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Abstract

Artificial intelligence (AI) is now being applied widely in society, including to support decision-
making in important, resource-constrained efforts in conservation and public health. Such real-
world use cases introduce new challenges, like noisy, limited data and human-in-the-loop decision-
making. I show that ignoring these challenges can lead to suboptimal results in AI for social impact
systems. For example, previous research has modeled illegal wildlife poaching using a defender-
adversary security game with signaling to better allocate scarce conservation resources. However,
this work has not considered detection uncertainty arising from noisy, limited data. In contrast, my
work addresses uncertainty beginning in the data analysis stage, through to the higher-level reason-
ing stage of defender-adversary security games with signaling. I introduce novel techniques, such as
additional randomized signaling in the security game, to handle uncertainty appropriately, thereby
reducing losses to the defender. I show similar reasoning is important in public health, where we
would like to predict disease prevalence with few ground truth samples in order to better inform
policy, such as optimizing resource allocation. In addition to modeling such real-world efforts holis-
tically, we must also work with all stakeholders in this research, including by making our field more
inclusive through efforts like my nonprofit, Try AI.
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“Together, we must find the best solutions to ensure that the development
of AI is an opportunity for humanity, as it is our generation’s responsibility to
pass down to the next a society that is more just, more peaceful and more pros-
perous.”

∼Audrey Azoulay, Director-General of UNESCO
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0
Introduction

I believe that artificial intelligence (AI) has enormous potential to positively impact the world. In

my work, I have endeavored to actualize this potential through use-inspired research in the area of

AI for social impact, particularly in the domains of conservation and public health.

As a vital part of these endeavors, I have sought partnerships with stakeholders in both domains.

First, in public health, I have studied micronutrient deficiency inMadagascar in collaboration with

public health researchers and a public health and environmental research organization inMadagas-
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car called MAHERY194. Second, in conservation, I have worked towards preventing illegal wildlife

poaching using conservation drones in collaboration with a non-governmental organization called

Air Shepherd6. I have also created a nonprofit called Try AI296, devoted to increasing diversity and

inclusion in AI through educational opportunities for students, especially those from historically

underrepresented groups, to explore AI and its role in society.

Based on these experiences, I have found that AI for social impact often consists of a cycle with

three components, as illustrated in Fig. 1:

• Gathering and Analyzing Real-World Data: When collecting and analyzing real-world data

to better understand a given situation, challenges frequently arise such as noise and limited

data. I have developed methods to collect and analyze real-world data, particularly remotely-

sensed imagery, in the presence of these challenges.

• Multi-agent Reasoning: Multi-agent interventions often occur after data are gathered and

analyzed, for example to deploy limited resources and/or interventions. I have built on the

above data and techniques to better inform such multi-agent interventions.

• Deployment: Finally, I have built systems to support deployment in collaboration with

stakeholders and domain experts, and have conducted research on the ethics of developing

and deploying AI systems.

Through my work in each of these components, I have observed at least two key challenges. First,

for an AI system to perform as expected, modeling uncertainty in all components of these systems

is needed, as opposed to prior work which may ignore it by focusing on only one component, e.g.,

multi-agent reasoning. Second, human-agent interaction is likely to occur in each component, par-

ticularly because developing and deploying AI systems requires interdisciplinary, diverse, and inclu-

sive teams to truly achieve AI for positive social impact.
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Figure 1: AI for social impact cycle. It involves gathering and analyzing real‐world data, then using multi‐agent reasoning
for recommendations, such as resource allocation, and finally deploying, which may lead to more data collection and
analysis.

0.1 Problem Statement and Contributions

In this thesis, I therefore seek to address the question:

How can we account for the challenges of uncertainty and human-agent interactions throughout the AI

for social impact pipeline?

My key contributions towards addressing these challenges are my (i) algorithms to account for

uncertainty in security games with signaling, (ii) demonstration of the impact of model predictions

and uncertainty on human decision-making, (iii) multiple data augmentation strategies to handle

limited data, and (iv) field deployment of an algorithm for conservation drones.

0.2 Summary

0.2.1 AI systems for uncertainty throughout pipeline

I will begin a more detailed summary of these contributions by focusing on the conservation do-

main, and specifically, when we are trying to protect animals from illegal wildlife poaching. Ther-

mal infrared drone imagery can provide real-time updates to park rangers at night to prevent illegal
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wildlife poaching when it typically occurs. However, such a program is difficult to implement due

to the limited resources available to protect enormous parks.

In prior work, this challenge of protecting a national park from illegal poaching with limited

resources has been modeled using game theory, specifically security games, to reason about the inter-

actions between park rangers and poachers. Sensors and drones have also been considered, including

with a concept called strategic signaling. During a signal, onboard drone lights can be turned on in

hopes of deterring poaching. However, given uncertainty in the domain, whether from the diffi-

culty in detecting humans and animals in thermal drone data or in poachers seeing signals, I showed

that ignoring uncertainty in strategic signaling, as in prior frameworks, led to large losses for the

park rangers, and therefore (i) introduced a novel reaction stage to the game model, in which a park

ranger can visit another target if nothing is observed at first, and (ii) constructed a new signaling

scheme which includes signaling when nothing is observed automatically42. In fact, this signaling

scheme exploits an informational advantage, in which the rangers know if there is truly a detection,

while the poacher is not sure whether there is truly a ranger responding. I accelerated solving the

resulting linear programs by designing a branch and price algorithm, with key novelties in the de-

sign of our bound relaxation andMILP secondary problem for column generation. This highlights

the importance of accounting for uncertainty from the first stage of the pipeline while doing multi-

agent reasoning.

0.2.2 Human-agent interaction to address uncertainty

Furthermore, in order to initiate responses like signaling or rangers checking on targets, this needs

to be communicated with park rangers once we’ve detected a human or animal. In prior work on

selective prediction, a method which makes predictions but defers to humans on uncertain images,

evaluation has typically been done by simulating human behavior on deferred images, e.g., using

historical labels. However, there is growing evidence that humans may be biased in their interactions
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with AI. My collaborators and I consequently evaluated selective prediction for real-world camera

trap images with 200 participants on Prolific41, and found that varying messages led to a statistically

significant impact on human accuracy, supporting the idea that these interactions must be studied

carefully. Here, for example, providing a deferral message led to improved human accuracy, e.g.,

by leading the human decision-maker to concentrate and find a hidden animal, while providing

a prediction message proved misleading on occasion and harmed performance. Therefore, if we

carefully present AI model information to humans, they may be able to help us overcome AI model

uncertainty.

0.2.3 Data augmentation to address uncertainty

Uncertainty may also be addressed via data augmentation. As an example, thermal, aerial imagery

which may be used to prevent illegal wildlife poaching is difficult to review in real time, especially

all night. Unfortunately, it is difficult to automatically detect humans and animals as well, largely

due to noise and object size. Prior work in automatic detection uses traditional computer vision, or

other data modalities altogether, which are not available in this case. After testing prior work unsuc-

cessfully for these data, I created a tool, VIOLA39, to label imagery with my team. This additional

data supported the development of SPOT38, the first learning-based object detector for animals and

humans in aerial, thermal videos. Our partners field tested SPOT in Africa, where it outperformed

their prior tool. To build upon these results, I created AirSim-W, a simulated environment with

a thermal model37. I then collected simulated imagery and sampled frames for the final balanced

training set using a novel mixed integer linear program (MILP), as frames must remain grouped by

video in either the train or test set and may have multiple objects, while the variety of videos repre-

sented in training should be maximized. AMILP-balanced dataset led to similar results as the full

dataset, implying that a variety of frames may allow for less labeled data. Real and simulated data,

and benchmarks, are available40.
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As another example, micronutrient deficiency (MND), or a lack of vitamins and minerals, is a

significant public health concern affecting> 2 billion people worldwide. Unfortunately, it typically

requires blood draws to diagnose. A proxy used in past work is surveys, for example about food con-

sumed, which is also expensive. To provide data to public health officials more scalably, our interdis-

ciplinary team proposed a regional-level MND prediction system36 based on another data modality:

satellite data. This may at first seem unrelated, as MND status pertains to an individual’s charac-

teristics which cannot be viewed by satellite. However, public health literature shows that access to

forests and markets, for example, may affect MND status, and these are visible by satellite. I there-

fore gathered satellite data and a limited amount of ground truth data from blood draws, collected

by our public health partners at 300 unique locations in Madagascar. Given the limited amount of

ground truth data, I first performed feature selection on the satellite data to prevent overfitting. I

designed a feature selection algorithm based on k-medoids, which allowed us to choose one feature

frommultiple correlated features, aiding interpretability. MND prediction based on the selected

features performed comparably to human expert-selected features, facilitating scalability. I also uti-

lized domain adaptation with a shallow multi-layer perceptron, allowing us to use ground truth data

frommultiple ecological regions. MND prediction improved over a baseline of survey responses,

which is promising for future interventions, and shows the promise of looking at additional data

modalities and data augmentation generally.

0.2.4 Interdisciplinary, inclusive teams

Finally, together with an interdisciplinary team, I proposed the PACT framework to guide further

work in AI for social impact, and especially to center communities’ needs in AI systems like these43.

It is based on the capabilities approach, which emphasizes the capability of people to pursue the lives

they envision, and the participatory approach, in which community members are partners in the

development and evaluation of AI systems. I believe this is imperative for future AI systems.
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0.3 Thesis Outline

The thesis follows the structure of this summary and is organized as follows: Chapter 1 introduces

modeling uncertainty in all components of these systems, particularly during multi-agent reason-

ing. Chapter 2 describes human-agent interaction, and Chapter 3-7 describe data augmentation to

address uncertainty. Finally, Chapter 8 describes a general framework for developing and deploying

AI systems with interdisciplinary, inclusive teams. Related work and background information is

provided in each chapter. Chapter 9 contains a summary and future directions.
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1
Uncertain Real-Time Information in

Signaling Games

1.1 Introduction

Conservation drones have been deployed in South Africa to prevent wildlife poaching in national

parks (Fig. 1.1). The drones, equipped with thermal infrared cameras, fly throughout the park at
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night when poaching typically occurs. Should anything suspicious be observed in the videos, nearby

park rangers can prevent poaching, and a warning signal (e.g., drone lights) can be deployed for

deterrence5. This requires a great deal of planning and coordination, as well as constant video mon-

itoring. Rather than constant monitoring, we have worked with Air Shepherd to deploy an auto-

matic detection system to locate humans and animals in these videos. Although an automatic detec-

tion system is helpful, its detections are uncertain. Potential false negative detections, in which the

system fails to detect actual poachers, may lead to missed opportunities to deter or prevent poach-

ing. This work is motivated by this real-world deployment of drones for conservation.

Security challenges similar to those in conservation must be addressed around the world, from

protecting large public gatherings such as marathons336 to protecting cities. Security game models

have been shown to be effective in many of these real-world domains286,52. Recently, these mod-

els have begun to take into account real-time information, for example by using information from

footprints when tracking poachers, or images from sensors310,20. In particular, signaling based on

real-time information, e.g., signaling to indicate the presence of law enforcement326, has been intro-

duced and established as a fundamental area of work.

Despite the rising interest in real-time information and signaling, unfortunately, security games

literature has failed to consider uncertainty in sensing real-time information and signaling, hindering

real-world applicability of the game models. Previously, only some types of uncertainty have been

considered, such as uncertainty in the adversary’s observation of the defender’s strategy, adversary’s

payoff values, or adversary’s rationality337,218,333. However, there are fundamentally new insights

when handling uncertainties w.r.t. real-time sensing and signaling, which we discuss at the end of

this section.

We therefore focus on uncertainty in security games, in which real-time information comes from

sensors that alert the defender when an adversary is detected and can also send warning signals to the

adversary to deter the attack in real time. We consider both uncertainty in the sensor’s detection of
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Figure 1.1: A drone and drone team member who are currently searching for poachers in a South African park at night.

adversaries (henceforth detection uncertainty) and uncertainty in the adversaries’ observation of the

sensor’s signals (henceforth observational uncertainty), and show that ignoring uncertainty hurts

the defender’s expected utility. In our motivating domain of wildlife conservation with drones,

automatic detection algorithms may make incorrect detections because humans in thermal infrared

frames look similar to other objects (e.g., Fig. 1.1) and may even be occluded by other objects from

the aerial perspective. The drone is also used to emit light to deter poachers, but such signals could

sometimes be difficult for poachers to see in the wild, e.g., when trees block the sight.

We make contributions in (i) modeling, (ii) theoretical analysis, (iii) algorithmic design, and (iv)

empirical evaluation. (i) We are the first to model uncertainty in sensing and signaling settings for

security games. We introduce a novel reaction stage to the game model and construct a new sig-

naling scheme, allowing the defender to mitigate the impact of uncertainty. In fact, this signaling

scheme exploits uncertain real-time information and the defender’s informational advantage. For

example, both the defender and adversary may know that there is detection uncertainty; however,

the defender has an informational advantage in knowing that she has or has not actually detected

the adversary, which she can exploit via a signaling scheme to “mislead” the adversary who is un-

certain as to whether he has been detected. (ii) We provide several theoretical results on the impact

of uncertainties, e.g., the loss due to ignoring observational uncertainty can be arbitrarily large, il-

lustrating the need to handle uncertainty. (iii) To compute the defender’s optimal strategy given
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uncertainty, we develop a novel algorithm, GUARDSS, that not only uses six states to represent the

type of protection a target has in a defender’s pure strategy but also uses a new matching technique

in a branch-and-bound framework. (iv) We conduct extensive experiments on simulation based on

our real-world deployment of a conservation drone system*.

1.2 RelatedWork

Among the rich literature of Stackelberg security games (SSGs)286,52, SSGs with real-time informa-

tion have been studied recently. Some recent work in deception for cybersecurity, such as74,290, con-

siders strategic signaling with boundedly rational adversaries and adversaries with different objec-

tives and abilities, but no sensing is required to identify adversaries; rather, the systems may interact

with both normal and adversarial users. Some other work relies on human patrollers for real-time

information343,310, and others rely on sensors that can notify the patroller when an opponent is

detected82,20,83. Sensor placement125 and drone patrolling259 have also been studied. Spatial and de-

tection uncertainties in alarms are examined in21,22. In all of these works, the sensors are only used

to collect information, and do not actively and possibly deceptively disseminate information to the

adversary. One work that does consider mobile sensors with detection and signaling capability is326.

However, it does not consider uncertainty in detection, which limits its capability in real-world set-

tings. We add a new reaction stage and signaling strategy without detection, and compactly encode

the different states that the defender resources can have at a target. Our model is therefore strictly

more general than that in326.

Our work is also related to multistage game models, e.g., defender-adversary-defender sequential

games (DAD)49,7. In DAD, the defender and adversary take turns to commit to strategies, while

in our game, the defender commits to a strategy of all stages at once. Extensive-form games (EFGs)

*https://github.com/exb7900/guardss-aaai2020
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also naturally model sequential games164,51,207, and algorithms exist to efficiently solve the Stackel-

berg equilibrium in general two-player EFGs59,58. However, GUARDSS is more scalable than the

general EFG approach in this case (see Appendix). Finally, past work relied upon online, recursive

cognitive modeling288,285, whereas our calculations are done offline and based largely on utilities.

1.3 Model

We consider a security game played between a defender and an adversary who seeks to attack one

target. The defender has k human patrollers and l sensors to be allocated to targets in set [N] =

{1, 2, ...,N}. The sensor is the same as a drone in our motivation domain, and the adversary is the

same as a poacher. LetUd/a
+/−(i) be the defender/adversary (d/a) utility when the defender success-

fully protects/fails to protect (+/−) the attacked target i. By convention, we assumeUd
+(i) ≥ 0 >

Ud
−(i) andUa

+(i) ≤ 0 < Ua
−(i) for any i ∈ [N]. The underlying geographic structure of targets is

captured by an undirected graphG = (V,E) (e.g., Fig. 1.4). A patroller can move to any neighbor-

ing target and successfully interdict an attack at the target at no cost.

Sensors cannot interdict an attack, but they can notify nearby patrollers to respond and signal

to deter the adversary. If the adversary is deterred by a signal (e.g., runs away), both players get util-

ity 0. In practice, often one signal (σ1, e.g., illuminating the lights on the drone) is a warning that

a patroller is nearby, while another signal (σ0, e.g., turning no lights on) indicates no patroller is

nearby, although these may be used deceptively. Theoretically,145 also showed two signals suffice

(without uncertainty). We thus use two signals: σ1 is a strong signal and σ0 is a weak signal. When

the adversary chooses one target to attack, he encounters one of four signaling states, based on the

target either having a patroller, nothing, or a drone. The adversary may encounter: (1) a patroller

and immediately get caught (state p); (2) nothing (state n); (3) a drone with signal σ0 (state σ0); (4)

a drone with signal σ1 (state σ1). The adversary is caught immediately at state p, so there is no signal.
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Therefore, we omit p and let Ω = {n, σ0, σ1} be the set of signaling states.

1.3.1 Modeling Uncertainty

In this paper, we focus on two prominent uncertainties motivated directly by the use of conserva-

tion drones. The first is the detection uncertainty, when there is a limitation in the sensor’s capabil-

ity, e.g., a detection could be incorrect due to the inaccuracy of image detection techniques in the

conservation domain40,38,227. We consider only false negative detection in this paper because pa-

trollers often have access to sensor videos, so the problem of false positives can be partly resolved

with a human in the loop. In contrast, verifying false negatives is harder, e.g., the adversary is easy

to miss in the frame (Fig. 1) or is occluded. We therefore denote the false negative rate as γ for any

sensor†.

The second type of uncertainty we consider is the observational uncertainty, where the true sig-

naling state of the target may differ from the adversary’s observation (e.g., a poacher may not be able

to detect the drone’s signal). We use ω̂ to denote the adversary’s observed signaling state, and use

ω to denote the true signaling state based on the defender signaling scheme. We introduce uncer-

tainty matrix Π to capture observational uncertainty. The uncertainty matrix Π will contain the

conditional probability Pr[ω̂|ω] for all ω̂, ω ∈ Ω to describe how likely the adversary will observe a

signaling state ω̂ given the true signaling state is ω.

Π =


Pr[ω̂ = n|n] Pr[ω̂ = n|σ0] Pr[ω̂ = n|σ1]

Pr[ω̂ = σ0|n] Pr[ω̂ = σ0|σ0] Pr[ω̂ = σ0|σ1]

Pr[ω̂ = σ1|n] Pr[ω̂ = σ1|σ0] Pr[ω̂ = σ1|σ1]


Considering an arbitrary uncertainty matrix may unnecessarily complicate the problem, since

some uncertainties never happen. We thus focus on a restricted class of uncertainty matrices that

†False negative rate: P(no detection | poacher is present).
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are natural in our domain.‡ In our uncertainty model, we assume that a weak signal will never be

observed as strong; moreover, n (the signaling state without any resource) will never be observed as

strong or weak. As a result, the uncertainty matrix Π can be reduced to the following form, parame-

terized by κ, λ, μ, where κ = Pr[ω̂ = n|σ0], λ = Pr[ω̂ = n|σ1], μ = Pr[ω̂ = σ0|σ1]:

Πκλμ =


1 κ λ

0 1− κ μ

0 0 1− λ − μ


As a result of this uncertainty, the adversary may not behave as expected. For example, if he

knows that he has difficulty seeing the strong signal, he may decide to attack only when there is no

drone, whereas typically we would expect him to attack on a weak signal. Therefore, let η ∈ {0, 1}3

be the vector that depicts adversary behavior for each observation {n, σ0, σ1} ∈ Ω, where 1 repre-

sents attacking, and 0 represents running away. So, η = 1 means an adversary will attack no matter

what signaling state is observed, and η = 0 means an adversary will never attack.

1.3.2 Reaction Stage

Uncertainty motivates us to add an explicit reaction stage during which the defender can respond or

re-allocate patrollers to check on extremely uncertain sensors or previously unprotected targets, for

example. The timing of the game is summarized in Fig. 1.2. In words, (i) the defender commits to a

mixed strategy and then executes a pure strategy allocation; (ii) the adversary chooses a target to at-

tack; (iii) the sensors detect the adversary with detection uncertainty; (iv) the sensors signal based on

the signaling scheme; (v) the defender re-allocates patrollers based on sensor detections and matching;

(vi) the adversary observes the signal with observational uncertainty; (vii) the adversary chooses to ei-

‡Most results can be extended to general uncertainty matrices.
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ther continue the attack or run away. In (v), if a sensor detects the adversary, then nearby patroller(s)

(if any) always go to that target, and the game ends; or if no sensors or patrollers detect the adversary,

the patroller moves to another target to check for the adversary. The adversary reaction occurs after the

defender reaction because the adversary reaction does not affect the defender reaction in the current

model. In other words, there is no cost in reallocating the defender even if the adversary runs away,

so the defender should begin moving right away.

Time

Defender
Pre-Plan*

Defender
Allocate

Adversary
Allocate

Detection
(with Uncertainty)

Defender
Signal

Observation
(with Uncertainty)

Defender
React

Adversary
React

Figure 1.2: Game timing. Top and bottom are defender and adversary actions, respectively. *Defender fixes strategy
offline.

1.3.3 Defender and Adversary Strategies

Defender Strategy: The strategy space consists of randomized resource allocation and re-allocation,

and signaling. A deterministic resource allocation and re-allocation strategy (henceforth, a defender

pure strategy) consists of allocating the patrollers to k targets, the sensors to l targets, and the neigh-

boring target to which each patroller moves if no adversaries are observed. Re-allocation can be

equivalently thought of as matching each patroller’s original target to a neighboring target. A pa-

troller goes to the matched target only if the adversary is not observed, and may respond to any

nearby sensor detection, regardless of matching.
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As a result of this rich structure, a pure strategy in the model needs to represent not only if the

target is assigned a patroller (p), nothing (n), or a sensor (s), but also the allocation in neighboring

targets. We compactly encode this pure strategy via 6 possible allocation states for each target. Let

Θ = {p, n+, n−, s̄, s+, s−} denote the set of all possible allocation states of an individual target.

The target is assigned a patroller (p), nothing (n), or a sensor (s). If there is no patroller near a sensor

(̄s), then no one can respond to the sensor’s detection. If there is a nearby patroller, the target is

either matched (n+, s+) or not matched (n−, s−). Therefore, each target is in one of the allocation

states in Table 1.1. For example, n+ is the state of a target which was not allocated a patroller or

sensor, but in the reaction stage has a patroller from a neighboring target (“patroller matched”).

Covered Near Patroller Protected
By: Patroller? Matched? Overall?

p Patroller N/A N/A Yes
n+ Nothing Yes Yes Yes
n- Nothing N/A No No
s̄ Sensor No N/A No
s- Sensor Yes No Yes*
s+ Sensor Yes Yes Yes

Table 1.1: Allocation State, *protected if sensor detects

Given Θ, a defender pure strategy can be compactly represented with an allocation state vector

e ∈ ΘN, in which ei ∈ Θ denote the allocation state of a target i ∈ [N]. Let E ⊆ ΘN be the

set of feasible allocation state vectors that corresponds to defender pure strategies. Note that not

all vectors in ΘN correspond to a feasible defender strategy due to the limited number of patrollers

and sensors. A defender mixed strategy is thus a distribution over E and can be described by {qe}e∈E

where qe is the probability of playing pure strategy e ∈ E . Similarly, a defender mixed strategy can

also be compactly represented by a marginal probability vector x, where xθi represents the marginal

probability that target i is in the allocation state θ ∈ Θ. This is similar to the coverage vector used

in basic SSGs with schedules138. We introduce the constraints that x needs to satisfy to be a valid
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mixed strategy in Section 1.5.

The defender also deploys a signaling process w.r.t. each target i. The defender’s signaling strat-

egy can be specified by probabilities ψs−i , ψs+i , and ψs̄i. ψ
s−
i is the joint probability of allocation state

s− and sending signal σ0 together conditioned on the sensor detecting an adversary, i.e., Pr[s− ∧

σ0|detected]. To be a valid signaling strategy, ψs−i ∈ [0, xs−i ]. Note that xs−i − ψs−i will be the joint

probability of realized state s− and sending signal σ1, together conditioned on detection. The con-

ditional probability of sending σ0 given the target is in state s− and it is detected is ψs−i /xs−i . We use

the joint probability instead of the conditional probability as it results in linear terms for the opti-

mal defender strategy. Because of detection uncertainty, we add the option to signal without detecting

the adversary. Let ϕθi ∈ [0, xθi ] be the joint probability of allocation state θ and sending signal σ0

conditioned on the sensor not detecting an adversary, for all θ ∈ {̄s, s−, s+}. We use χ to denote the

allocation, reaction, and signaling scheme, or defender’s deployment strategy: χ = (x, ψ, ϕ).

Adversary Strategy: Recall the adversary has the allocation and reaction stages. In the alloca-

tion stage, the adversary chooses a target to attack based on the defender deployment strategy χ. He

will be caught if the target is at state p. When the adversary is not caught, he may observe any of the

signaling states ω̂ ∈ Ω. Based on his observation, the adversary then has a choice in the reaction

stage to run away or continue the attack. The adversary knows the defender mixed strategy χ when

choosing a target to attack, and he can observe the realization of the target (with uncertainty) when

choosing to attack or run away. Since this is a Stackelberg game and the defender commits to alloca-

tion and signaling schemes, it suffices to consider only the adversary’s pure responses.

1.4 WhyDoWeNeed toHandle Uncertainty

In this section, we prove several theoretical properties regarding how uncertainties affect the de-

fender’s optimal strategy and utility. All formal proofs are deferred to the Appendix. Let χ∗(γ,Π)
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be the optimal allocation under detection uncertainty of γ and observational uncertainty Π. Let

DefEU(χ, γ,Π) be the defender expected utility when the actual uncertainties are γ,Π and the

defender’s deployment is χ. Let Π0 = I denote no observational uncertainty. We assume in Propo-

sitions 1 and 2 and Theorem 1 that Π = Π0 and analyze detection uncertainty, so omit for concise-

ness. We first show the loss due to ignoring detection uncertainty.

Proposition 1. Let χ∗0 = χ∗(0) be the defender optimal deployment when no uncertainties exist.

There exist instances whereDefEU(χ∗0, γ) < DefEU(χ∗(γ), γ) for some γ.

In fact,DefEU(χ∗(γ), γ) − DefEU(χ∗0, γ) ≥ γ · max
i∈[N]
|Ud

−(i)| for some instance. If we ignore

γ, we do not signal when we do not detect an adversary. Furthermore, the defender would never

match a patroller to a target with a sensor (s+) in χ∗0. Thus, if we ignore uncertainty, there can be

a steep penalty; in contrast, with the optimal strategy considering uncertainty, if the false negative

rate is high, we may match a patroller to a target to confirm the presence of an adversary. Given the

adversary’s knowledge of the defender mixed strategy, the adversary is therefore more likely to run

away.

Our next result (Theorem 1) shows that the defender expected utility is non-increasing as de-

tection uncertainty γ increases. As a byproduct of the proof for Theorem 1, we also show that the

optimal solution may change as detection uncertainty changes. This illustrates the necessity of an

algorithm for dealing with detection uncertainties.

Theorem 1. DefEU(χ∗(γ), γ) ≥ DefEU(χ∗(γ′), γ′) for any γ′ > γ in any problem instance.

Proposition 2. χ∗(γ) differs from χ∗(γ′) for any γ′ > γ when xs−t is nonzero for χ∗(γ′), where target

t is the adversary best responding target in χ∗(γ′).

The intuition underlying the proof of Theorem 1 is that if we have a drone with a low false negative

rate, then we can simulate a drone with a high false negative rate by ignoring some of its detections.
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The optimal solution for drones with a low false negative rate cannot be worse than that for drones

with a high false negative rate.

We now show several results for observational uncertainty. First, we show that the loss due to

observational uncertainty can be arbitrarily large.

Proposition 3. There existsΠ such that the loss due to ignoring observational uncertainty is arbitrar-

ily large. In other words,DefEU(χ∗(γ0,Π), γ0,Π) -DefEU(χ∗(γ0,Π0), γ0,Π) > M, ∀M > 0.

The original signaling strategy tries to ensure the adversary only attacks when he observes the weak

signal, σ0, or nothing, n. However, with observational uncertainty, this may not be true because the

true signal may be σ1, but the adversary may have observed it mistakenly as σ0. Therefore, we need to

enforce different adversary behaviors in order to obtain a better solution quality.

Now, we examine the adversary’s behavior given a fixed deployment χ as observational uncer-

tainty changes. Let (t, η) represent an adversary strategy of attacking target t and behaving according

to η. Theorems 2 and 3 show that if we do not consider observational uncertainty, then the adver-

sary behavior is more likely to converge to always attacking (η = 1) as observational uncertainty

increases, where higher observational uncertainty means the adversary cannot distinguish between

signaling states. Theorems 2 and 3 show that a deployment χ that does not consider observational

uncertainty is more likely to result in this worst-case behavior of η = 1.

Theorem 2. For any fixed deployment χ, if the adversary’s best response is (t, 0) or (t, 1) at the Stack-

elberg equilibrium withΠ0, then it stays as an equilibrium for anyΠ′.

Note that η = 0 and η = 1 result in an action that is independent of the adversary’s observation.

Thus, no matter what the adversary observes, the adversary can obtain the same utility with η = 0

or η = 1. It’s only left to show that the adversary cannot get strictly better utility in Π′ with a

different adversary behavior. Intuitively, Π0 implies a perfect observation, thus the adversary cannot
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get better utility than the perfect observation. So, if (t, 1) or (t, 0) is a Stackelberg equilibrium, the

defender can safely deploy the same strategy for any uncertainty matrix Π′, without any loss in her

expected utility.

Even if (t, 0) or (t, 1) is not a best response with Π0, (t, 1)may still be a best response at high

levels of uncertainty. First, we say a target t is a weak-signal-attack target if AttEU(σ0) ≥ 0 at t.

Note that if AttEU(σ0) ≥ 0, then the adversary will either always attack at ω̂ = σ0, or is indifferent

between attacking and running away. We say χ is a weak-signal-attack deployment if all targets are

weak-signal-attack targets.

Theorem 3. If (t, 1) is a best response forΠκλμ and χ is a weak-signal-attack deployment, then (t, 1)

is a best response forΠκ′λ′μ′ and χ for all κ′ ≥ κ, λ′ ≥ λ, μ′ ≥ μ.

In our model of observational uncertainty, more uncertainty means that the adversary sees a weak

signal more often. Further, the adversary always attacks when he observes a weak signal. Thus, if

the adversary is always attacking with less uncertainty, he will only attack more often with more

uncertainty. However, in order to obtain predictable adversary behavior, we need to show that a

weak-signal-attack deployment always exists as an optimal solution. In other words, Theorem 3

holds if there is weak-signal-attack deployment, so we now have to show that such a deployment

exists.

Proposition 4. There always exists an optimal solution that is a weak-signal-attack deployment with

Π0.

The intuition behind the proof is that we can always decrease the probability of a weak signal such

that we either do not send a weak signal, or the adversary attacks when he observes a weak signal.

This holds optimally because when observational uncertainty is Π0, signals are interchangeable.

To summarize, if the adversary behavior is 0 or 1, then the adversary behavior is independent of

observational uncertainty. We may see this behavior emerge as uncertainty increases.
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1.5 How toHandle Uncertainty

We provide a solution approach based on the well-knownmultiple LPs approach from72. In partic-

ular, for each target t ∈ [N], we compute the optimal defender strategy given that the adversary’s

best response is t. Then, the optimal defender strategy is the mixed strategy that leads to the maxi-

mum defender expected utility among all t ∈ [N]. The problem is NP-hard without uncertainty326,

thus our ultimate goal is to develop an efficient algorithm to solve the problem. For expository pur-

poses, we first focus on presenting the LP for detection uncertainty.

1.5.1 Detection Uncertainty

Using notation from Section 1.3.3, we first formulate each player’s utility function by breaking it

into three parts according to signaling states: 1) no sensor is allocated (states n(+/−) and p, which

we denote by−s); 2) sensor is allocated and sends σ0; and 3) sensor is allocated and sends σ1.

1. Ud/a
-s (i) = xpi · U

d/a
+ (i) + xn+i · U

d/a
+ (i) + xn−i · U

d/a
− (i) is the expected defender/adversary

utility of target i being attacked over states when i has no sensor (p, n+, n−).

2. Ud/a
σ0 (i) = (1− γ) · [ψs+i ·U

d/a
+ (i)+ ψs−i ·U

d/a
+ (i)+ ψs̄i ·U

d/a
− (i)]+ γ · [ϕs+i ·U

d/a
+ (i)+ ϕs−i ·

Ud/a
− (i) + ϕs̄i · U

d/a
− (i)] is the defender/adversary expected utility when the adversary attacks

target i and the defender signals σ0.

3. Ud/a
σ1 (i) = (1− γ) · [(xs+i − ψs+i ) ·Ud/a

+ (i) + (xs−i − ψs−i ) ·Ud/a
+ (i) + (x̄si − ψs̄i) ·U

d/a
− (i)] +

γ · [(xs+i − ϕs+i ) · Ud/a
+ (i) + (xs−i − ϕs−i ) · Ud/a

− (i) + (x̄si − ϕs̄i) · U
d/a
− (i)]

In words, 2) and 3) are the sum of expected utility on a detection and the sum of expected utility

on no detection. In 3), in the no detection case, the defender exploits information asymmetry in sig-

naling σ1. In particular, the defender knows that there is no detection, but in sending σ1 to indicate

a detection, relies on the uncertainty the adversary faces in determining if there was a detection. We
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are now ready to describe an (exponentially-large) linear program (LP) formulation for computing

the optimal defender strategy assuming best adversary response t (not (t, η) since only detection

uncertainty):

max
x,q,ψ,ϕ

Ud
-s(t) + Ud

σ0(t) (1.1)

s.t.
∑

e∈E:ei=θ qe = xθi ∀ θ ∈ Θ, ∀ i ∈ [N] (1.2)∑
e∈E qe = 1 (1.3)

qe ≥ 0 ∀ e ∈ E (1.4)

Ua
σ0(i) ≥ 0 ∀i ̸= t (1.5)

Ua
σ1(i) ≤ 0 ∀i ̸= t (1.6)

Ua
-s(t) + Ua

σ0(t) ≥ Ua
-s(i) + Ua

σ0(i) ∀i ̸= t (1.7)

0 ≤ ψθi ≤ xθi ∀ θ ∈ {̄s, s−, s+}, ∀ i ∈ [N] (1.8)

0 ≤ ϕθi ≤ xθi ∀ θ ∈ {̄s, s−, s+}, ∀ i ∈ [N] (1.9)

The objective function (1.1) maximizes defender expected utility. Since the adversary is running

away when he observes σ1,Ud
σ1 = 0. Constraints (1.2)-(1.4) enforce that the randomized resource

allocation is feasible (E has exponential number of elements); (1.5)-(1.6) guarantee that σ1, σ0 result

in the adversary best responses of running away and attacking§; (1.7) ensures the adversary expected

utility at target t is bigger than at any other target i, thus t is adversary’s best response; (1.8)-(1.9)

ensure a feasible signaling scheme.

§Although we minimize this behavior, we still model it.
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1.5.2 Acceleration via Branch and Price

We now describe the branch-and-price solution framework, which can be used for both uncertainty

scenarios. There are two main challenges in efficiently solving the LP (1.1)-(1.9). First, the total

number of possible e isO(6N). Second, we will need to solveN LPs (for each t ∈ [N]). Solving

many of these large LPs is a significant barrier for scaling up. We therefore introduce Games with

Uncertainty And Response to Detection with Signaling Solver (GUARDSS), which employs the

branch-and-price framework. This framework is well-known for solving large-scale optimization

programs, but the main challenges of applying this framework are to (1) design the subroutine

called the secondary problem¶, and to (2) carefully design an upper bound for pruning LPs.

