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Abstract

Underserved communities face critical health challenges due
to lack of access to timely and reliable information. Non-
governmental organizations are leveraging the widespread
use of cellphones to combat these healthcare challenges and
spread preventative awareness. The health workers at these
organizations reach out individually to beneficiaries; however
such programs still suffer from declining engagement.
We have deployed SAHELI, a system to efficiently utilize the
limited availability of health workers for improving maternal
and child health in India. SAHELI uses the Restless Multi-
armed Bandit (RMAB) framework to identify beneficiaries
for outreach. It is the first deployed application for RMABs
in public health, and is already in continuous use by our part-
ner NGO, ARMMAN. We have already reached ∼ 130K
beneficiaries with SAHELI, and are on track to serve 1 mil-
lion beneficiaries by the end of 2023. This scale and impact
has been achieved through multiple innovations in the RMAB
model and its development, in preparation of real world data,
and in deployment practices; and through careful considera-
tion of responsible AI practices. Specifically, in this paper, we
describe our approach to learn from past data to improve the
performance of SAHELI’s RMAB model, the real-world chal-
lenges faced during deployment and adoption of SAHELI, and
the end-to-end pipeline.

Introduction
Mobile health (mHealth) programs, that leverage the
widespread use of cellphones, are a crucial resource
for bridging information inequities for underserved and
marginalized communities in the global south (Tshikomana
and Ramukumba 2022; Gupta et al. 2022), especially in ar-
eas such as public health and social services where access
to authoritative information is unevenly distributed. Many
non-governmental organizations (NGOs) periodically send
automated voice messages to improve health outcomes of
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beneficiaries. However, in spite of high adoption, adher-
ence is a key challenge in public health information pro-
grams (ARMMAN 2019; Jakob et al. 2022; Eysenbach
2005; Meyerowitz-Katz et al. 2020). NGOs often employ
live service calls made by health workers to boost engage-
ment via encouragement or through logistic changes re-
quested by beneficiaries. However, given the comparatively
large number of potential beneficiaries, it is important to
maximally utilize the limited availability of health workers,
and thus it is crucial to identify the best recipients for such
service calls.

Figure 1: A beneficiary receiving preventive health information

While AI models can help health workers in optimizing
their service calls, deploying these models in the context
of mHealth programs for underserved communities presents
unique challenges. First, available data is sparse and skewed
due to small numbers of service calls. Second, NGOs are
constrained by a very limited compute budget. Third, re-
sponsible deployment of the AI models is particularly im-
portant in such settings.

In this paper, we show how we address these research
challenges in our deployed AI model – a deployed Rest-
less Multi-Armed Bandits (RMAB) model for public health
– together with our NGO partner ARMMAN (ARMMAN
2008) to help improve the quality of service of their mHealth
program focusing on maternal and child care. India suffers
from high maternal and neonatal mortality rates (Meh et al.



2022; World Health Organization (WHO) 2020), and AR-
MMAN (ARMMAN 2008) runs one of the largest mHealth
programs in this domain in India. Our system, SAHELI (Sys-
tem for Allocating Healthcare-resources Efficiently given
Limited Interventions), is the result of deep partnership of
an interdisciplinary team of researchers. SAHELI (meaning
‘female friend’ in Hindi) is designed to assist, rather than
substitute, health workers in their normal workflow. The key
contributions of deployed SAHELI are:
• SAHELI includes the first deployed application of

RMABs for public health, and it is continuously in use
by our partner NGO ARMMAN.

• A key novelty of the deployment is that it both predicts
RMAB model parameters and computes optimal poli-
cies; in contrast with most past research that has fo-
cused on computing optimal policies. To that end, we
provide an improved and robust machine learning predic-
tion framework by performing model selection and eval-
uation of real-world RMAB systems.

• We deployed SAHELI on cloud infrastructure with an em-
phasis on frugality throughout the end-to-end pipeline
given the resource constraints of the NGO partner.

• We present Responsible AI practices to address ethical
considerations for deploying an AI system for impact
in underserved communities, particularly in this non-
western context.

SAHELI has been developed as a platform, with the ability
to be scaled to more NGOs in more domains. Our source
code and data dictionary are available on Github1.

Related Work
While several works in the healthcare domain have studied
patient adherence for diseases like HIV (Tuldrà et al. 1999),
cardiac problems (Son et al. 2010; Corotto et al. 2013), and
tuberculosis (Killian et al. 2019; Pilote et al. 1996), these
largely focus on building machine learning classifiers to pre-
dict future adherence to prescribed medication. With such
models, the pool of beneficiaries flagged as ‘high-risk’ can
itself be very large. Furthermore, the one-shot predictions of
these models fail to capture the sequential decision making
aspect of the problem. Other approaches that consider se-
quential decision making challenges, such as Pollack et al.
(2002); Liao et al. (2020); Brisimi et al. (2018) adopt rein-
forcement learning techniques to build personalized health
monitors that can send timely notifications or activity sug-
gestions to users. However, these models assume notifica-
tions can be sent at will, and as such, do not address the
challenge of limited service call resources.

