. We use binary values smtfr to denote whether
motherm can be picked up by a bus f ∈ F operating on route
r ∈ Rf on day t ∈ [T ].

We use additional u, y, and z variables to match specific in-
terventions to each mother. The variable ymtj = 1 if mother
m is given intervention ij ∈ {in, ic, it} at time t. For inter-
ventions i` and iv , we have variables u and z such that: a)
umtfr = 1 if mother m is picked up by bus f employing
route r ∈ Rf on day t ∈ [T ], and b) zmtg = 1 if mother m is
targeted on day t by a vaccination drive conducted at cell g.
Objective Function: Formally, we seek to optimize the fol-
lowing objective:

u∗, q∗, x∗, y∗, z∗ = argmax
u,x,y,z

∑
m∈[M ]

∑
ij∈{in,ic,it}

ymtjpmj (1)

+
∑

m∈[M ]

∑
t∈[T ]

∑
g∈[G]

zmtgpmv +
∑

m∈[M ]

∑
t∈[T ]

∑
f∈[F ]

∑
r∈Rf

umtfrpm`

We seek to maximize the cumulative probability of success-
ful vaccination given a fixed overall budget b by finding the
optimal allocation of interventions I among the M mothers.
Constraints: We need to enforce the following constraints
given our problem setting:
1. Eligibility Constraints: Each mother must be eligible for
the vaccine when she is being targeted for an intervention.

ymtj ≤ amt ∀m ∈ [M ], t ∈ [T ], ij ∈ {in, ic, it}

zmtg ≤ amt ∀m ∈ [M ], t ∈ [T ], g ∈ [G]

umtfr ≤ amt ∀m ∈ [M ], t ∈ [T ], f ∈ [F ], r ∈ Rf

2. Vaccine Drive Constraints: a) If a mother is being tar-
geted for a vaccination drive at a given location and time,
there must exist such a drive, b) only mothers that live within
distance σ of a drive can be targeted for the drive, and c) at
most γv mothers can be targeted by a single drive. The last
two constraints denote operational limitations of conducting
door-to-door vaccination drives.

zmtg ≤ xtg ∀m ∈ [M ], t ∈ [T ], g ∈ [G]

zmtg dmg ≤ σ ∀m ∈ [M ], t ∈ [T ], g ∈ [G]∑
m∈[M ]

zmtg ≤ γv ∀t ∈ [T ], g ∈ [G]

3. Route Constraints: If a mother is being being picked by a
bus on a route on a particular day, then a) the mother should



be eligible to be picked on that route, b) the bus must employ
that route on that day, and c) each bus can pick up at most γ`
mothers, and d) in addition, given current resource limitations
of our partner agency, we consider that a bus can only operate
a single route on a given day.

umtfr ≤ smtfr ∀m ∈ [M ], t ∈ [T ], f ∈ [F ], r ∈ Rf

umtfr ≤ qtfr ∀m ∈ [M ], t ∈ [T ], f ∈ [F ], r ∈ Rf∑
m∈[M ]

umtfr ≤ γ` ∀t ∈ [T ], f ∈ [F ], r ∈ Rf

∑
r∈Rf

qtfr ≤ 1 ∀t ∈ [T ], f ∈ [F ]

Note that each vehicle route must obey general routing con-
straints, e.g., there are restrictions on the earliest pick-up
times and the latest drop-off times in our setting. We assume
that all routes inRf , ∀f ∈ F obey these constraints (for now)
to simplify the discussion (discussed in detail in section 3.1).
4. Intervention constraint: We consider that each mother can
be targeted for at most one intervention, i.e. for all m ∈ [M ],∑
t∈T

∑
ij∈{ic,it}

ymtj +
∑
t∈T

∑
g∈G

zmtg +
∑
t∈T

∑
f∈[F ]

∑
r∈Rf

umtfr ≤ 1

5. Budget Constraint: The total cost of the interventions can
not exceed the monetary budget b of the organization.∑

m∈M

∑
t∈T

∑
ij∈{ic,it}

ymtj · ej +
∑
t∈T

∑
g∈G

xtg · ev

∑
t∈T

∑
f∈[F ]