First, for one LP w.r.t. a specific t, to address the issue of the exponential size of set E , we adopt

the column generation technique. At a high level, we start by solving the LP for a small subset

E ′ ⊂ E , and then search for a pure strategy e ∈ E \ E ′ such that adding e to E ′ improves the

optimal objective value strictly. This procedure continues until convergence, i.e., no objective value

improvement. The key component in this technique is an algorithm to search for the new pure

strategy, which is a specially-crafted secondary problem derived from LP duality.

Secondary Problem: Given weights αθi ∈ R for θ ∈ Θ, for each target i, solve the weight maximiza-

tion problem:

max
e∈E

∑
θ∈Θ

∑
i:ei=θ

αθi (1.10)

Note that {αθi}θ∈Θ are the optimal dual variables for the previous LP constraint (1.2). We want

to solve this without enumerating all of the elements in E . Despite the added complexity compared

to classic SSGs, in this section, we compactly represent this secondary problem as a mixed integer

¶Updated from historical terminology.
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linear program (MILP). To formulate the MILP, we introduce six binary vectors vp, vn+, vn−, v̄s,

vs−, vs+ ∈ {0, 1}N to encode for each target whether it is in each allocation state. For example,

target i is at allocation state s̄ if and only if v̄si = 1. The main challenge then is to properly set up

linear (in)equalities of these vectors to precisely capture their constraints and relations. The capacity

for each resource type results in two constraints (number of patrollers and sensors):

∑
i∈[N] v

p
i ≤ k (1.11)

∑
i∈[N](v̄si + vs−i + vs+i ) ≤ l (1.12)

Moreover, each target must be at one of these states:

vpi + vn−i + vn+i + vs̄i + vs−i + vs+i = 1 ∀i ∈ [N] (1.13)

Due to the reaction stage, we have to add constraints to specify (a) which targets have a patroller at

a neighboring target; (b) which patroller goes to which nearby target if both sensors and patrollers

do not detect the adversary. For (a), the non-zero entries of A · vp specify the targets with a patroller

nearby, where A is the adjacency matrix of the underlying graph. Since three vectors encode the

states requiring a nearby patroller, we have this constraint:

A · vp ≥ vn+ + vs− + vs+ (1.14)

We ensure that a vertex with a patroller nearby cannot be v̄s:

A · vp ≤ vp + vn+ + vn− + vs− + vs+ (1.15)
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Constraint (b) means that patrollers must be “re-matched” to new vertices in the reaction stage.

Specifically, targets in states p, n+, s+must form a matching. To enforce this constraint, letG′ be

the directed version ofG, i.e. for all (i, j) ∈ Ewe have (i, j), (j, i) ∈ E′. We further introduce edge

variables y(i,j) ∈ {0, 1} indicating whether the directed edge (i, j) is in the matching or not. The

matching constraint can be expressed by the following linear constraints‖

∑
(i,j)∈E′:j∈[N] y(i,j) = vpi ∀i ∈ [N] (1.16)

vn+j + vs+j ≥ y(i,j) ∀(i, j) ∈ E′ (1.17)

The resulting MILP for the secondary problem is as follows.

maxv,y
∑

θ
∑

i vθiαθi

s.t. (1.11)− (1.17) (1.18)

vθ ∈ {0, 1}N ∀θ ∈ Θ (1.19)

y(i,j) ∈ {0, 1} ∀(i, j) ∈ E′ (1.20)

Second, to avoid solving LPs for all different targets t ∈ [N], we use the branch and bound tech-

nique which finds an upper bound for each LP for pruning. The natural approach for finding an

upper bound is to solve a relaxed LP corresponding to the original LP— in our case, essentially re-

lax the original LP into its marginal space. As the set E is exponentially large, we relax variables and

constraints corresponding to E in our LP. Concretely, we relax (1.2) - (1.4) into a polynomial num-

ber of variables and constraints. These variables and constraints are (1.18) - (1.20) with vθ replaced

by xθ. We first use the relaxed LP to efficiently compute an upper bound for each LP. After solving

‖Originally omitted (16.5):
∑

(i,j)∈E′:i∈[N] y(i,j) ≥ vn+j + vs+j
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each relaxed LP exactly, we solve original LPs chosen according to some heuristic order (typically the

descending order of the relaxed optimal objective) using the column generation techniques, and we

can safely prune out those LPs whose optimal relaxed value is less than the current largest achievable

objective value. This process continues until no LP is left to solve, in which case the current largest

objective value is optimal.

1.5.3 Detection andObservational Uncertainty

Finally, we briefly discuss the case with both uncertainties, as it can be solved in a similar way. Con-

straints (1.2)-(1.4) and (1.8)-(1.9) are the same. However, the remaining constraints must now ac-

count for adversary behavior, η. For example, the utility functionsUd/a
σ0 andUd/a

σ1 must change to

incorporate adversary behaviors, and the objective function becomes that in (1.21) since the adver-

sary may not run away when he observes σ1 in the presence of observational uncertainty. Also, we

add a constraint to ensure the adversary utilities are aligned with the adversary behavior η ∈ {0, 1}3.

These are primarily notational changes. We therefore provide the full LP for this case in the Ap-

pendix.

max
x,q,ψ,ϕ

Ud
-s(t) + Ud

σ1(t) + Ud
σ0(t) (1.21)

1.6 Experiments

We generate randomWatts-Strogatz graphs, which have small-world properties to describe more

complex environments, such as roads connecting far-away nodes. For all tests, we average over 20

random graphs and include p-values. Utilities are randomly generated with a maximum absolute

value of 1090 and based on the idea that the losses from undetected attacks are higher than the

utility of catching adversaries (similar to325). This is realistic to the situation of preventing poach-
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ing, as animals are worth more for ecotourism than for sale on the black market as discussed in the

Appendix. Additionally, we see that if we test on a set of utilities that is slightly different from the

original input, the defender’s utility does not vary greatly. Fig. 1.3a-1.3b show timing tests run on

a cluster with Intel(R) Xeon(R) CPU E5-2683 v4 @ 2.1 GHz with at most 16 GB RAM.We set

the number of patrollers to be k =
√
N/2 and the number of drones to be l = 2N/3 − k. As

shown, the full LP scales up to graphs ofN = 14 only and exceeds the cutoff time limit of 3600s

for allN = 16 graphs. Branch and price scales up toN = 80 and runs out of time for larger games,

and a warm-up enhancement that greedily select an initial set of E further improves scalability and

solves 13/40 graphs within cutoff time atN = 90 andN = 100. This is sufficient for middle-scale

real-world problems, with further scalability being an interesting direction for future work. The

heuristics provide the same solution as the full LP in most of the instances tested.

Next, we show the loss due to ignoring uncertainty empirically. In Figs. 1.3c-1.3d we compare

DefEU(χ∗(γ,Π), γ,Π) computed by GUARDSS andDefEU(χ∗(0,Π0), γ,Π), the defender ex-

pected utility when ignoring uncertainty for graphs withN = 10, k = 1, l = 3. We consider only

one type of uncertainty at a time (e.g., γ = 0 when varying observational uncertainty). For detec-

tion uncertainty, GUARDSS’s defender expected utility only decreases by 12%, whereas ignoring

uncertainty decreases by 210% when γ varies from 0 to 0.9 (p ≤ 1.421e−03 for γ ≥ 0.2 in Fig.

1.3c)**. Some initial analysis shows that it is robust in most of the cases when we slightly under- or

overestimate γ (e.g., the differences in defender expected utility are typically within 5-6% when the

estimate of gamma is off by 0.1 or 0.2), but further investigation on dealing with such uncertainty

over uncertainty would be an interesting direction for future work. For observational uncertainty,

GUARDSS’s defender expected utility only decreases by 1%, whereas ignoring uncertainty decreases

by 18% as the observational uncertainty, parameterized by κ (λ = κ
2 , and μ = κ

2 ) varies from 0 to 0.9

(p ≤ 0.058 for κ ≥ 0.4 in Fig. 1.3d).

**% change once normalized by largest defender/adversary utility.

27



We also observe that when ignoring detection uncertainty, the adversary’s best response is typ-

ically a target with a sensor, which implies that the adversary is taking advantage of the defender’s

ignorance of uncertainty. In fact, there is a statistically significant (p = 1.52e−08) difference in

the mean probability of a sensor at the adversary’s best response when ignoring uncertainty (0.68)

versus GUARDSS (0.19).

How does the defender avoid these challenges and achieve such a small performance drop with

GUARDSS when facing uncertainty? Statistics of the resulting defender strategy as well as Fig. 1.3e

indicate that the defender exploits the uncertain real-time information and the information asymme-

try, including (a) frequently but not always sending patrollers to check important targets when there

is no detection; (b) sending strong signals more frequently than the probability that the patroller

will visit the target (either due to response to detection or planned reallocation in the case of no de-

tection), leveraging the informational advantage in which the adversary does not know whether he

is detected or whether a patroller is matched; (c) using different signaling schemes with and without

detection, leveraging the information advantage that the adversary does not know whether he is de-

tected. In the GUARDSS strategies in Figs. 1.3c-1.3d, the mean probability of the adversary’s best

response target being at state s− (with sensor but without a matched patroller) is 0.04, versus 0.43

when ignoring uncertainty (p = 2.70e−09), indicating point (a). If we call the strong signal sent

when there is no detection a fake signal, Fig. 1.3e shows that the probability of the strong signal an

adversary observes is a fake signal is non-zero and increases in a non-linear fashion, indicating points

(b) and (c). Also, note that the strong signal is used with nonzero probability on average on targets

with a nonzero probability of having a drone present.

Despite considering uncertainty, sensors may be less valuable at a high level of uncertainty. In

Fig. 1.3f, the defender expected utility is influenced by the number of drones and uncertainty in size

N = 15 graphs. In Fig. 1.3g, drones are better than an extra patroller at γ = 0.3 (p ≤ 6.661e−02),

but at γ = 0.8, patrollers are better than drones (p ≤ 1.727e−07).
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1.7 Conservation Drones

We have deployed a drone in South Africa, equipped with a thermal camera and detection system5.

A photo of the drone team in South Africa currently is included in Fig. 1.1 (center). To ease the

challenges faced by these operators in coordination of drones with imperfect sensors and patrollers,

we apply GUARDSS and show that it provides positive results in simulation to support future po-

tential deployment. To facilitate the most realistic simulation possible, we utilize example poaching

hotspots in a real park. We cannot provide the exact coordinates in order to protect wildlife, but

we selected points based on geospatial features, and selected utilities to reflect the fact that the re-

ward and penalty of the adversaries are impacted by animal presence, price, and distance to several

park features used in105. The targets are shown in Fig. 1.4 (left). Any targets within 5 km are con-

nected via edges in the graph, as park rangers could cover 5km for response. The resulting graph is

shown in Fig. 1.4 (right). The utilities are included in the Appendix along with further details. For

the simulation, we use 3 drones and 1 patroller. In the “no drones” scenario only, there are 0 drones

and 1 patroller. We use γ = 0.3 for detection uncertainty and no observational uncertainty (see

the Appendix for results with other γ). These details are directly input to GUARDSS, and then a

mixed strategy is determined to cover the park. Fig. 1.3h shows the defender expected utility in this

park using GUARDSS with and without uncertainty, and several baselines. A negative defender

expected utility indicates that animals were lost, so a higher positive number is ideal. Therefore, we

perform better with GUARDSS than using a random allocation, ignoring uncertainty, or forgoing

drones. In fact, ignoring uncertainty is worse than forgoing drones completely. For varying γ (see Ap-

pendix), the gap between ignoring detection uncertainty and GUARDSS increases as γ increases,

and the gap between the no drones case and GUARDSS decreases as γ increases, showing a similar

trend to Fig. 1.3g. However, in all cases, the results emphasize the importance of correctly optimiz-

ing to get value from drones even with uncertainty.
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1.8 Conclusion

The loss due to ignoring uncertainty in the initial data gathering stage can be high such that sensors

are no longer useful. Nevertheless, by carefully accounting for uncertainty, uncertain information

can still be exploited via a novel reaction stage and signaling even upon no detection. In this case, de-

spite being aware of uncertainty, the adversary does not know whether he was detected, nor whether

a patroller will respond in the reaction stage. Our results illustrate that the defender can exploit this

informational advantage even with uncertain information. Thriving under this uncertainty makes

real-world deployment of GUARDSS promising, as shown through simulation.
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Figure 1.3: Experimental results. Figs. 1.3a‐1.3b compare multiple LPs approach (Exponential LP) with GUARDSS
branch‐and‐price and heuristic method. Figs. 1.3c‐1.3d show defender expected utility when amount of detection
uncertainty γ and observational uncertainty vary. Defender expected utility decreases much more when uncertainties
are ignored. Fig. 1.3e shows that the defender is leveraging the informational advantage as uncertainty increases. Figs.
1.3f‐1.3g show that in the presence of a high false negative rate, extra patrollers may be more useful than drones. Fig.
1.3h contains the results from the case study, where GUARDSS performs best.
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Figure 1.4: A park in Google Maps with potential poaching hotspots and the resulting graph (edges for< 5 km).
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2
Role of Human-AI Interaction in Selective

Prediction

2.1 Introduction

Despite significant progress in machine learning-based AI systems, applications of AI to high stakes

domains remains challenging. One of the challenges that arises is when humans interact with the
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Figure 2.1: Deferral workflow: obtain AI model prediction for given input (“AI Model”); use model score as input to
deferral model to decide whether to defer (“Deferral Model”); defer to humans if necessary, using SPM based on the
prediction and deferral status (“Defer”).

AI systems. For example, a human must assess the reliability of predictions made by a trained ma-

chine learning system, particularly when there is a distribution shift between the data the system was

trained with and data encountered at deployment. In such situations, communicating the uncer-

tainty associated withML predictions appropriately is critical159,117.

Given the difficulty of communicating probabilities to human users99,340, a pragmatic alter-

native is to determine whether an AI system is more likely to make an erroneous prediction than

a human, and defer to a human in such cases. A number of such settings have been studied in the

literature, including selective prediction313, learning to defer208 and classification with a reject op-

tion65. While there are nuances that differentiate these works, in this paper, we will collectively refer

to this body of literature as selective prediction and only emphasize the differences where relevant to

our work. A related line of work considers human-AI teams in which humans receive AI assistance

but make the final decision19, and systems in which the AI makes the final decision with human

input314. These prior works either: a) Assume that the human behaves identically even when they

know that they are part of a human-AI team or b) Assume a utility-maximizing model for a human

decision maker.

However, it has been documented that human-AI interaction may be more complex due to a

range of cognitive phenomena. For example, humans have been shown to rely excessively on AI
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predictions (anchoring bias)245,183, or even distrust AI predictions after observing AI mistakes85.

Some work has begun to investigate solutions to these issues54,245, however they have not focused

on selective prediction systems, and context is critical.

In this work, we focus on binary classification tasks and study selective prediction systems (Fig.

2.1) that determine whether to rely on the outputs of an AI or defer to a human. To evaluate the

overall performance of such a selective prediction system, it is important to model how the messag-

ing, hereafter referred to as selective prediction messaging (SPM), that communicates the decision

to defer impacts human accuracy. We run experiments with human subjects solving a challenging

binary prediction task (that of detecting whether an animal is present in a camera trap image) and

study the impact of different choices for communicating the deferring AI system’s decision. We

then perform statistical analysis on the human responses under various choices of SPM, and show

that the choice of SPM significantly impacts human performance. Our results isolate two ingredi-

ents for a statistically effective communication strategy, that is, communicating that an AI system

deferred (deferral status) and the AI system’s predictions. Manipulating these leads to a boost in

overall accuracy. We provide some plausible explanations for this phenomenon and suggest avenues

for further work. Our contributions are therefore as follows:

• We develop and implement a balanced experimental design that can be used to measure the

impact of SPM on the accuracy of selective prediction systems.

• We investigate the consequences of SPM on joint human-AI performance in a conservation

prediction task, as opposed to prior work which assumes human behavior remains static

during deferral.

• We discover two separable SPM ingredients, deferral status and prediction, which have dis-

tinct, significant effects on human performance, and demonstrate that manipulating these

ingredients leads to improved human classifications in a human-AI team, implying that the
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setup and the information given to humans during such tasks has a large impact on the per-

formance of a human-AI team.

• We suggest that our results may relate to a more general property of naturalistic datasets,

that in conditions that are ambiguous, sharing AI model predictions with humans can be

detrimental.

2.2 RelatedWork

We start by describing prior work considering different potential roles in human-AI teams, namely,

decision aids and systems in which an AI model defers to a human on challenging cases only. We

then discuss supporting human-AI decision-making and selective prediction algorithms.

Decision Aids: Potential deployment scenarios for human-AI teams that have been discussed in

the literature vary greatly depending on the application. One increasingly common scenario, partic-

ularly in high-risk domains, is that of AI systems serving as decision aids to humans making a final

decision. For example, Green & Chen 115 explore the scenario of human decision-makers using a

risk assessment model as a decision aid in financial lending and criminal justice (specifically, pretrial

detention) settings. They found that humans were biased and that they failed to properly evalu-

ate or take model performance into account, across different messaging conditions communicat-

ing the model’s predicted risk. A decision aid for risk assessment is similarly studied in De-Arteaga

et al. 80 , particularly in the real-world domain of child maltreatment hotline screening. Humans in-

deed changed their behavior based on the risk assessment tool, but they were able to identify model

mistakes in many cases. Gaube et al. 100 conduct experiments to measure the interaction between

medical AI systems and clinicians. Radiologists who participated reported AI advice as lower quality

than human advice, though all advice truly came from humans. Furthermore, clinician diagnostic
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accuracy was reduced when they were given incorrect predictions from the AI system. Even with

humans making the final decision in each case, there is a great deal of variability between these AI

systems, their impacts, and their application domains.

Deferral: AI systems have also played a slightly different role by making decisions in straightfor-

ward cases and deferring to human decision makers otherwise, which is most similar to our scenario.

Wilder et al. 314 defer to an expert on cases that are best suited for human decision-making com-

pared to model-based decision-making (determined using end-to-end learning), yet the final system

is evaluated on historical human data, meaning humans did not know they were part of a human-AI

team while labeling. Keswani et al. 154 propose deferral to multiple experts, including a classifier, by

learning about the experts from their decisions. While AmazonMechanical Turk was used to col-

lect labels from participants to train and evaluate this model, it is similar to using historical human

labels, as the humans again completed the task without knowing the deferral status or model pre-

diction. Such deferral models are not yet widely deployed, nor have their impacts on humans been

studied.

SupportingHuman-AI Decision-Making: To mitigate some of the known negative impacts

of AI on human decision-making, it may be beneficial to present humans with further information,

such as uncertainty. Bhatt et al. 30 find that humans may unreliably interpret uncertainty estimates,

but that the estimates may increase transparency and thereby performance. In a system used by peo-

ple without a background in statistics, for example, presenting categories (such as deferral status)

may make it easier to interpret. Bhatt et al. 30 advocate for testing this with humans, including of

different skill levels and in different domains. Further suggestions for positive human-AI interac-

tion are presented in Amershi et al. 10 , including to “Show contextually relevant information,” and

“Scope services when in doubt.” We are interested in finding the best way to implement these ideas
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with SPM.

Selective Prediction: Selective prediction can be traced back to the seminal work of Chow 65 ,

where theoretical properties of classifiers that are allowed to “reject” (refrain frommaking a predic-

tion) and ideal rejection strategies for simple classifiers are investigated. In these settings, the main

metrics are the accuracy of the classifier on the non-rejected inputs and the rate of rejection, and

the natural trade-off between these. A recent survey of theoretical work in this area can be found in

Wiener & El-Yaniv 313 . We omit an extensive review of selective prediction literature, but acknowl-

edge there is additional work in this area.

More relevant to our work is the work on learning to defer192,208. Madras et al. 192 propose to

defer to a human decision maker selectively in order to improve accuracy and fairness of a base clas-

sifier. Mozannar & Sontag 208 develop a statistically consistent loss function to learn a model that

both predicts and defers. Geifman & El-Yaniv 102 develop deferral strategies purely based on the

confidence estimate of an underlying classifier.

None of these works model the impact of deferral (or its communication to a human decision

maker) on the accuracy of a human decision maker. Since this is the primary object of study in our

work, we do not include a full selective prediction literature review. We use a simple confidence-

based deferral strategy inspired by the work of Geifman & El-Yaniv 102 , but our experimental design

is compatible with any selective prediction system.

2.3 Background

The primary goal of our work is to evaluate the impact of SPM on human performance in selective

prediction systems. We design an experiment to evaluate this impact and base both our design and

the questions we study on the psychological literature on joint decision-making.
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Figure 2.2: Example camera trap image with distant (circled) animals.

Psychology Literature onHumanDecision-Making: The psychology literature has

extensive studies on decision-making in human teams. Three psychological phenomena stand out as

being relevant to our work: 1) Humans are sensitive to the specific way that a task is framed298, 2)

Humans are capable of flexibly deploying greater attentional resources in response to changing task

demands and motivation160, and 3) When deciding how best to integrate the decisions of others,

humans take into account their own decision confidence as well as the inferred or stated confidence

of other decision makers45,18,195,14.

This suggests that SPMmay impact how humans perceive their task, howmuch they trust the AI

system, and ultimately how accurate their final prediction is, which is directly related to the compos-

ite performance of a selective prediction system. We consequently propose an experimental design

where we take four natural choices for SPM and estimate their impact on the accuracy of human

labelers.

Dataset: The dataset we use in this work is composed of images from camera traps, which are

cameras triggered to capture images when there is nearby motion. These can be used to capture
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images of animals to understand animal population characteristics and even animal behavior, both

of which are useful for conservation planning purposes. The volume of images generated in this

manner is too high for manual inspection by rangers and scientists directly involved in conservation

and monitoring efforts.

To alleviate this burden, the Snapshot Serengeti* project was set up to allow volunteers to apply

rich labels to camera trap images†. These labels are publicly available‡, and ground truth comes from

label consensus frommultiple individuals282. Given these labels, AI models have been developed

that automatically classify and/or detect animals in camera trap images222,284,26.

Whether relying on an AI model or volunteers, this processing is still difficult. Roughly seven

out of ten images contain no animals, as they are the result of false triggers, e.g., due to heat and/or

wind. However, it can be challenging to determine which images contain an animal at all, let alone

the species, because of challenges like animal camouflage, distance to the camera, or partial visibility

in the camera’s field of view. An example camera trap image with animals on the horizon is shown in

Fig. 2.2.

We consider a binary task where the bulk of blank images are first removed before images are

uploaded to be labeled by volunteers or a species-identifying AI model. We investigate the use of a

selective prediction model to filter out blank images, while prioritizing images for human review

for which the blank/animal AI model is uncertain. This is similar to Willi et al. 315 , Norouzzadeh

et al. 221 , as they also involve human-AI teams and remove blank images before species identification.

However, 1) The human-AI teams differ, e.g., Norouzzadeh et al. 221 does not involve humans to

remove blank images, but uses active learning for species identification, and 2) They do not focus on

human behavior. To begin our workflow (Fig. 2.1), we obtain model scores from an ensemble of AI

*https://www.zooniverse.org/projects/zooniverse/snapshot-serengeti
†https://lila.science/datasets/snapshot-serengeti
‡https://lilablobssc.blob.core.windows.net/snapshotserengeti-v-2-0/zooniverse_metadata/

raw_data_for_dryad.csv.zip
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models that filters out blank images, then develop a deferral mechanism.

DeferralMechanism: We use a selective prediction algorithm which finds the optimal thresh-

old(s) for AI model scores to defer, as illustrated in Fig. 2.1. Concretely, consider a binary classifi-

cation task with inputs x and labels y ∈ {0, 1}. We assume that we are given a pretrained ensemble

of AI modelsm and have access to the predictions made by a human h as well. Given inputs x (for

example, pixels of an image), we obtain a continuous scorem(x) ∈ [0, 1] that represents the confi-

dence of the ensemble that the label corresponding to x is 1.

The deferral mechanism we use is a simple rule-based system that identifies ranges of the model

score where the model is less likely to be accurate than a human and defers on these. In particular,

we use a deferral model that identifies one continuous interval in the model score space to defer on.

The deferral model is parameterized by two real numbers 0 ≤ θ1 ≤ θ2 and is defined as

defer(x; θ) =


1 ifm(x) ∈ [θ1, θ2]

0 otherwise

defer(x) = 1 represents the decision to defer on input x and defer(x) = 0 represents the decision to

predict. Given θ, the AI model prediction x and the prediction made by a human h(x), the selective

prediction system is given by

sp(x; θ) =


h(x) if defer(x; θ)

m(x) otherwise

Given a datasetD of inputs, corresponding model scores, ground truth labels, and human labels,
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we choose θ by solving the following optimization problem:

max
θ

Accuracy(D; θ) subject to DeferralRate(D; θ) ≤ r

where Accuracy(D; θ) refers to the accuracy of the selective prediction system sp with parame-

ters θ on the dataset, DeferralRate(D; θ) refers to the fraction of points in the dataset for which

defer(x; θ) = 1, and r is a bound on the deferral rate, reflecting the acceptable level of human effort

or budget constraints on hiring human decision makers.

This optimization problem can be solved in a brute force manner by considering a discrete grid

on the [0, 1] interval and going over all possible choices for the two thresholds θ.

Choosing a DeferralModel: We now describe how we choose a deferral model on the

Serengeti dataset. Our goal is to find a model such that the accuracy of the sp classifier is higher than

the human h or the AI ensemblem. A large fraction of the camera trap images are false positives,

where the camera trap was triggered by a stimulus that was not an actual animal. In order to create

a balanced dataset for tuning the deferral model, we subsample these empty images with no animal

present. We implement a penalty for deferral for the sp classifier, which leads to varied performance

at different deferral rartes, as seen in Fig. 2.3. In Fig. 2.3, individual human accuracy (as opposed

to consensus accuracy, which is 1.0) is 0.961, and AI model accuracy is 0.972 (based on choosing

one operating point to turn the continuous model scores into binary predictions that maximizes

accuracy of the AI-only classifier). We also include the ideal performance if we had a perfect oracle

to decide, for each image, whether to defer to a human or rely on the model (given historical human

labels). This perfect selective prediction would achieve an accuracy of 0.994.

Given these results, we choose a deferral rate of 1% as an acceptable level of withholding (see

Appendix for details) that still improves expected accuracy by a significant margin relative to AI-
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Figure 2.3: Tradeoff of expected accuracy and deferral rate. More deferral improves performance, but we still gain
performance even when deferring less at the circled point.

only or human-only classifiers.

2.4 Experiment Design

We hypothesize that the accuracy of a human decision maker in a human-AI team is affected by the

SPM in the last step of our workflow (Fig. 2.1). We specifically consider presenting information

about the AI’s prediction and deferral status. The AI prediction refers to the class returned by the

AI model, e.g., animal or no animal. The deferral status refers to the result of selective prediction,

in which we threshold the model score to determine whether to ask a human to review an image

(defer), or rely on the AI prediction. We therefore design a human participant experiment with all

possible combinations of these two details: 1) Neither message (NM), 2) Deferral status only (DO),

3) Prediction only (PO), and 4) Both messages (BM), as shown in Fig. 2.4. We create a survey to

host this experiment, consisting of the following sections: 1) Information and consent, 2) Camera

trap training and explanation, in which participants are introduced to camera trap images and given
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Figure 2.4: The four possible SPM conditions in our experiment, along with a challenging example image. The animal is
circled in the image here for the reader’s convenience, but in our experiment the circle was not present.

an example with an explanation for the best label, 3) Adding AI assistance, in which participants are

told about adding an AI model and deferral to assist in the task of sorting camera trap images, 4) AI

assist practice and explanations, which consists of 10 examples (9 correct, 1 incorrect) drawn from

the Serengeti validation set with AI model assistance, 5) Post training questions asking participants

to describe the model strengths and weaknesses, 6) Labeling, and 7) Post dataset questions. Several

of these design choices align with the guidelines from Amershi et al. 10 , including describing the AI

performance, and providing examples and explanations.

In the labeling section, we display 80 model-deferred images (like Fig. 2.4) under the four SPM con-

ditions (yielding 20 images per condition, which we believe balances a reasonable number of exam-

ples with a manageable amount of participants’ time). Each includes a request for labels of animals
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present or not, with a Likert scale as in Fig. 2.4. The images are randomly allocated across the four

communication conditions. We did not inform participants that all images were deferred, we

only relied on the different SPM conditions. Each participant judged images across all four con-

ditions, and no single image was presented more than once to the same participant. The set of 80

images are sampled so as to balance the number of true positive, false positive, true negative, and

false negative model classifications, and therefore additionally ensure a balance in the number of

images across classes. To ensure that there are no effects due to the specific order or allocation to

a condition of each image, four separately seeded random allocations are carried out and each par-

ticipant is randomly assigned to one of them. To test if the effects of the experimental conditions

on accuracy exceed variation expected by chance, the data are analysed in a 2x2x2 within-subject

repeated measures ANOVAwith the factors “deferral status” (with the levels: “shown” and “not

shown”), “prediction” (with the levels: “shown” and “not shown”) and “model accuracy” (with

the levels: “model correct” and “model incorrect”). We received approval from an internal ethics

review board, and then recruited 198 participants from Prolific to take part in the experiment. Re-

sponses from all 198 participants were included in the ANOVA. Aggregated data are available at

https://github.com/deepmind/HAI_selective_prediction/.

2.5 Experiment Results and Analysis

2.5.1 SPMAffects Human Accuracy

As can be seen in Fig. 2.5, the information provided to human participants about the model af-

fected participants’ accuracy. The human-AI communication method that yields the highest human

performance is DO. Accuracy in this condition is significantly greater than either humans classify-

ing images by themselves without any information about the model (mean of DO: 61.9%, mean of

NM: 58.4%, p < 0.001), or the model operating alone (mean of DO: 61.9%, mean of model alone:
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Figure 2.5: Accuracy of human participants on deferred images, across different SPM conditions. Each bar shows the
participant classification accuracies across the entire dataset, errorbars show 95% confidence intervals on the mean.
Participants’ responses are more accurate when the images are accompanied by the context that the images are
deferred (DO and BM vs. NM and PO). Showing the model’s prediction of the label has a negative effect on accuracy.
The horizontal dashed grey line indicates chance performance (50%).

50%, p < 0.001). Model performance is 50% since the images presented to humans are subsampled

from the set of model-deferred images. Furthermore, across all responses, participants are signifi-

cantly more accurate when the deferral status is shown (conditions DO and BM) than when it is

not (conditions PO and NM) (mean of deferral status: 60.4%, mean of no deferral status: 57.4%,

p < 0.001). We believe this effect of deferral status may be driven by participants inferring that the

images are likely to be quite difficult, and therefore concentrating harder. By contrast, participants

are significantly less accurate when the prediction is shown (mean of prediction: 57.8%, mean of

no prediction: 60.2%, p = 0.003). Overall, therefore, we find that providing the deferral status,

while avoiding the provision of model predictions, leads to the highest accuracy in human decision-

making in this context.
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2.5.2 Model Predictions Influence HumanDecisions

While the preceding results clearly suggest that participants use the model predictions at least some

of the time, the evidence is indirect. We therefore conduct a more direct analysis targeting this ques-

tion. Specifically, for each image, we compute the proportion of raters who agree with the model

prediction under 1) NM and 2) PO. As each image is presented under both conditions, we sub-

tract these two scores to assess howmuch humans increase their agreement with the model when

the model prediction is present. We refer to this as the “conformity” score, and plot it in Fig. 2.6.

Across the set of images, we find an average conformity score of 0.08 (i.e., raters are influenced on

8% of trials), which is significantly greater than zero (p < 0.0001), demonstrating that raters use the

model information when present. We further test a hypothesis suggested by Bahrami et al. 18 , Boor-

man et al. 45 , that people are more likely to use model information when they are less confident in

their own decisions (as measured by Likert ratings in this case). We separately compute the confor-

mity score for low and high confidence human decisions, and find that, as expected, conformity

is higher when rater confidence is low (mean of low confidence: 0.116, mean of high confidence:

0.045, p = 0.014).

2.5.3 Model Accuracy Affects Human Accuracy

While the preceding analysis demonstrates that people do indeed use the model predictions, this in

itself does not explain why we find a decrease in human accuracy when model predictions are avail-

able. This suggests a potential bias, such that people tend to use the model information more when

it is actually incorrect. To explore this possibility, we focus on the effect of the provided SPM only

on the images that the model classifies incorrectly (Fig. 2.7). We observe that participants’ accu-

racy in the PO condition is significantly reduced. While participants perform at chance in the other

conditions, participants perform significantly below chance in the PO condition (mean of other
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Figure 2.7: Accuracy of human participants on deferred images, split by whether the model correctly or incorrectly
classified the associated images. (Left) Results split by whether the model correctly classified the image. Notably, images
where the model is incorrect has lower participants’ accuracy across all conditions, generally at chance (dashed grey
line). Crucially, participants are significantly below chance in the PO condition, for which the model prediction misleads
humans. (Right) Human accuracy for each image in the NM and DO conditions, split by whether the model labels the
image correctly. Participants’ accuracy is significantly reduced (to around chance) for the subset of images which the
model fails to label correctly. Together, both show a congruence between what images the model and humans find
difficult to label correctly.

48



conditions: 50.6%, mean of PO: 41.9%, p < 0.001). In this condition, the label provided by the

model is most salient, and critically it provides wrong information. Participants appear to integrate

this information as they perform 8.7%worse in the PO condition compared to the NM condition,

on the images that are misclassified by the model. In contrast, on images that are correctly classified

by the model, and therefore the model can provide a correct prediction message, participants gain

5.1% of accuracy between the NM and PO conditions. This asymmetry, that incorrect model pre-

diction messages are integrated more by the participants than correct model prediction messages,

appears to lie at the heart of why we observe an overall negative effect of the prediction message.

This pattern is consistent with the observation that participants and the model tend to err on the

same images, as shown in the violin plots of Fig. 2.7. Specifically, participants are correct 66.3% of

the time on images shown in the NM and DO conditions and that the model correctly classifies, but

only 50.5% on images in these same conditions that the model classifies incorrectly (p < 0.05).

Additionally, there is a positive correlation between average human Likert scores in the NM and

DO conditions and model scores on the same images, suggesting that humans and models learn

similar semantic task dimensions (Pearson’s r = 0.27, p = 0.021).

2.5.4 Asymmetry in Human-AI Agreement

Our results demonstrate a differential change in human accuracy in the presence of model infor-

mation, based on whether the model is correct or incorrect. When we subdivide the data based on

whether the model is correct or incorrect, we see that human accuracy tends to be lower when the

model is incorrect (Fig. 2.7, left). Additionally, exposing humans to incorrect predictions of an AI

makes them even more likely to be incorrect. We confirm that human accuracy tends to be lower

when the model is incorrect by directly computing the image-wise agreement between human and

model ratings on images where the model is correct vs. incorrect (Fig. 2.7, right). This analysis is

performed only on the trials under the NM condition, as we want to investigate independent agree-
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ment. As expected, we find that agreement is significantly higher for the correctly labelled images

(mean agreement of model correct: 69.6%, mean of model incorrect: 44.9%, p = 0.007). This

difference in prior agreement over images has potentially important repercussions when introduc-

ing model predictions. Specifically, as the subset of images where the model is correct already has

high prior agreement with the human raters, there is much less potential for the model to influence

human judgments, and hence increase accuracy. By contrast, because the images that are misclas-

sified by the model have a lower prior agreement level with human raters, there is greater potential

for model influence, which in this case will decrease accuracy. This asymmetry in potential model

influence between correct and incorrect trials is likely to account for the overall drop in human ac-

curacy we see when model predictions are provided to human raters. This is an important result, as

it demonstrates that the specific pattern of covariance between model and human decisions can lead

to significant downstream effects on joint decision-making when humans have access to the model

predictions.

2.6 Discussion

To summarize, we find that there are significant effects in the way deferred images are presented to

humans in a selective prediction workflow. In particular, in this context, presenting deferral status is

helpful, while presenting the uncertain prediction, even when accompanied by a deferral status, can

be harmful, especially when the model is incorrect. From this, it is clear that performance will not

necessarily be what is estimated from historical human labels. Together, these findings illustrate the

importance of considering the human-AI team while designing selective prediction systems, as the

SPM can have a significant impact on performance.