Alternatively, RMABs have seen significant theoretical
investigation, motivated by resource allocation challenges,
such as in anti-poaching patrols (Qian et al. 2016), multi-
channel communication (Liu and Zhao 2010), sensor moni-
toring and machine maintenance tasks (Glazebrook, Ruiz-
Hernandex, and Kirkbride 2006). While they provide im-
portant contributions, none of these works have seen a real
world deployment, and most have not been field tested.

1https://github.com/armman-projects/SAHELI

Key reasons for the lack of RMAB deployment are their
significant computational and data requirements. For exam-
ple, just the optimization problem of computing the optimal
allocation π, while assuming the transition parameters P are
available is already known to be PSPACE-hard (Papadim-
itriou and Tsitsiklis 1999). Furthermore, in the real world,
these transition parameters are not just unknown but also
hard to infer for real beneficiaries enrolling with ARMMAN
and other similar health programs, as they come with no his-
torical transition data. Despite such difficulties, our work is
the first to deploy RMABs in tackling a real-world maternal
healthcare task via frugal design choices discussed below.

Problem Introduction
ARMMAN is a non-governmental nonprofit organization
based in India, focused on improving maternal and child
health outcomes among underserved and underprivileged
communities (ARMMAN 2008). Their flagship program,
‘mMitra’, is a mHealth service that aims to leverage the ex-
tensive cellphone penetration in India to send out critical
preventive health information to expectant or new mothers
via automated voice messages. A large fraction (∼ 90%) of
mothers in the mMitra program are below the World Bank
international poverty line (World Bank 2020). Despite the
acute economic disadvantages faced by these mothers, such
automated voice messages prove to be a feasible mode of
information dissemination at scale, thanks to the wide ac-
cessibility of low-cost phones.

After enrollment into the mMitra mHealth program, ben-
eficiaries receive 1-2 minute voice messages with health
information according to beneficiary’s gestational age or
age of the infant. Unfortunately, despite the proven effec-
tiveness of this information program in improving maternal
health outcomes, ARMMAN often sees dwindling engage-
ment rates among beneficiaries, including frequent dropouts.
Around 22% of beneficiaries dropout of the program after
just 3 months. To counter this issue, ARMMAN leverages
health workers that place live service calls (phone calls)
to a limited number beneficiaries on a weekly basis to en-
courage beneficiaries’ participation, address requests/ com-
plaints, and attempt to prevent engagement drops. This lim-
itation in number of service calls raises the key question of
deciding which beneficiaries to pick for live service call in
order to improve engagement rates among the beneficiaries.

Restless Multi-Armed Bandits (RMAB)
The Restless Multi-Armed Bandits (RMABs) model was
first introduced by Whittle (1988) to address limited re-
source allocation problems, but has not received much at-
tention in terms of real-world deployments. An RMAB con-
sists of a set of N arms, where each arm is associated with
a two-action MDP (Puterman 2014). An MDP {S,A, r, P}
consists of a set of states S, a set of actions A, a reward
function r : S × A × S 7→ R, and a transition function P ,
where Pα

s,s′ is the probability of transitioning from state s to
s′ when action α is chosen. The reward function in our set
up is given as r(s, α, s′) = s′. An MDP policy π : S 7→ A
maps to the choice of action to take at each state. The long-



term discounted reward for a policy π, starting from state
s0 = s is defined as Rπ

γ (s) = E [
∑∞

t=0 γ
tr(st+1)|s0 = s]

where st+1 ∼ P
π(st)
st,st+1 and γ ∈ [0, 1) is the discount factor.

The total reward in the RMAB is defined as the sum of the
total rewards accrued by individual arms of the RMAB.

In the setup we consider, each arm of the RMAB models
a beneficiary enrolled with ARMMAN, who can be in one
of two states S = {0, 1}, corresponding to ‘Not Engaging
(NE)’ and ‘Engaging (E)’ respectively. Engagement in our
setup was defined in consultation with the subject matter
experts at ARMMAN: we define a beneficiary as engaged
when she listens to at least one call in a week for more than
30 seconds. The action space for each arm consists of two
actions, A = {0, 1}, where 1(0), typically called the active
(passive) action, refers to selecting (not selecting) the bene-
ficiary for the live service call. Beneficiaries may transition
from say their E state to NE state from one week to the next
week based on their transition probabilities defined on pas-
sive or active actions. The planner’s goal is to select actions
on arms, i.e., deliver live service calls, so as to maximize
the total reward which is the number of beneficiaries in the
engaged state, accrued by the RMAB. However, the budget
constraint demands that the planner can choose no more than
k arms (k ≪ N ) for the active action at any given timestep,
i.e., no more than k live service calls per week.