∑
r∈Rf

qtfr · e` ≤ b

3.1 Routing Formulation
We formulate a vehicle routing problem with time windows
(VRPTW) [Toth and Vigo, 2002] to schedule vehicles to pick
up mothers (and their children) and take them to a vaccina-
tion center. Vehicle routing problems can be static, where
all inputs are received before optimizing routes, or dynamic,
where inputs are updated concurrently with the determination
of the route [Pillac et al., 2013; Wilbur et al., 2022]. We con-
sider a static VRP; the set of mothers whose children need
vaccination on a given day is known before routes are opti-
mized. In practice, the mothers need to be taken to the health
centers and dropped back to their resp. residences. How-
ever, we only discuss routing to the health centers to simplify
the discussion. All vehicles begin operation from fixed spots
(parking locations rented by HelpMum) called depots. Note
that on day t, only a subset of mothers are eligible for vac-
cination, i.e., amt = 1. Let βe(m) and βl(m) denote the
earliest and latest times on which mother m can be picked
up. The times vary across the population based on occupa-
tion and other beneficiary specific constraints. Let the set of
vaccination centers operating on day t day be St. HelpMum
requires that mothers are dropped off at a vaccination center
early so that there is sufficient time for them to get their chil-
dren vaccinated. Let the earliest and latest drop-off times for a
vaccination centre s ∈ St be denoted βe(s) and βl(s) respec-
tively. The set of pick-up locations (mothers’ residences) and
drop-off locations (vaccination centers) represent the nodes
(N ) of a graph with the road network being the edges.

A route plan is denoted by an ordered sequence of nodes
θ = {n1, n2, ...}, where nj ∈ N is an arbitrary node that
the vehicle needs to visit en-route. We attach the following
information with each node in a route plan. First, βθ,e(nk)
and βθ,l(nk) is the earliest and latest the vehicle can arrive
at location nk, and is set to βe(m) and βθ,l(nk) respectively,
when the node corresponds to a pickup location for a mother
m ∈ M , or βe(s) and βl(s) respectively when the node cor-
responds to a vaccination site s ∈ St. Second, the scheduled
arrival time for the vehicle servicing route plan θ to location
nk is δθ(nk). A route plan is feasible if all time window con-
straints are satisfied and all mothers who are picked up (up
to a maximum capacity of each vehicle) are dropped off at
a vaccination site. The time window constraints are satisfied
for each location if βθ,e(nk) ≤ δθ(nk) ≤ βθ,l(nk), ∀nk ∈ θ.
For each vehicle f ∈ F , the set of feasible routes contain all
routes that obey all the routing and capacity constraints.

4 Approach
We face three specific challenges in directly solving optimiza-
tion problem ( 1). First, the ILP consists of more than 109

decision variables and constraints. Second, we must generate
the set of feasible routes as an input to the ILP. In our problem
setting, the number of routes exceed 10200. Third, we must
estimate the success of each intervention for each mother. We
tackle these challenges in a principled manner below. Our ap-
proach (shown in Figure 1 (b)) is based on pruning the search
space of the decision variables by greedily conducting the
most efficient intervention; specifically, we greedily use the
given budget to conduct the intervention that has the highest
success-to-cost ratio. In this case, conducting a vaccination
drive is relatively more expensive than making a phone call,
but it enables HelpMum to target more mothers and guarantee
more successful vaccinations. After the greedy allocation of
the vaccination drives we use guided local search to generate
promising vehicle routes, which is fed to the ILP as an input.

4.1 Greedy Pruning
We assume that the probabilities pmj are known for each
mother and intervention. We describe how such parameters
can be estimated later. We use an iterative approach for prun-
ing the size of the ILP. At each step, a set of mothers are
chosen for intervention and removed from consideration. Let
[Mw] denote the set of mothers at the beginning of iteration
w. LetHw denote a matrix of sizeG×T , where each entry in
the matrix (denoted by Hw

gt) captures the utility of conduct-
ing a vaccination drive at cell g ∈ [G] and time t ∈ [T ]. At
iteration w, let g∗w on day t∗w denote the optimal cell and day
to conduct an intervention, given [Mw]. The matrix Hw is
used to choose cell-time combinations to conduct vaccination
drives in each iteration. The cell-time positions chosen in the
previous iterations are updated to −1 in the matrix to remove
them from consideration in future iterations, i.e., g∗w′ , t

∗
w′ for

all w′ < w is set to −1. We point out that conducting a vac-
cination drive at a cell can potentially target mothers from
nearby cells as well, depending on the number of households
in consideration and the manner in which door-to-door vac-
cine delivery is done. Let Mgt denote a subset of mothers in
[Mw] who live within some exogenously specified distance σ
of cell g and are eligible for vaccination at time t. Hw can