We believe these are important findings to direct future research, and have several suggestions for

open questions to explore. First, this experiment could be expanded. While we chose to leave this
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static, it would be helpful to determine the amount and type of training that is most useful for par-

ticipants. We also chose to use two categories for deferral status, either defer or not defer. However,

it is possible that finer-grained information about model uncertainty could be helpful30. We addi-

tionally focused on understanding why prediction hurt, but encourage collecting further informa-

tion, such as timing, to better understand why deferral status helped. This may help inform further

research into designing selective prediction algorithms based on human-AI teams, for example by

exploring bounded rationality for training improved selective prediction models.

There are also questions about generalizability of these results. These specific results (i.e., that

deferral status helps while prediction hurts performance) are not likely to be robust across datasets,

different human-AI use scenarios (e.g., decision aids), or even participant expertise levels. For exam-

ple, in this study, we asked two domain experts working with the Serengeti dataset to go through

the same survey provided to Prolific participants. We similarly find that each individual has different

performance in the four conditions, and that the deferral status leads to improved performance in

both cases. However, the interactions are slightly different. It is necessary to search for generalizable

trends across these cases in future work.

Finally, though we worked with humans in this study, it is extremely important to consider spe-

cific deployment challenges in these contexts, such as how selective prediction may change existing

processes, e.g., in healthcare332, or how to best modify the workflow and instructions in the case

where there are multiple human experts we could rely on. In all cases, we highlight the promise of

human-AI teams, but stress the importance of remembering the human component of human-AI

teams.
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3
VIOLA: Video Labeling Application for

Security Domains

3.1 Introduction

Game-theoretic approaches have led to applications that have been successfully deployed in infras-

tructure security domains such as protecting airports, ports and metro systems287, as well as in green
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security domains such as protecting wildlife, forests, and fisheries93,140,122. In these game-theoretic

approaches and security applications, input data are needed to determine the payoff structure of

the game, to learn the behavioral models of the players, and to predict where adversaries are more

likely to attack. In previous efforts, the data were provided by domain experts directly238, recorded

by practitioners in the field over months or years217,149, or collected through human subject experi-

ments on platforms such as AmazonMechanical Turk (AMT)148.

Videos taken by drones have become an emerging source of massive data127, especially in the do-

main of wildlife protection (e.g., the PAWS security games application93). For example, detecting

wildlife from conservation drone videos can help estimate the animal distribution density, which

decides the payoff structure of the game. Detecting humans and their movement patterns could

lead to successful learning of adversaries’ behavioral models, which is an important topic in security

games219,148. Data collected from conservation drones can not only be used to provide input data

to the game-theoretic models, but can also enable the development of a new generation of game-

theoretic tools for security. The data can be used to train or fine-tune a deep neural network to auto-

matically detect adversaries from the video taken by the conservation drones in real-time.

Unfortunately, collecting labeled data from videos taken by conservation drones can be a labor-

intensive, time-consuming task. To our knowledge, there is no existing application that focuses on

assisting in the labeling of videos taken by conservation drones in security domains. Existing appli-

cations for labeling images84,90 cannot be directly applied to labeling videos, as treating each frame

as a separate image can lead to inefficiency since it does not exploit the correlation between frames.

Video labeling applications such as VATIC305 attempt to choose key frames for labeling, or track

objects through the video. However, in conservation drone videos with camera motion, possibly

collected using a different wavelength, these methods may not apply and may lead to inaccurate re-

sults or extra work for labelers, since the position of the objects in the video may change abruptly

and the lack of color bands makes the tracking much more difficult. Furthermore, these applica-
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tions are often paired with AMT to get labeled video datasets from online workers. However, in a

security domain with sensitive data, meaning data that would provide adversaries with some knowl-

edge of defenders’ strategies should it be shared, it may be undesirable to use AMT. This would

then require finding labelers, and setting up an internal system to keep the process organized.

In this paper, we focus on better collection of labeled data from conservation drones to provide

input for game-theoretic approaches for security, and in particular to security game applications

for wildlife conservation such as PAWS93. There has been work on labeling tools in domains such

as computer vision and cyber security84,57, but there exists no work on labeling tools for game-

theoretic approaches in security domains. Most previous work on game theory for security ignores

where the payoffs and behavioral models come from, and we fill the gap.

In particular, we will focus on labeling videos taken by long wave thermal infrared (hereafter re-

ferred to as thermal infrared) cameras installed on conservation drones, in the domain of wildlife

security. We present VIOLA (VIdeO Labeling Application), a novel application that assists labeling

objects of interest such as wildlife and humans. VIOLA includes a workload distribution frame-

work to efficiently gather human labels from videos in a secured manner. We distribute the work of

labeling the videos and reviewing the labels amongst a small group of labelers to ensure efficiency

and data security. VIOLA also provides an easy-to-use interface, with a set of features designed for

conservation drone videos in the wildlife security domain, such as allowing for moving multiple

bounding boxes simultaneously and tracking bright spots in the video automatically. We will also

discuss the various stages of development to create VIOLA, and we will analyze the impact of dif-

ferent labeling procedures and versions of the labeling application on efficiency, with a particular

emphasis on the surprising results that showed some changes did not increase the efficiency.
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3.2 RelatedWork

Game-theoretic approaches have been widely used in infrastructure and green security domains287.

In green security domains such as protecting wildlife from poaching, multiple research efforts in

artificial intelligence and conservation biology have attempted to estimate wildlife distribution and

poacher activities93; such efforts often rely on months or years of recorded data217,149. With the

recent advances in conservation drone technology, there is an opportunity to provide detailed data

about wildlife and poachers for game-theoretic approaches. Since a poacher is rewarded for suc-

cessfully poaching wildlife, the wildlife distribution determines the payoff structure of the game.

Poachers’ behavioral models can be inferred from poaching activities and be used to design better

patrol strategies with game-theoretic reasoning. In addition, game-theoretic patrolling with alarm

systems9,23 has been studied. Conservation drones can provide input for such systems in real-time

using computer vision, particularly by detecting humans in the conservation drone videos.

Detecting adversaries in the conservation drone videos is related to object detection. Recently,

great progress has been achieved in computer vision by deep learning in object detection and recog-

nition249,247. However, state-of-the-art detectors cannot be directly applied to our aerial videos

because most methods focus on detection in high resolution, visible spectrum images. An alterna-

tive approach to this detection is to track moving objects throughout videos. Tracking of both single

and multiple objects in videos has been studied extensively335. These methods also rely on high

resolution visible spectrum videos. Single object trackers use discriminant features from high reso-

lution videos to establish correspondences162. Much of multi-object tracking research is directed

towards pedestrians17,341,204, and primarily focuses on visible spectrum videos with high resolution,

or videos taken from a fixed camera (except204).

Simpler and more general tracking algorithms exist that do not necessarily have these dependen-

cies, such as the Lucas-Kanade tracker for optical flow186, popular in the OpenCV package, and
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general correlation-based tracking189. Small moving objects can also be detected by a background

subtraction method after applying video stabilization230. Because these methods are more general,

they are still applicable to our domain and were explicitly tested, but still did not perform well in

many cases. For example, since the video stabilization and background subtraction method assumes

a planar surface, in the case of more complex terrain, there were many noisy detections. Instead of

using tracking for detection, we therefore decided to focus on deep learning.

In order to use deep learning-based detection methods with aerial, thermal infrared data, hand-

labeled training data are required to fine-tune the networks or even train them from scratch. In

addition to video labeling applications such as VATIC305, there has been work on semi-automatic

labeling330 and label propagation16 which combines the effort of human labelers and algorithms

to speed up the labeling process for videos. This work often focuses on how to select the frames for

human labelers to label and how to propagate the labels for the remaining frames. This is difficult

for our domain because of the motion of conservation drones, and because it is often hard for hu-

mans to tell which objects are of interest without seeing the object’s motion. As a result, we sought

to develop our own labeling application, VIOLA. The first key component of the application is a

workload distribution framework. A common framework for image and video labeling is a majority

voting framework216,233,220,268. VIOLA uses a framework based upon90 to efficiently gather labels

from a small group of labelers. We examine the framework further in Sec. 3.6 and Sec. 3.7.

3.3 Domain

Conservation drones are able to cover more ground than a stationary camera and can provide the

defenders more advanced notice of a potential threat. To detect human activities at night, the con-

servation drones can be equipped with thermal infrared cameras. This is the type of conservation

drone video we deal with in our domain, since poaching often occurs at night. We will specifically
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be able to use these types of data to detect humans and provide advanced notice to park rangers, and

use these detections to provide input for patrol generation tools such as PAWS.

In order to accomplish this, we need labeled data from the thermal infrared, conservation drone

videos in the form of rectangular “bounding boxes” for objects of interest (animals and humans)

in each frame, with a color corresponding to their classification. However, the movement of con-

servation drones and the thermal infrared images make it extremely difficult to label videos in this

domain. First, thermal infrared cameras are low-resolution, and typically show warmer objects as

brighter pixels in the image, although the polarity could be reversed occasionally. Different phe-

nomena could also cause brighter pixels without a warm object. For example, the ground warms

during the day, and then emits heat at night, which can be reflected under a tree canopy and lead

to an amplified signal that might look like a human or animal. Furthermore, vegetation often looks

bright and similar to objects of interest, as in Fig. 3.1, where there are three humans labeled with

bounding boxes, amongst many other bright objects. Second, since the data are captured aboard a

moving conservation drone, these data often vary drastically. For example, the resolution, and there-

fore size of targets, is very different throughout our dataset because the conservation drone flies at

varying altitudes.

In addition to difficult, variable video data to begin with, some videos may have many objects of

interest in them, whereas some videos may not have any objects of interest at all. It sometimes takes

a long time to determine if there are any objects of interest, and it also often takes a long time to la-

bel when there are many objects of interest. To illustrate the variation in the number of objects of

interest, we analyze the historical videos we get from our collaborator. Fig. 3.2 shows a histogram of

the average number of labels per frame, meaning that all frames in the video were counted, regard-

less of whether or not they were labeled, and a histogram of the average number of labels per labeled

frame, meaning only frames that had at least one label were counted.
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Figure 3.1: An example of a thermal infrared frame, where the three humans outlined by the white boxes look very
similar to the surrounding vegetation.

3.4 Example Game-Theoretic Uses

We now provide two more specific examples of game-theoretic approaches that may be derived from

the data acquired using VIOLA. First, we focus on using the labeled data directly for behavioral

models. Second, we discuss using the labeled data to train deep learning models for further data

analysis.

With the labels provided by VIOLA and information about each frame, such as GPS and camera

angle, we can locate humans exactly throughout labeled videos. As such, we likely know the loca-

tion of poaching activities and could use this information to learn how poachers make decisions on

where to poach. In particular, we could use an existing behavioral model, such as SUQR219, and the

location of poaching activity derived from the labels to update or improve the behavioral model for

poachers, which would better inform patrol strategies. Furthermore, we could analyze the move-

ment of poachers, and a new behavioral model could be built using these movement patterns, in

which poachers could choose a path instead of simply choosing a target to attack. This new behav-

ioral model could be exploited to plan game-theoretic patrols.
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In addition to directly using the labels from VIOLA for behavioral models, the labels could be

used to train a deep learning model to automatically identify humans in real-time video streams.

Similarly, we could use the output from the deep learning algorithm for behavioral models, and the

automated identification would allow us to circumvent the need for human labelers when incor-

porating data collected in the future into the behavioral models. Moreover, patrollers could make

online decisions during patrols without the need for additional personnel to monitor the videos in

the field. The ability to make online decisions during patrols could lead to newmodels of game-

theoretic patrolling. Patrols could even be made for the conservation drones themselves, which

could introduce some behavioral challenges. The conservation drones could also potentially be

used as a deterrent, so flying conservation drones could serve to both detect and deter poaching ac-

tivities, while also collecting more data. In short, VIOLA has the potential to provide data that will

better inform behavioral models and patrollers in the field, and introduce new questions that can be

answered using game-theoretic approaches.

3.5 VIOLA

The main contribution of this paper is VIOLA, an application we developed for labeling conserva-

tion drone videos in wildlife security domains. VIOLA includes an easy-to-use interface for labelers

and a basic framework to enable efficient usage of the application. In this section, we first discuss the

user interface and then the framework for work distribution and training process for labelers.

3.5.1 User Interface of VIOLA

The user interface of VIOLA was written in Java and Javascript, and hosted on a server through

a cloud computing service so it could be accessed using a URL from anywhere with an internet

connection.
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Before labeling, labelers were asked to login to ensure data security (Fig. 3.3a). The first menu

that appears after login (Fig. 3.3b) asks the labeler which mode they would like, whether they would

like to label a new video or review a previous submission. Then, after choosing “Label”, the sec-

ond menu (Fig. 3.3c) asks them to choose a video to label. Fig. 3.4 is an example of the next screen

used for labeling, also with sample bounding boxes that might be drawn at this stage. Along the

top of the screen is an indication of the mode and the current video name, and along the bottom of

the screen is a toolbar. First, in the bottom left corner, is a percentage indicating progress through

the video. Then, there are four buttons used to navigate through the video. The two arrows move

backwards or forwards, the play button advances frames at a rate of one frame per second, and the

square stop button returns to the first frame of the video. The next button is the undo button,

which removes the bounding boxes just drawn in the current frame, just in case they are too tiny

to easily delete. Also to help with the nuisance of creating tiny boxes by accident while drawing a

new bounding box or while moving existing bounding boxes, there is a filter on bounding box size.

The trash can button deletes the labeler’s progress and takes them back to the first menu after login

(Fig. 3.3b). Otherwise, work is automatically saved after each change and re-loaded each time the

browser is closed and re-opened. The application asks for confirmation before deleting the labeler’s

progress and undoing bounding boxes to prevent accidental loss of work. The check-mark button is

used to submit the labeler’s work, and is only pressed when the whole video is finished. Again, there

is a confirmation screen to avoid accidentally submitting half of a video. The copy button and the

slider will be described further in Sec. 3.6. The eye button allows the labeler to toggle the display of

the bounding boxes on the frame, which is often helpful during review to check that the labels are

correct. Finally, the question mark button provides a help menu with a similar summary of the con-

trols of the application (Fig. 3.5). Notice the bounding boxes surrounding the animals in this video

are colored red. Humans would be colored blue. This is also included in the help menu.

To draw bounding boxes, the labeler can simply click and drag a box around the object of inter-
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est, then click the box until the color reflects the class. Deleting a bounding box is done by press-

ing SHIFT and click, and selecting multiple bounding boxes is done by pressing CTRL and click,

which allows the labeler to move multiple bounding boxes at once. Finally, while advancing frames,

bounding boxes drawn in the current frame are moved to the next frame. It only happens the first

time a frame is viewed since it could otherwise add redundant bounding boxes or replace the bound-

ing boxes originally added by the labeler.

If “Review” is chosen in the first menu after login, the second menu also asks the labeler to

choose a video to review, and then a third menu (Fig. 3.3d) asks them to choose a labeling submis-

sion to review. It finally displays the video with the labels from that particular submission, and they

may begin reviewing the submission. The two differences between the labeling and review modes

in the application are (i) that the review mode displays an existing set of labels and (ii) that labels are

not moved to the next frame in review mode.

3.5.2 Use of VIOLA

Our goal in labeling the challenging videos in the wildlife security domain is first to keep the data

secure, and second, to collect more usable labels to provide input for game-theoretic tools for secu-

rity. In addition, we aim for getting exhaustive labels with high accuracy and consistency. To achieve

these goals, we distribute the work among a small group of labelers in a secured manner, assign label-

ers to either provide or review others’ labels, and supply guidelines for the labelers.

Distribution of Work To keep the data (historical videos from our collaborators) secure, instead

of using AMT, we recruit a small group of labelers, in this work 13. Labelers are given a username

and password to access the labeling interface, and the images on the labeling interface cannot be

downloaded.

In order to achieve label accuracy, we use a framework of label and review. The idea is simply that

one person labels a video, and another person checks, or reviews, the labels of the first person. By
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checking the work of the labeler, the reviewer must agree or disagree with the original set of labels

instead of creating their own. Upon disagreement, the reviewer can change the original labels. This

was primarily chosen because it was clean, leading to one set of final labels.

We use spreadsheets to share both assignments and completion progress with the team of labelers.

We ask labelers to include the time it took for them to complete their assignment in order to help

make future assignments more reasonable in terms of time commitment, and in order to track the

efficiency and success of the application itself. In addition, we split long videos into segments to

make it easier to respect labelers’ time commitments, and to finish extremely long videos quickly.

There are also some videos that have long periods of nothingness, which are easier to ignore when

the video is split.

Guidelines and Training for Labelers In order to achieve accuracy and consistency of labels, we

provide guidelines and training for the labelers. During the training, we show the labelers several ex-

amples of the videos and point out the features of interest. We provide them with general guidelines

on how to start labeling a video, as below.

In general, the process for labeling should be:

• Watch the video once all the way through and try to decide what you see.

• Once you have an idea of what is happening in the video by going through it, return to the

beginning of the video and start labeling.

• Make and move bounding boxes.

• Send screenshots (including the percentage in the videos) if you need help.

In general, the process for reviewing should be:

• Refer to the guidelines and special circumstances directions.
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• Go through the video, and use the eye button to check the original labels.

• Move, create, or delete bounding boxes as necessary, either as you go or after watching the

whole video. Try not to resize the bounding boxes unless they are much too big or too small.

Only change the classification and add or delete boxes if certain, and please confirm with us if

not.

• Send screenshots (including the percentage in the videos) if you need help.

We also provide special instructions for the videos in our domain of interest, including a few key

clues. For example, animals tend to be in herds, obviously shaped like animals, and/or significantly

brighter than the rest of the scene, and humans tend to be moving. We also provide the following

additional guidelines.

Directions for special circumstances:

• Only label when objects are bright since the polarity changes occasionally

• If something is occluded completely: do not label

• If something is occluded but you can still see most features of them: label

• If something is shaped like a human but never moves: do not label

• If something is cutoff halfway in/out of the frame: do not label

• If there are “ghosts” (Fig. 3.6): do not label

• If you cannot recognize an individual (i.e., distinct humans and animals): do not label

The final instruction about distinct objects is one of the more difficult instructions to follow in

practice because often, the aerial view and small targets make it difficult to tell if there are one or
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more animals. The movement instruction is also difficult, since with so few pixels on objects plus

camera motion, it sometimes looks like objects are moving that are not. In these ambiguous cases,

labelers are encouraged to seek help. In cases of disagreement after discussion, we err on the side of

caution and only label certain objects.

3.6 Development

Thanks in large part to feedback provided by the labelers, we were able to make improvements

throughout the development of the application to the current version discussed in Sec. 3.5.1. In

the initial version of the application, we had five people label a single video, and then automati-

cally checked for a majority consensus among these five sets of labels. We used the Intersection over

Union (IoU) metric to check for overlap with a threshold of 0.590. If at least three out of five sets

of labels overlapped, it was deemed to be consensus, and we took the bounding box coordinates of

the first labeler. Our main motivation for having five opinions per video was to compensate for the

difficulty of labeling thermal infrared data, though we also took into account the work of216 and233.

The interface of the initial version allowed the user to draw and manipulate bounding boxes, nav-

igate through the video, save work automatically, and submit the completed video. Boxes were

copied to the next frame and could be moved individually. To get where we are today, the changes

were as listed in Table 3.1.

The most significant change made during the development process was the transition from five

labelers labeling the same video and using majority voting to get the final labels (referred to as “Ma-

jVote”) to having one labeler label the video followed by a reviewer reviewing the labels (referred to

as “LabelReview”). We realized that having five people label a single video was very time consuming,

and the quality of the labels was still not perfect because of the ambiguity of labeling thermal in-

frared data, which led to little consensus. Furthermore, when there was consensus, there were three
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Table 3.1: Changes made throughout development.

Version Change Date of Change Brief Description
1 - - Draws and edits boxes,

navigates video, copies boxes
to next frame

2 Multiple Box Selection 3/23/17 Moves multiple boxes at once,
to increase labeling speed

3 Five Majority to Review 3/24/17 Requires only two people
per video instead of five

to improve overall efficiency
4 Labeling Days 4/12/17 Has labelers assemble to

discuss difficult videos
5 Tracking 6/17/17 Copies and automatically

moves boxes to next frame

to five different sets of coordinates to consider. Switching to LabelReview eliminated this prob-

lem, providing a cleaner and also time-saving solution. Another change, “Labeling Days”, consisted

of meeting together in one place for several hours per week so labelers were able to discuss ambi-

guities with us or their peers during labeling. Finally, the tracking algorithm (Alg. 1) was added to

automatically track the bounding boxes when the labeler moves to the new frame. The goal was to

improve labeling efficiency, as the labelers would be able to label a single frame, then simply check

that the labels were correct.

An example of the tracking process in use is shown in Fig. 3.7. First, the labeler drew two bound-

ing boxes around the animals (Fig. 3.7a), then adjusted the search size for the tracking algorithm

using the slider in the toolbar (Fig. 3.7b). The tracking algorithm was applied to produce the new

bounding box location (Fig. 3.7c). In contrast, the copy feature, activated when the copy button

was selected on the toolbar, only copied the boxes to the same location (Fig. 3.7d). In this case, since

there was movement, and the animals were large and far from one another, the tracking algorithm

correctly identified the animals in consecutive frames. If several bright objects were in the search
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Algorithm 1 Basic Tracking Algorithm
1: bufferPixels← userInput
2: for all boxesPreviousFrame do
3: if boxSize > sizeThreshold then
4: newBoxCoordinates← boxCoordinates
5: else
6: searchArea← newFrame[boxCoordinates+ bufferPixels]
7: thresholdedImage← Threshold(searchArea, threshold)
8: components← ConnectedComponents(thresholdedImage)
9: if numberComponents > 0 then
10: newBoxCoordinates← GetLargestComponent(components)
11: else
12: newBoxCoordinates← boxCoordinates
13: end if
14: end if
15: CopyAndMoveBox(newFrame, newBoxCoordinates)
16: end for

region, it could track incorrectly and copying could be better. One direction of future work is to

improve the tracking algorithm by setting thresholds automatically and accounting for close objects.

3.7 Analysis

In this section, we analyze how the changes we made during the development of VIOLA affect

labeling efficiency. To do this, we examine two questions: (i) how the changes affect the overall ef-

ficiency of the data collection process, which is measured by the total person time needed to get a

final label – a label confirmed by the five majority voting or the reviewer that can be used for game-

theoretic analysis or deep learning algorithms; (ii) how the changes affect the individual efficiency,

or the person time needed for an individual labeler or reviewer to provide or check a label. In addi-

tion, we examine whether other desired properties of the data collection process, such as exhaustive-

ness, have been achieved.
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To analyze efficiency, we first went through the person time data collected during VIOLA’s de-

velopment. Any changes made were deployed immediately to make faster progress. These person

time data came from different videos and labelers. They inherently took different amounts of time

to label, since the videos varied in their content. To mitigate the intrinsic heterogeneity, we divide

the videos into four groups, (0, 1), [1, 2), [2, 3), and [3,+∞), based on the average number of labels

per frame, since it was an important indicator of the difficulty of labeling a video. There were other

factors affecting the difficulty of labeling videos, so videos in the same group may still have had high

variation. Because of this, we remove the top and bottom 5% of time per label entries.

Also due to these concerns, we collected additional person time data in a more controlled envi-

ronment. We gave six unique videos that contained animals but no humans to the labelers to label.

The labelers had not seen these videos previously. We distributed the work among the labelers so as

to get one set of final labels for each video under each of the versions of VIOLA (as shown in Table

3.1). We asked the labelers to label for no more than 15 minutes on each video. To accommodate

the labelers’ schedules and coordinate their schedules to set up meetings, which are necessary for

LabelDays and Tracking, we gave the labelers 2 to 4 days to label the videos under each version. As

such, it was difficult to get multiple sets of labels for each video or get labels for more videos. Some

labelers were not able to complete checking all of the frames in the video within 15 minutes, so we

use the minimum checked frame among labelers for each video under each version, and analyze ef-

ficiency using person time data up until that frame only. Also, note that since some labelers were

asked to label the same video multiple times under different versions, the labelers likely got faster as

time went on. To mitigate these effects, we randomly ordered the five versions of VIOLA for them

to label. The order is shown in Table 3.2.

We will proceed in this section by first focusing on the impact of the key change in the labeling

framework fromMajVote to LabelReview on the overall efficiency. We will then check each version

of VIOLA to understand the impact of other changes. Because of the surprising results, we will
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Table 3.2: Versions tested in the additional tests.

Version Number 1 2 3 4 5
Version Name Basic MultiBox Review LabelDays Tracking

Framework Used MajVote MajVote LabelReview LabelReview LabelReview
Test Order Fourth Third First Second Fifth

particularly examine videos in which these features helped and in which they did not.

3.7.1 FromMajVote to LabelReview

Fig. 3.8a and Fig. 3.8b show the comparison on overall efficiency betweenMajVote and LabelRe-

view. The total person time per final label is lower on average when we use LabelReview, based on

data collected through both the development process and additional tests. During the development

process, there were only seven videos for which we got final labels from five full sets of labels using

MajVote, two of which did not produce any consensus labels. There were more than 70 videos for

which we got final labels through LabelReview. During the additional tests, we tested two versions

using MajVote and three versions using LabelReview, which means the value of each bar is averaged

over two or three samples, respectively. We exclude one sample for Video C where no consensus

labels were achieved throughMajVote. The LabelReview efficiency for Video D is 0.63 with a stan-

dard error of 0.09 but it is too small to appear in Fig. 3.8b.

In addition to having more labelers involved, one reason that MajVote leads to a higher person

time per final label is the lack of consensus. Fig. 3.9 shows that there were large discrepancies in the

number of labels between individual labelers, which led to fewer consensus labels (zero in Videos I

andM).

Fig. 3.10 shows that MajVote leads to many fewer final labels than LabelReview for the videos in

the additional tests. This indicates that using LabelReview can get us closer to the goal of exhaus-

tively labeling all of the objects of interest when compared toMajVote.
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3.7.2 Impact of Other Changes

In this section, we examine the individual efficiency and overall efficiency of each version of VI-

OLA to analyze the impact of every other change we made during the development of VIOLA. For

individual efficiency, we calculate person time spent per label for each individual labeler or reviewer,

regardless of whether that label has been confirmed to be a final label.

We first show results of individual efficiency based on person time data collected during the de-

velopment process in Fig. 3.11. Person times per label for each video submission are colored to rep-

resent the group which is decided by the average number of labels per frame. Video submissions are

reported by submission date since the date submitted indicates which version of the application was

used for the video. The dates on which features were added, given in Table 3.1, are used to color the

background of the plot. Finally, each submission is considered separately, to examine labeling or

review efficiency only. Fig. 3.11 shows the person time per label for videos with low average number

of labels per frame (0− 1) is higher than others for both labeling and reviewing. Fig. 3.12 shows the

mean labeling and reviewing time per label within the timespan of each change during the develop-

ment process.

We next examine the individual efficiency for labeling and reviewing in the additional tests (Fig.

3.13). The results of each test have been shown by video, since there were only five sets of labels in

the tests with MajVote (Version 1-2) and only one set of labels in the tests with LabelReview (Ver-

sion 3-5). The five sets of labels in the MajVote tests are averaged by video, and the standard error

bars are included. Fig. 3.13 shows that each of the changes we made resulted in an improvement on

the individual efficiency for some, but not all, of the videos.

Multiple Box SelectionThe feature of multiple box selection was added to improve the individ-

ual efficiency of labeling. Checking the first two groups in Fig. 3.12 and Fig. 3.13, we notice that

surprisingly, this feature improves individual efficiency for some of the videos (e.g., Video F), but
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not all of the videos. One possible explanation is that in videos where there are many animals that do

not move much over time, the changing position of the bounding boxes is mainly due to the move-

ment of the camera. In this case, using multiple box selection and moving all of the bounding boxes

in the same direction simultaneously is helpful. However, in other videos where there are only one

or two animals in each frame, it may be faster to move the boxes separately, particularly if an animal

moves.

Labeling Days Labeling days were introduced with the aim to increase the overall efficiency.

Fig. 3.14 shows the average person time per final label has slightly reduced from Review to Label-

Days during the additional tests, and the person time per final label has reduced for Videos A, C,

and F. Fig. 3.14 also shows the number of final labels has remained the same on average. The results

indicate that introducing labeling days may help improving the efficiency and exhaustiveness of la-

beling, at least for some more complex videos. Subjective feedback from the labelers also indicated

that introducing labeling days made it easier for them to deal with ambiguous cases, when it is diffi-

cult to maintain consistency and accuracy despite the guidelines. However, Fig. 3.12, Fig. 3.13, and

Fig. 3.14 show that introducing labeling days does not lead to an improvement on individual effi-

ciency in all cases. It is possible that it increased the individual labeling time due to extra discussion,

but it may have saved time during review. We plan to analyze the effects of labeling days in more

detail in the future.

Tracking The tracking feature is the newest feature. We included it in the additional tests but it

has not been deployed for the labelers to use. During the tests, we received positive feedback from

labelers, particularly on videos in which animals were far apart and bright. In addition, the tracking

feature was able to successfully track two animals in the first 10% of Video B, as shown in Fig. 3.7.

Unexpectedly, the initial results from the additional tests do not show a positive effect on time per

label or number of labels. We believe this is due to the fact that it does not find a brightness thresh-

old automatically, and is likely to track the wrong object when multiple objects are within the same
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search region. We plan to continue developing this feature given its promise in the cases where ani-

mals are far apart and bright.

Summary This section thus shows that while some of our proposed improvements actually led

to increased efficiency, particularly the switch fromMajVote to LabelReview, in other cases (e.g.,

multiple box selection), surprisingly, it only increased efficiency in some videos. This result indicates

that we must not simply add features on the intuition that they are bound to improve performance,

as they may only be useful for certain videos.

3.8 Conclusions

In conclusion, we presented VIOLA, which provides a labeling and reviewing framework to gather

labeled data from a small group of people in a secure manner, and a labeling interface with both

general features for difficult video data, and specific features for our green security domain to track

wildlife and humans. We analyzed the impact of the framework and the features on labeling effi-

ciency, and found that some changes did not improve efficiency in general, but worked only in par-

ticular types of videos. We will now use the dataset to train deep neural networks to automatically

detect wildlife and humans in real-time.
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Figure 3.2: A histogram with the number of videos for average objects of interest per frame (left), and the average
objects of interest per labeled frame (right).

(a) (b)

(c) (d)

Figure 3.3: The menus to begin labeling.
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Figure 3.4: An example of a frame (left) and labeled frame (right) in a video. This is the next screen displayed after all of
the menus, and allows the labeler to navigate through the video and manipulate or draw bounding boxes throughout.

Figure 3.5: Help screen detailing the controls of the application (? icon).

Figure 3.6: Three consecutive frames where the middle frame has ghosting. The middle frame is “in between” the left
and right frames.
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(a) (b)

(c) (d)

Figure 3.7: A sample labeling process.
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Figure 3.8: Comparison of overall efficiency with different labeling frameworks.
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Figure 3.9: Number of labels per frame for individual labelers and for consensus.
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Figure 3.10: Number of final labels for MajVote and LabelReview in additional tests.
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Figure 3.11: Individual efficiency for each submission of labeling (left) and review (right) with data collected during the
development process.
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Figure 3.12: Average individual efficiency of labeling (left) and review (right) with data collected during the development
process.
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Figure 3.13: Individual efficiency for each submission and average efficiency of labeling (left) and review (right) with data
collected from the additional tests.
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4
Augmenting Conservation Drones with

Automatic Detection in Near Real Time

4.1 Introduction

With elephant and rhino numbers dropping rapidly112, it is imperative that we swiftly act before

they are hunted to extinction. Multiple strategies exist to combat poaching, including park ranger
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Figure 4.1: Example conservation drone and thermal frames from conservation drone, with white boxes surrounding
humans.

patrols, and more recently, the use of conservation drones137. In particular, conservation drones

equipped with long wave thermal infrared (hereafter referred to as thermal infrared) cameras can be

used for nighttime surveillance to notify park rangers of poaching activity because there is increased

poaching activity at night, and because animals and humans are warm and emit thermal infrared

light even at night. However, the video stream from these conservation drones must be monitored

at all times in order to notify park rangers of humans. Monitoring of streaming footage is an ardu-

ous task requiring human supervision throughout the night, and is also prone to systematic lapses in

quality as human detection often degrades with fatigue241. Furthermore, as more drones are added

to the system, more resources are required to monitor the additional videos.

Whereas previous work in AI has focused on game theory for patrol planning324,308 and machine

learning-based poaching prediction104,78 to assist human patrollers in combating poaching, little

effort has focused on decision aids to assist the conservation drone crew in detecting humans and

animals automatically. Given the tedious work of monitoring conservation drone videos, such a

decision aid is in high demand. It could help reduce the burden of the monitoring personnel and

the probability of missing poachers by simply notifying personnel or park rangers of a detection.
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In the future, the decision aid could also be integrated with existing tools that predict poaching

activity and guide human patrols. For example, the system could scout ahead for humans to protect

park rangers, monitor in other directions than human patrollers, or gather more information about

the location of wildlife for better predictions. The integration would lead to a new generation of

machine learning and game theoretic tools to guide rangers and conservation drones simultaneously.

In building this decision aid, there are several major challenges. First, automatic detection in

thermal infrared videos captured aboard conservation drones is extremely difficult, because (i) the

varying altitude of the conservation drone can lead to extremely small humans and animals, possibly

less than 20 pixels in the images, (ii) the motion of the conservation drone makes stabilization, and

consequently human and animal motion detection, difficult, and (iii) the thermal infrared sensor

itself leads to lower resolution, single-band images, much different from typical RGB images. Sec-

ond, we must provide notification in near real time so the conservation drone can immediately start

following humans in order to provide park rangers with current locations. Real-time detection is an

especially difficult challenge because we have limited computing power and Internet in the field.

In this paper, we present SPOT (Systematic POacher deTector), a novel AI-based application

that addresses these issues and augments conservation drones with the ability to automatically detect

humans and animals in near real time. In particular, SPOT consists of (i) offline training and (ii) on-

line detection. During offline training, we treat each video frame as an image, and use a set of labeled

training data collected for this application39 to fine-tune a model which has shown success in detect-

ing objects of interest in images, Faster RCNN. During online detection, the trained model is used

to automatically detect humans and animals in new frames from a live video stream, showing that

modern computer vision techniques are capable of conquering difficulties that have not been addressed

before.

We also use a series of efficient processing techniques to improve the online detection speed of

SPOT in the field. Online detection can be completed either on the cloud or on a local computer.
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Therefore, we have experimented with several architectures that trade off between local and remote

computers, depending on network strength. Finally, we evaluate SPOT on both historical videos

and a real-world test run in the field by the end users, a conservation program called Air Shepherd6.

The promising field test results have led to a plan for larger-scale deployment, and encourage its use

in other surveillance domains.

4.2 ProblemDomain and Current Practice

Conservation programs such as Air Shepherd6 send crews to fly conservation drones (Fig. 4.1) in

national parks in Africa, including Liwonde National Park in Malawi and Hwange National Park

in Zimbabwe, in order to notify park rangers of poaching activity. Teams of people are required

for conservation drone missions, including several conservation drone operators and personnel

capable of repairing the conservation drones should anything happen. The conservation drone is a

fixed-wing aircraft with a range of 50 km and a flight time of 5 hours with one battery. It carries a

FLIR 640 Vue Pro thermal infrared camera. The conservation drone flight path is pre-programmed

based on typical poaching hotspots or tips. While flying at night, the conservation drone operators

monitor the live video stream, transmitted via radio waves, for any signs of humans. Should anyone

be spotted, the team will manually take control to follow the suspects, notify nearby park rangers,

who are sometimes on patrol or in a van with the team, and guide them to the humans.