The dominant technique for solving RMABs uses the
Whittle Index heuristic (Whittle 1988), which is shown to
have asymptotic optimality under some conditions (Weber
and Weiss 1990), and to provide excellent performance in
practice (Qian et al. 2016). Whittle indexes are formulated
using the idea of passive subsidy, and informally rank arms
so as to choose the top k, based on how attractive it is for a
planner to activate each arm. For computing Whittle index,
we use binary search algorithm from Qian et al. (2016)

Previous Study: Our previous study conducted in April
2021 (Mate et al. 2022) is the first to present real-world ser-
vice quality improvement using RMABs in the context of
mMitra program. This study tested an RMAB-based policy
against two baselines of interest, and showed RMAB outper-
forming its competitors. The study spanned 7 weeks and in-
cluded 23, 003 real-world beneficiaries who were distributed
in three groups corresponding to the RMAB policy, round
robin (RR) and current standard of care (CSOC). Whereas
RR corresponds to a non-AI heuristic for systematically call-
ing beneficiaries, CSOC did not call any individuals. The
results from this pilot study are shown in Table 1.

The pilot results demonstrated that the RMAB method
cuts ∼ 30% of the beneficiary engagement drops experi-
enced by the other groups. Furthermore, whereas RMAB
achieves statistically significant improvement against CSOC
(p < 0.05) and RR (p < 0.1), RR fails to achieve any statis-
tically significant improvement over CSOC (see (Mate et al.
2022) for more details). This key result forms the basis of re-
lying on RMAB-based strategy over other non-AI strategies
as a basis of SAHELI. In this paper, we describe the jour-
ney from this initial study to the final deployment. Whereas
we use the same overall RMAB learning and optimization
approach, we made multiple changes to provide significant

Improvements RMAB over
CSOC

RMAB
over RR

RR over
CSOC

% reduction in to-
tal beneficiary en-
gagement drops

32.0% 28.3% 5.2%

p-value estimate 0.044 0.098 0.740

Table 1: RMABs demonstrate statistically significant superior
performance when compared against other non-AI approaches,
namely current standard of care (CSOC) and round robin (RR),
as showed by Mate et al. (2022).

enhancements that reduce data anomalies and improve com-
putational performance of this RMAB-based strategy. Addi-
tionally, our deployed cloud application now automates the
data exchange process with the NGO’s systems while requir-
ing minimal compute resources to be feasibly handled by the
NGO. We now describe the end-to-end SAHELI system.

Deploying SAHELI
We now introduce SAHELI and its architecture. We begin by
discussing the different components, and follow that up with
the description of the AI pipeline. We then discuss the frugal
design choices – both in modeling and infrastructure – that
were required to finalize the deployment.

System Architecture
We first describe all the interactions within SAHELI’s
ecosystem (refer Figure 2). The health workers in the field
periodically register beneficiaries through door-to-door vis-
its or at the hospitals (step 1). The socio-demographic data
such as age, language, income range, as well as the infor-
mation on gestational age is then entered into the database
maintained by ARMMAN (step 3). Automated voice mes-
sages tailored to the beneficiaries’ gestation age are sent with
the help of a telecommunication provider (step 4). The meta-
data of the outcome such as duration of the call, failure rea-
son etc, is also pushed to ARMMAN’s database . As ben-
eficiaries’ engagement with the voice messages diminishes
over time, live service calls are made by ARMMAN to en-
courage beneficiaries to engage with the program (step 10).
However due to limited resources on the NGO’s side, only a
limited number of live service calls can be made each week.
The AI pipeline predicts which beneficiaries would benefit
most from receiving a service call in any given week. This
list of beneficiaries is then generated at the start of each week
and distributed across health workers in an automated fash-
ion as shown on Figure 2 in steps through 2-9.

The AI pipeline (described in the next section) for a dy-
namically growing population is deployed on infrastructure
hosted on Google Cloud Platform (GCP). The AI pipeline is
wrapped as an application using Flask, which is container-
ized using Docker. The docker image is created to contain
the requisite code scripts for the AI pipeline with apt envi-
ronment requirements. Our default GCP container settings
are to use 6 vCPUs and 16GiB memory. A weekly sched-



Figure 2: Pipeline of Deployed System. Beneficiary information on app UI is available only to the health worker in charge.

uler job on GCP triggers the Flask application, which then
generates the list of beneficiaries.

Step 8 in Figure 2 shows the generation of the list of ben-
eficiaries that should be intervened in the given week using
the AI pipeline. This list is ingested in ARMMAN’s cloud
databases, which serve as the back-end of a client mobile
application (screenshot provided in Figure 2) used by the
health workers. This client application randomly distributes
the list of scheduled service calls among health workers
based on their weekly availability. An illustrative screenshot
(not real beneficiary) is also shown in Figure 2. The health
worker sees a list of beneficiaries that he/she can call, along
with certain features like number of call attempts. They can
also click on a particular beneficiary and see more infor-
mation about the beneficiary and past calls with them (not
shown). The calls are made through the week with a maxi-
mum of 3 call attempts to the same beneficiary. All the ben-
eficiaries in the generated list receive the aforesaid service
calls. The model is currently providing services to benefi-
ciaries enrolling at an average rate of 20K beneficiaries per
month with a budget of 1000 calls per week.

SAHELI streamlines the entire deployment workflow in a
singular pipeline, and automates its orchestration and exe-
cution, making this process computationally efficient, cost-
effective, and easy to debug. As more beneficiaries get en-
rolled periodically, the beneficiary cohort in the application
can now be updated automatically.