Algorithm 1 The ADVISER Framework
Input M : set of mothers, a: availability matrix, d distance
matrix, T : number of days in program, G: grid, b: budget, r:
radius
Output I: intervention alloc. array

1: M ′, C, b′ ← Heuristic(M,a, d,G, b, r)
/* Calls the Heuristic algorithm (Algorithm 2) which re-
turns M ′: the remaining set of mothers, C: the vac-
cine drive allocation matrix indicating where the vaccine
drives will be conducted, and the left over budget b′. */

2: I(m)← Vaccine Drive, for m ∈M \M ′
/* Assigns the vaccine drive intervention to all mothers
in M but not in M ′. */

3: R← V RP (M ′,Time windows)
/* Calls the Vehicle Routing Algorithm (Sections 3.1, 4)
with inputs M ′, time windows for each mother, and im-
munization centres. It returnsR: the set of optimal routes
for each (bus depot, centre) pair on each day. */

4: I(M ′)← ILP(M ′, R, a, d, C,G, b′, r)
/* Calls the ILP (Section 3) on the remaining mothers
M ′ with routes R, leftover budget b′, and other relevant
parameters. The vaccine drive allocation matrix C helps
the ILP ensure that there are no vaccination drives at grid
g ∈ G on day t, if the Heuristic has already decided to
conduct a drive there on that day. The ILP returns the op-
timal intervention allocation on remaining mothers with
budget b′. */

5: Return the intervention allocation array I .

then be computed as:

Hw
gt =

{
−1 if g = g∗w′ ∧ t = t∗w′ ∀w′ < w

Uw(g, t) otherwise

whereUw(g, t) = maxS⊆Mgt,|S|≤γv
∑
m∈S(pmv−pmn) de-

notes the utility of conducting a vaccine drive at cell g at time
t on iteration w by targeting the subset of mothers who pro-
vide the most gain over no interventions. Note that the utility
depends on w, because mothers who are targeted for inter-
vention in an iteration are removed from consideration on the
next iteration. As an example, conducting a vaccination drive
at the same location on two successive days won’t be ideal, if
every mother eligible for vaccination is already benefited by
the service on the first day. Then, g∗w, t

∗
w = argmaxg,tH

w
g,t.

In our formulation, pmv = 1. We denote the mothers tar-
geted as part of the conducting a drive at g∗w, t

∗
w as Swg∗t∗ =

argmaxS⊆Mg∗t∗ ,|S|≤γv
∑
m∈S(pmv − pmn).

We drop references to w to simplify the discussion. In the
proposed heuristic, we decide to conduct a vaccine drive at
g∗, t∗ if et · |Sg∗t∗ | ≥ ev , i.e., if the cost of conducting a vac-
cine drive is at most the cost of giving travel vouchers to the
mothers being benefited by the drive. Note that conducting
a vaccine drive is a better intervention than providing travel
vouchers even when they cost the same (as children are guar-
anteed to be vaccinated through the former strategy). How-
ever, our pruning strategy is lazy; we commit to conducting
a drive only if the aforementioned condition is satisfied and
leave other decisions for the pruned ILP. The mothers who are

mapped to vaccine drives are removed from consideration at
the next iteration and the budget is updated accordingly. We
stop pruning after we are left with some exogenously speci-
fied budget parameter (b′). We present the pseudo codes for
the ADVISER framework in Algorithm 1 and the heuristic
pruning procedure that ADVISER uses in Algorithm 2.

Algorithm 2 Heuristic Pruning
Input M : set of mothers, a: availability matrix, d: distance
matrix, T : number of days in program, G: grid, b: budget, r:
radius
Output M ′: set of remaining mothers, C: vaccine drive allo-
cation matrix, b′: leftover budget

1: Let C,K,H be matrices of size |G| × T .
/* Cgt = 1 if the Heuristic decides to conduct a vaccine
drive at grid g on day t and otherwise 0, Kgt = 1 if at
step 10 g, t is computed as g∗, t∗ and 0 otherwise, Hgt is
the value of computing the vaccine drive at cell g, t (refer
Section 4) */

2: Initialize: Cgt = 0, Hgt = 0, and Kgt = 0 for all g ∈ G
and t ∈ [T ]