However, as we already mentioned, monitoring these videos all night is difficult. Several exam-

ple frames from thermal infrared videos are shown in Fig. 4.1, with objects of interest highlighted

in transparent white boxes on the right. Notice that these frames are grayscale, with few pixels on

objects of interest and many objects that look similar to those of interest. It is often difficult for hu-

mans to recognize objects in these videos because of this, leading to recognition errors and hours

of tedious work. As such, there is great need for a tool that automatically detects humans and an-
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imals, the objects of interest in these videos for conservation. This tool should provide detections

with as much accuracy as possible in near real time speeds on a laptop computer in the field with a

potentially slow Internet connection.

There has been some effort towards automatic detection. EyeSpy120, the application that is used

in current practice, detects moving objects based on edge detection. When in use, it first asks the

monitoring personnel to provide parameters such as various edge detection thresholds and sizes of

humans in pixels. EyeSpy then requires information such as altitude and camera look angle through-

out the flight to complete detection. Three limitations restrict the use of this tool as a result. First,

EyeSpy relies heavily on a well-trained expert who can manually fine-tune the parameters based on

the conservation drone and camera information. Novices are often unable to find the correct set-

tings. Second, the parameters need to be compatible with flight altitude and camera look angle. To

make this tool usable, the conservation drone crew either needs to restrict the way the conservation

drone flies by keeping the flight altitude and camera look angle almost the same throughout the mis-

sion, or have the expert monitoring personnel manually adjust the parameters from time to time

as the settings change. Third, this tool cannot differentiate between wildlife and humans, and thus

cannot highlight the detection of humans to the monitoring personnel or the patrol team. We will

examine this tool further in Evaluation.

4.3 RelatedWork andDesign Choices

We arrive at the current framework of SPOT after several rounds of trials and errors. As humans

and animals are typically warmer than other objects in the scene, and consequently brighter, we first

consider automatic thresholding techniques such as Otsu thresholding229. However, other objects

such as vegetation often have similar digital counts and lead to many false positives (Fig. 4.2(b)).

Because humans and animals tend to move, we also consider motion using algorithms such as the
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(a)

(b)

(c)

Figure 4.2: Traditional computer vision techniques. (a): original image, (b): thresholded, where white pixels are above the
threshold, (c): stabilized frame difference. Original results (left), manually added transparent white boxes around true
humans (right). These figures illustrate the difficulty these techniques face in locating humans.

Lucas-Kanade tracker for optical flow186 and general correlation-based tracking189. Again, other

objects such as vegetation look similar to the objects we want to track, which often leads to lost or

incorrect tracks (Fig. 4.1). Assuming a planar surface, small moving objects can also be detected by

a background subtraction method after applying video stabilization230. Motion is unfortunately

detected incorrectly by this method in the case of complex terrain such as tall trees (Fig. 4.2(c)).

More complex algorithms to track moving objects throughout videos rely on high resolution, visible

spectrum videos or videos taken from a fixed camera162,204.

Given the limitations of these traditional computer vision techniques and the great strides in ob-

ject detection using convolutional neural networks, we turn to deep learning-based approaches. We

treat each frame of the video as an image, and apply techniques to localize and classify the objects of

interest in the images. Faster RCNN and YOLO249,247 are two state-of-the-art algorithms suitable

for this purpose. They both propose regions automatically for classification. Faster RCNN tends
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to have higher accuracy than YOLO, particularly for smaller objects, although YOLO tends to be

faster247. A newer version, YOLOv2,248, has improved performance over YOLO and could be used

as an alternative to Faster RCNN. In this work, we focus on using Faster RCNN for detection.

Other emerging techniques such as deep learning-based optical flow or tracking346,92 may fail

due to drastic conservation drone motion and low resolution frames, and they do not classify the

objects, only localize. Tubelets147 propose bounding boxes over time, but are not yet performing in

real time even on GPUs. Recently, there has also been some work on automatic wildlife detection

and counting based on videos from conservation drones using other traditional computer vision or

machine learning techniques, but they either rely on RGB images in high resolution227 or do not

consider real-time detection302. Due to the unique challenges of our problem, these techniques

cannot be applied to detecting humans during flights at night.

4.4 SPOT

4.4.1 Overview

SPOT includes two main parts: (i) offline training and (ii) online detection (Fig. 4.3). In this sec-

tion, we introduce both parts in detail, with an emphasis on the robust and faster processing tech-

niques we use to improve the online detection efficiency and provide detections in near real time.

4.4.2 Offline Training

In our problem, detection means to localize the objects of interest in the scene, and classify them as

humans or animals. We choose a state-of-the-art object detection algorithm, Faster RCNN, to serve

our purpose. Faster RCNN is composed of a region proposal network (RPN) and Fast Region-

based Convolutional Network method (Fast RCNN)109, which is used to classify regions from the
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Figure 4.3: SPOT Overview.

RPN, thereby giving us the location and class of objects. The RPN shares the convolutional layers

of Fast RCNN, which is VGG-16274 in our system.

To train the Faster RCNNmodel, we first initialize the VGG-16 network in the Faster RCNN

model with pre-trained weights from ImageNet. Then, we use a set of videos in this application

domain with annotated labels for each frame, collected using a framework described in39. A small

team of students (not AmazonMechanical Turk users in order to protect sensitive information

such as flight locations and strategies) used this framework to label all frames in 70 videos containing

animals and humans. Because consecutive frames are similar, we do not have enough heterogeneous

data samples to train VGG-16 from scratch. This is the reason we start with pre-trained weights

and fine-tune VGG-16 by treating each video frame as a separate image. Furthermore, we fine-tune

different models for human and animal detection, so that depending on the mission type, whether
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(a) (b)

Figure 4.4: GUI created for SPOT for use in the field. 4.4a: inquiries about video, 4.4b: detection.

monitoring a park for poachers or counting animals, for example, the user may choose a model to

provide better detection results. For the human-specific model, we fine-tuned using 4,183 frames,

and for the animal-specific model, we used 18,480 frames, as we have more animal videos.

4.4.3 Online Detection

Preprocessing

Thermal infrared images can be “black-hot” or “white-hot”, meaning warm objects are darker or

lighter, respectively. During the online detection, we first ask the user if the video is white-hot, and

if the answer is no, we will invert every frame we receive from the conservation drone. In addition,

there is occasionally a border or text on the videos, consisting of date, flight altitude, and other meta-

data. We ask users to provide the area of interest at the beginning and only display detections in this

area of interest throughout the flight.
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Detection

We treat each frame of the video stream as an image and input it to Faster RCNN. The trained

model computes regions and classes associated with each region.

User Interface

Fig. 4.4 shows the user interface of SPOT for online detection. A file can be selected for detection,

or a live stream video. In Fig. 4.4a, we gather preprocessing information about the video, and then

begin detection in Fig. 4.4b.

Architectures and Efficiency

Faster RCNN runs at 5 frames per second (fps) on a K40 GPU249. Efficiency and computation

speed are paramount for similar performance in the field where there may be limited computing
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power, especially since videos are 25 fps. We therefore examine different Microsoft Azure architec-

tures (Fig. 4.5), and discuss techniques to improve performance in the field and trade off between

local and remote compute.

The first and simplest cloud architecture we investigate, which we will refer to as AzureBasic, is

an NC-6 Series Virtual Machine (VM) with a Tesla K80 NVIDIA GPU hosted onMicrosoft Azure.

We simply transfer frames from the local laptop to this VM using Paramiko, a Python SFTP client.

Once frames are transferred to the remote machine, we detect objects in the frame using our stored,

fine-tuned Faster RCNNmodel in a running Python instance on the remote machine. We then

display the annotated frame locally using X forwarding. For the purposes of testing, we send frames

in batches, and we use Paramiko to transfer annotated frames instead of displaying. Speed could be

improved by transferring annotations instead of annotated frames.

Although AzureBasic allows us to improve our throughput through cloud GPU acceleration

over a CPU laptop, it is limited to a single Azure GPU VM and a single local laptop linked together

by SFTP. To scale out SPOT, we utilize Tensorflow Serving, a framework for efficiently operational-

izing trained Tensorflow computation graphs. Tensorflow Serving provides a way to evaluate Faster

RCNNwithout the overhead of a running Python instance and file IO from SFTP. Furthermore,

Tensorflow Serving communicates through Protocol Buffers, a flexible and efficient data representa-

tion language that significantly reduces the size of large tensors. For serving scenarios with large re-

quests and responses, such as video processing, this reduces network communication and improves

performance on slow networks. Tensorflow Serving also supplies tools for creating multi-threaded

clients. We use four threads for our testing. Like AzureBasic, we also process images in batches to

ensure that there is no downtime between uploading frames and downloading the results. Finally,

we use azure-engine to create a cluster of NC-6 series GPU VMs managed with Kubernetes, a fault

tolerant load balancer for scalable cloud-based services. This keeps the latency of SPOT low in po-

tential compute intensive multi-conservation drone scenarios. It also provides a single REST end-
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point so the client code can use a single web URL for sending images regardless of the number of

machines in the cluster. We deploy on a GPU-enabled docker image with Tensorflow Serving, and

add tools for convenient re-deployment of models hosted on Azure Blob Storage. We refer to this

architecture as AzureAdvanced.

4.5 Evaluation

To provide a working prototype system, SPOT needs to meet two major criteria: (i) detection accu-

racy and (ii) efficiency. Detection accuracy is most important for poacher identification, particularly

to make sure we have few false negatives and false positives. Speed is critical to being able to quickly

notify monitoring personnel and the ranger team. In this section, we evaluate SPOT in the lab using

six historical videos, consisting of 15,403 frames in total, as test video streams. We will first evaluate

the performance of the object detection, and then the efficiency, where we compare the different

methods discussed in earlier sections.

EyeSpy120, the application that is used in current practice, requires users to tune eight parame-

ters to correctly identify objects of interest, plus six flight metadata parameters such as altitude and

camera angle. Because of so many parameters, it is often difficult to successfully tune all of these

parameters as a novice. On the other hand, our application does not require the user to fine-tune

any parameters – it can be used as is. We therefore consider EyeSpy as used by a novice (ESN). Of

our six test videos, only the three animal videos have average flight metadata records (i.e., not flight

metadata per frame). For analysis of ESN, we use flight metadata parameters if present, and make

educated guesses for altitude if not, because this is the baseline only. Otherwise, we utilize default

values for all parameters. We also include results from EyeSpy as used by an expert (ESE). These pa-

rameters are adjusted by our collaborators at Air Shepherd who created EyeSpy. We do not make

educated guesses for ESE because a lack of exact parameters could drastically reduce performance of
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Table 4.1: Precision‐Recall for SPOT and EyeSpy Novice (ESN) for animals.

Precision Recall
Video SPOT ESN SPOT ESN
SA 0.5729 0.1536 0.0025 0.0072
MA 0.5544 0.0032 0.0131 0.0058
LA 0.5584 0.0235 0.2293 0.0694

Table 4.2: Precision‐Recall for SPOT and EyeSpy Novice (ESN) for humans.

Precision Recall
Video SPOT ESN SPOT ESN
SH 0 0.00003 0 0.0007
MH 0.0995 0.0004 0.0073 0.0009
LH 0.3977 0.0052 0.0188 0.0159

EyeSpy, which would not be a fair comparison. We record the output from EyeSpy, which is a video

with red outlines around objects of interest, and place bounding boxes around any red outlines ob-

tained. We then use an IoU threshold of 0.5 as is typical in249. Finally, we choose a low confidence

threshold for SPOT because missing a human detection is extremely undesirable, and we report the

precision and recall.

We compare the performance of SPOT and ESN on videos containing animals or humans with

labels of small, medium, or large average sizes in Tables 4.1 and 4.2. We also compare the perfor-

mance of SPOT and ESE in Table 4.3. We perform better than the novice in both precision and

recall for medium- and large-sized humans and animals. We also perform better than the expert for

large-sized animals, and comparably for small- and medium-sized animals. Because we perform bet-

ter than ESN and similarly to ESE, we thus reduce significant burden. For small humans, which

is a challenging task for object detection in general, both tools perform poorly, with EyeSpy being

able to identify a small number of humans correctly. Small animals also prove to be a challenge for

SPOT. To improve performance for small objects in the future, we expect pooling the results of

video frames and incorporating motion will be beneficial.
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Table 4.3: Precision‐Recall for SPOT and EyeSpy Expert (ESE) for animals.

Precision Recall
Video SPOT ESE SPOT ESE
SA 0.5729 0.6667 0.0025 0.0062
MA 0.5544 0.0713 0.0131 0.0162
LA 0.5584 0.0433 0.2293 0.0832

Table 4.4: Timing Results for CPU, AzureAdvanced (AA), AzureBasic (AB), and GPU.

# GPUs Network s/img
CPU 0 - 10.4354
AB 1 fast 0.5785
AB 1 slow 2.2783
GPU 1 - 0.3870
AA 2 fast 0.3484
AA 2 slow 0.4858

Next, we evaluate efficiency by comparing CPU performance to the initial Azure system, to the

improved Azure system, and finally to the single GPU performance. The GPU laptop is a CUK

MSI GE62 Apache Pro, with Intel Skylake i7-6700HQ, 32GB RAM, and the NVIDIA GTX

960Mwith 2GB RAM. It is deployed in the field. The CPU laptop has an Intel i5-3230MCPU

at 2.60GHz. In order to compare the Azure systems, we time how long it takes from the frame being

sent to Azure, to the prediction, to the return back to the local machine, and finally to reading the

final image back into memory. We conducted these tests in two different networking environments:

533.20Mbps upload and 812.14Mbps download, which we will call “fast”, and 5.33Mbps upload

and 5.29Mbps download, which we will call “slow”. We repeat the experiment for several images

and show the final time per image in Table 4.4. The results show that both AzureAdvanced and

the GPU laptop perform detection almost 100 times faster than the CPU laptop, and AzureAd-

vanced drastically improves over AzureBasic when a slower network is present. Therefore, we can

achieve detection in near real time.
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Table 4.5: Precision‐Recall for SPOT, EyeSpy Novice (ESN), and EyeSpy Expert (ESE) for humans in test video.

Precision Recall
SPOT ESN ESE SPOT ESN ESE
0.4235 0.0024 0.0573 0.3697 0.0432 0.2836

4.6 Implementation in the Field

We also evaluate the in-field performance of SPOT. So far, these tests have been run by Air Shep-

herd at a testing site in South Africa, where training exercises take place. Fig. 4.6 shows a screen-

shot from a 30 minute test of AzureBasic at the site. For a full video, sped up 20 times, please visit

http://bit.ly/SPOTVideo. Precision and recall results are shown for this in Table 4.5, which shows

that SPOT performs better than both ESN and ESE. Our collaborators at Air Shepherd reported

that SPOT performed human detection well during this test flight, and was so promising that they

want to move forward with further development and deployment in Botswana. They also showed

excitement because SPOT requires no tuning from the user. Although the network connection was

poor for some of the flight and caused detection to occur slowly, especially because AzureBasic was

used, AzureAdvanced will perform better in these situations, and the GPU laptop can now provide

consistent detection speeds with slow networks, which our collaborators found encouraging as well.

With the promising results from the field test, a wider deployment is being planned.

4.7 Lessons Learned and Conclusion

In conclusion, we developed a system, SPOT, to automatically detect humans as well as animals in

thermal infrared conservation drone videos taken at night in near real time, which shows that mod-

ern computer vision techniques are capable of conquering difficulties that have not been addressed

before. This system works in varying situations and does not require the users to adjust any param-

eters when they use it. Thus, it is easily accessible to non-expert users. Furthermore, the system can
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Figure 4.6: A screenshot of the field test environment with annotated figures.

detect humans in near real time with either good or bad network connectivity. The system has been

tested in the field, and will be deployed.
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5
AirSim-W: A Simulation Environment for

Conservation Drones

5.1 Introduction

Wildlife conservation is one of the most important sustainability goals today, and innovations in ar-

tificial intelligence are uniquely suited to advancing it. When it comes to wildlife poaching in partic-
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ular, artificial intelligence has already played an important mitigating role. In order to maximize the

protection of national parks and conservation areas, it has been used to assist park rangers in plan-

ning their patrols to find poachers and snares, both in predicting future poaching incidents104,78

and creating strategies to detect poaching or signs of poaching activity93,324. Recent advances in

conservation drone technology have made conservation drones viable tools to aid in park ranger pa-

trols. Conservation drones can play a role in patrolling by deterring poaching through the use of sig-

naling327, serving as a lookout for park rangers, or even acting as a separate patroller when equipped

with the ability to automatically detect animals and humans in conservation drone videos.

The ability to detect animals and humans in conservation drone videos, particularly thermal

infrared videos, is an active area of research due to the small size of humans and animals in conser-

vation drone videos, the conservation drone motion, and the low-resolution, single-band nature

of thermal infrared videos. In our previous work, a dataset of 70 historical thermal infrared videos

was labeled39. These videos were collected by Air Shepherd between 2015 and 2017 during flights

which typically occur at night based on pre-programmed paths. Flights go on for about 8 hours per

night, with individual flights that are 2 hours long due to battery life. When objects of interest are

observed on these flights, the conservation drones are flownmanually in order to follow the objects

of interest. Often, however, videos do not have many objects of interest, or it is difficult to iden-

tify objects of interest in the videos as human observers. This means that videos had to be checked

for content first before labeling, which added additional time to the process. In total, this labeling

process took approximately 800 hours over the course of 6 months to complete, and produced

39,380 labeled frames and approximately 180,000 individual human and animal labels on those

frames. At a rate of $11 per hour, this cost about $8,800 for labeling alone, plus flying costs between

2015 and 2017. Together, the time and money associated with labeling make it extremely difficult

to collect large labeled datasets like this.

Once the 70 videos had been labeled, individual frames were used to train Faster RCNN249 for
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animal and human detection, which was part of a larger system called SPOT38. Training was com-

pleted on 22,663 total frames, with 18,480 total frames for the animal model and 4,183 frames

for the human model. Note that these models each detect both animals and humans, but due to

the random sampling, the animal model performed better at detecting animals than other tested

models, and the human model performed better at detecting humans than the other tested models.

SPOT performed better than the existing tool used by Air Shepherd.

Although SPOT is immediately useful to park rangers in the field as a decision aid, park rangers

or others hired to monitor the videos are still required to confirm human detections made by SPOT

and then manually fly the conservation drone to follow the human. In order to improve detection

performance, more labeled training data is needed. Additionally, to further relieve the burden on

rangers, we would like to allow for autonomous flight to follow planned patrol routes, deviate from

the plans as needed to further investigate possible detections, and automatically follow detected hu-

mans. However, testing of autonomous flight in the field could be costly, as mistakes could lead

to poached animals. Existing work does not address these unique challenges, so we propose a new

method based on simulation of the domain environment. This allows us to augment our dataset

of labeled thermal infrared videos efficiently, and to provide a testing environment for future au-

tonomous flight and other costly experiments in the domain of wildlife conservation, such as patrol

planning.

To build a simulation with these features, we use Unreal Engine and AirSim267. Unreal Engine

is a game engine where various environments and characters can be created, and AirSim is a simula-

tor for drones and cars built on Unreal Engine. AirSim supports hardware-in-the-loop (e.g., Xbox

controller) or a Python API for moving through the Unreal Engine environments, such as cities,

neighborhoods, and mountains. AirSim specifically consists of a vehicle model for the conservation

drone, which is modeled as a quadrotor, an environment model, made up of gravity, magnetic field,

and air pressure and density models, a physics engine for the linear and angular drag, accelerations,
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and collisions, and finally a sensor model for the barometer, gyroscope and accelerometer, magne-

tometer, and GPS. The models are created such that real-time flights are possible. As a result, scene,

segmentation, and depth images can be collected during flights or drives through the environments,

which allows artificial intelligence researchers to experiment with deep learning, computer vision,

and reinforcement learning algorithms for autonomous vehicles.

In this work, we present AirSim-W, which includes the (i) creation of an African savanna envi-

ronment in Unreal Engine, (ii) expansion of the current RGB version of AirSim to include a ther-

mal infrared model based on physics, (iii) expansions to follow objects of interest or fly in zig-zag

patterns to generate simulated training data, and (iv) demonstrated detection improvement using

simulated data generated by AirSim-W.With these contributions, AirSim-Wwill be directly used

for wildlife conservation research, especially for the challenges of human and animal detection in

conservation drone videos and patrol planning for conservation drones and foot patrols.

5.2 RelatedWork

First of all, the main problem of interest is to utilize simulation for wildlife conservation. For the

problem of automatic detection of wildlife and humans in conservation drone videos, in addition

to SPOT38, there has also been some work on wildlife counting based on videos from conservation

drones using primarily traditional computer vision or machine learning techniques, including227

and302. They either rely on RGB images in high resolution or do not consider real-time detection,

and SPOT has shown improvement over a traditional computer vision result in near real time.

To improve on these results, we now examine data augmentation. Performance is often improved

by increasing the amount of data used during training. For example, to train AlexNet163, simple

data augmentation involving cropping, translation, and horizontal reflections was utilized to in-

crease the size of the training dataset by a factor of 2048, which helped reduce overfitting. They
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further augmented the dataset using PCAs to perturb digital counts. More recently, deep learning

models such as generative adversarial networks (GANs) and recurrent neural networks (RNNs)

have shown great promise in the realm of data augmentation243,116,134,46,294. In243, deep convo-

lutional GANs (DCGANs) are used to augment datasets and even draw certain objects, such as a

bedroom. Style transfer and image-to-image translation are other areas being considered for data

augmentation185,345. These could be used to take many images of horses and convert them to ze-

bras, or convert images taken in daylight to nighttime images, all of which may help with a specific

computer vision task. However, these methods (i) do not account for thermal infrared imagery, and

(ii) do not consider the physical processes that are involved in image capture, such as movement of

the image capture platform.

Further data augmentation is possible using simulation from computer graphics. There are many

examples of environments that have been built using rendering tools such as Unity257 and Unreal

Engine267. Digital Imaging and Remote Sensing Image Generation (DIRSIG)133 is another ex-

ample, where facetized surface models can be generated using AutoCAD, 3ds Max, Rhinoceros,

Blender3D, or SketchUp, for example. Some environments exist with physics engines that allow

for testing robotics systems within the environment, such as autonomous cars or drones. There

are many of these environments, but we will only mention AirSim and Gazebo267,157. In any case,

datasets can then be generated using these environments. For example, SYNTHIA257 is a dataset

generated by capturing images in a city environment in Unity, and has shown improvement in se-

mantic segmentation. GANs have been used to give simulated data like SYNTHIA a more realistic

look and to further improve semantic segmentation272,342. Few models examine the thermal do-

main, except DIRSIG, which uses a full radiometric model for thermal simulation, and88, which

uses simple 3D CADmodels of solitary objects and a basic radiometric model.

Specifically in domains where little training data exists, undertaking the task of labeling large

amounts of data can be time consuming and tedious, and data augmentation may be a necessity. For
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example, in the self-driving car domain,141 trains a model using only simulated data to improve over

the same model trained entirely on real data, while testing on real data. Video games such as GTA

V can also be used to collect eye movement data for driving24. Another example in which there is

a specific domain that may not have enough data in existing datasets is277, where a mapping from

simulated data fromUnity to more realistic simulated data is learned and applied, and the results are

used to train reactive obstacle avoidance and semantic segmentation neural networks.

For the purposes of our wildlife conservation domain, we require (i) data augmentation capa-

bilities for computer vision tasks and (ii) a full simulation environment for future development in

ranger and conservation drone patrol planning and autonomous conservation drone flights for con-

servation purposes. As already mentioned, GANmodels have shown promise in data augmentation,

but they do not account for thermal infrared imagery and the physics behind image capture. Of the

simulation environments mentioned, although all promising for data augmentation, only AirSim

and Gazebo allow for future conservation patrol and autonomous flight testing.

In this paper, we seek to build a tool suitable for the wildlife conservation domain. We will uti-

lize AirSim due to the ability to use Unreal Engine as the underlying rendering tool. We will gen-

erate our environment, which will be an African savanna, in Unreal Engine. This will allow us to

capture images in real time with AirSim267, and to control actual flight parameters for image cap-

ture. We will also create a basic model of the physical characteristics of thermal infrared cameras

to expand the performance of Unreal Engine and AirSim for training data generation in the hu-

man and animal detection domain. Finally, we will utilize our novel simulation technique in the

area of wildlife conservation in particular, and it can be downloaded and easily used here: https:

//github.com/Microsoft/AirSim.
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5.3 African Savanna Environment

To effectively run simulation of thermal infrared imagery capture, we needed to build out an en-

vironment that was similar to biomes found in the central African savanna, when viewed through

imagery captured at an altitude from 200 to 400 feet (61 to 122 m) above ground level (AGL). We

used web-sourced target images and Google Earth to visualize the environment in several national

parks where Air Shepherd has flown previously. Visual targets varied from wide-open savanna plains

to dense forest, and flatland to craggy canyons. Because of this large range, we chose to develop a

representative biome rather than a facsimile of an existing location. Key features were wide-open

space, dense forest, a mid-density area, a water feature, road access, and humans and appropriate

animals.

We first included the correct plants, animals, and humans. Flora in the area generally consists of

baobab, acacia, and hookthorn trees, as well as brush and grass. We were able to find accurate veg-

etation models for each of the tree types from an existing 3Dmodel vendor, SpeedTree. We were

also able to find a variety of pre-animated and rigged animals including elephants, rhinoceroses, hip-

popotamuses, zebras, lions, and crocodiles in the Unreal Engine Marketplace. Animals can also be

found at TurboSquid, another 3Dmodel vendor. Note that while we have not seen hippopota-

muses or crocodiles in real data, we are able to model them in this simulated environment, allowing

us to train on features which are lacking in our dataset. This is extremely useful as it allows us to

address issues such as missing data or class imbalances in data, which is another benefit of using sim-

ulation. Our three human characters were the only assets that were custom, and were created with

Autodesk, leveraging animation created from a motion capture suit to give a realistic walking mo-

tion.

Then, the general flow for the environment creation follows typical game environment work-

flow. We created the one square mile flat terrain, then sculpted in hills and depressions for water,
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with the water in the center of the map. The Unreal Engine scale unit is 1 cm, so we started with a

rectangular polygon of 6 feet in length to appropriately scale people and animals in the scene. Fol-

lowing this, we created spline-based movement of the actors before starting the scene dressing. The

Path Follow plug-in, which can be found on the Unreal Engine Marketplace, was used to create the

actor movement as it provided a better movement capability than the native UE4 spline-based move-

ment.

We next started dressing the scene. A water plane was added and adjusted for the desired water

level. Vegetation was added with the native paintbrush capability using various densities to reflect

dense, mid, and sparse areas, and was repeated for each of the vegetation types. Instead of painting

performance-reducing grass across the entire scene, textures were created to reflect the look we de-

sired for improved performance during real-time video capture. A dirt road was cut into the scene

and textured appropriately, and two vehicles were sourced to add to the scene.

The scene reflects three generic areas of vegetation density to support imagery targets across all

three areas with three sets of humans added to the scene. A set of humans consists of three individ-

ual characters with each set following a spline in a large loop. We intersected the human loops with

elephants on spline loops to capture images of both humans and animals together. Additionally,

zebras were scattered across the environment and animals were clustered around the watering hole.

Overall, the Africa environment was created in approximately 3 working weeks with an artist and

part-time developer, totaling approximately $5000 and about 180 hours. The bulk of the time spent

on this scene was the terrain, watering hole, vegetation, and design of the NPCmovement, with a

lesser amount of time on creating the animal and human spline movement. Several example images

from the environment are shown in Fig. 5.1.

Should these costs be unmanageable to those in the conservation domain when considering envi-

ronments other than an African savanna, transfer learning is a low-cost possibility to consider in the

future, especially because the Africa environment is being made freely available throughMicrosoft
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Figure 5.1: Example still images from the Africa environment.

AirSim (https://github.com/Microsoft/AirSim/releases). In addition, many of the assets used

in the Africa environment came from the Unreal Engine Marketplace. There are likely environ-

ments, animals, and plants from other regions that could be simply bought and used directly. To-

gether, these facts make creating an environment other than an African savanna for other domains

possible at a relatively low cost.

102

https://github.com/Microsoft/AirSim/releases


5.4 Expansion fromRGB to Thermal Infrared

5.4.1 PhysicalModeling Assumptions

Although the African savanna environment is already useful by itself, we must expand it to include

thermal infrared imagery in order to augment our dataset for detecting animals and humans in ther-

mal infrared imagery. Simulated RGB imagery alone is not useful because flights are done at night,

when RGB imagery is not available. Additionally, we pre-train Faster RCNN using ImageNet,

which is a database including millions of RGB images that can be used by the network to under-

stand edges and shapes before learning the specific thermal infrared image domain.

In order to simulate thermal infrared imagery from the RGB imagery in AirSim, particularly

the resulting segmentation map, we will rely on physical modeling. Due to the large number of in-

teractions between photons and objects in or near the scene, modeling light can become extremely

complicated. In the thermal domain at night, for example, thermal light reaching the camera on

a conservation drone could come from several different sources: (i) atmosphere at some tempera-

ture emitting thermal infrared photons directly into the sensor, (ii) atmosphere at some tempera-

ture emitting thermal infrared photons that hit the ground and are reflected by the target into the

sensor, (iii) thermal infrared photons emitted directly from the target into the sensor (this can be

modeled using Planck’s Law263), and (iv) thermal infrared photons emitted by nearby objects that

are then reflected by the target into the sensor. These different contributions are called upwelled,

downwelled, direct, and background radiance, respectively263. In addition to the atmosphere con-

tributing photons directly to the signal, it can also play a role whenever photons travel from the

target to the sensor. Depending on whether it is humid, cloudy, rainy, etc., this role can be larger or

smaller, and is often modeled by radiative transfer models such as MODTRAN29. Other effects on

the signal include the uniformity with which the objects of interest emit light (e.g., whether or not

they are Lambertian), camera spectral response, and camera sensor noise, especially non-uniformity
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correction in microbolometers.

Because all of this involves a significant amount of modeling of complex physical phenomena,

we will make simplifying assumptions to create a simplistic physical model of the thermal infrared

image that would result from objects in the African savanna at certain temperatures. First, upwelled

radiance and downwelled radiance are negligible with a clear, dry, cool atmosphere. Most of the

year this would hold true in Africa, except during rainy season in the summer, when flights are not

likely to take place anyway. A clear, dry, cool atmosphere also has negligible effects on transmission.

Background radiance is negligible in cases of mostly flat terrain, which generally applies in a savanna.

This means that the dominant contribution is direct, so we do not consider the contributions of

the atmosphere to the signal, nor do we consider the transmission of the atmosphere because we

assume it is clear, dry, and cool. We must also assume that objects emit energy uniformly (e.g., Lam-

bertian objects) in order to use Planck’s Law to model the direct contribution. The camera spectral

response is measurable, and an estimate for a similar FLIR sensor was available1. Finally, we assume

that the camera lens has perfect transmission and no falloff. These last two assumptions are false.

However, these and some of the other effects we are assuming to be negligible could be accounted

for in the future either by including them in the calculations explicitly, or with a technique such as

style transfer185 or image-to-image translation345.

Given these assumptions, we model the signal at the sensor using only the direct contribution,

given by Planck’s Law (Eq. 5.1):

L(T, εavg,Rλ) = εavg
∫ λ=14μm

λ=8μm
Rλ

(
2hc2

λ5
1

exp( hc
kTλ )− 1

)
dλ (5.1)

where L is radiance [W/m2/sr], T is temperature [K], εavg is the average emissivity over the band-

pass,Rλ is the peak normalized camera spectral response, h is Planck’s constant, c is the speed of

light, λ is the wavelength [μm], and k is the Boltzmann constant. Emissivity, a value ranging be-
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Winter Summer
Object Temp. (K) Temp. (K) Avg. ε
Soil 278 288 0.914301

Grass 273 293 0.958301

Shrub 273 293 0.986301

Acacia Tree 273 293 0.95212

Human 292 301 0.985203

Elephant 290 298 0.96260

Zebra 298 307 0.98199

Rhinoceros 291 299 0.96
Hippopotamus 290 298 0.96

Crocodile 295 303 0.96
Water 273 293 0.96203

Truck 273 293 0.80

Table 5.1: Approximate temperatures and emissivities over night.

tween 0 and 1, relates the radiation of a real object to that of a blackbody, which is a perfect emitter.

A blackbody would have an emissivity of 1, and a real object would have an emissivity less than 1.

Emissivity is wavelength dependent, but we consider the average over the wavelengths to which the

thermal infrared camera is sensitive.

We can calculate this integrated radiance for all objects in our segmentation map from AirSim.

For example, given the pixel locations of a human, we can estimate or measure the temperature and

emissivity of the human and use Eq. 5.1 to estimate the resulting radiance at the sensor. Table 5.1

contains the temperatures and emissivities that have been estimated for the objects of interest in the

African savanna environment that were used for calculations.

5.4.2 Blur andNoise

To this points, we have not considered blur or noise. The point spread function (PSF) is a measure

of blur, as it describes the response of an imaging system to a perfect point of radiance. At best,
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the imaging system will be diffraction-limited, which will lead to some blur around the point of ra-

diance. However, other factors, such as imperfections in the lens or atmospheric effects, can also

contribute to the PSF and lead to blur in the image263. After light passes through the environment

and the lens, it interacts with the detector to create an image. Noise is present in all detectors. Mi-

crobolometers are the detectors that are commonly used in uncooled thermal infrared cameras.

When a thermal infrared photon strikes the detector, the temperature rises, and the resistance of the

detector changes8. According to173, the three main sources of noise in microbolometers are John-

son noise, flicker noise, and thermal noise. The Johnson noise is due to the resistor nature of the

microbolometer. The flicker noise is due to flaws in the material surface in semiconductors262. The

thermal noise is due to the heat exchange with the environment, which is important with uncooled

microbolometers, though can be mitigated by changing the gain.8 mentions that there is also fixed

pattern noise (FPN) due to the fact that each microbolometer has a slightly different resistance for

the same incoming thermal infrared photons. Although there are in fact other noise sources, such

as periodic noise, which can be present in these videos, we focus on Johnson noise, flicker noise,

thermal noise, and FPN. Other noise sources could be incorporated in the future.

In order to model these phenomena, again in a simplistic manner, we first utilize a Gaussian

distribution for the PSF. This could be replaced with a real model of the PSF for the cameras be-

ing used in the field based on images they capture. However, the Gaussian blur kernel used here to

loosely approximate a PSF has a standard deviation of 1, which was chosen visually.

Thermal noise and Johnson noise are both characterized by white Gaussian noise (173,108). We

utilize Gaussian 1/f noise to model the flicker noise306. Both are modeled based on334,172. Finally,

the FPN is modeled as uniform random noise8. The same noise distributions were used for all

frames of the same video, with the FPN scaled by the first image’s standard deviation. All are added

to the normalized image, which is then scaled and clipped, to produce the final image.
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Figure 5.2: Segmentation, thermal infrared image without noise, and final thermal infrared image. Top: summer, bottom:
winter. Both rows contain animals.

5.4.3 Process

In order to convert from RGB to infrared, therefore, we now have the following: a segmentation

map from the RGB simulation that specifies the objects in each image captured, a thermal infrared

digital count associated with all of the objects in the simulation, and a simple model for blur and

noise. We therefore assign the thermal infrared digital count to the corresponding object in the seg-

mentation map to get a thermal infrared image. Finally, we add the blur and noise. Fig. 5.2 shows

two examples, one each for winter and summer temperatures, where we see the segmentation map,

the corresponding thermal infrared image, and the image with blur and noise.

5.5 Utilizing AirSim-W forHuman and Animal Detection

5.5.1 Generating Training Datawith AirSim-W

In order to generate simulated thermal infrared imagery for use in deep learning algorithms, we

follow the workflow depicted in Fig. 5.3. We utilize the Python API and add the option to fly in a
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Figure 5.3: Workflow for generating deep learning training data with AirSim‐W, particularly for generating data for
human and animal detection in thermal infrared data.

zig-zag pattern, or to return a position for a specific object of interest at each time step. This could

then be used to follow the specific object of interest, such as a human, to ensure the object is in the

frame at all times. Furthermore, we adjust flight altitude and look angle using Computer Vision

Mode, and we adjust the season to determine which digital counts should be used. Once these pa-

rameters are set, we fly, either in the zig-zag pattern or following an object of interest, and capture

the segmentation image in each time step. Finally, we convert this image into the thermal infrared

image for the time step.