Health workers can then make the calls (step 10 in Fig-
ure 2) to these beneficiaries motivating them to listen to the
voice messages and address any logistic issues (e.g. time
slots, language of communication, and others) that might
be affecting their engagement. As we show later in the pa-
per, motivating the beneficiaries is key to driving adherence.
However, it bears repeating that given the limited availability
of the health workers, they can only make a limited number
of calls. In our AI pipeline we focused on identifying the
right set of beneficiaries to call, and not on automating the
contents of the service call. This is a key design choice in
SAHELI: we thus complement the human-to-human engage-
ment between the health worker and the beneficiary, and to-
gether they contribute towards aiding a particular beneficiary
and driving higher engagement with the mHealth program.
This model of working together with the health workers em-

bodies ARMMAN’s core ‘tech plus touch’ philosophy (AR-
MMAN 2008) and is essential to our successful outcomes.

Pipeline Description
This section describes the modules in the AI pipeline for
both the offline model training and the online model exe-
cution. The offline model creation begins with the process-
ing of the training data (i.e. historic data from past mHealth
studies), clustering of processed data, and the RMAB mod-
eling per cluster. The transition probabilities and the Whittle
indexes are then learned per cluster. Additionally, a map-
ping from socio-demographic features of a beneficiary to
a cluster is also learned offline. This mapping is used to
treat a new beneficiary during model execution – transition
probabilities and Whittle index values for the new benefi-
ciary are given by the corresponding values of the benefi-
ciary’s mapped cluster. These individual modules are now
described. For data privacy reasons, the data pipeline only
uses anonymized data and no personally identifiable infor-
mation (PII) is made available to the AI models.

Data Processing: We train the model on a dataset ob-
tained from historic data collected by ARMMAN, consist-
ing of demographic features and listenership patterns. How-
ever, during the pre-deployment trials, we observed some
anomalous engagement behaviors – the engagement behav-
ior for some beneficiaries was extremely spiky and unex-
pected. Figures 3(a) and (b), shows two such anomalous
groups with a clear peak and dip contrasted with groups hav-
ing genuine engagement behavior. Upon investigation we
found that this spiky behavior resulted from unanticipated
real-world events like network outages.

We detect and exclude such anomalies from SAHELI’s
data training pipeline. We first group beneficiaries based on
their passive transition probabilities. For grouped beneficia-
ries, we then obtain a running mean of their engagement
over time where the mean is calculated over a window of 3
weeks. We filter out all groups with more than 20% change
in running mean engagement within a week. Figures 3(c)
and (d) show two groups that don’t exhibit anomalous be-
havior and are maintained in the data pipeline.

Additionally, further discussions with ARMMAN pointed
out long-term engagement issues in some beneficiaries, such



(a) (b)

(c) (d)

Figure 3: Figures (a) and (b) show anomalous engagement be-
havior while figures (c) and (d) are genuine behaviors. The y-axis
shows the proportion of cluster-population in engaging state.

as the registration of a wrong or out-of-service phone num-
ber, or the beneficiary not being pregnant. Live service calls
in these cases are not productive. Thus, as a pre-processing
step, we do not consider beneficiaries who have not listened
to any automated voice calls in the past 6 weeks.

Clustering: We face a data scarcity and skew challenge in
our domain. Specifically, our training dataset comprises of
beneficiaries from our own past studies where intervention
data is available for only a limited set of these beneficia-
ries. Thus, to define the parameters of the RMAB model,
we cluster beneficiaries as an effective way of addressing
data scarcity. We cluster the beneficiaries per their transition
behaviors for passive actions using k-means clustering. We
obtain transition probabilities for each of these clusters by
aggregating their transitions as a whole.

However, the optimal number of clusters is a design
choice not readily addressed by k-means. We experimented
with the number of clusters ranging from 1 to 100, and
looked at the distortion metric. Distortion is the sum of
squared distances of each point from its corresponding cen-
troid, where smaller distortion implies better clustering. We
plot the distortion values for multiple number of clusters and
find 20 to be the ideal choice using elbow-method. The re-
sults are shown in Figure 4a where the x-axis is the number
of clusters and the y-axis is the distortion value. This clus-
tering approach has the added advantage of offering compu-
tational frugality.

Mapping Features to Clusters: When a new beneficiary
enrolls into the system, the system only knows about their
demographic data. We therefore need to learn a mapping
of a beneficiary’s socio-demographic features to clusters, to
enable inferring transition probabilities and Whittle indexes
for newly enrolled beneficiaries (step 6 in Figure 2). We ex-
perimented with different mapping functions to identify the
best one: Features Only (FO) mapping - beneficiaries’ socio-
demographic features only; Warm-up Only (WO) mapping -
transition probabilities computed from warm-up period (first
6 weeks post enrollment); and lastly Feature and Warm-up
(FW) mapping - using a combination of the above two.