3: Set Count← 0
4: while b ≥ b′ and count ≤ |G| × T do
5: Set Count← Count + 1
6: for g ∈ [|G|] and t ∈ [T ] do
7: Mgt ← {m ∈M | amt = 1, dmg ≤ r}
8: if Kgt = 1 then
9: Hgt ← −1

10: else if Kgt = 0 then
11: Hgt = maxS⊆Mgt,|S|≤γv

∑
m∈S(pmv − pmn)

12: end if
13: end for
14: g∗, t∗ = argmaxg,tHgt

15: Sg∗t∗ = argmaxS⊆Mg∗t∗ ,|S|≤γv
∑
m∈S(pmv − pmn)

16: Kg∗t∗ ← 1
17: if et · |Sg∗t∗ | ≥ ev then
18: Cg∗t∗ ← 1
19: M ←M \ Sg∗t∗
20: b← b− ev
21: end if
22: end while
23: b′ ← b
24: Return M ′, C, b′

Performance Bounds: Let k denote the number of vac-
cination drives determined in the greedy pruning phase, and
MV H denote the set of mothers targeted by these k vaccina-
tion drives. We bound the loss incurred through greedy prun-
ing relative to the optimal solution of the ILP. We assume that
the optimal solution has at least k vaccination drives of size at
least ev/et; we verify this empirically in multiple parameter
settings. We arbitrarily choose k vaccine drives from such an
optimal solution, and denote by MV I the set of mothers tar-
geted by these k vaccine drives. Also, let mother m ∈ M be
given intervention i∗m by such an optimal solution. We begin
by proving the following proposition, which is an outcome of
our greedy choice made at every iteration during pruning.



Proposition 1.
∑
m∈MV H

(pmv−pmn) ≥
∑
m∈MV I

(pmv−
pmn)

Proof. Let vwH be the vaccine drive determined by the
heuristic procedure at the w-th iteration for w ∈ [1, k]. Also,
arbitrarily order the k vaccine drives that the mothers in MV I

are part of. In particular, let vwI be the w-th vaccine drive
of such a chosen order among the k vaccine drives that are
part of the optimal ILP solution, for w ∈ [1, k]. Further, let
M

(w)
V H be the set of mothers targeted by the w vaccination

drives v1H , . . . , vwH . Similarly, let M (w)
V I be the set of moth-

ers targeted by the w vaccination drives v1I , . . . , vwI . Since
at every iteration w′ ≤ w in the greedy pruning we choose to
have a vaccine drive at grid g∗w′ and time t∗w′ with the highest
value of Hw′

gt , we have for every w ∈ [1, k]∑
m∈M(w)

V H

pmv − pmn ≥
∑

m∈M(w)
V I

pmv − pmn .

Finally, it is easily seen that M (k)
V H = MV H and M

(k)
V I =

MV I , and as the above equation holds for w = k, this com-
pletes the proof of the proposition.

LetMV H \MV I (resp. MV I \MV H ) denote the set of moth-
ers in MV H (resp. MV I ) but not in MV I (resp. MV H ). We
use Proposition 1 to prove the following theorem.
Theorem 1. Let OH be the objective value of the solution
derived from our heuristic procedure and O∗ be the objec-
tive value of the optimal ILP solution. Then OH ≥ O∗ −
(
∑
m∈MV H\MV I

(pmi∗m − pmn)).

Proof. From Proposition 1, we have∑
m∈MV H

pmv − pmn ≥
∑

m∈MV I

pmv − pmn

Rearranging the above expression we have∑
m∈MV H

pmv +
∑

m∈MV I\MV H

pmn ≥

∑
m∈MV I

pmv +
∑

m∈MV H\MV I

pmn

We add
∑
m∈M\MV I

pmi∗m to both sides of the above expres-
sion.∑
m∈MV H

pmv +
∑

m∈MV I\MV H

pmn +
∑

m∈M\MV I

pmi∗m ≥∑
m∈MV I

pmv +
∑

m∈MV H\MV I

pmn +
∑

m∈M\MV I

pmi∗m

Now observe thatO∗ =
∑
m∈MV I

pmv+
∑
m∈M\MV I

pmi∗m ,
and M \MV I = (MV H \MV I) ] (M \ (MV H ∪MV I)).
Hence, substituting forO∗ in RHS and partitioningM \MV I

in the LHS of the above expression we have∑
m∈MV H

pmv +
∑

m∈MV I\MV H

pmn +
∑

m∈MV H\MV I

pmi∗m

+
∑

m∈M\(MV H∪MV I)

pmi∗m ≥ O∗ +
∑

m∈MV H\MV I

pmn

Rearranging the above expression, we have∑
m∈MV H

pmv +
∑

m∈MV I\MV H

pmn +
∑

m∈M\(MV H∪MV I)

pmi∗m

≥ O∗ − (
∑

m∈MV H\MV I

pmi∗m − pmn) (2)