For evaluation purposes, this process was used to generate data from 12 flights, 6 summer and 6

winter. Together, this yielded 84,073 individual frames containing objects of interest. Each of the

12 flights consisted of 30 minutes of flying time, totaling 6 hours.
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5.5.2 Balancing Data

In the case of real thermal infrared videos of animals and humans captured aboard conservation

drones, we have six classes: small animal, medium animal, large animal, small human, medium hu-

man, and large human, where the threshold for “small” is an average bounding box area of about

200 pixels and less throughout the video, and “large” is on average greater than 2000 pixels. These

are balanced with negative samples automatically in Faster RCNN. However, because we have full

videos which must stay consistently in either the test or train sets, and individual frames that may

contain multiple objects of interest from different classes, we cannot simply randomly sample full

videos for use in training, as was done in38. If we do, we may not actually balance all six classes in

terms of individual samples. For example, if we have 100 frames with two small humans and one

small animal, we must take into account that there will be 200 small humans introduced by includ-

ing all 100 frames, while there will only be 100 small animals introduced. Furthermore, we would

like to be able to detect at all three sizes.

Therefore, we sample the training set through the use of a mixed-integer linear program (MILP).

The motivation of using a MILP is that we would like to use as many different train videos as possi-

ble, so the balanced dataset will not just sample all consecutive frames from just one or two videos.

In other words, by utilizing more unique videos, we provide our algorithm with samples with more

variety. We also define “frame types”, each can be represented by a 6-dimensional vector, indicat-

ing the number of objects from each class. For example, one frame type could be (1, 0, 0, 1, 0, 0)

meaning frames of this type have one small animal and one small human. A video can have frames

of various frame types. For simplicity in the paper, we denote the frame types as type 1, 2, 3, etc.

Therefore, our objective is to use frames from as many different videos as possible, while maintain-

ing balance between the total number of labels in different classes, and bearing in mind that we have

many different frame types in videos.
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We now formally define this as anMILP. i is the index of the video, j is the index of the frame

type, and k is the index of the label type (i.e., which class the object of interest belongs to). Then, ckij

is the number of type k labels in the type j frame in video i (e.g., if type 2 frame is “empty” frame in

video 1, then ck12 = 0 for any k, if type 4 frame is “single small human only” frame in video 1, then

c114 = 1 and ck14 = 0, ∀k ̸= 1). Nij is the number of type j frames in video i. Lk
l and L

k
u are the lower

bound and upper bound, respectively, of the desired total number of type k labels. These bounds

implement the balance requirement on the total number of labels in different classes.

xij is a variable representing the number of type j frames in video i that are sampled or selected.

uk and vk are variables referring to the maximum and minimum number of type k labels that are

selected from a single video among all videos except the videos that have no type k label at all and the

videos whose type k labels are all selected (i.e.,
∑

j ckijxij =
∑

j ckijNij). Finally, wk
i is binary indicator

indicating if all type k labels in video i are selected.

min
∑
k

(uk − vk) (5.2)

uk ≥
∑
j
ckijxij, ∀i, k (5.3)

vk ≤
∑
j
ckijxij +Mwk

i , ∀i, k (5.4)

wk
i ∈ {0, 1}, ∀i, k (5.5)

M(1− wk
i ) ≥

∑
j
ckijNij −

∑
j
ckijxij, ∀i, k (5.6)

xij ≤ Nij, ∀i, j (5.7)

Lk
l ≤

∑
i

∑
j
ckijxij ≤ Lk

u, ∀k (5.8)

xij ∈ N, ∀i, j (5.9)
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(2) is the objective function, which minimizes the difference in the number of labels of each type

selected from videos. The objective function implicitly encourages a balanced number of labels be-

ing selected from different videos for each label type. In the ideal case, this objective function takes

value 0, when each label type, an equal number of labels is selected from each video. (3) and (4) de-

fine the variables in the objective function. In (4), we will multiply byM, a large positive number,

if all k labels in the video i are selected, as defined in (5) and (6). (7) simply ensures that the number

of sampled frames is less than or equal to the number of frames in the video i. (8) ensures that we

are within the desired number of samples based on our frame choices, and finally (9) ensures the

number of frames sampled is integer.

The introduction of wk
i is to make sure that when we compute vk, we exclude the videos whose

type k labels are already fully selected. Consider the case where there is a video A that only has 3

large animal labels in total among all frames. Then, we want to include all these labels in our selec-

tion, and at the same time, we also want to balance the number of labels of large animals in other

videos which have a large number of large animal labels. So, we need to exclude video A when com-

puting vk.

The current MILP enforces this requirement. Given the objective function in (2), the optimizer

will try to make vk as large as possible. Since (4) is the main restriction for vk, the optimizer will

try to set wk
i to be 1 whenever possible. (6) ensures that wk

i can take the value of 1 only if all type k

labels in video i are already selected. Note that setting wk
i = 0 is still feasible when the condition is

satisfied, but setting wk
i = 1 can achieve at least the same and sometimes better objective value.

Given the optimal solution to this MILP, we randomly select the specified number of frames

from each frame type in each video to achieve a balanced dataset that uses as many different videos as

possible.
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5.6 Evaluation

5.6.1 Qualitative Tests

First, we examine the simulated images qualitatively. In Fig. 5.4, we observe three pairs of real and

simulated frames side-by-side. Although noise has been modeled simply, meaning some periodic

noise and gain fluctuations are not present, they otherwise look very similar when it comes to rela-

tionships between the objects of interest, such as trees and soil. For example, in Fig. 5.4b, the trees

are darker than the surrounding ground, as in the simulation. The same is true for Fig. 5.4a. In Fig.

5.4c, humans are approximately the same size in both.

5.6.2 Quantitative Tests

Qualitatively, the simulated images look similar to the real images (other than noise). We now eval-

uate the simulated data quantitatively by utilizing it in one wildlife conservation task of interest,

detecting humans and animals in thermal infrared images. First, we examine the effects of balanc-

ing the real dataset based on the MILP we presented earlier. For the new balanced dataset, we have

651 total labeled frames to train one model, out of the original 39,380 frames. We do not choose

different models (e.g., different training data) for animals and humans based on performance as we

did previously with SPOT. To conduct this first test of balancing data only, we initialize using pre-

trained ImageNet weights for Faster RCNN, and fine-tune using the 651 balanced frames. These

results are found in the column labeled “None, Regular” in Tables 5.2 and 5.3, as there was no simu-

lated data used in this initial test of balancing data only.

Next, we examine the effects of adding simulated data. We test two types of simulated data: reg-

ular simulated data, without blur or noise added, and noisy simulated data, including the blur and

noise discussed in Section 5.4.2. To run these tests, we initialize using pre-trained ImageNet weights
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for Faster RCNN as before. We then fine-tune using the simulated data, and finally fine-tune using

real data. For real data, we conduct two tests: (i) fine-tune using the balanced real dataset, and (ii)

fine-tune using the SPOT datasets. SPOT is our previous system based solely on real data. Again,

the first test (i) is fine-tuning with balanced data after first fine-tuning with simulated data, and the

second test (ii) is fine-tuning with the SPOT unbalanced data after first fine-tuning with simulated

data. Each fine-tuning process takes 4 hours on an NVIDIA Titan X (Pascal).

The results for fine-tuning using the simulated data only, without noise, can be found in the

column labeled “Regular, None”, the results for (i) are labeled “Regular, Balanced” and “Noisy,

Balanced” based on the type of simulated data, and the results for (ii) are labeled “Regular, SPOT”.

We also include the previous results from SPOT in the first column. Again, SPOT uses different

models for human and animal videos, so results for SA, MA, LA for “None, SPOT” and “Regular,

SPOT” are fine-tuned using the SPOT animal model, and the results for MP, LP are fine-tuned

using the SPOT human model. Note that the simulated data is primarily balanced by construction

because humans and animals are co-located in the simulation environment, and because we believe

that balancing the data becomes less important when there is a large amount of it. Also note that in

the simulated dataset, we flew only at 200 and 400 ft, which means there were no large animals or

large humans, and most objects of interest were actually around the small-medium data threshold of

200 pixels in area.

The test set contains six historical videos containing animals or humans of different sizes. These

are the same test videos used to evaluate SPOT in38. The combined results for all tests can be found

in Table 5.2 and Table 5.3. SA, MA, LA, MP, and LP represent the objects of interest in that partic-

ular test video. They are small animals, medium animals, large animals, medium humans, and large

humans, respectively. Small humans were excluded because, as with SPOT, none in this particu-

lar test video were identified correctly. This is because the human bounding boxes are less than 20

pixels in area.
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Table 5.2: Precision results.

Simulation None None Regular Regular Regular Noisy
Video/Real SPOT Balanced None SPOT Balanced Balanced

SA 0.5729 0.5232 0.0166 0.4044 0.3536 0.4286
MA 0.5544 0.5510 0.0041 0.5066 0.5228 0.5498
LA 0.5584 0.3873 0.0318 0.5407 0.4404 0.4592
MP 0.0995 0.1660 0 0.1136 0.1864 0.2633
LP 0.3977 0.3571 0.0074 0.7799 0.2286 0.0294
Avg. 0.4366 0.3969 0.0120 0.4690 0.3464 0.3461

Table 5.3: Recall results.

Simulation None None Regular Regular Regular Noisy
Video/Real SPOT Balanced None SPOT Balanced Balanced

SA 0.0025 0.0026 0.0044 0.0027 0.0020 0.0014
MA 0.0131 0.0278 0.0117 0.0355 0.0272 0.0254
LA 0.2293 0.2939 0.1297 0.2825 0.3149 0.2971
MP 0.0073 0.1304 0 0.0111 0.1168 0.0953
LP 0.0188 0.0054 0.0038 0.0374 0.0014 0.0004
Avg. 0.0542 0.0920 0.0299 0.0738 0.0925 0.0839

5.6.3 Discussion

There are several interesting results. First, for recall, using simulated data produces best results for

4 test videos and on average. It is especially interesting that using only simulated data without any

real data produces the best recall results for SA. Using simulated data plus SPOT produces the best

precision results on average, though SPOTwithout simulated data does produce the best precision

results overall for videos SA, MA, and LA.We believe this could be attributed to several reasons: (i)

we selected the model from SPOT that performed best with animals and kept this separate from the

human model, (ii) using more real data is better than using more simulated data in general, as the

SPOT animal model used about 18,480 real animal frames, or (iii) we lacked large animal examples

in simulation. More simulated data could be generated in the future to test this.
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The addition of noise only improves over the other datasets in the case of precision for MP. This

is interesting, as it implies that perfect images for initial training may actually be beneficial, or that a

more sophisticated noise model such as a GAN is necessary. We can further examine this in future

work.

It is also interesting to note that balanced data alone performs comparably to SPOT, which used

22,663 frames, while balanced data used only 651 frames. This implies that having a dataset with

variety might mean that less data is needed. For example, if we must label real data, we may consider

labeling only a few frames per video in the future as opposed to labeling full videos in39. We may

also consider different distinctions than small, medium, and large, or assign these distinctions per

frame instead of on average to further improve balancing. In addition, using simulated data only for

fine-tuning while testing on real data does provide nonzero results on most videos, sometimes com-

parable with real data only. This implies that should labeling a large dataset be too costly, generating

large amounts of simulated data may be sufficient to achieve results on real data, and will reduce sig-

nificant labeling burden. Either of these techniques, or both combined, could allow for less costly,

better data collection in the future. Future work could determine the optimal amount of simulated

and real data.

5.7 Conclusion

In conclusion, we present AirSim-W, a new simulation environment and data augmentation tech-

nique built specifically for wildlife conservation. AirSim-W includes the (i) creation of an African

savanna environment in Unreal Engine, (ii) thermal infrared modeling, (iii) new methods to fly the

conservation drones throughout the scene for training data collection, and (iv) demonstrated detec-

tion improvement using simulated data generated by AirSim-W. Labeling real data costs over $8000,

while the creation of the simulated environment, which can generate unlimited amounts of data,
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costs closer to $5000. The cost of the simulated data could be lowered in the future when expanding

to other animals and environments by developing transfer learning techniques, possibly by using the

existing Africa environment (https://github.com/Microsoft/AirSim/releases), and/or by find-

ing existing environments and animals. Also, labeling real data took approximately 800 hours total,

whereas creating the environment and generating simulated data took approximately 200 hours.

With these contributions, AirSim-Wwill be a cost efficient, useful tool for wildlife conservation

research, especially for the problems of human and animal detection in conservation drone videos,

patrol planning for conservation drones and foot patrols, and camera trap placement.
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(a)

(b)

(c)

Figure 5.4: Qualitative comparison of real frames (left), basic thermal infrared simulated frames (middle), and noisy
simulated frames (right). 5.4a: summer, 5.4b: winter, 5.4c: winter. The images in the first and third rows contain humans,
and the images in the second row contain animals. The simulated images in the third row also contain animals.
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6
BIRDSAI: A Dataset for Detection and

Tracking in Aerial Thermal Infrared Videos

6.1 Introduction

Recent advances in deep learning have led to immense progress in vision applications like object

recognition, detection, and tracking. One of the key factors driving this progress is the availability
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Figure 6.1: Example images from BIRDSAI: elephants and a human, respectively, from an aerial perspective.

of large-scale datasets capturing real-world conditions along with careful annotations for training

and comprehensively evaluating machine learning models. The collection and release of many of

these datasets is often inspired by specific applications of interest, e.g., perception for autonomous

driving using object detection, tracking, and semantic segmentation, person re-identification for

surveillance camera networks, and facial recognition for biometrics and security applications. While

the majority of the publicly available datasets cater to techniques developed for the visible spec-

trum84,90,188,162,150,75,103,321,87, there has been an increasing interest in applications from the near-

infrared (NIR) and thermal infrared (TIR) spectral ranges320,27,180,131,176, as these sensors become

more affordable.

Concurrently, with advances in aerial image acquisition technology, datasets specifically targeting

object detection and tracking in aerial images have been made publicly available177,321,87. In321, the

images have been acquired from various remote sensing sources (e.g., satellites), and capture varying

degrees of orientation, scales, and object density. On the other hand, aerial images from drones177,87

are often motivated by applications like monitoring, yet these images are restricted to the visible

spectrum, thereby limiting their usage to well-lit conditions. Besides, most existing public datasets,

aerial and terrestrial alike, address applications relevant to relatively densely populated settings.

Contrarily, our work is motivated by recent concerns about depleting biodiversity and loss of

forest cover which are exacerbated by illegal activities such as poaching for wildlife trade, hunting,
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Dataset (Year) Platform #Frames Tasks Spectrum (R)eal
UTB177 (2017) A 15K S V R

UAV123209 (2016) A 113K S V R,S
UAVDT87 (2018) A 80K D,S,M V R
TIV320 (2014) G,Aa 64K D,S,M T R
LTIR27 (2015) G,A 12K D,S,M T R

PTB-TIR180 (2018) G,A 30K D,S,M T R
ASL-TID242 (2014) Aa 5K D,S,M T R

329 (2015) G,Ab 84c RE T,V R
190d (2016) A 9K D,S,M T R

BIRDSAI (proposed) A 62K + 100K D,S,M T R,S

Table 6.1: Comparison summary of recent aerial video datasets for detection and tracking. Platform could be either
(A)erial or (G)round‐based; #Frames is the total number of annotated frames in the dataset, with our dataset reporting
62K (1K=1000) real frames and about 100K synthetic frames; Tasks for which annotations are present (D)etection,
(S)ingle‐object, (M)ulti‐object tracking, and (RE)gistration; Spectrum of cameras: (V)isible or (T)hermal‐IR; Data
acquisition (R)eal or (S)ynthesized in a simulator. Comparisons are discussed in Sec. 6.2. aFixed aerial perspective; b

Aerial images do not contain humans or animals; c84 Pairs; d Not publicly available, contains primarily images of roads,
and has portions of images used for tracking.

and logging. Efforts to mitigate these activities through patrolling of protected areas, especially at

night, is very challenging and puts forest rangers at risk due to poor visibility, difficult terrain, and

increased predator and poacher activity226. These conservation efforts are increasingly being aug-

mented by conservation drones226,153,146,6, with TIR cameras as the preferred sensing modality for

night-time monitoring over natural landscapes where the ambient light is minimal and the conser-

vation drone’s altitude, capacity, and need for stealth preclude the use of active light sensors. How-

ever, manual monitoring of aerial TIR videos to detect and track humans in real time is an extremely

challenging and tedious task, especially when the goal is to interdict an illegal activity.

In this paper, we introduce Benchmarking IR Dataset for Surveillance with Aerial Intelligence

(BIRDSAI, pronounced “bird’s-eye”), a large, challenging aerial TIR video dataset for benchmark-

ing of algorithms for automatic detection and tracking of humans and animals. To our knowledge,

this is the first large-scale aerial TIR dataset, with multiple unique features. It has 48 real aerial TIR

videos of varying lengths, carefully annotated with objects like animals and humans and their tra-
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jectories. These were collected by a conservation organization, Air Shepherd, during their regular

surveillance efforts flying a fixed-wing conservation drone over national parks in Southern Africa.

Finally, we augment it with 124 synthetic aerial TIR videos generated from AirSim-W37, an Un-

real Engine-based simulation platform. Two example images from real videos are shown in Fig.

6.1 depicting a herd of elephants and a human. Realistic and challenging benchmarking datasets

have had tremendous impact on the progress of a research area. Synthetic datasets like252,258,98

along with real ones like76,103 have accelerated the progress in unsupervised domain adaptation

techniques171,297. Similarly, the Caltech-UCSD Bird (CUB-200) dataset311,307 has helped ad-

vance an important area of fine-grained visual recognition344. With more wildlife monitoring

datasets281,25,96,317 becoming publicly available, we may expect rapid progress in areas like species

detection, counting, and visual animal biometrics77,96,63,168. Inspired by these instances, we antici-

pate the proposed dataset will promote advances in both (i) algorithm development for the general

problems of object detection, single and multi-object tracking in aerial videos, and their domain

adaptive counterparts, and (ii) the important application area of aerial surveillance for conservation.

The rest of the paper is organized as follows. First, we introduce the gap in existing datasets that

we aim to fill with the proposed one (Sec. 6.2). We then discuss the attributes of the dataset in de-

tail (Sec. 6.3), such as the means of acquiring the data, strategies adopted for annotation, and the

train/test splits. We next analyze the content of the resulting dataset (Sec. 6.4), and evaluate the

performance of well-known techniques for the tasks of object detection, single and multi-object

tracking, and domain adaptation (Sec. 6.5) before finally concluding the paper (Sec. 6.6).

6.2 Motivation

With poaching becoming widespread around the world300, aerial surveillance with conservation

drones is becoming a mainstream application226,153,146. In order to apply deep learning-based de-
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(a) (b) (c) (d)

Figure 6.2: Sample images from the real and synthetic datasets. From top to bottom: small, medium, and large objects.
(a) & (b) Real images of animals and humans, respectively; (c) & (d) Synthetic images of animals and humans, respectively.
Mixture of summer and winter synthetic data (winter has dark trees compared to ground).

tection and tracking techniques to these applications (especially at night) and evaluate performance,

there is a need for a realistic, large, annotated dataset that adequately captures the challenges faced

in the field. Recently, several large datasets for aerial image analytics have been publicly released,

many of which were captured using drones. However, all of these are data in the visible spectrum.

In the rest of this section, we discuss some of the most closely related public datasets and highlight

the unique aspects of the presented dataset. A summary of comparisons with existing datasets is

provided in Table 6.1.

Existing Drone Datasets: The recently introduced UAVDT87 contains nearly 80,000 frames with

over 0.8 million bounding boxes. The dataset is comprised of videos collected over urban areas with

object categories of cars, trucks and buses. The DTB dataset177 was introduced for benchmarking

drone-based single object tracking with the goal of jointly evaluating the motion model and track-

ing performance. Mueller et al. introduced the UAV123 dataset209, which contains 123 HD video

sequences with about 113,000 annotated frames captured by a low-altitude drone. Eight of these

122



videos were rendered using an Unreal Engine environment. All of these datasets use visible spec-

trum cameras mounted on multirotor drones, which typically have lower speeds and better image

stabilization as compared to fixed-wing drones44. In a poaching prevention application, deploying a

multirotor drone for surveillance is more difficult due to stealth and coverage requirements.

Existing TIR Datasets: The BU-TIV dataset320 is part of the OTCBVS dataset collection* and

contains 16 video sequences with over 60,000 annotated frames for tasks like detection, counting

and tracking. The LTIR27 dataset was used for the VOT-TIR 2016 challenge and contains 20 video

sequences of length 563 frames on average. The PDT-ATV dataset242 was introduced for bench-

marking tracking of pedestrians in aerial TIR videos. All eight sequences are captured using a hand-

held TIR camera at a height and angle to simulate a drone, but because it is handheld, it is a fixed

aerial perspective. Recently, the PTB-TIR dataset180 was also introduced for benchmarking TIR

pedestrian tracking. It is comprised of 60 sequences with over 30,000 annotated frames. In all cases,

the challenge of analyzing TIR footage from a conservation drone has not been addressed yet.

Synthetic Datasets and Domain Adaptation: Training deep models demands large datasets with

accurate annotations, which are expensive and tedious to obtain. Consequently, recent years have

seen an increasing use of synthetic images rendered using state-of-the-art graphics engines, where

generating accurate ground-truth information is trivial. Several such simulators and datasets have

been made public98,252,258,210, and reportedly improve real-world performance of deep learning

models when pretrained with synthetic data. The increased use of synthetic datasets in vision ap-

plications has further propelled research in domain adaptation with works like64,171,297 being a few

among the many† leveraging synthetic data. Some recent work has also shown that domain transfor-

mation and adaptation techniques can aid in improved detection performance in TIR images when

using deep CNNs pretrained on visible spectrum images66,28. In contrast, BIRDSAI uses both real

*http://vcipl-okstate.org/pbvs/bench/
†More comprehensive list of advances in domain adaptation: https://github.com/zhaoxin94/

awsome-domain-adaptation
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and synthetic aerial, TIR videos.

BIRDSAI: The 48 real TIR video sequences included in BIRDSAI were randomly selected from

a database of conservation drone videos collected by Air Shepherd for conservation, and contain

1300 frames on average. These videos accurately reflect the challenges in the field, e.g., motion blur,

large camera motions (both rotations and translations), compression artifacts due to bandwidth

constraints, background clutter, and high altitude flight (60-120m) resulting in smaller objects to

detect and track. The 124 synthetic videos with 800 frames on average, on the other hand, were

generated using the AirSim-W37 platform with the publicly available models of the African savanna,

animal species, and conservation drone-mounted cameras. This dataset uniquely brings together the

three categories discussed above.

6.3 Dataset Description

6.3.1 Real Data

Data Acquisition

Data were collected throughout protected areas in the countries of South Africa, Malawi, and Zim-

babwe using a battery-powered fixed-wing conservation drone. Specific locations are withheld for

security. All flights took place at night, with individual flights lasting for about 1.5 - 2 hours. Var-

ious environmental factors such as wind resistance determined exact flying time. Throughout the

night, there were typically 3 to 4 flights, the altitude ranged from approximately 60 to 120m, and

flight speed ranged from 12 to 16 m/s depending on conditions such as wind. Temperature ranged

from less than 0 to 4 in winter at night, though typically closer to 4. There was often a shift of ap-

proximately 5 throughout the course of the night in the winter. For reference, daytime temperatures

were typically approximately 15 to 16. During summer, the temperature ranged from 18 to 20 at

night, and 38 to 40 during the day. When flying just after sunset, the ground temperature was warm
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and could make it more difficult to spot objects of interest due to the lack of contrast. However,

by about 10:30-11PM, there was typically sufficient contrast for easier visibility. Fog was present in

some rare cases, which could cause “whiteouts” in images.

The FLIR Vue Pro 640 was the primary sensor utilized. However, the Tamarisk 640 was also

used in some videos in the dataset. Although the typical resolution of images is 640x480 as a result,

some images may be sized differently due to the removal of text embedded in to the videos describ-

ing specific locations and other flight parameters, which are also withheld for security purposes.

These cameras produce 8-bit images and use Automatic Gain Control (AGC), as in67. This leads

to more reliable contrast that facilitates better detection and tracking accuracy during flight. The

cameras cost approximately $2000-$4000 depending on the lenses and other attributes. They have

19mm focal length and collect imagery at a rate of 30Hz. Images were streamed to a base station

during flight, where they were stored as raw videos. All videos were converted to mp4 videos for

processing and JPEG images. Because the videos were recorded from real-world missions, they lack

some metadata, such as speed, altitude, and temperature. While this auxiliary information could

be useful, automatic vision algorithms should still be designed to work in their absence. From a us-

ability perspective, this added robustness is crucial for building practical vision systems that are less

sensitive to specific conservation drone or camera settings.

Annotation

We used VIOLA39 to label detection bounding boxes in the thermal infrared imagery, and followed

the process described in VIOLA. To briefly summarize this labeling process in VIOLA, after la-

bels were made by one person, two other people reviewed the labels, making corrections as needed.

General rules that were followed during the labeling process are as follows. If individuals were com-

pletely indistinguishable (e.g., multiple humans or animals were close together and could not be dis-

tinguished at all in thermal imagery), they were not labeled. Instead, occlusions are recorded when
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possible to determine manually from context. This includes cases where animals or humans become

indistinguishable for a few frames and again become distinguishable after they or the camera move.

If there were artifacts in the image (see Sec. 6.4), objects were tagged as containing noise. Some ex-

tremely small amounts of these artifacts may have been allowed without being tagged as noisy. We

provide examples of how we included occlusion and noise in the Appendix. Finally, if an object was

mostly out of the camera’s field of view (i.e., more than about 50% of the object was not present in

the frame), it was not labeled. After this process, all labels were finally confirmed and checked for

quality for use in this dataset by the authors, one of whom is from Air Shepherd and collected the

videos, for a total of 4 checks on each initial label.

We additionally labeled individual species when distinguishable, typically in videos with larger

animals present. The real videos contain giraffes, lions, elephants, and a dog, which account for

about 100K of the 120K individual animal bounding boxes (the remaining 20K animals are marked

as unknown species). There are about 34K human bounding boxes. These labels created using VI-

OLA were then labeled separately for tracking. We built a tool using Tkinter‡ to assign object IDs to

each bounding box label. To reduce annotation effort before any human annotation was done, the

tool checked for overlap between frames using an Intersection over Union (IoU) threshold. If the

IoU exceeded the threshold, the object in the following frame was given the same object ID. Once

this automatic processing was complete, we used the tool to manually navigate through the video

frames and identify and correct any errors in the assigned object IDs, e.g., objects merging or split-

ting. In the case of objects merging together, object IDs are maintained whenever it is possible to

distinguish them again after the merge. However, if they enter a large group, it may become impos-

sible to distinguish which animal is which due to the nature of thermal imagery. In these cases only,

they are assigned a new object ID. If objects leave the frame, they will similarly retain the same object

ID if possible.

‡https://docs.python.org/3/library/tkinter.html
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Figure 6.3: Statistics of real and synthetic data. (a) 100% stacked bar charts of distribution of small, medium, and large
animals/humans across real and synthetic data and train/test sets. Real train contains 32 videos, real test contains 16
videos, and simulated train contains 124 videos. (b) Bar plot (with standard deviation error bars) of the number of
animals and humans for train/test sets over large, medium, and small objects, again across real and synthetic data and
train/test sets. (c) Scatter plot showing different video sequences plotted using their constituent average object density
(#objects/frame) and sequence length (duration for which the objects were visible in the video). The color indicates the
constituent object type (human/animal) and the size of the circles indicate small, medium, or large. For better visual
clarity, both the axes are plotted using the log scale.

6.3.2 Synthetic Data

To generate synthetic data with AirSim-W, we utilized the African savanna environment introduced

in37. In brief, the environment is not based on a particular area of interest, but rather represents the

variety of environments found in Southern Africa, such as wide-open plains to dense forest, flatland
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to mountainous terrain, roads, and water. Grass in the plains is not a mesh in the environment, so

in the segmentation provided by AirSim-W, grass and soil are indistinguishable. This does, however,

increase efficiency while running the simulation. The AirSim-W platform has a TIRmodel that

was introduced in37. We used this TIRmodel to generate images of the objects in the scene as the

conservation drone flew through the environment and captured images of size 640x480. Specifically,

AirSim-W’s Computer VisionMode was used, and the conservation drone was placed by following

certain objects in the environment. For example, to generate human images, the conservation drone

tracked the human. Because the objects move in groups, and multiple altitudes, offsets, and camera

angles were used, multiple objects or few objects may have been captured. Ground truth object IDs

and species (lions, elephants, crocodiles, hippos, zebras, and rhinos) labels were also recorded for a

total of about 220K individual animal bounding box labels and 50K human labels.

6.3.3 Train and Test Sets

In order to create the train and test sets for the real data, our goal was to create similar distributions

in both while ensuring complete videos stayed entirely in either the train or test set. Entire videos

remained in one or the other because consecutive frames could be extremely similar. We manually

assigned videos to the train or test set based on the number of objects in the video, and based on

characteristics of the videos, like contrast, to try to ensure an approximately even distribution in

the train and test sets. Because entire videos needed to stay together, it was not possible to maintain

exact ratios. In fact, there was only one video that contained large humans, so it was placed in the

test set only. These train and test sets are shown in Fig. 6.3.

Regarding the synthetic dataset, the entirety of the dataset was used for training. Although we

attempted to ensure the approximate ratio of humans and animals was somewhat similar to the real

training dataset, we prioritized adding large human examples and more small human and animal

examples (see Section 6.4.1 for more description of scale) while generating the synthetic dataset, as
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these were less frequently seen in the real data. Different statistics over the entire dataset, including

distribution of object scales and densities across the train/test splits, are shown in Fig. 6.3 (a) and

(b), respectively. In Fig. 6.3 (c), a scatter plot of tracking video sequences is shown with respect to

the sequence length and average object density.

6.4 Dataset Properties

The real and synthetic data contain significant variations in content and artifacts, including scale

and contrast. The real data also contain more background clutter and noise.

6.4.1 Content

Environments. There are several types of environments that are captured in the dataset, including

land areas with varying levels of vegetation and water bodies, such as watering holes and rivers. An

example of water with a boat floating upon it is shown in Fig. 6.4 (b) (where the bright, top right

portion of the image is water). We denote the presence of water for individual videos in the dataset.

Scale and Density of Objects. There are multiple scales of objects in the dataset. We coarsely cate-

gorize them into small, medium, and large based on each object’s annotated bounding box area and

dataset statistics. These distinctions are assigned to full videos based on the average bounding box

size throughout the video§. There is also a wide range of densities in objects throughout the videos.

The average number of objects per frame (density) for small, medium, and large videos is described

in Fig. 6.3. There is an example of a video with high animal density in Fig. 6.4 (a).

§Small videos were those whose average bounding box area was< 200 pixels, the median real area, and
large videos were> 2000 pixels.
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6.4.2 Artifacts

Contrast. Contrast refers to the variation in digital counts in an image. TIR images rely on AGC,

so contrast can vary significantly across the dataset. As an example, some images have nearly black

backgrounds with white objects of interest (more contrast, e.g., Fig. 6.4 (b)), while others have gray

backgrounds (less contrast).

Background Clutter. There can be many objects in the background in some images, particularly in

images with vegetation. Vegetation can often have a similar temperature to objects of interest, lead-

ing to images like Fig. 6.4 (c). We also see thermal reflections off the ground, typically near trees, e.g.,

in Fig. 6.4 (d). Both make it challenging to distinguish between objects of interest and background

clutter.

Noise and Camera Motion. While there are many sources of noise in TIR cameras that use un-

cooled microbolometer arrays as the sensor37,263, the most common type in BIRDSAI is what we

call ghosting, as shown in Fig. 6.4 (e). There are also slightly more mild versions of it, which look

like horizontal “bands” in some cases. Additionally, the conservation drone’s motion, or even the

camera motion when there is pan or tilt, can sometimes lead to frames with motion blur. An exam-

ple of this is shown in Fig. 6.4 (f). These were labeled as containing noise when possible (see Sec.

6.3).

6.5 Evaluation

The goal of BIRDSAI is to advance image-based object detection, domain adaptive detection, and

single and multi-object tracking (SOT andMOT, respectively). To evaluate state-of-the-art object

detection methods and domain adaptation on BIRDSAI, we perform framewise detection of ani-

mals and humans. We evaluate tracking by using the videos, both full sequences and subsequences.

We provide benchmarking results for these tasks with existing algorithms, leaving the method details
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(a) (b) (c)

(d) (e) (f)

Figure 6.4: Data challenges. (a) density (b) high contrast (c) clutter (vegetation) (d) clutter (reflections) (e) ghosting (f)
motion blur. Ground truth labels not shown in (e) and (f) for better visualization of effects of noise. Animals in (a), (e), (f),
humans in (b), (c), (d).

Scale FR-CE FR-WCE YOLOv2 SSD
SA 0.216 0.228 0.144 0.182
MA 0.459 0.468 0.383 0.392
LA 0.879 0.896 0.679 0.850

Animals 0.659 0.671 0.489 0.587
SH 0.214 0.206 0.108 0.219
MH 0.174 0.179 0.146 0.229
LH 0.154 0.094 0.083 0.147

Humans 0.181 0.155 0.104 0.183
Overall 0.430 0.438 0.304 0.388

Table 6.2: Detection performance baseline using the mAP metric for different scales ((S)mall, (M)edium, (L)arge) of
objects ((A)nimals, (H)umans) in the dataset.

131



Configuration DA-FR-CE DA-FR-WCE FR-CE FR-WCE YOLOv2 SSD
Real→Real – – 0.430 0.438 0.304 0.388
Syn→Real 0.443 0.459 0.309 0.313 0.152 0.294

Table 6.3: Detection performance baselines using the mAP metric after domain adaptation.

to the papers while listing the hyperparameters used for the experiments here. We include further

experiments and analyses in the Appendix including cross-dataset evaluation.

6.5.1 Framewise Detection

We specifically test with the following popular object detection methods: Faster-RCNN250, YOLOv2248,

SSD182, and Domain Adaptive Faster-RCNN64, all of which have shown strong results in the visi-

ble as well as TIR. Results for detection and unsupervised domain adaptative detection are provided

in Tables 6.2 and 6.3, respectively.

Faster-RCNN331 250. The experiment was performed using VGG16 as the backbone network ini-

tialized with ImageNet pretrained weights. Evaluation results of two loss functions were compared

and tabulated in Table 6.2, namely, Cross Entropy (CE) andWeighted Cross Entropy (WCE), to

account for the imbalance in the two classes (i.e., humans are more rare). The weights for each of the

classes are computed as follows for the WCE loss.

Wℓ =

(∑ka
i=1 wihi +

∑kh
i=1 wihi∑kℓ

i=1 wihi

)0.5

(6.1)

where ka and kh are the number of animals and humans in the frame, respectively, wihi is the area of

the corresponding bounding box, and ℓ ∈ {a, h} (animal or human).

These experiments were performed with a batch size of 1, an SGD optimizer, and a starting learn-

ing rate of 1e-2. The learning rate was depreciated after a learning step which was set to two epochs

for the loss to converge. The overall fine-tuning was performed for a total of 7 epochs.

YOLOv2248. This model used pretrained Darknet19 weights. A batch size of 1 was taken with
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a starting learning rate set to 1e-3, depreciating it by a factor of 10 after every second epoch. The

model converges after 12 epochs.

SSD182. This model used pretrained VGG16 weights. The hyperparameters of the training include

a batch size of 8, initial learning rate of 1e-5, without depreciating the learning rate throughout. The

training converges after a total of 12 epochs. An SGD optimizer was used with a weight decay of

1e-4 and an update gamma of 0.1.