We compute Mean Absolute Error between predicted and
ground truth passive transition probabilities as a perfor-
mance metric and found them as [0.40,0.37, 0.38] for FO,

(a) (b)

(c) (d)

Figure 4: Figure (a) shows elbow plot with distortion for varying
number of clusters. Figures (b), (c), and (d) show the distribution of
predicted clusters using the Feature Only (FO), Feature and Warm-
up (FW), and Warm-up Only (WO) mapping functions.

FW, and WO strategies respectively. In addition to MAE,
we plot the distribution of beneficiaries predicted in differ-
ent clusters (refer Figures 4(b), (c) and (d)). Having a sparse
cluster distribution is undesirable since large clusters low-
ers the granularity of Whittle index planning. As an extreme
example, if all beneficiaries are mapped to a single cluster,
they would all have the same transition probability and thus
the same Whittle indexes. Since the cluster size is now much
larger than the number of arms to be pulled, the beneficiaries
within that cluster would be chosen randomly for receiving
service calls, which would degrade the performance.

Thus, to ensure equitable cluster distribution, we com-
puted Entropy and Gini index values for the predicted distri-
bution of number of beneficiaries per cluster. Entropy values
came out to be [2.81, 2.56, 2.04] for FO, FW, and WO re-
spectively, and Gini indexes were [0.29, 0.48, 0.57]. Given
the error similarities for the three strategies, and higher en-
tropy / lower Gini index implies more equitable clusters, we
chose FO as our strategy.

Figure 5: Index computation is significantly faster with the infinite
sleeping approximation.

RMAB Modeling and Whittle Index Computation:
These transition probabilities per cluster are used to com-
pute Whittle indexes for all beneficiaries, similar to Mate
et al. (2022), i.e., computing 2 × k unique indexes where
k is the number of clusters. There are two Whittle indexes
per cluster as beneficiaries may be in the engaging or non-



engaging states. Whittle index indicates the benefit of per-
forming an active action on a beneficiary: higher Whittle
indexes are chosen to receive service calls (step 7 in Fig-
ure 2). By mapping beneficiaries to clusters, the Whittle in-
dexes can be pre-computed per cluster at the beginning of
the deployment, thus providing a frugal solution ideal for
large scale deployment with minimal resources.

Frequency of Repeated Live Service Calls: We initially
enforced a frequency restriction that required ensuring no
beneficiary be called more than once in η+1 weeks (we set
η = 3). Algorithmically, we implement this by appending
η sets of dummy ‘sleeping states’ to the state space that we
force the beneficiaries to transition through each time they
are called. This augmentation yields a state space of size
2η + 2 and a transition matrix of size (2η + 2) × (2η + 2).
However, our pilot tests reveal that repeat calls made within
just η = 3 weeks are less effective. For instance, we ob-
served that 30% of ‘Non-engaging’ beneficiaries converted
to ‘Engaging’ due to the first service call; however this num-
ber drops to 20% for repeat calls made just three weeks later.
To address this issue, along with the subject matter experts
at ARMMAN, we increased the sleeping period, η, to 12
weeks.

Frugality of System Design
Successful deployments of AI systems like SAHELI in social
good settings requires conscious focus on frugality across
the system design. This frugality means reducing both the
direct costs (e.g. number of calls) and indirect costs (e.g.
computational requirements) on our NGO partners. Here are
some design choices in SAHELI that have led to frugality in
its operations:

1. Clustering of beneficiaries allows us to compute tran-
sition probabilities and Whittle indexes at a cluster level as
opposed at the beneficiary level. Since we use 20 clusters
for thousands of beneficiaries, it provides a significant scale-
up in performance, while simultaneously reducing data de-
mands for learning RMAB model parameters.

2. As described above, we updated the ‘sleeping states’
parameter η to 12. However, this increases the Whittle index
computation time sharply, owing to a bulky transition matrix
of size 26 × 26. With frugality in mind, we use the insight
that a sleeping constraint with large η can be approximated
as a permanent sleeping constraint, akin to setting η to +∞,
for the purposes of index computation. This is because in
index computation, the contribution of reward terms appear-
ing after η timesteps is discounted by a factor of γη (γ < 1),
which precipitously diminishes to zero. This simplification
compresses the transition matrix to 4×4, and unlocks a 25×
speedup in index computation, as shown in Figure 5.

3. Lastly, multiple frugal design choices were made in the
orchestration of cloud infrastructure. Specifically, we run
our services on-demand using a task scheduler on default
container settings of 6 vCPUs and 16GiB memory.

Application Use and Payoff
We now discuss the impact of SAHELI on both the benefi-
ciaries as well as the AI community in more detail. SAHELI

is deployed and in continuous use at ARMMAN. It has al-
ready reached 130K beneficiaries, and is on track to reach
one million beneficiaries by the end of 2023. We provide a
summary of Impact from SAHELI in Table 2.

Engagement Results
In order to evaluate the impact of live service calls through
SAHELI, we study the engagement behavior of a cohort of
5000 beneficiaries for 12 weeks, registered between Febru-
ary 2022 to April 2022. Additionally, we create a holdout set
of beneficiaries registered in the same time period but are not
given any live service calls (we obtained ethical approvals
before our studies; see section Responsible AI practices for
further discussion). We make sure that both the SAHELI and
holdout groups have equal number of beneficiaries, equal
number engaging beneficiaries at the start of experiment,
and similar socio-demographic features.