It is easy to see that M \MV H = (MV I \MV H) ] (M \
(MV H ∪MV I)), and recall that ADVISER finally runs the
ILP on M \ MV H mothers with budget b − k · ev . Now
since the number of vaccine drives in the optimal solution is
at least k, the cost of providing interventions i∗m to mothers
m ∈ M \ (MV H ∪ MV I) is at most b − k · ev . Hence,
providing no interventions to mothers in MV I \ MV H and
intervention i∗m to mother m ∈M \ (MV H ∪MV I) is a fea-
sible solution of the ILP run on the remaining mothers. This
implies the ILP on the remaining mothers returns an inter-
vention allocation on M \MV H which has objective value
at least

∑
m∈MV I\MV H

pmn +
∑
m∈M\(MV H∪MV I)

pmim∗.
Hence the objective value of the heuristic procedure is

OH ≥
∑

m∈MV H

pmv +
∑

m∈MV I\MV H

pmn

+
∑

m∈M\(MV H∪MV I)

pmim∗ (3)

Finally, using Equation 3 in Equation 2 we have

OH ≥ O∗ − (
∑

m∈MV H\MV I

pmi∗m − pmn) .

The lower bound on the objective value of the heuristic ap-
proach in Theorem 1 depends on the interventions provided
in the optimal solution to mothers in MV H but not in MV I .

4.2 Route Generation
In principle, we could generate all the feasible routes given
the routing constraints, which can then be provided as an in-
put to the optimization problem. However, route generation
is intractable in our setting. The total number of routes in
our setting exceeds 10200. As a result, we focus on gener-
ating a smaller subset of promising routes. Recall that our
overall goal is to maximize the cumulative probability of suc-
cessful vaccination; as a result, it is imperative that given the
limited number of vehicles, we pickup mothers that need the
ride the most. We capture this idea to define the utility of a
route plan. Let p(θ, nk) = pm` − pmn denote the utility of
an arbitrary pick-up node nk ∈ N in the routing graph (recall
that each pickup node corresponds to a unique mother). The
quantity pm` − pmn captures the importance of providing a
bus pickup to mother m over giving no intervention. Given
the utility function, we use guided local search [Kilby et al.,
1999] to generate a subset of routes that maximize the utility.



Table 1: Description of the features used to learn the probability of success for the interventions

Feature Type Description

Vaccination Status Binary A variable denoting whether the mother took her child for vaccination
Income Level Binary A variable denoting whether the family earns more than $25 or not.

Message Status Binary A binary variable that denotes whether the mother received a message
about the upcoming vaccination appointment.

Age of the mother Integer The age of the mother in years.
Age of the child Integer The age of the child in months.
Number of children Integer The number of children the mother has.
Address String The neighborhood that the mother lives in.
Vaccination Center String The address of the nearest vaccination center from the mother’s house.

4.3 Parameter Estimation
Note that optimization problem (1) requires estimates of the
probability of success of each intervention for each mother.
However, estimating the probabilities presents a challenge—
the interventions — conducting vaccine drives, operating ve-
hicle routes, and providing travel vouchers, are designed as
part of this research; as a result, we lack exact historical data
about the interventions. We only have data about phone calls
that HelpMum made to all mothers. We compute the proba-
bility of success of untested interventions (i.e., vaccine drives,
bus pickups, and travel vouchers) through a community sur-
vey that HelpMum performed. We estimate the probability of
successful vaccination through phone calls and the effect of
no interventions by learning a regression model on historical
data.

We assume that a set of features W can be used to repre-
sent each individual. The setW can encode prior information
about interventions, income levels, and geographic location.
However, estimating the probabilities presents a challenge—
the interventions of conducting vaccine drives, operating ve-
hicle routes, and providing travel vouchers are designed as
part of this research; as a result, we lack exact historical data
about the interventions. Our partner agency reached out to
the community to gather feedback about the potential ben-
efit of such interventions. We use feedback from the com-
munity outreach to compute the probability of their success.
Our partner agency does have data on its routine phone call
operation, as part of which it calls every mother to remind
them about upcoming vaccination. We use the historical data
about phone calls to estimate the success of making additional
phone calls by training a logistic regression model.