Domain Adaptive Faster RCNN64. This framework was trained with the base architecture as

VGG16, pretrained with ImageNet. The corresponding overall mAPs are tabulated in Table 6.3.

Real→Real indicates that the train set is comprised only of labeled real data and the model was

tested on real data, which is equivalent to results in Table 6.2. Synthetic→Real implies that the

train set is comprised of labeled synthetic data and unlabeled real data, and the testing was per-

formed on the test set (real data).

Results: It is not surprising to note that the best overall performance is achieved using Faster-

RCNNwithWCE, where the weights explicitly account for the data imbalance. For human objects

alone, however, SSD and Faster-RCNN (without weighting) perform comparably, while outper-

forming the other methods. YOLOv2 performs worst overall, possibly due to the small size of ob-

jects. In all cases, there is room for improvement, especially for small animals and humans.

The overall results of Table 6.2 are equivalent to the Real→Real row of Table 6.3. In the Syn-

thetic→Real row, simply training on synthetic data and testing on real data actually decreased

performance for those algorithms lacking domain adaptation. This is not surprising either, given

that there is a visible domain shift between the synthetic and real data subsets of BIRDSAI. It is,

however, encouraging to see that in the unsupervised domain adaptation setting of64, there is a

noticeable increase in the mAP values. This observation suggests that further research in unsuper-

vised domain adaptation could immensely benefit object detection in aerial TIR videos, given the

extremely challenging task of annotating aerial TIR videos.
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6.5.2 Tracking

We test both single and multi-object tracking on BIRDSAI, and we report results for all objects

regardless of class. In both the tracking settings, we use the same train/test splits as used in object

detection. For single-object tracking, video sequences were further split into perfect subsequences

such that each subsequence had a single target object throughout, with a minimum length of 50

frames. Once there was any interruption in the subsequence, whether due to noise, occlusion, or the

object exiting the frame, the subsequence ended. This resulted in a total of 552 subsequences. The

train/test splits of SOT subsequences were consistent with that of the videos, i.e., all subsequences

from test videos were included in the test set, and similarly for the training set. This means that all

subsequences from a given video appeared either in the training set or in the test set, which yielded a

train set with 386 and a test set with 166 subsequences. For testing of full sequences, we used the test

videos to generate 99 sequences of length at least 50 frames, with each sequence starting at the first

appearance of an object in the video and ending at its last appearance.

For single-object tracking, we use the Siamese RPN175, ECO79 and AD-Net339 algorithms as

benchmarks, and we also use the MCFTS181 algorithm, which was developed specifically for the

related VOT-TIR dataset. These algorithms were then evaluated on the test set using the usual met-

rics of success rate and precision319,177. We evaluated pretrained models of ECO andMCFTS, and

retrained Siamese RPN and AD-Net on BIRDSAI. We followed the commonly used one-pass eval-

uation (OPE) process for single-object tracking319, which required training of models like Siamese

RPN and AD-Net to be done on the perfect subsequences, where every frame had ground truth

annotations. During testing, we performed the benchmarking on the perfect subsequences and full

sequences. As is typical in OPE, all of the trackers were initialized using ground truth bounding

boxes in the respective first frames.

For multi-object tracking we only report the IoU Tracker34 with default thresholds, and object
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Method Perfect Subsequences Full Sequence
Precision AUC Precision AUC

ECO 0.8103 0.5430 0.4842 0.2972
AD-Net 0.8029 0.5331 0.4545 0.2546
MCFTS 0.7194 0.4946 0.3401 0.1886

Siamese RPN 0.0073 0.0093 0.0041 0.0048

Table 6.4: Single Object Tracking Evaluation. Precision is at 20 pixels. “Perfect subsequences” excludes noisy/occluded
frames, while “Full sequence” includes them.

Method Obj Size Ground Truth Det F-RCNNDet
MOTA MOTP MOTA MOTP

IoU
Tracker

S 61.6 100.0 -102.4 62.7
M 91.3 98.9 -34.4 66.9
L 80.6 100.0 13.6 68.9

Table 6.5: Multiple Object Tracking Evaluation. S, M, L is for small, medium, large.

detections provided using (i) ground truth bounding boxes and (ii) Faster-RCNN detection. We

use Faster-RCNN for MOT benchmarking due to its superior detection results. We also include

other MOT results in the Appendix. The algorithms are evaluated using the MOTA andMOTP

evaluation metrics253, where higher is better. MOTA andMOTP are in the range of [-∞, 100 (%)],

and [0, 100(%)] respectively. Although they are percentages above 0, negative values for MOTA im-

ply that the errors (false positives, misses, and mismatches) are more than the ground truth objects

to be tracked.

Results: See Table 6.4 for SOT and Table 6.5 for MOT benchmarking. For SOT, Siamese RPN,

which relies on one-shot detection, fails to perform reasonably. Performance is promising with the

other methods. This seems to be related to the length and cleanliness of the track, as evidenced by

the improved performance in subsequences compared to full sequences. However, the real world

will require handling videos with imperfect tracks and noise, small objects, and detection initial-

ization, which leaves room for innovation. For MOT, IoU Tracker performs very well for ground

truth bounding boxes, while it performs worse when using Faster-RCNN detections in both of the

MOTA andMOTPmetrics.
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6.6 Conclusion

We presented BIRDSAI, a challenging dataset containing aerial, TIR images of protected areas for

object detection, domain adaptation, and tracking of humans and animals. In our benchmarking

experiments, we noted that state-of-the-art object detectors work well for large animals, however, for

humans and small and medium animals, the performance drops substantially. Similarly, while IoU

Tracker-based multi-object tracking works well when ground truth detections are provided, the per-

formance drops drastically when a detector’s output is used. These experimental results indicate the

challenging nature of the real sequences in the BIRDSAI dataset. Fortunately, we saw that baseline

domain adaptive detection shows promising improvements by leveraging the synthetic dataset. This

observation is crucial, as the annotation effort for noisy TIR videos is enormous, and improved un-

supervised domain adaptation techniques can prove to be very useful for achieving competitive de-

tection performance. We hope this dataset will help propel research in this important area. Finally,

in addition to facilitating interesting research, this dataset will also contribute to wildlife conserva-

tion. Successful algorithms could be used to help prevent wildlife poaching in protected areas and

count or track wildlife.
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7
Micronutrient Deficiency Prediction via

Publicly Available Satellite Data

7.1 Introduction

Micronutrient deficiencies, or the lack of vitamins and minerals required by the body for healthy

functioning and development202, are a widespread (estimated to impact more than 2 billion people
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worldwide, including 340 million children152) public health concern that is unfortunately diffi-

cult to measure. These micronutrient deficiencies, hereafter referred to as MND, further drive the

global burden of disease but remain difficult to diagnose since the effects often become visible only

when the deficiency is severe304. From a public health perspective seeking to reduce MND preva-

lence throughout a population, it is important to identify regions at risk of MND. However, due

to the difficulty of diagnosing MND, regions withMND are unclear to public health organiza-

tions until direct measurements are made, such as blood draws to measure biomarkers and/or sur-

veys/questionnaires. Unfortunately, these blood draws and surveys are costly and time-consuming,

and furthermore, quantifying micronutrient levels in a blood sample requires limited, specialized

laboratory equipment, leading to infrequent data collection.

Due to the difficulty in both types of data collection, we seek a new data source that may be more

scalable, such as satellite data (i.e., data products derived from raw satellite imagery). This may at

first seem unrelated, as MND status is unique to an individual, pertaining to an individuals’ nutri-

tion, disease status, and other characteristics which cannot be viewed by satellite. Indeed, prior work

applying artificial intelligence (AI) techniques to satellite data, e.g., in estimating crop type97, of-

ten search for features directly observable by satellite. Predicting an indirect feature such as MND

prevalence brings additional technical challenges, including choosing relevant satellite data, linking

a limited amount of ground truth data from individuals to satellite data to train machine learning

models, and supporting interpretability for public health experts.

Contributions: Through our novel system, we establish that satellite data can be used to predict

MND at a regional level despite these challenges. In fact, our system is the first to predict MND

from a regional level, as measured directly from real-world, ground truth biomarkers, using satellite

data. This involves i) aggregating individuals’ MND states from biomarker data over geographic re-

gions to align with satellite data, ii) using segmentation to generate custom features of importance,

specifically market locations in this case, iii) providing scalablity with automatic feature selection,
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which performs comparably to expert feature selection, and iv) two prediction paradigms to handle

the challenges that arise from limited ground truth data: logistic regression, which also naturally

handles the pressing need for interpretability of predictions in the field, and multi-layer perceptron

with domain adaptation. Not only does this system achieve good accuracy, but this also results in

improved performance compared to the baseline of survey-based predictions. We believe this MND

detection system could be broadly applied to other countries where satellite data are available, po-

tentially leading to more information for public health interventions and high societal impact.

7.2 Background and RelatedWork

AI for Social Impact and Satellite Data: Existing applications of AI related to nutrition include

food security, agriculture, food rescues, and even foodborne illnesses269. Some of this literature

relies on satellite and other remotely-sensed images, such as agricultural productivity assessments

and planning211. Land cover mapping240 and socioeconomic status prediction15 have also been

explored. However, these factors are arguably directly visible in satellite data, e.g., to predict socioe-

conomic status, Ayush et al. 15 search for objects directly in satellite data, such as trucks. Dengue

fever prediction in Abdur Rehman et al. 2 is based on identifying features such as standing water

locations (mosquito habitat) and roads (human presence). While dengue status is not directly vis-

ible, these direct causes are. MND prediction is less direct, as it may depend on disease and nearby

agriculture, forests, etc.

Possible Causes of MND:The causal mechanisms of MND are complex, but there are multiple

factors that likely influence MND, including environmental (e.g., forest presence), epidemiological

(e.g., malaria), and socio-economic factors. One of the primary environmental factors studied for its

impacts onMND is forests. Generally, research indicates that access to forests may improve dietary

diversity. Dietary diversity is an assessment of the range of food groups consumed over a period of
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time that is typically used as a proxy for sufficient nutrient intake278, which is typically measured

using survey responses detailing foods consumed. Forests may directly support dietary diversity, e.g.,

from bushmeat and wild fruits, provide an additional source of income, e.g., through the sale of

forest products, or support crop and livestock production280. A study on children’s diets across

27 developing countries, includingMadagascar, finds that close proximity to forests improved the

household prevalence of Vitamin A- and iron-rich foods by 11% and 16%, respectively244. Ickowitz

et al. 132 , one of the most similar studies to ours, analyze dietary diversity, fruit and vegetable con-

sumption, and animal source food consumption in children using satellite data such as tree cover,

road location, climate, and urban population information.

As an example of socioeconomic factors, Koppmair et al. 161 show that access (as measured by

distance) to food markets in Malawi plays an important role in supporting dietary diversity, par-

ticularly for farm households. Markets may directly provide food, and/or may provide additional

sources of income for local residents through agricultural and livestock production sales, which can

indirectly improve dietary diversity. Agriculture, livestock, and water supply also play an important

role in health and nutrition50. We further discuss the impact of socioeconomic status onMND in

the Appendix*.

While these methods imply that satellite data can contribute towards predicting MND, dietary

diversity depends only on foods consumed, which may be directly observable from satellite imagery

(e.g., crops or forests). Biomarkers may involve further subtleties, such as individual characteristics

or disease. We use additional features as a result.

*https://bit.ly/MND-IAAI2022
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Figure 7.1: Regions studied in Madagascar (left), known (center) and predicted (right) markets in these regions.

7.3 Data Description

Ground Truth Data: Ground truth data were collected by Golden et al. 110 in 2017-2018 in four

distinct ecological regions in Madagascar, denoted as the Central Plateau (CP), Southwest (SW),

Southeast (SE), andWest Coast (WCO) (see Fig. 7.1). CP is at a high elevation, SW is arid, SE is a

mid-altitude rainforest, andWCO is seasonally dry.

In this paper, we will focus on the survey responses and biomarker data from blood samples that

were collected in Golden et al. 110 . Surveys were provided to individuals in households, small groups,

and more. In total, responses were collected from 6292 individuals from 1125 households within

24 communities in CP, SE, SW, andWCO. Biomarker levels from blood draws were also collected

from a subset of these individuals. We denote the set of individuals by p ∈ {0, 1, ..., P}. Each

individual has an underlying MND state, dp, based on a biomarker level,m, that is thresholded by t,

derived from public health literature. Therefore, individual p has dp = 1 ifm < t and 0 otherwise.

After combining data from blood draws with surveys and household GPS locations, we have 2458
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Figure 7.2: Illustration of using satellite data, which is first normalized and registered, as features to predict MND.
Compare to pixel‐level labels derived from individual MND statuses. In this illustration, both predictions are correct.

samples.

During this data collection process, Golden et al. 110 followed all procedures to minimize the

risk to local populations involved as subjects in the study, as detailed in our approved IRB protocol

from the Harvard T.H. Chan School of Public Health (IRB16-0166). This included gaining in-

formed consent for all study-related protocols, including the future cross-referencing of biological

data with remotely sensed data products to improve the targeting of public health responses. To

briefly summarize this process, a community meeting was held to explain the study using speeches.

The research team then visited sampled households to invite individuals to participate. The prospec-

tive participants were provided more information if they expressed interest. Furthermore, data are

de-identified to limit the risk of breaches of confidentiality, and we followHarvard IRB protocols

to further minimize risk. Gaining informed consent does not automatically alleviate concern of data

misuse and inadvertent consequences; nevertheless, we took all necessary precautions to protect

human subjects in the study. Please see Golden et al. 110 for further details.

Satellite Data: Based on the causes of MND in RelatedWork, we select publicly available satellite

data, much of which is derived from raw satellite imagery, e.g., using machine learning. We provide

a full description of features, including collection time (∼ 2017), in the Appendix, but two we use

include livestock population density255 and weather200.
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Once we collect these features (in the form of images) at the sites of clinical data collection, we

resample the images to a uniform resolution of about 25x25 m for one pixel, at a size of 308x308

pixels. This provides us with 23 images total with 86 features each (as image bands). After collect-

ing all satellite data, we normalize each feature to within [0, 1], regardless of whether it was binary,

categorical, or continuous. We then do imputation by taking the nearest neighbor if there are any

missing data in the feature.

7.4 ProblemDescription and Aggregation

Given the values from satellite data for a pixel as input, our goal is to predict MND presence (classi-

fication) or prevalence (regression) in that pixel as the output. Ground truth labels are derived from

biomarkers in blood samples.

Define Grid with Satellite Data: More specifically, we represent the input, i.e., the satellite data,

via a multidimensional image array, S. There are 23 S in our dataset, as the ecological regions are

large. Therefore, we add an overall image index, Sl,r, where r represents the current region, and l rep-

resents the image index within that region. Each Sl,r is indexed by i for rows (y-axis), j for columns

(x-axis), and k (z-axis) for features, i.e., the individual satellite data features such as forest cover,

weather, and presence of water.

Aggregation to Link Data: To link the two data sources, we rely on locations. Each p (individual,

see Data Description) is associated with some gp, a geographic coordinate. Each Sl,ri,j is associated

with a set of geographic coordinates,Gl,r
i,j . We may now find the set of individuals, Pl,ri,j , whose lo-

cations fall within each pixel, such that gp ∈ Gl,r
i,j . We find their underlying MND states, dp, to

calculate MND prevalence, the percentage of individuals who have MND as defined by biomarker
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levels. This prevalence, vl,ri,j , is our label:

vl,ri,j =

∑
p∈Pl,ri,j

dp

|Pl,ri,j |
, (7.1)

where |Pl,ri,j | =
∑

p∈Pl,ri,j
1 is the cardinality of set Pl,ri,j . We may threshold vl,ri,j for a classification task,

or predict the explicit value directly as a regression task. Please see Fig. 7.2 for an illustration. In our

dataset, this leads to 300-500 pixel labels, which is only about 0.02% of pixels.

Formally, our goal is to train a region-specificMLmodel frω(·) parameterized by ω for each of the

4 ecological regions, where given input training data Sl,ri,j in the training set, the model is optimized

to minimize the discrepancy between prediction v̂l,ri,j = frω(S
l,r
i,j ) (see Fig. 7.2) and the ground truth

label vl,ri,j : minω ESl,ri,j∈Srtr
D(v̂l,ri,j , v

l,r
i,j )whereD(v̂l,ri,j , v

l,r
i,j ) could be, e.g., mean squared error (MSE) for

regression, or cross-entropy (CE) for classification. ESl,ri,j∈Srtr
is an expectation taken over all pixels in

the training set Srtr in region r, for each micronutrient. We assume the data are i.i.d.

7.5 PredictionMethodology

Market Detection: As discussed in RelatedWork, the presence of markets is an important factor

for MND.We would consequently like to add markets as an extra feature on top of the existing

satellite data products. Yet, it is difficult to know where all markets are located inMadagascar. We

only know of those specifically mentioned during the focus group surveys conducted in Golden

et al. 110 .

To add this, we therefore start by comparing the knownmarket locations from the survey data

responses with satellite data, and infer that the number of buildings within town clusters and the

proximity to roads may be used as predictors of market presence in Madagascar. Specifically, we

determine empirically that 20 buildings and one road within about 0.8 km2 are highly indicative of

market presence.
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In order to apply these thresholds in an automatic market detection pipeline, we first have to lo-

cate roads and buildings. While OpenStreetMap (OSM)† provides building and road segmentation

data, it is not always complete. This is especially true in our regions of interest. As a result, we train a

satellite image-based segmentation model.

For ground truth data to train this segmentation model, we use nearby OSM building labels

where they are more complete. In particular, for each of the four regions in Madagascar, we automat-

ically identify the closest densely-clustered OSM building labels to the knownmarket locations.

These labels are saved to the building segmentation training set, along with high-resolution images

from the Google Maps Static API‡. For each region, the training dataset contains roughly 100-200

training images and at least 500 corresponding OSM building labels across all images. Each individ-

ual image has 600x600 pixels, with a 0.46 m resolution.

For the building segmentation model, we use a U-Net convolutional network256 with a ResNet-

34 encoder pretrained on ImageNet. The U-Net architecture, originally developed for biomedical

image segmentation, is commonly used for satellite image segmentation, and is particularly use-

ful for training on smaller training sets such as the sparse OSM building label data. The satellite

image training set is augmented with random flips, rotations, and resizes. Binary cross entropy is

used as the loss function, and we use the Adam optimizer with a learning rate of 1e-2. The model

is trained using a batch size of 16. Results are shown in Fig. 7.1. The building segmentation model

and thresholding achieves 0.86 precision in detecting the ground-truth markets from survey data.

We include these as features in our data by drawing radii of multiple distances around each market,

so that pixels in this layer represent the number of markets within a certain radius. We create these

radii masks given healthcare center coordinates130 as well, bringing us to 90 total features. While

we focus on markets here, this segmentation process could be applied to generate other satellite image-

†www.openstreetmap.org
‡developers.google.com/maps/documentation/maps-static
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based features that do not already exist, such as custom landcover maps.

K-Medoids-based Feature Selection: It is helpful to have many features, but not all features are

necessarily informative. The risk of overfitting when using all 90 features can be large when dealing

with limited data. A straightforward idea is to use knowledge from domain experts to select only fea-

tures that are most important for predicting MND in a particular region. However, this introduces

two more issues. First, the feature importance of different regions may vary drastically due to differ-

ent ecologies. In Madagascar, for example, certain agriculture, such as pulses, are only present and

predictive of MND in some regions. It would require a significant amount of manual work to spec-

ify the set of important features for each area. Second, the causal mechanisms behindMND are not

fully understood. Therefore, it is critical to come up with an automatic feature selection procedure

that effectively filters out uninformative features with minimal manual effort.

We start by removing any features that are always 0 throughout the full dataset (i.e., Si,j,k =

0, ∀i, j), leading to 69 features. We then use the K-medoids clustering method232 to group highly

correlated features. Each point in our space is a vector of individual pixel values in an image (repre-

senting a feature), such that the dimension of the space is the number of pixels. We use Pearson’s

correlation coefficient as the distance metric between features. Similar to K-means clustering, K-

medoids clustering also aims at partitioning the data points (i.e., features) into different clusters.

Both minimize the sum of distances between points labeled to be in the same cluster and a point

designated to be the center of that cluster. However, K-means uses the central position (centroids)

as the designated point, while K-medoids uses a point that actually exists in the set of data points

(i.e., an existing satellite data feature). As such, we are able to use the medoid feature to represent the

group of correlated features, preserving interpretability.

We post-process the image data, selecting the 300-500 (0.02%) ground truth pixels to form a

feature matrix.

Prediction with Logistic Regression: We first use a simple but effective logistic regression model.
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We choose logistic regression as one of the underlying MLmodels in this paper, due to its following

advantages. First, it has fewer weights compared to other models such as deep neural networks, and

therefore is less prone to overfitting. This is particularly important given the limited amount of data

we have and the high-dimensional feature space. Second, it is interpretable by itself (as shown in ex-

periments, e.g., Fig. 7.5), where the weights ω of different features directly indicate the importance

of the features in determining the prediction outcome. Moreover, compared to post-hoc model-free

explanation methods such as LIME251 and SHAP187, which only provide instance-level explana-

tions, the weights of logistic regression models imply feature importance at an aggregated level,

which we show could provide important insights to public health experts. We primarily focus on

region-specific prediction for tailored interpretation and results, but we also train using all regions’

training data combined and predict on each regions’ test set, which we call Naively Combined.

Prediction with Multi-layer Perceptron and Domain Adaptation: Another strategy to address

limited training data is domain adaptation129, which allows us to use data from all 4 ecological re-

gions as follows: The target domain is the region of Madagascar in which we are making our predic-

tions. The source domains are the other 3 regions, which we would like to use for augmentation.

We project all 4 into a domain-invariant latent representation with a single hidden layer (5 neurons)

and the loss function:

l = α ∗ lsrc + ltgt + λ ∗ ltransfer (7.2)

where lsrc and ltgt are the binary cross-entropy loss in the source and target domains. ltransfer is the

CORAL loss279 between the source and target domains. α and λ are hyperparameters, and are

tuned to be 0.1 and 0.01, respectively, out of {0.01, 0.1, 1, 10}. Finally, we predict on the target

domain test set.

147
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Figure 7.3: Comparison of survey‐based (with or without feature selection) and satellite data‐based MND prediction by
regions. Experimental results. Fig. 7.3a: Iron deficiency, Fig. 7.3b: Vitamin B12 deficiency, Fig. 7.3c: Vitamin A
deficiency.

7.6 Results

We present experimental results using 4-fold cross-validation (i.e., data from one region are broken

into 4 folds). Due to the limited amount of data, it is impractical to have more folds. We primarily

report Area Under the Curve - Receiver Operating Characteristics (AUC-ROC, or AUC in short)

to evaluate the MND classification tasks, and discuss recall in the Appendix. Note that we only

report the mean AUC values averaged over the 4 folds as the standard deviation becomes trivial for

only 4 folds. All data collection and experimentation rely on the default, free resources on Google

Colab§, and training for all 4 folds takes less than 1 minute in general for both logistic regression and

§https://colab.research.google.com
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Figure 7.4: Comparison feature selection methods, including removing any features without data, human expert feature
selection, and our K‐medoids method, all in region WCO.

domain adaptation.

a) Is our prediction accurate? We compare with predictions made by survey data only, as is similar

to prior work such as132. The results are shown in Fig. 7.3. For survey data, we tested two versions,

the original, full amount of data, and a version with one simple level of feature selection. In this

case, we selected features which we believed could reasonably be seen or inferred from satellite data.

When comparing both survey-based predictions with our satellite data-based predictions, we can

see that satellite data-based prediction is better in i) all 4 regions for iron, ii) 3 out of 4 regions for

Vitamin B12, and iii) 2 out of 4 regions for Vitamin A. Where it does not outperform survey-based

predictions, it performs comparably with significantly lower cost. Across all of the 4 regions and all

of the 3 types of nutrients, the AUC value is higher than 0.6 in 10 cases¶, and is close to 0.5 for the

other 2 cases. Meanwhile, the F1 scores of our predictions are on average 0.6 (ranging up to 0.9) and

are also comparable to those based on surveys. Satellite data-based regression results are comparable

to survey-based regression. Therefore, we consider our predictions accurate.

b)Which features are important forMND prediction? As logistic regression is considered an

¶Please note that some of these statistics may slightly fluctuate, e.g., 9 instead of 10 cases sometimes.
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Feature Description Frequency
Chicken population density 9
Cattle population density 8
Net shortwave radiation flux 7
Presence of market within 7.5 km 6
Soil moisture in 100 - 200 cm underground 6
Soil temperature in 10 - 40 cm underground 5
Near surface wind speed 4
Surface pressure 4
Fire (temperature of pixel) 4
Presence of market within 3.75 km 3

Table 7.1: Frequency of each feature appearing in either the top 3 positive or negative coefficients. The 10 (out of 21)
features with the highest appearance frequencies are shown.

inherently interpretable model, we focus our analysis on the weights of each variable, particularly

those whose absolute values are largest. First, we build an “important features” list. For each region-

specific model and each micronutrient (in total 3 × 4 = 12 cases), we record the features with the

top 3 highest positive weights and negative weights. We aggregated statistics on the number of times

that each feature appears in these “important features” lists in Table 7.1. From this, we observe that

market features are very important, with market presence within 7.5 km with 6 appearances, and

within 3.75 km with 3 appearances. We also observe other interesting trends, including that more

forest fires are linked to greater rates of Vitamin A and B12 deficiency in the SE region (rainforest),

but not in other regions that are less reliant on forest products, which may be a useful insight for

public health experts. Fig. 7.5 illustrates this pattern for Vitamin A in SE.

c) How does the automatic feature selection perform? To evaluate the performance of automatic

feature selection (FS), we compare with two baselines. First, we consider the case where there is no

feature selection apart from removing features which are completely zero (i.e., no data) (Satellite Re-

move 0 FS). We also compare with expert feature selection, in which a public health expert examines
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Figure 7.5: Logistic regression weights (x‐axis) for Vitamin A, region SE. Positive numbers mean positive correlation with
MND. Medoid feature names provided (SM: soil moisture).

the features we propose, and groups them based on their knowledge‖. They also select a represen-

tative feature for each of their groups (Satellite Expert FS). Finally, we consider the performance of

our correlation and K-medoids-based algorithm (Satellite Auto FS). We show results for one of the

regions (WCO) due to space limitation, but trends in other regions are similar. We can see that both

Expert FS and Auto FS are better than the case where no FS is used, especially for Vitamin B12. In

all three cases, Auto FS always performs comparably to Expert FS, as it does in other examples that

are not included here, but Auto FS is more scalable.

We also compare the groups that are found by Auto FS and Expert FS. Very interestingly, we find

that in the two methods, 8 out of 21 group centers overlap: banana, cattle, chicken, goat, maize,

presence of markets within 7.5 km, surface pressure, and wind speed. This shows that our method is

choosing features deemed important by a human expert as well. The above results well demonstrate

that our proposed automatic feature selection method is an effective while scalable alternative to

expert feature selection.

d) How do different prediction paradigms compare? We compare the region-specific logistic re-

‖Expert chose 21, which led us to selectK = 21
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Figure 7.6: Comparing AUC of a logistic regression model trained by naively combining training data from all regions, a
multi‐layer perceptron with domain adaptation, and a region‐specific logistic regression model, all in CP.

gression models (Satellite Auto FS), the logistic regression model version that combines training

data from all of the regions (Naively Combined), and multi-layer perceptron with domain adapta-

tion (Domain Adaptation). We present results from region CP. Here, and overall, we find that Vita-

min B12 and Iron achieve better performance using Domain Adaptation, while Vitamin A achieves

better performance using the logistic regression-based Satellite Auto FS or Naively Combined. This

may be because each micronutrient differs slightly in its relevant factors, and factors may vary re-

gionally (e.g., some regions are forested). Clearly, each method works well with limited amounts of

data, but we acknowledge the tradeoffs in interpretability, and a potential lack of robustness in the

model due to limited samples.

7.7 Conclusion andDiscussion

In conclusion, satellite data are viable to use for MND prediction at a public health scale. We pre-

sented a system relying on the aggregation of individual MND states over geographic regions, a

search for relevant features, such as markets, automatic feature selection, which performs compa-

rably to human expert feature selection, and domain adaptation and logistic regression prediction
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models. This system worked well even with limited ground truth biomarker data.

Deployment ConsiderationsWhile our system has not yet been deployed, we would like to em-

phasize several deployment considerations. This methodology would not replace surveys and blood

samples collected among communities. Rather, we believe it should be used to cover gaps in that

data collection, e.g., where data could not be collected, or in between collections. To do this, public

health officials, policymakers, healthcare workers, or individuals can load publicly available, cur-

rent satellite data and apply the existing model, without any survey or blood sample data. We can

then update these models when another data collection occurs. This also applies for deployment in

other countries. We plan to develop a web application to load satellite data at the desired time and

location, and the current proposed model, to provide predictions. We plan to iterate on this with

potential users, including officials from Catholic Relief Services, Médecins Sans Frontières, and the

Ministry of Health in Madagascar. In the meantime, code and satellite data are available**, while

ground truth data are withheld for privacy.

Future Work: We began preliminary experiments into sparse segmentation and spatial aggregation

to further include spatial patterns in the prediction step, but they require further refinement be-

fore deployment. We also encourage the use of custom features, as illustrated with markets. Most

importantly, we believe there is ample room for further research, both in this domain and others

with sparse data, and a great deal of promise for broad application to inform future public health

interventions.

**https://github.com/exb7900/mnd-iaai2022
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8
Envisioning Communities: A Participatory

Approach Towards AI for Social Good

8.1 Introduction

Artificial intelligence (AI) for social good, hereafter AI4SG, has received growing attention across

academia and industry. Countless research groups, workshops, initiatives, and industry efforts tout
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PACT
capabilities approach

participatory approach

concept

realization

Figure 8.1: The framework we propose, Participatory Approach to enable Capabilities in communiTies (PACT), melds the
capabilities approach (see Figure 8.3) with a participatory approach (see Figures 8.4 and 8.5) to center the needs of
communities in AI research projects.

programs to advance computing and AI “for social good.” Work in domains from healthcare to con-

servation has been brought into this category269,309,169. We, the authors, ourselves have endeavored

towards AI4SG work as computer science and philosophy researchers.

Despite the rapidly growing popularity of AI4SG, social good has a nebulous definition in the

computing world and elsewhere114, making it unclear at times what work ought to be considered

social good. For example, can a COVID-19 contact tracing app be considered to fall within this

lauded category, even with privacy risks? Recent work has begun to dive into this question of defin-

ing AI4SG95,191,94; we will explore these efforts in more depth in Section 8.2.

However, we point out that context is critical, so no single tractable set of rules can determine

whether a project is “for social good.” Instead, whether a project may bring about social good must

be determined by those who live within the context of the system itself; that is, the community that

it will affect. This point echoes recent calls for decolonial and power-shifting approaches to AI that

focus on elevating traditionally marginalized populations205,144,174,201,31,312.

The community-centered, context-specific conception of social good that we propose raises its
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own questions, such as how to reconcile multiple viewpoints. We therefore address these concerns

with an integrated framework, called the ParticipatoryApproach to enableCapabilities in com-

muniTies, or PACT, that allows researchers to assess “goodness” across different stakeholder groups

and different projects. We illustrate PACT in Figure 8.1. As part of this framework, we first suggest

ethical guidelines rooted in capability theory to guide such evaluations264,223. We reject a view that

favors courses of action solely for their aggregate net benefits, regardless of how they are distributed

and what resulting injustices arise. Such an additive accounting may easily err toward favoring the

values and interests of majorities, excluding traditionally underrepresented community members

from the design process altogether.

Instead, we employ the capabilities approach, designed to measure human development by fo-

cusing on the substantive liberties that individuals and communities enjoy, to lead the kind of lives

they have reason to value264. A capability-focused approach to social good is aimed at increasing op-

portunities for people to achieve combinations of “functionings”—that is, combinations of things

they may find valuable doing or being. While common assessment methods might overlook new or

existing social inequalities if some measure of “utility” is increased high enough in aggregate, our

approach would only define an endeavor as contributing to social good if it takes concrete steps to-

ward empowering all members of the affected community to each enjoy the substantive liberties to

function in the ways they have reason to value.

We then propose to enact this conception of social good with a participatory approach that in-

volves community members in “a process of investigating, understanding, reflecting upon, estab-

lishing, developing, and supporting mutual learning between multiple participants”273, in order for

the community itself to define what those substantive liberties and functionings should be. In other

words, communities define social good in their context.

Our contributions are therefore (i) arguing that the capabilities approach is a worthy candidate

for conceptualizing social good, especially in diverse-stakeholder settings (Section 8.3), (ii) high-
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lighting the role that AI can play in expanding and equalizing capabilities (Section 8.4), (iii) explain-

ing how a participatory approach is best served to identify desired capabilities (Section 8.5), and

(iv) presenting and discussing our proposed guiding principles of a participatory approach (Sec-

tion 8.6). These contributions come together to form PACT.

8.2 Growing Criticisms of AI for Social Good

As a technical field whose interactions on social-facing problems are young but monumental in

impact, the field of AI has yet to fully develop a moral compass. On the whole, the subfield of AI for

social good is not an exception.

We highlight criticisms that have arisen against AI4SG research, which serve as a call to action to

reform the field. Later, we argue that a participatory approach rooted in enabling capabilities will

provide needed direction to the field by letting the affected communities—particularly those who

are most vulnerable—be the guide.

Recent years have seen calls for AI and computational researchers to more closely engage with the

ethical implications of their work. Green 113 implores researchers to view themselves and their work

through a political lens, asking not just how the systems they build will impact society, but also

how even the problems and methods they choose to explore (and not explore) serve to normalize

the types of research that ought to be done. Latonero 170 offers a critical view of technosolutionism

as it has recently manifested in AI4SG efforts emerging from industry, such as Intel’s TrailGuard

AI that detects poachers in camera trap images, which have the potential to individually identify a

person. Latonero argues that while companies may have good intentions, they often lack the abil-

ity to gain the expertise and local context required to tackle complex social issues. In a related spirit,

Blumenstock 33 urges researchers not to forget “the people behind the numbers” when developing

data-driven solutions, especially in development contexts. De-Arteaga et al. 81 focus on a specific
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subset of AI4SG dubbed machine learning for development (ML4D) and similarly express the im-

portance of considering local context to ensure that researcher and stakeholder goals are aligned.

Also manifesting recently are meta-critiques of AI4SG specifically, which contend that the sub-

field is vaguely defined, to troubling implications. Moore 206 focuses specifically on how the choice

of the word “good” can serve to distract from potentially negative consequences of the develop-

ment of certain technologies, retorting that AI4SG should be re-branded as AI for “not bad”.

Malliaraki 196 argues that AI4SG’s imprecise definition hurts its ability to progress as a discipline,

since the lack of clarity around what values are held or what progress is being made hinders the abil-

ity of the field to establish specific expertise. Green 114 points out that AI4SG is sufficiently vague to

encompass projects aimed at police reform as well as predictive policing, and therefore simply lacks

meaning. Green also argues that AI4SG’s orientation toward “good” biases researchers toward in-

cremental technological improvements to existing systems and away from larger reformative efforts

that could be better.

Others have gone further, calling for reforms in the field to say that “good” AI should seek to

shift power to the traditionally disadvantaged. Mohamed et al. 205 put forth a decolonial view of AI

that suggests that AI systems should be built specifically to dismantle traditional forms of colonial

oppression. They provide examples of how AI can perpetuate colonialism in the digital age, such

as through algorithmic exploitation via Mechanical Turk–style “ghost work”111 or through algo-

rithmic dispossesion in which disadvantaged communities are designed for without being allowed

a seat at the design table. They also offer three “tactics” for moving toward decolonial AI, namely:

(1) a critical technical practice to analyze whether systems promote fairness, diversity, safety, and

mechanisms of anticolonial resistance; (2) reciprocal engagements that engender co-design between

affected communities and researchers; and (3) a change in attitude from benevolence to solidarity,

that again necessitates active engagement with communities and grassroots organizations. In a simi-

lar spirit, Kalluri 144 calls for researchers to critically analyze the power structures of the systems they
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design for and consider pursuing projects that empower the people they are intended to help. For

example, researchers may seek to empower those represented in the data that enables the system,

rather than the decision-maker who is privileged with a wealth of data. This could be accomplished

by designing systems for users to audit or demand recourse based on an AI system’s decision144.