Figure 6(a) shows how many engagements did not occur
in the holdout group that occurred in the SAHELI group, ag-
gregated cumulatively across months. It demonstrates that
the SAHELI group received significant benefit with an addi-
tional 328 engagements over the holdout group cumulatively
at the end of three months. We also measured the difference
in terms of time spent listening to mMitra voice calls. More
time spent implies more content exposure, as well as better
adherence with the mHealth program. In particular, by the
end of month 3, the SAHELI group had listened to 59, 336
seconds (∼ 12 seconds per beneficiary, but please see anal-
ysis below) more of content than the holdout group (Fig-
ure 6(b)). Similar to Mate et al. (2022), we define the rel-
ative improvement in listenership metric over the holdout
group as

% improvement =
∆ listenership (SAHELI, holdout)

listenership in holdout
(1)

As the holdout group has 1075 drops in engagements and
127, 711 seconds drop in duration of calls listened to over
three months, SAHELI prevented drop in engagements by
30.5% with an additional content exposure of 46.4% in
comparison to the holdout group. This analysis demonstrates
SAHELI’s success in achieving our core objectives of im-
proving information dissemination.

(a) (b)

Figure 6: (a) Prevention in drop in engagement (cumulative)
(b) Increased time spent listening to calls (cumulative)

Who is Benefitted from SAHELI?
In order to determine the characteristics of beneficiary who
gain the most from SAHELI, we divide the 5000 beneficia-



Figure 7: Increased time spent listening to calls (over three
months). The metric is shown for beneficiaries belonging to very
low, low, medium and high quartiles of listenership before the start
of study.

ries in our cohort based on two criterion

1. Listenership prior to the start of study
2. Gestational age at the time of enrollment

First, we consider the listenership of beneficiaries one
month prior to start of live service calls delivered through
SAHELI. In this time period, we calculate the mean dura-
tion of calls listened to every week. Based on this metric, we
divide the 5000 strong cohort into quartiles of listenership -
very low, low, medium and high. These quartiles thus char-
acterize the initial behaviour of beneficiaries. Next, we re-
peat the same steps for the holdout population which doesn’t
receive any service calls. Finally, we plot how many more
seconds of mMitra content is listened by every beneficiary
in the quartiles in SAHELI group as compared to the same
quartiles in the holdout group (Figure 7).

While the population average increase in content listen-
ership is ∼ 12 seconds, beneficiaries with different listen-
ership profiles before being exposed to SAHELI show very
distinctive behaviours. Specifically, the very low quartile of
beneficiaries gain the most in SAHELI, with 39 seconds ad-
ditional content listenership over the holdout group. In ab-
solute terms, the very low quartile in holdout group has per
beneficiary 30 seconds of increase in duration of calls lis-
tened to over three months while the SAHELI group has per
beneficiary 69 seconds of increase in duration of calls lis-
tened in the same time period for the same quartile. Thus,
using Equation 1, we note that in relative terms, the very low
quartile has 130% additional content exposure in compari-
son to the holdout group.

For the second criterion, we consider the gestational age
of beneficiaries and their delivery status at the time of en-
rollment. For pregnant women, we use the gestational age at
the time of enrollment to calculate their pregnancy trimester.
Similar to Figure 7, in Figure , we plot for every gestational
age bucket, how many additional seconds of mMmitra calls
are listened by every beneficiaries in the SAHELI group
as compared to the holdout group. Specifically, we observe
that beneficiaries close to the delivery date (higher trimester)
have greater benefit from being in the SAHELI group.

Figure 8: Increased time spent listening to calls (over three
months). The metric is shown for pregnant mothers in their 1st, 2nd
and 3rd trimesters of pregnancy and for beneficiaries who have al-
ready delivered.

Impact from SAHELI
Beneficiairies served 130K
In continous use since April 2022
Relative engagement drops prevented over hold-
out group∗

30.5%

Additional average per beneficiary content ex-
posure over holdout group∗

12 seconds

Relative increase in content exposure over hold-
out group∗

46.4%

For bottom 25 percentile of listeners, Additional
average per beneficiary content exposure over
holdout group∗

39 seconds

For bottom 25 percentile of listeners, relative in-
crease in content exposure over holdout group∗

130%

Table 2: A summary of impact from SAHELI. ∗ refers to results
from a sample of 5000 beneficiaires.



Impact of Live Service Calls
We performed a qualitative study to understand human-AI
collaboration due to the AI system. We conducted a total of
24 interviews, 2 focus group discussions, and approximately
90 hours of observation. We found that healthcare workers
engaged positively with targeted predictions through the AI
system that integrated into their day-day workflows seam-
lessly. It helped them improve the engagement of beneficia-
ries, provided an opportunity to support them in their care
journeys and understand their needs.