Computing the effect of untested interventions
To aid the estimation of probability of success for interven-
tions that have not been tested, i.e., travel vouchers, bus pick-
ups, and vaccination drives, our partner agency asked the ben-
eficiaries for feedback. All mothers reported that they would
welcome healthcare officials when they conduct door-to-door
vaccination campaigns. They also reported that transportation
costs were a major barrier for accessibility to health centers,
and that pickup service or travel vouchers will be of immense
value. Based on the feedback, we assume that the probabil-
ity of a successful vaccination for a mother given vaccine
drive or picked up by a van equal to 1. Our partner agency
reported that in practice, the efficacy of travel vouchers is

slightly lower as the intervention lacks direct monitoring (for
example, the travel voucher might not be used or can be used
for some other purpose). As a result, for the assignment of
a travel voucher, we consider the probability of success to
be lower than 1, but higher than the probability of success
through a phone call alone or the probability of success in the
absence of any interventions1.

We want to estimate the probability that a mother takes a
child for vaccination given the intervention of making addi-
tional phone calls to remind her about an upcoming vacci-
nation (“additional” phone calls refer to targeted calls made
after all mothers have been called, which our partner agency
already does). Estimating the effect of phone calls is some-
what different than the other interventions; we do have histor-
ical data from phone calls made by our partner agency. How-
ever, note that the probability we seek to estimate is different
from P (mother going to vaccination | phone call is made)
as we do not want to estimate the empirical conditional
probability by restricting attention to the sub-population for
which phone calls were made; rather, the phone call is an
intervention, meaning that we perform the action of mak-
ing phone calls, which in turn fixes the value of the ran-
dom variable. Formally, we are interested in estimating
P (mother going for vaccination | do(phone call)). However,
we point out that a) the marginal distribution of W is invari-
ant under the intervention of making phone calls, and b) the
manner in which an individual reacts to a phone call regard-
ing vaccination uptake is the same irrespective of whether
the action of making a phone call is through a targeted in-
tervention or not. As a result, the probability of success given
the intervention can be directly estimated from historical data
by simply calculating the empirical conditional distribution
P (mother going to vaccination | phone call is made).

5 Experiments
5.1 Data
We collect anonymous information from HelpMum for 500
mothers registered as part of a vaccination tracking system
operated by HelpMum. Each data point consists of several

1In practice, we anticipate the probability of success to be
slightly lower for bus pickups as well. Our partner agency reports
that in practice, a health center can exhaust its stock of vaccines. Our
estimates can be improved as data is generated through deployment.



features such as the income level of the family, whether the
mother received a reminder about the upcoming vaccination
appointment, whether she took her child for vaccination, and
the age of her child, among others. HelpMum obtained con-
sent from each beneficiary for anonymous data sharing. A
description of the features we collect is presented in Table 1.
We also collect the geographic locations of all 32 vaccination
centers in our area of interest. The locations of the rented
parking depots and the vaccination sites are shown in Fig-
ure 2.

HelpMum plans to deploy the ADVISER framework to all
mothers in their vaccination tracking system (about 40000
mothers). As a result, we use the available data to gener-
ate two synthetic datasets (D1 and D2), consisting of 40000
mothers each. We generate features of mothers in D1 and
D2 by sampling each feature independently and uniformly at
random from the original data of 500 mothers. For the moth-
ers in D1, we compute the probabilities of success for each
mother given an intervention as follows: for each m ∈ [M ],
we choose pmn uniformly at random from (0, 1); followed
by pmc uniformly at random from (pmn, 1); pmt uniformly
at random from (pmc, 1); and pm` uniformly at random from
(pmt, 1). We set pmv = 1 based on community feedback (see
section ??). D1 essentially captures the domain knowledge
that we have about the interventions, specifically, for a mother
m, pmn ≤ pmc ≤ pmt ≤ pm` ≤ pmv = 1. For D2, we
estimate the probability of vaccination given no intervention
(and vaccination given phone calls) by training a logistic re-
gression model on the original data (details in Appendix ??).
The probabilities for remaining interventions, pmt, pm`, and
pmv are chosen in a similar manner as in D1.