In tandem with these criticisms, there have been corresponding efforts to define AI4SG. Floridi

et al. 94 provide a report of an early initiative to develop guidelines in support of AI for good. Therein,

they highlight risks and opportunities for such systems, outline core ethical principles to be consid-

ered, and offer several recommendations for how AI efforts can be given a “firm foundation” in

support of social good. Floridi et al. 95 later expand on this work by proposing a three-part account,

which includes a definition, a set of guiding principles, and a set of “essential factors for success.”

They define AI4SG as “the design, development, and deployment of AI systems in ways that (i) pre-

vent, mitigate, or resolve problems adversely affecting human life and/or the well-being of the natu-

ral world, and/or (ii) enable socially preferable and/or environmentally sustainable developments.”

Note that this disjunctive definition captures a broad spectrum of projects with widely diverging

outcomes, leaving open still the possible critiques discussed above. However, their principles and

essential factors contribute to establishing rough guidelines for projects in the field, as others have

done293,191 in lieu of seeking a definition.

8.3 The Capabilities Approach

Clearly, AI for social good is in need of a stricter set of ethical criteria and stronger guidance. To

understand what steps take us in the direction of a more equitable, just, and fair society, we must

find the right conceptual tools and frameworks. Utilitarian ethics, a widely referenced framework,

adopts the aggregation of utility (broadly understood) as the sole standard to determine the moral

value of an action292,254.
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According to classic utilitarianism, the right action to take in any given context is whichever

action maximizes utility for society. This brand of utilitarianism seems particularly attractive in

science-oriented circles, due to its claim that a moral decision can be made by simply maximizing an

objective function. For example, in the social choice literature, Bogomolnaia et al. 35 argue for the

use of utilitarianism as “it is efficient, strategyproof and treats equally agents and outcomes.” How-

ever, the apparent transparency of the utilitarian argument obscures its major shortcomings. First,

like the problem of class imbalance in machine learning, a maximizing strategy will bias its objec-

tive towards the majority class. Hence, effects on minority and marginalized groups may be easily

overlooked. Second, which course of action can maximize utility for society overall cannot be deter-

mined on simple cost–benefit analyses. Any such procedure involves serious trade-offs, and a moral

decision requires that we acknowledge tensions and navigate them responsibly.

To take a recent example, the development of digital contact tracing apps in the wake of the

COVID-19 pandemic represented a massive potential benefit for public health, yet posed a seri-

ous threat to privacy rights, and all the values that privacy protects—including freedom of thought

and expression, personal autonomy, and democratic legitimacy. Which course of action will max-

imize utility? It is not just controversial. What verdict is reached will necessarily depend on what

fundamental choices and liberties individuals value most, and which they are willing to forgo. Fur-

thermore, for some groups the losses may be more significant than for others, and this fact requires

due consideration.

A related, though distinct, standard might put aside the ambition of maximizing good and adopt

some threshold condition instead. As long as it generates a net improvement over the status quo,

someone might say, an action can be said to promote social and public good. This strategy raises

three additional problems: first, utility aggregates are insensitive to allocation and distribution; sec-

ond, they are not sensitive to individual liberties and fundamental rights; and third, to the extent

that they consider stakeholders’ preferences, they do not take into account the idea that individuals’
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preferences depend on their circumstances and in better circumstances could have different prefer-

ences264. Why should this matter? Because attempts to increase utility may be too easily signed off as

progress while inflicting serious harm and contributing to the entrenchment of existing inequality.

For this reason, we believe that respect for liberty, fairness of distribution, and sensitivity to in-

terpersonal variations in utility functions should serve as moral constraints, to channel utility incre-

ments towards more valuable social outcomes. Operating within these constraints suggests shifting

the focal point from utility to a different standard. In the spirit of enabling capabilities, we suggest

that such standard should be based on an understanding of the kinds of lives individuals have reason

to value, how the distribution of resources in combination with environmental factors may create

(or eliminate) opportunities for them to actualize these lives, and designing projects that create fer-

tile conditions for these opportunities to be secured.

This reorientation of the moral assessment framework is in line with a view of AI as a tool to shift

power to individuals and groups in situations of disadvantage, as advocated by Kalluri 144 . What

this shift means, in operational terms, is not yet fully elucidated. We therefore hope to contribute

to this endeavor by exploring conceptual tools that may guide developers in the process, providing

intermediate landmarks. We consider “capabilities” to be suitable candidates for this task, as they

constitute a step in the direction of empowering disadvantaged individuals to decide what, in their

view, that shift should consist of.

The capabilities approach, which stands at the intersection of ethics and development economics,

was originally proposed by Amartya Sen andMartha Nussbaum264,224. The approach focuses on

the notion that all human beings should have a set of substantive liberties that allow them to func-

tion in society in the ways they choose224. These substantive liberties include both freedom from

external obstruction and the external conditions conducive to such functioning. The capability set

includes all of the foundational abilities a human being ought to have to flourish in society, such as,

freedom of speech, thought and association; bodily health and integrity; and control over one’s po-
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Figure 8.2: The United Nations Human Development Index (HDI) was inspired by the capabilities approach, which
serves as the foundation of the participatory approach that we propose. The above map from Wikimedia Commons
shows the HDI rankings of countries around the world, where darker color indicates a higher index.
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Figure 8.3: AI for social good research projects can expand and equalize capabilities by fostering individuals’ internal
characteristics, providing external resources, or altering the wider material and social environment, thus creating
capability sets to improve social welfare and fight injustice.
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litical and material environment; among others. The capabilities approach has inspired the creation

of the United Nations Human Development Index (Figure 8.2), marking a shift away from utilitar-

ian evaluations such as gross domestic product to people-centered policies that prioritize substantive

capabilities299.

A capability-oriented AI does not rest content with increasing aggregate utility and respecting le-

gal rights. It asks itself what it is doing, and how it interacts with existing social realities, to enhance

or reduce the opportunities of the most vulnerable members of society to pursue the lives they have

reason to value. It asks whether the social, political, and economic environment that it contributes

to create deprives individuals of those capabilities or fosters the conditions in which they may enjoy

equal substantive liberties to flourish. In this framework, a measure of social good is howmuch a

given project contributes to bolster the enjoyment of substantive liberties, especially by members of

marginalized groups. This kind of measure is respectful of individual liberties, sensitive to questions

of distribution, and responsive to interpersonal variations in utility.

Before discussing the relation between AI and capabilities, we would like to dispel a potential

objection to our framework. The capabilities approach has been criticized for not paying sufficient

attention to groups, institutions, and social structures, thus rendering itself unable to account for

power imbalances and dynamics126,158. This characteristic would make the approach unappeal-

ing for a field that seeks to address injustices in the distribution of power. However, the approach

does indeed place substantial emphasis on conceptualizing the factors that affect (particularly those

which may enhance) individuals’ power. Its emphasis on substantial opportunities is itself a way of

conceptualizing what individuals have the power to do or to be. These powers are determined in

large part by the broader social environment, which includes group membership, inter-group rela-

tions, institutions, and social practices. Furthermore, the approach explicitly focuses on enhancing

the power of the most vulnerable members of society. In fact, the creation and enhancement of ca-

pabilities constitute intermediate steps on the way towards shifting power, promoting the welfare
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and broadening the liberties of those who have been historically deprived. For this reason, it pro-

vides a fruitful framework to assess genuine moral progress and a promising tool for AI projects

seeking to promote social good.

Light discussion of the capabilities approach has begun inside the AI community. Moore 206

references the capabilities approach to call for greater accountability and individual control of pri-

vate data. Coeckelbergh 70 proposes taking a capabilities approach to health care, particularly when

using AI assistance to replace human care, but focuses on Nussbaum’s proposed set of capabili-

ties rather than eliciting desired capabilities from affected patients. We significantly build on these

claims by discussing the potential of AI to enhance capabilities and argue that the capabilities ap-

proach goes hand-in-hand with a participatory approach. Two papers specifically ground their work

in the capabilities approach; we highlight these as exemplars for future work in AI4SG. Thinyane

& Bhat 291 invoke the capabilities approach, specifically to empower the agency of marginalized

groups, to motivate their development of a mobile app to identify victims of human trafficking in

Thai fisheries. Kumar et al. 167 conduct an empirical study of women’s health in India through the

lens of Nussbaum’s central human capabilities.

8.4 AI and Capabilities

The capabilities approach may serve AI researchers and developers to assess the potential impact of

projects and interventions along two dimensions of social progress: capability expansion and dis-

tribution. This section argues that, when they interact productively with other social factors, AI

projects can contribute to equalizing and enhancing capabilities—and that therein lies their poten-

tial to bring about social good. For instance, an AI-based system Visual Question Answering System

can enhance the capabilities of the visually impaired to access relevant information about their envi-

ronment155.
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When considering equalizing and enhancing capabilities, it is important to notice that whether

an individual or group enjoys a set of capabilities is not solely a matter of having certain personal

characteristics or being free from external obstruction. External conditions need also be conducive

to enable individuals’ choices among the set of alternatives that constitutes the capability set224.

This is why these liberties are described as substantial, as opposed to formal or negative. Hence, ca-

pabilities, or substantive liberties, are composed of (1) individuals’ personal characteristics (includ-

ing skills, conditions, and traits), (2) external resources they have access to, and (3) the configuration

of their wider material and social environment142.

Prior work at the intersection of technology and capabilities has addressed the potential of tech-

nology to empower users, by enhancing their capabilities and choice sets. Johnstone 142 proposes

the capabilities approach as a key framework for computer ethics, suggesting that technological

objects may serve as tools or external resources that enhance individuals’ range of potential action

and choice71,156. This is an important role that AI-based technologies may play in enhancing ca-

pabilities: providing tools for geographic navigation, efficient communications, accurate health

diagnoses, and climate forecasts. Technology may also foster the development of new skills, abili-

ties, and traits that broaden an individual’s choice sets. We diagram in Figure 8.3 the relationship

between an AI4SG project on an individual’s characteristics, resources, and environments, and thus

the potential of AI to alter (both positively and negatively) capability sets.

Technological objects may also become part of social structures, forming networks of interdepen-

dencies with people, groups, and other artifacts228,316. When focusing on AI-based technologies, it

is crucial to also acknowledge their potential to affect the social and material environment, which

may render it more or less conducive to secure capability sets for individuals and communities. For

example, AI-based predictive policing may increase the presence of law enforcement agents in spe-

cific areas, which may in turn affect the capability sets of community members residing in those

areas. If this presence increases security from, say, armed robbery, community members may enjoy
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some more liberties than they previously did. And yet, if this acts to reinforce the disparate impact

of law enforcement on members of vulnerable communities, along with other inequalities, then it

may not only diminish the substantive liberties of those individuals impacted, but also alter the way

in which such liberties are distributed across the population.

Assessing this kind of trade-off ought to be a crucial step in evaluating the ability of a particular

project to promote social good. This assessment must be aligned with the kinds of choices and op-

portunities community members have reasons to pursue266. A project should not be granted the

moral standing of being “for social good” if it leads to localized utility increments, at the expense

of reducing the ability of members of the larger community to choose the lives they value. Most

importantly, this assessment must be made by community members themselves, as the following

section argues.

8.5 Community Participation

As Ismail & Kumar 136 contend, communities should ultimately be the ones to decide whether and

how they would like to use AI. If the former condition is met and the community agrees that an AI

solution may be relevant and useful, the latter requires the inclusive design of an AI system through

a close and continued relationship between the AI researcher and those impacted.

This close partnership is particularly important as the gross effects of AI-based social interven-

tions on communities’ capabilities are unlikely to be exclusively positive. Tradeoffs may be forced on

designers and stakeholders; some are likely to be intergroup, and some, intragroup. For this reason,

it is only consistent with the proposed approach that designers consult stakeholders from all groups

on their preferred ways to navigate such tradeoffs. In other words, if PACT is focused on creating

capabilities, it must enable impacted individuals to have a say on what alternatives are opened (or

closed) to them.

166



Moreover, AI projects that incorporate stakeholders’ choices into their design process may con-

tribute to create what Wolff &De-Shalit 318 refer to as “fertile functionings.” That is, functionings

that, when secured, are likely to secure other functionings. Fertile functionings include, though are

not limited to, the ability to work and the ability to have social affiliations. These are the kinds of

functionings that either enable other functionings (e.g. control over one’s environment) or reduce

the risk associated with them.

Projects in AI that create propitious environments and enable individuals to make decisions over

the capability sets they value in turn give those individuals the capability to function in a way that

leads to the creation of other capabilities. If this kind of participatory space is offered to those who

are the most vulnerable, AI could plausibly act against disadvantage, and contribute to shifting the

distribution of power. In this way, the PACT framework is aligned with the principles of Design

Justice in prioritizing the voices of affected communities and viewing positive change as a result of

an accountable collaborative process73.

The PACT framework is also committed to the notion that, when applying capabilities to AI, we

must include all stakeholders, especially vulnerable members of society. But how do we accomplish

this concretely, and how does this affect the different steps in an AI4SG research project? In the

following section, we will first introduce suggested mechanisms of a participatory approach rooted

in capabilities, and then discuss how these come into play in (1) determining which capability sets to

pursue at the beginning of a project, and (2) evaluating the success of an AI4SG system in terms of

its impact, particularly on groups’ sets of substantive liberties.

The approach we propose is diagrammed in Figure 8.4, which embeds community participa-

tion into each stage. By beginning first with defining capability sets, we resist the temptation to

immediately apply established tools to address ingrained social issues, which would only restrict

the possibilities for change184. These participatory approaches constitute bottom-up approaches

for embedding value into AI systems, by learning values from human interaction and engagement
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A Participatory Approach to AI4SG

determine 
desired 

capability sets

evaluate 
success

project design + 
development

Figure 8.4: Our proposed approach to AI4SG projects, where the key is that stakeholder participation is centered
throughout. We do not explicitly comment on the design and development of the project other than calling for the
inclusion of community participation and iterative evaluation of success, in terms of whether the project realized the
desired capability sets.

rather than being decided through the centralized and non-representative lens of AI researchers178.

8.6 Guiding Principles for a Participatory Approach

To direct the participatory approach we propose, we provide the following set of guiding questions,

outlined in Figure 8.5 and elaborated on below. These questions are specifically worded to avoid bi-

nary answers of yes or no. When vaguely stated requirements are put forth as list items to check off,

there is a risk of offering a cheap seal of approval on projects that aren’t sufficiently assessed in terms

of their ethical and societal implications. Instead, we expect that in nearly all cases, none of these

questions will be fully resolved. Thus, these questions are meant to serve as a constant navigation

guide to help researchers regularly and critically reassess their intended work.

We begin our discussion on how a participatory approach to AI4SG would look with our first

guiding question:
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Guiding Principles for a Participatory Approach to AI4SG
How are impacted communities identified? Represented?  
       Including marginalized groups? 

Long-term plans for maintaining work?  

Compensation for their input? Are they valued as partners? 

How to incorporate divergent viewpoints? 

How are concerns addressed?

Determining Capability Sets
What functionings do stakeholders want to achieve? 

What functionings are priority for the most vulnerable? 

Are any of the capability sets fertile? 

Do the values of the project match those of the 
community?

Evaluating AI4SG
How does the new AI4SG system a"ect all stakeholders' 
capabilities, particularly those selected at the start? 

Are any capabilities or functionings negatively a"ected? 

What should the role of an AI researcher be?

Figure 8.5: Guiding principles for the participatory approach we propose. The key message is to center the community’s
desired capabilities throughout, and to ensure that the goals of the project are properly aligned to do so without
negatively impacting other capabilities.

How are impacted communities identified and how are they represented in this process? Who represents

historically marginalized groups?

This question is one of the most important and potentially difficult. As such, we encourage read-

ers to research their domain of interest and seek partners as an important first step, but offer some

advice from our experience. We often consider seeking partners at non-profits, community-based or-

ganizations, and/or (non-)governmental organizations (NGOs), and have even had some experience

with non-profits or NGOs finding us. Finding these groups as an AI researcher may be done with

the help of an institution’s experts on partnerships (e.g., university or company officials focused on

forming external partnerships), prior collaborators or acquaintances, discussions with peers within

an institution in different departments (e.g., public health or ecology researchers), or “cold emails.”

Young et al. 338 provide further guiding questions for finding these partners, particularly in their

companion guide193. In any case, some vetting and research is an important step.

AI researchers may also co-organize workshops, such as a pair of “AI vs. tuberculosis” workshops
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held by some of the authors in Mumbai, India which brought together domain experts, non-profits,

state and local health officials, industry experts, and researchers, identified byMumbai-based collab-

orators who specialize in building relationships across health-focused organizations in India. The

varied backgrounds of the stakeholders at these workshops was conducive to quickly identifying

areas of greatest need across the spectrum of tuberculosis care in India, many of which would not

have been considered by AI researchers alone. Further, these group forums sparked conversations

between stakeholders that often would not otherwise communicate, but that led to initial ideas for

solutions. This highlights that such approaches are often most successful when AI researchers move

out of their usual spheres and into the venues of the domains that their projects impact.

At the inception of a project, the designers and initial partners should together identify all rel-

evant stakeholders that will be impacted by the proposed project, bringing them on as partners or

members of a (possibly informal) advisory panel. Every effort should be made to include at least one

member from each impacted group. If stakeholders were initially omitted and are later identified,

they should then be added. Initial consultation with panel members and partners should be carried

out in a way that facilitates open and candid discussion to ensure all voices are represented and ac-

counted for during the project design phase338. We additionally propose that during the lifetime of

the project, the panel and partners should, if possible, be available for ongoing consultation during

mutually agreed upon checkpoints to ensure the project continues to align with stakeholder val-

ues. Similar practices have been suggested by Perrault et al. 237 , who advocate for close, long-term

collaborations with domain experts. Likewise, the Design Justice network pursues non-exploitative

and community-led design processes, in which designers serve more as facilitators than experts. This

framework is modeled on the idea of a horizontal relation in which affected communities are given

the role of domain experts, given their lived experience and direct understanding of projects’ im-

pact73.

How are plans laid out for maintaining and sustaining this work in the long-term, and how would the
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partnership be ended?

We believe partnership norms should be established at the beginning of the partnership, including

ensuring that the community representatives and experiential experts have the power to end the

project and partnership, in addition to the designers and other stakeholders. As noted byMadaio

et al. 191 , this should also necessitate an internal discussion amongst the research team to decide

what, if any, criteria would be grounds for such a cessation, e.g., if it becomes clear that the problem

at hand requires methods in which the research team does not have sufficient expertise. Discussions

with the broader partners should also lay out the expected time scale and potential benefits and risks

for all involved.

Once the relationship is underway, it should be maintained as discussed, with regular commu-

nication. When a project reaches the point where a potential deployment is possible, we advocate

for an incremental deployment, such as the example of Germany’s teststrecken for self-driving cars,

which sets constraints for autonomy, then expands these constraints once certain criteria are met95.

What kind of compensation are stakeholders receiving for their time and input? Does that compensa-

tion respect them as partners?

Stakeholders must be respected as experiential or domain experts and be considered as partners.

They must be compensated in some way, whether monetarily or otherwise. We advocate for com-

pensation to avoid establishing an approach made under the guise of participatory AI that ends up

being extractive231. One notable drawback to a participatory approach is the potential for these

community interactions to become exploitative if not done with intention, compensation, or long-

term interactions276. Collaborators who have significantly influenced the design or implementation

of a project ought to be recognized as coauthors or otherwise acknowledged in resulting publica-

tions, presentations, media coverage, etc.

How can we understand and incorporate viewpoints frommany groups of stakeholders?

Surveys or voting may seem a natural choice. However, a simple voting mechanism is risky, as it
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may find that a majority of the community favors, for example, building a heavily polluting factory

near a river, while the impacted community living at the proposed site would object that this fac-

tory would severely degrade their quality of life. These concerns from the marginalized group must

be given due weight. This emphasis on the welfare of marginalized groups is based on the premise

that the evaluation of human capabilities must consider individual capabilities223. In short, all in-

dividual capabilities are valuable as ends in their own right; they should never be considered means

to someone else’s rights or welfare. We must, therefore, guard against depriving individuals of basic

entitlements as a means to enhancing overall welfare.

Hence, we endorse a deliberative approach, which aims to uncover “overlapping consensus”246.

This approach is based on the expectation that, in allowing diverse worldviews, value systems, and

preference sets to engage in conversation, with appropriate moderation and technical tools, social

groups may find a core set of decisions that all participants can reasonably agree with. Deliberative

approaches to democracy have been operationalized by programs such as vTaiwan, which uses dig-

ital technology to inform policy by building consensus through civic engagement and dialogue128.

vTaiwan uses the consensus-oriented voting platform Pol.is which seeks to identify a set of common

values upon which to shape legislation, rather than arbitrating between polarized sides289. Simi-

larly, OPPi serves as a platform for consensus building through bottom-up crowd-sourcing179. This

tool is tailored for opinion sharing and seeking, oriented towards finding common ground among

stakeholders.

An alternative to fully public deliberative processes are targeted efforts such as Diverse Voices

panels338 which focus on including traditionally marginalized groups in existing policy-making

processes. Specifically, they advocate for informal elicitation sessions with partners, asking ques-

tions such as, “What do you do currently? What would support your work?”151. They also suggest

considering whether tech should be used in the first place and highlight that a key challenge of par-

ticipatory design is to determine a course of action if multiple participants disagree. We add that it
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remains a challenge to assemble these panels.

Simonsen & Robertson 273 provide multiple strategies as well, particularly with the goal of com-

ing to a common language and fostering communication between groups of experts from different

backgrounds. They suggest strategies to invite discussion, such as games, acting out design propos-

als, storytelling, group brainstorms of what a perfect utopian solution would look like, participatory

prototyping, and probing. In the case of probing, for example, one strategy was to provide partici-

pants with a cultural probe kit, consisting of items such as a diary and a camera, in order to under-

stand people’s reactions to their environments101.

Further, several fields in artificial intelligence have devoted a great deal of thought to learning

and aggregating preferences: preference elicitation60, which learns agent utility functions; compu-

tational social choice47, which deals with truthful agents; and mechanism design271, which deals

with strategic agents. As an example, Kahng et al. 143 form what they call a “virtual democracy” for

a food rescue program. They collect data about preferences on which food pantry should receive

food, then use these preferences to create and aggregate the preferences of virtual voters. The goal is

to make ethical decisions without needing to reach out to stakeholders each time a food distribution

decision needs to be made.

These fields have highlighted theoretical limitations in preference aggregation, such as Arrow’s

impossibility theorem13 which reveals limitations in the ability to aggregate preferences with as

few as three voters, but these results do not necessarily inhibit us from designing good systems in

practice265,198. Such areas provide rich directions for future research, particularly at the intersection

of participatory methods and social science research.

What specific concerns are raised during the deliberative process, and how are these addressed?

Diverse Voices panels338 with experiential experts (both from non-profits and from within the

community) may also be used to identify potential issues by asking questions such as “What mis-

takes could be made by decision makers because of how this proposal is currently worded?” and,
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“What does the proposal not say that you wish it said?” Other strategies we discussed for under-

standing multiple viewpoints may also have a role to play here when tailored towards sharing con-

cerns. However, we also stress the importance of ongoing partnerships with impacted community

members beyond just an initial session. By ensuring that the community has a voice throughout

the project’s lifetime, their values are always kept front-and-center. As others have argued, it is not

sufficient to interview impacted communities once simply to “check the participatory box”276.

8.6.1 Determining Capability Sets

Now, equipped with some guiding questions and concrete examples of a participatory approach,

we will apply these principles directly to selecting capability sets at the outset of an AI4SG project.

To identify what capabilities to work towards, some scholars such as Nussbaum 223 have proposed

well-defined sets of capabilities and argued that society ought to focus on enabling those capabilities.

However, we endorse the view that the selection of an optimal set of capabilities should be based on

community consensus264. We argue that an AI project can only be for social good if it is responsive

to the values of the communities affected by the AI system.

What functionings do members of the various stakeholder groups wish they could achieve through the

implementation of the project?

In the fair machine learning literature, Martin Jr. et al. 197 propose a participatory method called

community-based system dynamics (CBSD) to bring stakeholders in to help formulate a machine

learning problem and mitigate bias. Their method is designed to understand causal relationships,

specifically feedback loops, particularly those in high-stakes environments such as health care or

criminal justice, that may disadvantage marginalized and vulnerable groups. This process is intended

to bring in relevant stakeholders and recognize that their lived experience makes these participants

more qualified to recognize the effects of these interventions. Using visual diagrams designed by
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impacted community members, the CBSDmethod can help identify levers that may help enable or

inhibit functionings, particularly for those who are most vulnerable. Similarly, Simonsen & Robert-

son 273 suggest the use of mock-ups and prototypes to facilitate communication between experien-

tial experts and developers. Other strategies discussed for understanding multiple viewpoints may

also apply if tailored towards determining capabilities.

What functionings are the priority for those most vulnerable? Is there an overlap between their priori-

ties and the goals of other stakeholders?

We need to pay attention to those who are most vulnerable. The capabilities approach may be

leveraged to fight inequality by thinking in terms of capability equalizing. To identify capabilities

that are not yet available to marginalized members of a community, we must listen to their concerns

and ensure those concerns are prioritized, for example via strategies proposed in our discussions on

finding those impacted by AI systems and including multiple viewpoints.

As an example of the consequences of failing to include those most vulnerable throughout the

lifetime of an AI system, consider one of the initial steps of data collection. Women are often ig-

nored in datasets and therefore their needs are underreported86. For example, crash-test dummies

were designed to resemble the average male, and vehicles were evaluated to be safe based on these

male dummies—leaving women 47%more likely to be seriously injured in a crash236. These imbal-

ances are often also intersectional, as Buolamwini & Gebru 55 demonstrate by revealing stark racial

and gender-based disparities in facial recognition algorithms.

Beyond the inclusion of all groups in datasets, data must be properly stratified to expose dispari-

ties. During the COVID-19 pandemic in December 2020, the Bureau of Labor Statistics reported a

loss of 140,000 net jobs. The stratified data reveal that all losses were women’s: women lost 156,000

jobs while men gained 16,000, and unemployment was most severe for Black, Latinx, and Asian

women91. Without accounting for the capabilities of all people affected by such systems, it is diffi-

cult to claim that these technologies were for social good.
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On the other hand, prioritizing the needs of the most marginalized groups may at times offer an

accelerated path towards achieving collective goals. Project Drawdown identified and ranked 100

practical solutions for stopping climate change123. Number 6 on its list was the education of girls,

recognizing that women with higher levels of education marry later and have fewer children, as well

as manage agricultural plots with greater yield. Another solution advocates for securing land tenure

of indigenous peoples, whose stewardship of the land fights deforestation, resource extraction, and

monocropping.

Are any of these capability sets fertile, in the sense of securing other capabilities?

Tomaximize the capabilities of various communities, we may wish to focus on capabilities that

produce fertile functionings, as discussed in Section 8.5. Specifically, many functionings are neces-

sary inputs to produce others; for example, achieving physical fitness from playing sports requires

as input good health and nourishment69. Some of Nussbaum’s 10 central capabilities—including

bodily integrity (security against violence and freedom of mobility) and control over one’s envi-

ronment (right of political participation, to hold property, and dignified work)—may be viewed as

fertile223. Reading, for instance, may secure the capability to work, associate with others, and have

control over one’s environment. AI has the potential to help achieve many of these capabilities. For

example, accessible crowdwork, done thoughtfully, offers the opportunity for people with disabili-

ties to find flexible work without the need for transit347.

How closely do the values of the project match those of the community as opposed to the designers? How

does the focus of the project respond to their expressed needs and concerns? Does the project have the ca-

pacity to respond to those needs?

Consider the scenario where a community finds it acceptable to hunt elephants, while the design-

ers are trying to prevent poaching. There could be agreement on high-level values, such as public

health, but disagreement on whether to prioritize specific interventions to promote public health.

There could even be a complete lack of interest in the proposed AI system by the community.
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At an early stage of a project, AI researchers need to facilitate a consultation method to under-

stand communities’ values and choices. Note that this process could allow stark differences in prior-

ity between stakeholders to surface which prevent the project from starting so as not to over-invest

in a project that will later be terminated because of difference in values. We may consider several of

the strategies we discussed previously in this case, such as deliberative democratic processes, Diverse

Voices panels, or computational social choice methods. It may subsequently be necessary to end the

project if these strategies do not work.

8.6.2 Evaluating AI for Social Good

Once AI researchers and practitioners have a system tailored to these capabilities, we believe that

communities should be the ones to judge the success of this new system. This stage of the process

may pose additional challenges, given the difficulty of measuring capabilities142. Though we do

not here endorse any measurement methodology, various attempts to operationalize the capabilities

approach give us confidence that such methodologies are feasible and may be implemented in the

course of evaluating AI projects11.

First and foremost, we maintain that the evaluation of success should be done throughout the

lifecycle of the AI4SG project (and beyond) as discussed above, especially via community feedback.

However, we wish to emphasize that we as AI researchers need to keep capabilities in mind as we

evaluate the success of AI4SG projects to avoid “unintended consequences” and a short-sighted

focus on improved performance on metrics such as accuracy, precision, or recall.

How does the new AI4SG system affect all stakeholders’ capabilities, particularly those selected at the

start?

This question is related to the literature on measuring capabilities142, and is therefore difficult to

answer. We will aim to provide a few examples, which may not apply well to every AI4SG system,
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nor will it be an exhaustive list of techniques that could be valid. First, based on the idea of AI as

a diagnostic to measure social problems3, we may be able to (partially) probe this question using

data. Sweeney 283 show through ad data that advertisements related to arrest records were more

likely to be displayed when searching for “Black-sounding” names, which may affect a candidate’s

employment capability, for example. Obermeyer et al. 225 analyze predictions, model inputs and

parameters, and true health outcome data to show that the capability of health is violated for Black

communities, as they are included in certain health programs less frequently than white communi-

ties due to a biased algorithm.

There could additionally be feedback mechanisms when an intervention is deployed, whether

via the AI system itself, or possibly by collaborating with local non-profits and NGOs. This may be

especially useful in cases where these organizations are already engaged in tracking and improving

key capabilities such as health outcomes, e.g., World Health Partners62 or CARE international139.

Again, these examples will likely not apply to all cases and opens the door for further, interdisci-

plinary research. However, no matter what strategy is taken, it is imperative that we continue to

center communities in all attempts to measure the effects on stakeholders’ capabilities.

Are other valued capabilities or functionings negatively affected as a result of the project? Are stake-

holders’ values and priority rankings in line with such tradeoffs?

We have a responsibility to actively think about possible outcomes; it is neglect to dismiss negative

possibilities as “unintended consequences”234. These participatory mechanisms should thus ensure

that the perspective of the most vulnerable and most impacted stakeholders is given due consider-

ation. We recognize that this can be especially challenging, as discussed in our first guiding ques-

tion for identifying impacted communities. Therefore, we further suggest that the evaluation of an

AI4SG project should employ consultation mechanisms that are open to all community members

throughout the implementation process, such as the feedback mechanisms suggested previously.

What should my role be as an AI researcher? As a student?
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We believe that AI researchers at all levels should participate in this work. This work involves all

of the above points, including learning about the domain to understand who stakeholders are,

discussing with the stakeholders, and evaluating performance. We also acknowledge that we AI

researchers may not always be the best suited to lead participatory efforts, and so encourage inter-

disciplinary collaborations between computer science and other disciplines, such as social sciences.

A strong example would be the Center for Analytical Approaches to Social Innovation (CAASI) at

the University of Pittsburgh, which brings together interdisciplinary teams from policy, computing,

and social work56. However, AI researchers should not completely offload these important scenar-

ios to social science or non-profit colleagues. It should be a team effort, which we believe will bring

fruitful research in social science, computer science, and even more disciplines.

AI researchers and students can also advocate for systematic change from within, which we dis-

cuss more in depth in the conclusion. Although student researchers are limited by constraints such

as research opportunities and funding, they may establish a set of moral aspirations for their work

and set aside time for people-centered activities, such as mentoring and community-building61.

8.7 Conclusion: Thoughts on AI for Social Good as a Field

In this paper, we lay out a community-centered approach to defining AI for social good research

that focuses on elevating the capabilities of those members who are most marginalized. This fo-

cus on capabilities, we argue, is best enacted through a participatory approach that includes those

affected throughout the design, development and deployment process, and gives them ground to

choose their desired capability sets as well as influence how they wish to see those capabilities real-

ized.

We recognize that the participatory approach we lay out requires a significant investment of time,

energy, and resources beyond what is typical in AI or even much existing AI4SG research. We high-
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light this discrepancy to urge a reformation within the AI research community to reconsider existing

incentives to encourage researchers to pursue more socially impactful work.

Institutions have the power to catalyze change by (1) establishing requirements for community

engagement in research related to public-facing AI systems; and (2) increasing incentives for re-

searchers to meaningfully engage impacted communities while simultaneously producing more

impactful research32.

While engaging in collaborative work with communities can give rise to some technical directions

of independent interest to the AI community81, such a shift to encourage community-focused work

will in part require reconsidering evaluation criteria used when reviewing papers at top AI confer-

ences. Greater value must be placed on papers with positive social outcomes, including those with

potential for impact, if the work has not yet been deployed. Such new criteria are necessary since

long-term, successful AI4SG partnerships often also lead to non-technical contributions, as well as

situated programs which do not focus necessarily on generalizability237. We encourage conferences

to additionally consider rewarding socially beneficial work with analogies to Best Paper awards, such

as the “NewHorizons” award from theMD4SG 2020Workshop, and institutions to recognize

impactful work such as the Social Impact Award at the Berkeley School of Information215.

In the meantime, we suggest that researchers look to nontraditional or interdisciplinary venues

for publishing their impactful community-focused work. These venues often gather researchers

from a variety of disciplines outside computer science, opening the door for future collaborations.

For example, researchers could consider COMPASS, IAAI, MD4SG/EAAMO4, the LIMITS work-

shop212, and special tracks at AAAI and IJCAI, among others. Venues such as the Computational

Sustainability Doctoral Consortium and CRCS Rising Stars workshop bring students together

frommultiple disciplines to build relationships with each other. Researchers could also consider

domain workshops and conferences, such as those in ecology or public health.

The incentive structure in AI research is often stacked against thoughtful deployment. Whereas
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a traditional experimental section may take as little as a week to prepare, a deployment in the field

may take months or years, but is rarely afforded corresponding weight by reviewers and committee

members. This extended timeline weighs most heavily on PhD students and untenured faculty

who are evaluated on shorter timescales. We should thus reward both incremental and long-term

deployment, freeing researchers from the pressure to rush to deployment before an approach is

validated and ready.

In addition to the need for bringing stakeholders into the design process of AI research, we must

ensure that all communities are welcomed as AI researchers as well. Such an effort could counter-

act existing disparities and inequities within the field. For example, as is the case in other academic

disciplines, systemic anti-Blackness is ingrained in the AI community, with racial discrepancies in

physical resources such as access to a secure environment in which to focus, social resources such as

access to project collaborators or referrals for internships, and measures such as the GRE or teacher

evaluations118. Further, as of 2018, only around 20% of tenure-track computer science faculty were

women261. To combat these inequities, people across the academic ladder may actively work to

change who they hire, with whom they collaborate, including collaborations with minority-serving

institutions166, and howmuch time they spend on service activities to improve diversity efforts118.