We also investigated the reasons for why live service
calls helped improve engagement with ARMMAN’s mMi-
tra mHealth program from the perspective of the beneficiary.
Specifically, we conducted a follow-up study with a sample
of beneficiaries who were given live service calls one year
ago. We could successfully reach out to 306 beneficiaries,
out of which 134 recalled the details of the service call from
a year ago. Table 3 shows the responses to our follow-up
study by these 134 beneficiaries. Particularly, 50.75% bene-
ficiaries engaged more with mMitra calls after getting more
information about the program. The service calls also helped
improve listenership by making logistical updates such as
updating delivery date (9.7%), changing time slot of receiv-
ing the call (8.21%) or updating the phone number (2.99%).

Did the call help you to listen to the mMitra
calls more regularly?

# of Benefi-
ciaries

% of Benefi-
ciaries

Yes, after getting more information about mMi-
tra, I am listening to the calls more regularly

68 (in 134) 50.75%

Not really 30 22.39%
Yes, after updating my delivery date, I was able
to get the right information

13 9.7%

Yes, after changing time slot, I am able to listen
to the calls more regularly

11 8.21%

Have not asked my wife 4 2.99%
Yes, after changing the number, I am able to lis-
ten to the calls more regularly

4 2.99%

Any other 4 2.99%

Table 3: Follow-up study responses

Fairness of the RMAB model
Model fairness in non-western contexts has not received
much attention in the literature (Sambasivan et al. 2021). Re-
sponsible AI principles of the Government of India’s NITI
AAYOG (2021) for example, requires non-discrimination
based on sensitive markers like caste and religion. These
sensitive data are specifically not collected by ARMMAN
for mMitra, thereby, making it inaccessible to SAHELI’s AI
models. We worked with public health and field experts to
evaluate other indicators such as education, and income lev-
els that signify markers of socio-economic marginalization.
ARMMAN’s goals for SAHELI are to favor beneficiaries of
lower income and lower education levels for service calls.
We conducted a post-hoc analysis of the deployment to eval-
uate if SAHELI indeed met such preferences.

Figure 9(a) shows the distribution of beneficiaries aggre-
gated across SAHELI’s enrollments split into different ed-
ucation levels in India. We compare those who were cho-
sen for live service calls by SAHELI versus the enrolled

(a)

(b)

Figure 9: Distribution of (a) education (highest education re-
ceived) and (b) income (monthly family income in Indian Rupees)
across cohort that received service call and the whole population.

population. The x-axis portrays the education levels; for in-
stance grade 1-5 represents primary school, grade 6-9 mid-
dle school, 10th pass junior high, and 12th pass represents
senior high school. The y-axis is the % of beneficiaries per
education category. For instance, SAHELI calls 5.5% of ben-
eficiaries who had very little formal education or were illit-
erate, whereas this group was 2.8% of the overall enrolled
population.

We did a similar analysis split by income as depicted in
Figure 9(b). The x-axis contains buckets of average monthly
income of the beneficiary household in Indian Rupees, and
the y-axis denotes the % of beneficiaries in that income cate-
gory. As an example, the category ‘5K-10K’ contains around
30% of the beneficiaries in the population, and almost 40%
of the beneficiaries who received a service call.

Both these figures show that SAHELI favors the benefi-
ciaries in the ‘illiterate’ education category and in the ‘5K-
10K’ income category. This distribution is in line with AR-
MMAN’s goals – SAHELI favors beneficiaries of lower in-
come and lower education levels for service calls.

Enabling New Research
From identifying the right problem to solve, to creating an
AI solution, testing it in pilot, iterating on learnings and fi-
nally, establishing an end-to-end integrated system, we made
our journey to this deployment. With this work, we provide
other AI researchers an important case study to take an AI
model from the lab out on the field. In our pursuit of deploy-
ment of SAHELI, we uncover several research challenges,
e.g., we overcame the challenges of data scarcity and frugal
design. Our work hopefully inspires additional research in
robust and computationally efficient approaches for RMABs
and other AI applications for mHealth. Further, we are im-
proving SAHELI by incorporating recent advances in Deci-
sion Focused Learning for RMAB problems (Wang et al.
2023) which opens up new direction of real-world large-
scale applications of Decision Focused Learning.



Responsible AI Practices
We recognize the responsibility associated with deploying
real-world AI systems that impacts underserved commu-
nities. In our approach, we have iteratively designed, de-
veloped and deployed the system in constant coordination
with an interdisciplinary team comprised of ARMMAN’s
field staff, social work researchers, public health researchers
and ethical experts. Along with seeking ethical approvals
through review boards at Google and ARMMAN, we have
taken additional steps to constantly monitor and mitigate the
risks associated with SAHELI by abiding with AI principles
at Google (2018) as well as key policy making bodies in
India such as the NITI AAYOG (2021). Our success draws
attention to the practices around responsible AI including
ethics, fairness and accountability in the non-western con-
text (Sambasivan et al. 2021) where SAHELI is deployed.
We now discuss three of the core Responsible AI principles
that impacted the design of SAHELI.