Figure 2: Locations of the rented parking locations (in orange) and
the vaccination centers (in white). The yellow lines represent the
grid G. We see that there the distribution of the vaccination centers
is not uniform; however, HelpMum chose to rent a parking location
towards the north of the city to ensure that mothers have access to
vaccination centers.

5.2 Baseline Algorithms:
While prior work does not consist of approaches that opti-
mize the allocation of heterogeneous health resources under
uncertainty, we consider the following baselines:

Real-world Baseline: For the first baseline, we asked
HelpMum to allocate the interventions solely based on do-

main expertise. HelpMum identified 33 fixed neighbour-
hoods, one in each local government (similar to administra-
tive jurisdictions) to conduct vaccination drives on alternate
days. Bus routes are operated each day using all the F vehi-
cles from the existing depots. Each vehicle serves one vacci-
nation center each day in a round-robin manner. For each trip,
mothers who are within some predefined distance from the
routes are considered. Note that since the routes determined
by our partner agency is fixed, mothers must walk to the bus
route; the predefined distance is a check on the distance that
a mother can walk with a child to get on a bus. Then, travel
vouchers are distributed to mothers who live more than 10
kms. away from a vaccination center. The vouchers are dis-
tributed according to income levels, i.e., mothers who have
relatively lower income are targeted first. Finally, the remain-
ing budget is used to make targeted phone calls. Our partner
agency decided to target mothers based on the age of their
child—the younger the child, the higher the priority. This de-
cision is motivated by the fact that an infant requires more
vaccination doses, and missing one dose hampers the sched-
ule of upcoming vaccine doses.

Hierarchical Integer Linear Programming (HILP):
Motivated by the use of hierarchical planning to create
tractable approaches for resource allocation [Zhang et al.,
2016; Pettet et al., 2021], we design a baseline that solves
optimization problem ( 1) in a hierarchical manner. First, we
leverage the geographic density of the beneficiaries to iden-
tify clusters (using k-means [MacQueen and others, 1967]).
The overall budget is distributed across clusters in propor-
tion to the number of mothers in each cluster. A separate
ILP is then solved directly for each cluster. We start by di-
viding the entire set of mothers into different clusters via
k-means clustering on their geographic locations. Our goal
is to create smaller ILP formulations per cluster. Naturally,
the abstraction introduced by hierarchical planning also in-
duces a trade-off between scalability and utility. In order
to select the optimal number of clusters, we use the elbow
method [Bholowalia and Kumar, 2014] based on the inertia
of the clusters (the sum of squared distances of samples to
their closest cluster center). The clusters were initialized by
sampling the locations of the mothers uniformly at random.
The number of clusters for datasets D1 and D2 are 35 and 30
respectively (see Figures 6 and 7).

5.3 Experiment Setup

In consultation with HelpMum, we set the costs as follows:
ec = $0.1, et = $1.1, ev = $15, and e` = $20. We optimize
the allocation of resources for T = 30 days and γv = 100.
We vary the overall budget b between $7000 to $8400, and
use b−$1000 as a threshold for the greedy pruning procedure.
Our implementation is available at https://anonymous.
4open.science/r/IJCAI_42/. All experiments were run
on a Linux machine with 64GB RAM and an 8-core AMD
processor. We implement ADVISER using the Python pro-
gramming language and solve the ILP using Google OR Tools
with SCIP solver.

https://anonymous.4open.science/r/IJCAI_42/
https://anonymous.4open.science/r/IJCAI_42/


Figure 3: (a) Expected number of vaccinations in D1. (b) Expected number of vaccinations in D2. (c) The distribution of the interventions
through the different algorithms. We observe that ADVISER outperforms the other two baselines. Also, both ADVISER and HILP choose
vaccination drives as the dominant intervention; RWB’s poor performance can be explained by having fixed allocations for each intervention.

Figure 4: The output of ADVISER with number of vaccination drives capped to 400. (a) Objective values for D1. (b) Objective values for
D2. (b) Number of interventions allocated averaged across D1 and D2.

5.4 Results
We show the expected number of successful vaccinations in
D1 and D2 in Figure 3 (a) and Figure 3 (b) respectively. We
observe that the expected vaccine uptake achieved via AD-
VISER is more than 39970 for all the budgets considered in
the experiment, whereas the average vaccine intake achieved
by the baseline algorithm is at most 26000 (we performed the
simulation on 40000 mothers). The average number of moth-
ers who received intervention through ADVISER is 39672,
in comparison to 28426 and 20588 through HILP and RWB
respectively.

We also observe in Figure 3 (c) the distribution of the in-
terventions; as expected, both the ILP-based approaches cap-
italize on solutions with more vaccination drives. However,
we point out the importance of the other interventions as well.
In practice, the number of vaccination drives is bound by the
number of available healthcare workers for the service, whose
regular job is to work at healthcare centers. We observed that
when the number of vaccination drives is restricted to 400 per
month, the average number of mothers who are targeted for
pickups more than triples as compared to Figure 3 (c) (result
presented in appendix ??). Moreover, HelpMum seeks to uti-
lize ADVISER to improve antenatal care for pregnant moth-
ers as well, which will lower the realization of γv (number of

children who can be vaccinated during a drive). Finally, we
point out that it is crucial that the ADVISER framework is
tractable. On average, the computational time taken to gener-
ate solutions by the ADVISER framework is 254 seconds, as
opposed to 4386 seconds by HILP (RWB can generate solu-
tions in about 10 seconds on average).

In order to evaluate the performance of all the approaches
under different parameters, we repeat the experiments by cap-
ping the maximum number of vaccination drives to 400, i.e.,
about 13 vaccination drives each day. Essentially, we want to
test the robustness of the approaches when sufficient health-
care workers are not available to perform door-to-door vacci-
nation delivery. We show the results in Figure 4. We observe
that in comparison to the our original setting (shown in the
main body of the paper in Figure 3, the number of mothers
picked up by the bus service more than triples. This obser-
vation highlights the need for a heterogeneous set of inter-
ventions. Also, the objective value attained by capping the
number of vaccination drives is lower than without the ex-
istence of such a bound; however, ADVISER significantly
outperforms the baseline approaches in both the settings.

We also show the average distribution of travel vouchers,
bus pickups, and phone calls in Figure 5. We observe that
RWB, due to its fixed nature of resource allocation, results in



Figure 5: Average Intervention Allocations (D1 + D2) for (a) Vehicle Routes, (b) Travel Vouchers, and (c) Phone Calls

Figure 6: Elbow Curve for D1 with x axis representing the number
of clusters and y axis representing the distortion score

the distribution of a large number of travel vouchers and bus
pickups in comparison to ADVISER and HILP (Figure 5 (a)).
While travel vouchers and bus pickups are effective modes
of intervention, they are relatively more expensive than con-
ducting vaccination drives. The ILP-based approaches (AD-
VISER and HELP) search the decision-space better an only
use such interventions where (intuitively) conducting vacci-
nation drives is not feasible.

Figure 7: Elbow Curve for D2 with x axis representing the number
of clusters and y axis representing the distortion score

5.5 Deployment:
HelpMum is currently planning a pilot program in Ibadan, the
largest city in West Africa. We show an initial version of the
tool based on the ADVISER framework in Figure 8.

Figure 8: An initial version of the tool that HelpMum will use for
deployment. The tool is under construction.

6 Conclusion
In collaboration with HelpMum, a non-profit organization in
Nigeria, we present ADVISER: AI Driven Vaccination In-
tervention OptimiSER. Our framework can accelerate our
progress towards goals in SDG 1 and SDG 3 by increasing
access to healthcare services and vaccination, and by reduc-
ing maternal and infant mortality in resource-constrained set-
tings. HelpMum is currently planning a pilot of the AD-
VISER framework in collaboration with local governments,
which will be the first of its kind in Nigeria.

7 Ethical Statement
Our goal in this project is to improve vaccination uptake in
Nigeria. We point out that our partner agency, NGO, works
closely with state and local governments. The specific inter-
ventions were designed by NGO in collaboration with domain
experts and its advisory board. NGO is currently planning to
deploy the ADVISER framework in the largest city of Nige-
ria; however, NGO plans to do this in collaboration with the
local governments. The fairness of the solution quality of



any AI driven framework for public intervention needs to be
studied. While a large part of the interventions suggested by
ADVISER are targeted towards low-income individuals (by
construction), the objective function of our framework can be
modified to add a score function that measures fairness of al-
location. Also, it is possible to add arbitrary constraints on the
number of interventions across groups in our problem (based
on geographic locations). However, the very nature and form
of such constraints needs to be determined in collaboration
with NGO and local governments.
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