Socially beneficial: The intent of this work is to bring the
power of AI in service to some of the most marginalized
communities in the global south. The challenges faced by
our team were limited resources in every dimension – lim-
ited data on the beneficiaries, limited compute available to
the NGO, and limited health workers to make the outreach
calls. Thus, we had to develop new algorithms that were not
data hungry, and were bounded in their computational re-
quirements. To that affect, SAHELI is the first large-scale
deployment of RMABs for public health.

Avoid reinforcing unfair bias: As discussed in the previ-
ous section, we have undertaken extensive analysis to study
model’s fair treatment of beneficiaries.

Incorporate privacy design principles: We take signif-
icant measures to ensure participant consent is understood
and recorded in a language of the community’s choice at
each stage of the program. Data stewardship resides in the
hands of the NGO, and only the NGO is allowed to share
data. This dataset will never be used by Google for any com-
mercial purposes. In this dataset, sensitive features such as
caste and religion are never collected and stored. SAHELI’s
data pipeline only uses anonymized data and no person-
ally identifiable information (PII) is made available to the
AI models. Lastly, domain experts at ARMMAN have been
deeply involved in the development and testing of SAHELI
and have provided continuous input and oversight in data
interpretation, data consumption and model design.

Lessons Learned
Over the course of one year of our experiments moving from
Pilot study to Deployment, we learned several lessons along
the way. Most importantly, we learned that even a successful
pilot study can’t be translated as-is in to a full-scale deploy-
ment, and that several considerations are critical for wide-
scale adoption of AI tools and scaling up of impact.

Selecting the right problem: There are multitude of
problems that require to be solved to address the needs of the
underserved communities. In our interactions with ARM-
MAN, we realized that we could create the most impact with
our techniques by improving the selection of the right ben-

eficiaries for manual intervention, as opposed to automat-
ing the communication with the beneficiary. Our choice of
problem is consistent with the ‘tech plus touch‘ philosophy
of ARMMAN (2008), and ensures that we complement the
human expertise of the health worker. This way, each chosen
beneficiary continued to have a one-on-one interaction with
a health worker, while simultaneously improving the overall
engagement with the mHealth program.

Immersion into the real-world problem: We learned
that immersing in the working of a NGO and public health
infrastructure is critical in understanding the context of the
problem. The authors went on multiple field visits to under-
stand the stakeholders involved in the mMitra’s workflow.
The health workers interact with the beneficiaries across
multiple mHealth programs, and thus can speak to the needs
and behaviors of the beneficiaries. For instance, upon in-
teracting with these health workers, we understood how
telecom outages lead to more anomalous and incomplete
data than we had anticipated. We also understood the de-
creased value in utility of calling the same beneficiary again
shortly after a previous call. These field visits forced us to re-
evaluate our assumptions, and led to better data processing
and modeling choices, as discussed in the earlier sections.
For instance, after these discussions, we incorporated a new
anomaly detection mechanism in our data pipeline, and im-
pacted our choice of horizon (η) in our RMAB model.

Fairness of AI models: AI algorithms and datasets can
reflect, reinforce, or reduce unfair biases. It is imperative
on AI designers to seek to avoid unfair impacts on people,
particularly on underserved and marginalized communities.
As discussed in the section on Responsible AI practices, we
worked with public health and field experts to demonstrate
fairness of our approach. As we mentioned before, 94%
of our potential beneficiary population are below WHO’s
poverty index. Studying multiple socio-demographic at-
tributes was essential to evaluate fairness of our approach.
We worked closely with ethics experts, the ARMMAN’s
ethics team, and Google’s ethics teams and extensively vali-
dated the fairness of our models.

End-to-end integration testing: In addition to the
lessons learned on problem selection and model develop-
ment, we also ran into several issues in our end-to-end in-
tegrated pipeline. On one occasion, we saw poor results
because the data schema had evolved in the data storage
pipeline at ARMMAN. Testing of our application required
our NGO partner to be equally involved in the validation
of SAHELI’s outputs – as domain experts, they are better
equipped to identify counter-intuitive behaviors. Our experi-
ences uncovering issues in the end-to-end pipeline led to im-
proved communication practices, better documentation and
tighter test goals. Social good applications like SAHELI has
real-world consequences for beneficiaries in underserved
communities, and it is critical that there be a real partner-
ship for testing and integration.

Conclusion
In this paper, we presented SAHELI, the first ever deploy-
ment of restless multi armed bandits in the public health do-
main for allocation of limited resources. SAHELI is built on



an improved and robust framework that both predicts RMAB
parameters and computes optimal policies for it, in contrast
with most past research that has only focused on comput-
ing optimal policies. It has been built with careful design
choices inspired by close interactions with all stakeholders.
It incorporates numerous lessons learned by embedding our-
selves in the real-world domain. SAHELI has been deployed
on cloud infrastructure with an emphasis on frugality, and
has reached out to 130k beneficiaries so far and aims to reach
1 million by 2023. Furthermore, in this paper, we also dis-
cuss the importance of responsible AI practices in deploying
AI systems at scale, especially in the social domain. This
work serves as an important case study for AI researchers
and NGO communities alike to take ML models from the
lab and deploy them in the field.
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