The above reformations could contribute greatly to making the use of participatory approaches

the norm in AI4SG research, rather than the exception. PACT, we argue, is a meaningful new way

to answer the question: “what is AI for social good?” We, as AI researchers dedicated to the ad-

vancement of social good, must make a PACTwith communities to find our way forward together.
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9
Conclusion

To conclude, I believe that it is very important to take a holistic view of the AI for social impact

pipeline, from gathering and analyzing data, to multi-agent reasoning, to deployment. The holistic

view allows us to identify areas with uncertainty, and plan to account for that in other portions

of the pipeline. This requires us to use multiple methodologies throughout. I have given several

examples, including machine learning, domain adaptation, and game theory, to name a few. The

holistic view also allows us to acknowledge the role of humans in these systems, which requires us to
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not only reason about human behavior, including through human subject experiments, but also to

be more inclusive as we design and deploy these systems.

My vision going forward is to use this holistic view of AI for social impact systems to support

local communities, including domain and experiential experts and those impacted by systems, in

addressing difficult challenges, particularly in areas like conservation, public health, and education.

Technically, I believe AI for social impact is dependent on systems with efficient data analysis and

strategic reasoning, while accounting for humans-in-the-loop and other real-world challenges such

as uncertainty. There are several open questions I will pursue to achieve these goals:

Multi-modal and limited data: It can take a vast amount of human effort to collect real-world

data, yet there are ever-increasing amounts of data in a multitude of modalities. I strive to lessen the

amount of human effort required to curate datasets, an endeavor I have begun with VIOLA39, by

leveraging multiple modalities and data augmentation, as I have started with thermal data37,38,40

andMND prediction with satellite data36. In an ongoing project, I am building an active learning

methodology to strategically collect labeled data while incorporating important real-world criteria

such as fairness, and multiple imaging modalities such as thermal, RGB, and Lidar. Further work

on semi-supervised learning and theoretical work on strategically collecting data via multi-armed

bandits and reinforcement learning, like my prior work on allocation42,303,328, is also important.

Human-AI collaboration: Given the important, often safety-critical role that AI systems for

social impact may assume, humans remain a vital part of deployed systems. Humans may play differ-

ent roles in such systems, for example providing inputs, being affected by outputs, making decisions

from recommendations, or relying on AI recommendations until some uncertainty arises, as in the

case of selective prediction. Existing work in AI largely ignores these varied forms of interaction, and

often makes simplifying assumptions when modeling human behavior, such as rationality assump-

tions. As such, there remain a plethora of questions in how humans and AI systems can collaborate,

especially to complement one another. I aim to expand my work in selective prediction41 to model
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human-AI interactions over time, e.g., as humans grow tired or accustomed to the system, and to

consider bounded rationality in new human-AI systems.

Deployment: In my immediate next steps, I aim to enact the PACT framework43. This will

require building further community partnerships, and conducting research to best address the prac-

tical challenges in using PACT, such as finding consensus among stakeholders, supporting expedi-

tious issue reporting, and respecting stakeholders’ autonomy and privacy in AI systems. I believe

that this also requires contributing to an education system where everyone, including those from

historically underrepresented groups, can pursue their interests, and will also continue my efforts

with Try AI as a result.

Overall, I believe that AI has a great deal of potential for positive impact in the world, but I be-

lieve that we must work together with people frommany fields and backgrounds, including domain

experts, students, and those impacted by AI systems, to ensure that AI is truly an opportunity for

humanity.
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A
Appendix to Chapter 1

A.1 EFG and POMDP

We first discuss in more detail how we exploit the structure of our game and provide a scalable algo-

rithm by extending the use of coverage probabilities and multiple LPs, instead of using an EFG. The

game tree is shown in Fig. A.1. Our approach solves at most 8N LPs withO(N + |E|) constraints

andO(N + |E|) variables, where E is the defender pure strategy set. Using the EFG approach, the
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size of the game tree isO(N · 4l · |E|), where l is the number of drones. The EFGmultiple LPs ap-

proach therefore solves exponentially more LPs, each with a much larger size than ours. One might

also consider using a POMDP to model the movement of the defender from allocation to a new re-

action target with the unobservable state being whether an adversary is present or not. However, a

POMDPmodel does not capture all of the intricacies due to strategic game interactions. For exam-

ple, it does not account for the fact that the adversary will choose a location to attack rationally.
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Figure A.1: Game tree illustrating defenders’ (D) allocation, signaling, and reaction steps, as well as those of the
adversary (A) and nature (N) (uncertainty). Level (a) is the initial defender deployment, (b) is the adversary choice of
target, (c) is the detection (with uncertainty), (d) is the defender signaling, (e) is the adversary’s observation (with
uncertainty), (f) is the adversary’s decision to run away or not, (g) is when players receive payoffs.

A.2 Omitted Proofs in Section 1.4

Proposition 1. Let χ∗0 = χ∗(0) be the defender optimal deployment when no uncertainties exist.

There exist instances whereDefEU(χ∗0, γ) < DefEU(χ∗(γ), γ) for some γ.

Proof. We prove by constructing such an instance. Consider the graph in Fig. A.2 with 4 targets,

1 human patroller, and 2 sensors. The adversary chooses one target to attack. A successful attack

gives the adversary utility of+2 and defender utility of−5, whereas catching the adversary yields

adversary utility−1 and defender utility 0. If the adversary chooses not to attack after observing a

signal from the sensor, both the adversary and the defender receive 0.
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t1 t2 t3

t4

Figure A.2: Diagram of detection uncertainty example.

If sensors have perfect detection (γ = 0), we can place the human patroller at t2, place the two

sensors at t1 and t3 respectively, and match the patroller to t4. Thus, we cover all targets with prob-

ability 1. When we observe the adversary, we will always send the strong signal (σ1) to ensure the

adversary will run away. Therefore, the adversary is better off not attacking, yielding utility of 0 for

both.

To see how a false negative detection can affect the solution quality, we now consider the case

with γ = 0.5. If we use the same strategy but with imperfect detection, the adversary can attack t1 or

t3 successfully with probability 1/2 (when the adversary does not observe a warning signal σ1), and

run away with probability 1/2 (when the adversary observes the signal σ1). The defender’s expected

utility isDefEU(·) = 1
2(0) +

1
2(−5) = −

5
2 = −2.5.

We want to show the optimal strategy when γ = 0.5. First, we will always have a patroller at t2.

We will always have one drone at t1 and we will have another drone at t3 with probability 6/9 and

at t4 with probability 3/9. We will match the patroller to t1 with probability 2/9; t3 with probabil-

ity 3/9 (1/9 when there’s sensor, 2/9 when there’s nothing); t4 with probability 4/9 when there’s

nothing. We will first calculate defender expected utility at t1, t2 and t4. At target t1, the adversary

always observe a sensor, with probability 7/9 it’s state s− and with probability 2/9 it’s state s+.

Thus AttEU(t1) = 2/9 · (−1) + 7/9 · (1 − γ)(−1) + 7/9 · γ · (2) = 1/6, thus the adversary

will attack. For target t2 the adversary will always get caught, so he won’t attack. For target t4, if he

observes nothing, he will get caught with probability 4/9
4/9+2/9 = 2/3, so he will not attack when he

observes nothing. If he observes a drone, he will only get caught with probability (1− γ), thus gains

utility of γ · 1/3 = 1/6.
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Consider the following signaling scheme at t3. If we detect an adversary or the state is matched,

then we will send σ0, if we don’t detect and state is not matched we will send signal with marginal

probability ϕs− = 7/18. If the adversary does not observe a drone, he will not attack. If he observes

a drone with σ0, then the adversary expected utility is ((1 − γ) · 2/3) · (−1) + γ · 1/9 · (−1) + γ ·

7/18 · (2) = 0. Thus the adversary only attacks when he observes σ1 this happens with probability

1/12, thus the adversary gets expected utility of 2 · 1/12 = 1/6. Since we are getting attacked with

probability 1/12, the defender expected utility is now−5 · 1/12 = −0.416 thus doing getting better

expected utility by considering uncertainty.

With optimal deployment, we can get a defender expected utility of−0.416 when γ = 0.5. This

example shows that when the detection uncertainty does not exist, a very simple deployment yields

the optimal expected utility. However, this strategy is no longer optimal when detection uncertainty

is present. Therefore, we need to consider detection uncertainty and compute the new optimal

solution.

Theorem 1. DefEU(χ∗(γ), γ) ≥ DefEU(χ∗(γ′), γ′) for any γ′ > γ in any problem instance.

Proof. Let χ∗γ = χ∗(γ). Throughout the proof, we assume no observational uncertainty. Assume

for the contradiction that defender expected utility strictly increases as detection uncertainty in-

creases, i.e.,DefEU(χ∗γ , γ)<DefEU(χ∗γ+ε, γ + ε) for some ε. Let ψ and ϕ be the corresponding

signaling variables from χ∗γ+ε.

Consider the following new variables χ′ and ψ′ = (1−γ−ε)ψ+εϕ
1−γ , and let all other variables be the

same as χ∗γ+ε. First, note that ψ
′θ =

(1−γ−ε)ψθ+εϕθ
1−γ ≤ (1−γ−ε)xθ+εxθ

1−γ = xθ, for all θ ∈ {s+, s−, s̄};

therefore, all variables are feasible. Thus, we haveDefEU(χ′, γ) ≤ DefEU(χ∗γ , γ) < DefEU(χ∗γ+ε, γ+

ε). Furthermore, consider an augmented strategy where when we observe an adversary at state ψ′s−,
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with marginal probability ϕs−, we ignore the detection, thus make the target uncovered. Note that

this strategy is still feasible, and makes our defender expected utility lower.

Now, we will calculate the defender expected utility when the defender allocates security re-

sources according to χ′. We can decompose the expected utility by different signals, i.e. DefEU(χ′, γ) =∑
ω∈{n,σ0,σ1}DefEU(χ

′, γ|ω), whereDefEU(χ′, γ|ω) is the defender expected utility given state ω.

First, note thatDefEU(χ′, γ|n) stays the same as detection uncertainty changes. Thus, we will only

look atDefEU(χ′, γ|σ0) andDefEU(χ′, γ|σ1).

DefEU(χ′, γ|σ0)

= (1− γ) · (ψ′s+Ud
+ + ψ′s−Ud

+ + ψ′̄sUd
−)

+ γ · (ϕs+Ud
+ + ϕs−Ud

− + ϕs̄Ud
−)

≥ (1− γ − ε) · (ψs+Ud
+ + ψs−Ud

+ + ψs̄Ud
−)

+ ε(ϕs+Ud
+ + ϕs−Ud

− + ϕs̄Ud
−) (by our augmented strategy)

+ γ · (ϕs+Ud
+ + ϕs−Ud

− + ϕs̄Ud
−)

= (1− γ − ε) · (ψs+Ud
+ + ψs−Ud

+ + ψs̄Ud
−)

+ (γ + ε) · (ϕs+Ud
+ + ϕs−Ud

− + ϕs̄Ud
−)

= DefEU(χ∗γ+ε, γ + ε|σ0)

We also want to show thatDefEU(χ′, γ|σ1) = DefEU(χ∗γ+ε, γ + ε|σ1). Recall that they are both

0 because the adversary will run away. Then, we haveDefEU(χ′, γ) ≥ DefEU(χ∗γ+ε, γ + ε) >

DefEU(χ∗γ , γ). This contradicts χ
∗
γ is an optimal solution.

Proposition 2. χ∗(γ) differs from χ∗(γ′) for any γ′ > γ when xs−t is nonzero for χ∗(γ′), where target

189



t is the adversary best responding target in χ∗(γ′).

Proof. Suppose for contradiction that χ is an optimal solution for bothDefEU(χ, γ) andDefEU(χ, γ+

ε). Consider χ′ that is obtained same way as previous proof. i.e. ψ′ = (1−γ−ε)ψ+εϕ
1−γ and all other vari-

ables stays the same.

NoteDefEU(χ′, γ) is strictly bigger thanDefEU(χ, γ + ε) if ψs−, xs− − ψs−, ϕs− or xs− − ϕs− is

non-zero. In other words, if xs− is nonzero, theDefEU(χ′, γ) > DefEU(χ, γ + ε), thus contradicts

DefEU(χ, γ) is an optimal solution.

Proposition 3. There existsΠ such that the loss due to ignoring observational uncertainty is arbitrar-

ily large. In other words,DefEU(χ∗(γ0,Π), γ0,Π) -DefEU(χ∗(γ0,Π0), γ0,Π) > M, ∀M > 0.

Proof. Wewill show an example where the new signaling strategy is arbitrarily better than the naive

signaling strategy. Consider the following example. We have 10 targets, 1 human patroller, and 8

sensors.

t c1 t

t

t

tc2t

t

t

The optimal allocation strategy is to allocate sensors in all t’s, allocate the human patroller in

one of the center vertices (c1, c2) uniformly at random, and match to the other center vertex. For

all targets, utility is defined as the following, for some arbitrarily bigM. Note that the adversary’s

expected utilities for attacking c1 and c2 are both 0.

covered uncovered

Adversary −1 1+ ε

Defender 0 −M
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Consider the following uncertainty matrix. Let r0 = 1−ε
1+ε · (1− 2ε′), for some ε′ > 0.

Pr[ω̂|ω] ω = n ω = σ0 ω = σ1

ω̂ = n 1 1− r0 ε′

ω̂ = σ0 0 r0 1− 2ε′

ω̂ = σ1 0 0 ε′

Let rp be the probability of state p, let rn be the probability of state n+ and n−, and let rs+ and r̄s

be the probability of the state s+ and s− and s̄, respectively. Let ro = 1
1+ε (the optimal signaling

strategy ignoring uncertainty). In this strategy, the adversary attacks when he observes state n and

σ0. Therefore, η̄ = [1, 1, 0] is the vector that depicts adversary behavior in this case.

DefEU(ro)

= Ud
+rp + Ud

−rn + Ud
−r̄s(1− rn)η̄ · Pr[ω̂|ω = σ0]

+ Ud
−r̄s(rn)η̄ · Pr[ω̂|ω = σ1] + Ud

+rs+η̄ · Pr[ω̂|ω = σ1]

= − 1
2
− M− 1

2
(1− ε′) ≤ −M− 2

2
(1− ε′)

Let rn = ε′ be the new signaling strategy. Let η′ be the new adversary’s attacking vector. Observe the

adversary will only attack when he observes state n. Therefore, η′ = [1, 0, 0].

DefEU(rn)

= Ud
+rp + Ud

−rn + Ud
−r̄s(1− rn)η′ · Pr[ω̂|ω = σ0]

+ Ud
−r̄s(rn)η′ · Pr[ω̂|ω = σ1] + Ud

+rs+η′ · Pr[ω̂|ω = σ1]

= −M
2
(1− ε′)(1− M− 2

M
(1− 2ε′))− M

2
ε′ε′

≥ −(1− ε′)− M
2
ε′ε′
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For 0 < ε′ < 1/M, we get the gap ofO(M).

Theorem 2. For any fixed deployment χ, if the adversary’s best response is (t, 0) or (t, 1) at the Stackel-

berg equilibrium withΠ0, then it stays as an equilibrium for anyΠ′.

Proof. The proof of Theorem 2 follows from this Lemma:

Lemma 1. For any fixed χ, if (t, 1) (or (t, 0)) is a best response for the adversary atΠ0, then (t, 1) (or

(t, 0)) is also a best response for allΠ′, for anyΠ′ ̸= Π0.

Proof. The proof of the Lemma follows from the following two claims. LetDefEU(χ, t, η,Π)

be the defender’s expected utility when she plays the deployment χ. We add t and η to the typical

notation to represent that the adversary’s strategy is to attack twith behavior η, and the observa-

tional uncertainty matrix is Π. There is no detection uncertainty. We use a similar notation for

AttEU(χ, t, η,Π). Let us also index ηwith ω̂ ∈ Ω as ηω̂, and reference η for a target, i, as ηi, for a

final notation of ηω̂i . For example, to reference the adversary behavior for ω̂ = n and target i, we can

write it as ηni .

Claim 1. For any χ, t, η, AttEU(χ, t, η,Π′) ≤ AttEU(χ, t, η∗0,t,Π0), where η∗0,t is the best response

whenΠ = Π0.

Proof. Let AttEU(ω) = Pr[ω]AttEU(χ, t, 1) be the adversary’s expected utility when true signaling
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state is ω and the adversary attacks the target t.

AttEU(χ, t,η,Π′) =∑
ω̂∈Ω

ηω̂ ·

(∑
ω∈Ω

Pr[ω̂|ω]AttEU(ω)

)

=
∑
ω∈Ω

AttEU(ω)

(∑
ω̂∈Ω

ηω̂ Pr[ω̂|ω]

)

≤
∑
ω∈Ω

AttEU(ω) · 1 (AttEU(ω) ≥ 0)

≤ AttEU(χ, t, η∗0,t,Π0) (Note Π0 means Pr[ω̂|ω] = 1 for all ω̂ = ω)

Where 1(·) is an indicator function, 1(·) = 1 if the corresponding expression is true, and 1(·) = 0

otherwise. Note that AttEU(χ, t, η,Π′) ≤ AttEU(χ, t, η,Π0) is not true. Consider a Πi which is

some permutation matrix of I.

Claim 2. For any χ and t, the adversary’s expected adversary utility stays the same for anyΠ if

the adversary behavior is 1 or 0. In other words, AttEU(χ, t, 1,Π′) = AttEU(χ, t, 1,Π0) and

AttEU(χ, t, 0,Π′) = AttEU(χ, t, 0,Π0).

Corollary 1. We also haveDefEU(χ, t, 1,Π′) = DefEU(χ, t, 1,Π0) andDefEU(χ, t, 0,Π′) =

DefEU(χ, t, 0,Π0).

Proof. If η = 1 then
∑

ω̂∈Ω ηω̂ Pr[ω̂|ω] = 1 for all ω ∈ Ω independent of Π. Therefore, we get

AttEU(χ, t, a,Π) =
∑

ω∈Ω AttEU(ω) independent of Π, and the claim holds.

Similarly, if η = 0 then
∑

ω̂∈Ω ηω̂ Pr[ω̂|ω] = 0 for all ω ∈ Ω independent of Π.

Exactly the same argument holds for calculatingDefEU(·).
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By combining the two claims we get the following: AttEU(χ, t, η∗0,t,Π0) = AttEU(χ, t, 1,Π0) =

AttEU(χ, t, 1,Π′) ≥ AttEU(χ, t, η,Π′), thus we get (t, 1) as a best response for Π′, for any Π′ and

χ.

This shows if (t, 1) or (t, 0) is a Stackelberg equilibrium, the defender can safely deploy the same

strategy for any uncertainty matrix Π′, without any loss in her expected utility.

Theorem 3. If (t, 1) is a best response forΠκλμ and χ is a weak-signal-attack deployment, then (t, 1) is

a best response forΠκ′λ′μ′ and χ for all κ′ ≥ κ, λ′ ≥ λ, μ′ ≥ μ.

Let AttEU(ω̂) = Pr[ω̂]AttEU(χ, t, 1) be the adversary’s expected utility when observed signaling

state is ω̂ and the adversary attacks the target t.

Proof. We have ησ1 = 1, which impliesAttEU(ω̂ = σ1) ≥ 0 because of our Π structure. Therefore,

increasing λ or μ only increasesAttEU(ω̂ = n) and AttEU(ω̂ = σ0), respectively. This implies

AttEU(ω̂ = n) and AttEU(ω̂ = σ0) stays positive. Therefore, the adversary behavior also stays the

same, when we increase λ or μ.

Since χ is a weak-signal-attack deployment, we knowAttEU(ω̂ = σ0) ≥ 0. Therefore, increasing

κ only makes AttEU(ω̂ = n), and AttEU(ω̂ = σ0)more positive; therefore, the adversary behavior

stays as 1.

Proposition 4. There always exists an optimal solution that is a weak-signal-attack deployment with

Π0.

Proof. Suppose for contradiction there does not exist an optimal solution that is a weak-signal-

attack deployment. Then, consider the optimal solution χ∗ with the least number of non-weak-

signal-attack targets. By the assumption, we knowAttEU(σ0) < 0 for some target t. Fix an arbitrary

target t that is a non-weak-signal-attack target.
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Then, we knowAttEU(σ0) = Ua
+(t) · (ψs+ + ψs−) + Ua

−(t) · (ψs̄) < 0. SinceAttEU(σ0) < 0

and Π = Π0, we know the adversary is not attacking when he observes σ0. Also, sinceAttEU(·) is

strictly negative, we know ψs+ or ψs− is strictly greater than 0.

Consider the new deployment χ where we can decrease ψs+ and/or ψs− until AttEU(σ0) =

0. Since the adversary is still not attacking when he observes σ0 (recall we break ties in favor of the

defender), the defender expected utility stays the same. Furthermore, this change only increases

xs+ − ψs+ and xs− − ψs−. Thus,DefEU(σ1) also only increases. Our new χ is therefore still an

optimal solution and t is now a weak-signal-attack target. Thus, it contradicts the assumption that

χ∗ is the optimal solution with the least number of non-weak-signal-attack targets.

A.2.1 Handling Observational Uncertainty

The problem uses a similar linear program as for the case without observational uncertainty:
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max
x,ψ,ϕ

Ud
-s(t) + Ud

σ1(t) + Ud
σ0(t) (A.1)

s.t.
∑

e∈E:ei=θ
qe = xθi ∀ θ ∈ Θ, ∀ i ∈ [N] (A.2)∑

e∈E
qe = 1 (A.3)

qe ≥ 0 ∀ e ∈ E (A.4)

Ua
ω̂(ψi, ϕi, xi) ≤ bω̂i ∀ω̂ ∈ Ω, ∀i ̸= t (A.5)

0 ≤ bni 0 ≤ bσ0i 0 ≤ bσ1i ∀i ̸= t (A.6)

Ua
-s(t) + Ua

σ1(t) + Ua
σ0(t)

≥ xpi · Ua
+(i) + bni + bσ0i + bσ1i ∀ i ̸= t (A.7)

0 ≤ ψθi ≤ xθi ∀ θ ∈ {̄s, s−, s+}, ∀ i ∈ [N] (A.8)

0 ≤ ϕθi ≤ xθi ∀ θ ∈ {̄s, s−, s+}, ∀ i ∈ [N] (A.9)

(2ηω̂t − 1) · Ua
ω̂(ψt, ϕt, xt) ≥ 0 ∀ ω̂ ∈ Ω (A.10)

However, here the utility functions need to be redefined in order to take observational uncertainty

into account. We define paω(i) =
∑

ω̂∈Ω ηω̂i · Pr[ω̂|ω] as the probability of the adversary attacking

target i given the true signaling state is ω ∈ Ω.

1. Ud/a
-s (i) = xpi ·U

d/a
+ (i)+xn+i ·U

d/a
+ (i)·ηni +xn−i ·U

d/a
− (i)·ηni is the expected defender/adversary

utility of target i being attacked over states when i has no sensor (p, n+, n−). This is nearly

the same as the version with only detection uncertainty, but we must include the η since an

adversary may run away when there is nothing when we consider observational uncertainty.

2. Ud/a
σ0 (i) = (1− γ) · paσ0(i) · [ψ

s+
i ·U

d/a
+ (i) + ψs−i ·U

d/a
+ (i) + ψs̄i ·U

d/a
− (i)] + γ · paσ0(i) · [ϕ

s+
i ·

Ud/a
+ (i) + ϕs−i · U

d/a
− (i) + ϕs̄i · U

d/a
− (i)] is the defender/adversary expected utility when the
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adversary attacks target i and the defender signals σ0. This has the added paσ0(i) compared to

the version with only detection uncertainty.

3. Ud/a
σ1 (i) = (1 − γ) · paσ1(i) · [(x

s+
i − ψs+i ) · Ud/a

+ (i) + (xs−i − ψs−i ) · Ud/a
+ (i) + (x̄si − ψs̄i) ·

Ud/a
− (i)] + γ · paσ1(i) · [(x

s+
i − ϕs+i ) · Ud/a

+ (i) + (xs−i − ϕs−i ) · Ud/a
− (i) + (x̄si − ϕs̄i) · U

d/a
− (i)]

Nowwe will define the adversary observational expected utility of any signaling state ω̂ ∈ Ω. Let

Ud/a
σj (i, ηω̂i =1) beU

d/a
σj (i)with ηω̂i =1 and η

ω̂′
i = 0 ∀ω̂ ̸= ω̂′ and j ∈ {0, 1}.

4. Ud/a
ω̂ (ψi, ϕi, xi) = Pr[ω̂|n] · [xn−i · U

d/a
− (i) + xn+i · U

d/a
+ (i)] + Pr[ω̂|σ0] · Ud/a

σ0 (i, ηω̂i =1) +

Pr[ω̂|σ1] · Ud/a
σ1 (i, ηω̂i =1) is the adversary observational expected utility. This is used in (A.5)

and (A.10).

The set of constraints (A.2) - (A.4) enforce the randomized allocation is feasible, as in the version

with only detection uncertainty. The set of constraints (A.5) - (A.7) ensure target t is the adversary’s

best response. b variables ensure adversary’s utilities are nonnegative. The set of constraints (A.8)-

(A.9) ensure the marginal probabilities of signaling (ψ and ϕ) are valid. Lastly, constraint (A.10)

ensures η is a valid adversary behavior. In other words, if ηω̂t is zero, then the adversary observational

expected utility should be negative, otherwise the adversary utility should be positive.

A.3 Experimental Results

In Fig. 1.3e, we show the probability of a fake signal given that a warning signal is used. Equation

A.11 describes this fully. This is then averaged over all of the targets, and finally averaged over 20

random graphs, as summarized in Equation A.12.
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Plot p-values
1.3a p ≤ 3.457e−16 forN ≥ 14
1.3b p ≤ 2.579e−3 at 40 ≤ N ≤ 90
1.3c p ≤ 1.421e−03 for γ ≥ 0.2
1.3d p ≤ 0.058 for γ ≥ 0.4

1.3e p = 2.167e−22 when
comparing γ = 0 and γ = 0.9

1.3f
1 vs. 2: p ≤ 1.371e−04 for γ ≤ 0.7
2 vs. 3: p ≤ 2.852e−02 for γ ≤ 0.7
1 vs. 3: p ≤ 1.984e−05 for γ ≤ 0.8

1.3g
p ≤ 6.661e−02 at γ = 0.3
No difference at γ = 0.5
p ≤ 1.727e−07 at γ = 0.8

Table A.1: p‐values for results in Fig. 1.3 in the main paper.

P(fakesignal|σ1)(i) =

γ · [(xs+i − ϕs+i ) + (xs−i − ϕs−i ) + (x̄si − ϕs̄i)]
(1− γ) · [(xs+i − ψs+i ) + (xs−i − ψs−i ) + (x̄si − ψs̄i)]+

γ · [(xs+i − ϕs+i ) + (xs−i − ϕs−i ) + (x̄si − ϕs̄i)]

(A.11)

1
G

1
N

G∑
j=1

N∑
i=1

P(fake signal|σ1)(i) (A.12)

The p-values for the experimental results are summarized in Table A.1. Fig. 1.3h does not have

a p-value because it is based solely on the graph illustrated in Fig. 1.4, and the utilities described in

Section A.4.
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A.4 Conservation Drones

A.4.1 Utilities

The utilities used for the experiment in Section 1.7 are included in Table A.2. We construct this

payoff matrix to reflect the fact that the reward and penalty of the adversaries are impacted by the

following features: number of animals, distance to various park features such as boundary, rivers,

and roads (some of the features used in105 to predict poaching activity), and price.

To arrive at specific values, we first chose locations of interest near the park boundary, rivers, and

roads in a region of the park known for the presence of animals. The park and specific coordinates

are withheld to protect wildlife. We then measured the distances from the locations of interest to

the closest rivers and roads, and the park boundary. The locations were ranked for each of these dis-

tances (e.g., node 6 is closest to the river and node 9 is farthest from the river, whereas node 9 is clos-

est to a road and node 4 is farthest from a road). Next, a weighted average of these ranks was taken

for each node to estimate the attractiveness of the node to animals (e.g., elephants), with weights

of 0.8, 0.1, and 0.1 for distance to river, boundary, and road, respectively, according to the intu-

ition that water matters most to animals. This was ranked from 1 to 10, with 10 being the best node

for animals, and this served as a proxy for the number of animals at that node (e.g., 10 animals at

node 6). To determine the relative poaching attractiveness for the adversary, the weighted average

rank was calculated from the number of animals, and the river, boundary, and road distances, with

weights of 0.7, 0.05, 0.15, and 0.1, respectively. This is based on the intuition that animals are the

most important factor, but ease of reaching the location and getting away quickly is also a factor

(e.g., nodes 6 and 7 are most attractive, while node 9 is least attractive).

We finally take elephants as an example animal, and use the price of ivory (approximately $40,00048),

the approximate monetary benefit of ecotourism ($1.6 million239), and an elephant poaching fine

($20,000275) to assign values to each of the 10 nodes. The defender payoffs are related to the eco-
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Node Udu Udc Uau Uac
0 -3200 29 120 -20
1 -12800 55 320 -20
2 -8000 42 240 -20
3 -6400 38 160 -20
4 -4800 33 80 -20
5 -11200 51 280 -20
6 -16000 64 400 -20
7 -14400 59 400 -20
8 -9600 46 200 -20
9 -1600 24 40 -20

Table A.2: Utilities for Fig. 1.3h and Fig. 1.4 in the main paper.

tourism benefits of elephants – if the node is uncovered, it is related to the full amount, whereas if

it is covered, it is related to an amount for one day. The adversary payoffs are related to the price of

ivory, the attractiveness of a target, and the fines associated with a covered target. Given historical

data, it may be possible to learn these values in the future from historical data106, or possibly from

park ranger knowledge119.

A.4.2 Other False Negative Rates

We include results in Fig. 1.3h for a single γ = 0.3, but the relationship varies with γ as we have seen

in the rest of Fig. 1.3. We include several other examples here for γ = 0, γ = 0.1, γ = 0.5, γ = 0.7,

and γ = 0.9 in Figs. A.3a, A.3b, A.3c, A.3d, A.3e, respectively. At low values of γ, there is a small

gap between ignoring detection uncertainty and GUARDSS, as expected, which indicates that it

may be acceptable to ignore detection uncertainty at that point. However, as γ increases, the gap

becomes wider, and ignoring detection uncertainty even becomes worse than a random allocation.

The gap between no drones and GUARDSS also decreases as γ increases, meaning it becomes less

beneficial to use drones under higher uncertainty, as seen in Fig. 1.3g.
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Figure A.3: Case study results for multiple values of γ: Fig. A.3a has γ = 0, Fig. A.3b has γ = 0.1, Fig.A.3c has
γ = 0.5, Fig. A.3d has γ = 0.7, Fig. A.3e has γ = 0.9.
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B
Appendix to Chapter 2

In this Appendix, we will provide additional details on the Serengeti dataset, choosing the deferral

model, and further details regarding the human experiment and results.
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B.1 Serengeti Dataset

B.1.1 Data Details

The Serengeti dataset is made up of animals, both adult and young, in the wild. Behaviors labeled

in the dataset include standing, resting, moving, eating, and interacting. In addition, there may

be some images with humans captured accidentally. We removed images that had been previously

labeled to include humans, but there is a possibility that there are humans that were missed by pre-

vious labelers. For reference, the animal species captured include Grant’s gazelles, reedbuck, dik dik,

zebra, porcupine, Thomson’s gazelles, spotted hyena, warthog, impala, elephant, giraffe, mongoose,

buffalo, hartebeest, guinea fowl, wildebeest, leopard, ostrich, lion, kori bustard, other bird, bat eared

fox, bushbuck, jackal, cheetah, eland, aardwolf, hippopotamus, striped hyena, aardvark, hare, ba-

boon, vervet monkey, waterbuck, secretary bird, serval, topi, honey badger, rodents, wildcat, civet,

genet, caracal, rhinoceros, reptiles, zorilla.

There are a variable number of human labels per image, as labels are collected until consensus is

reached. All images have at least 5 labels, so we sample 5 randomly for each image. From the sam-

pled data, we calculate the mean Cohen’s kappa value to be 0.886, meaning very high agreement on

a scale of -1 to 1. In fact, individual humans achieve 0.973 accuracy compared to consensus. While

consensus is not guaranteed to be correct, Swanson et al. 282 show that on a gold standard dataset

in which experts and many crowdsourced contributors label images, there was 96% agreement. We

note that because some images were labeled in groupings of three due to the capture pattern and

assigned the same labels for all, there may be some instances where one of the images is blank as the

animal moves out of frame. From a random sample of 400 images, only 3 were mislabeled in the

training set as containing animal species when there did not appear to be any present. These were

when, out of the three pictures taken, an animal moved out of the camera’s field of view in (usually)

the last image.
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B.1.2 DeferralModel Details

Our deferral model’s objective function maximizes accuracy. Specifically, we define this as a weighted

combination of sensitivity, the accuracy based on ground truth positive examples, and specificity,

the accuracy based on ground truth negative examples. The weights to get the standard measure of

accuracy are typically the number of positive and negative examples, respectively, but we allow them

to be tuned to achieve different tradeoffs if desired. In our case, we choose a model based on weight-

ing sensitivity and specificity of the composite model equally in the objective function, at 0.5 each.

Fig. 3 in the main paper is generated by modifying the penalty of withholding between -0.5 and -0.1,

inclusive, by -0.1.

We choose the point which achieves a deferral rate of 0.01. At a deferral rate of 0.01, if one SD

card containing 5k images is processed at a time, about 50 images are deferred to a human. With

about 20 SD cards per month, this leads to about 1000 images for human review, compared to 109k.

At about 5-10 seconds for the difficult images, and 1 second for the easy images, this means that we

ask for a maximum of about 3 hours of human time, compared to 302 hours.

Using this model, out of about 150k images in the Serengeti test set, a total of 1297 images are

deferred, with 603 images containing animals and 694 empty images. We find some degree of com-

plementarity, in that model accuracy on non-deferred images is 0.978, but 0.577 on deferred images.

Furthermore, we mostly defer on empty images, as humans tend to get images containing animals

incorrect (in the 15990 cases out of about 150k in which they are incorrect).

B.2 Human Experiment Details

We provide details of the ethical review in the ethics statement of the main paper. Further details are

included below.
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Comparison Mean Values Statistics (all significant)
DO vs. NM 61.9, 58.4 t(197) = 3.8, p < 0.001

DO vs. model alone (chance) 61.9, 50 t(197) = 15.4, p < 0.001
deferral status vs. no deferral status 60.4, 57.4 F(1, 197) = 18.9, p < 0.001

prediction vs. no prediction 57.8, 60.2 F(1, 197) = 9.07, p = 0.003
Conformity score> 0 0.08, 0 t = 5.22, p < 0.0001

Conformity score for low> high confidence 0.116, 0.045 t = 2.54, p = 0.014
PO vs. other conditions (model incorrect) 41.9, 50.6 t(197) = 23.9, p < 0.001

Model correct vs incorrect (ims in NM and DO) 66.3, 50.5 F(1, 39) = 2.19, p < 0.05
Agreement where model correct vs. incorrect 69.6, 44.9 t = 2.82, p = 0.007

Table B.1: Summary of statistical results from human subject experiments.

B.2.1 Eligibility Criteria

We required participants to be consenting adults over 18 years old with intermediate-advanced En-

glish skills and good physical and mental health. Participants were requested from the UK and the

US to increase the likelihood of intermediate-advanced English skills. Tasks were offered to workers

via Prolific, an online automated system. Participants could abandon the task at any time. Domain

experts were recruited by email.

B.2.2 Survey

We provide a link to one randomized version of the survey: https://bit.ly/SPM-Survey-AAAI2022.

B.2.3 Additional Results Details

Finally, we summarize our statistical findings from the main paper in Table B.1, and provide the full

ANOVA in Table B.2.
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F Value Num DF Den DF Pr> F
deferral status 18.9446 1.0000 197.0000 0.0000
prediction 9.0790 1.0000 197.0000 0.0029

model correct 859.1269 1.0000 197.0000 0.0000
deferral status:prediction 0.7850 1.0000 197.0000 0.3767

deferral status:model correct 2.3091 1.0000 197.0000 0.1302
prediction:model correct 12.5286 1.0000 197.0000 0.0005

deferral status:prediction:model correct 54.7870 1.0000 197.0000 0.0000

Table B.2: Full 2x2x2 ANOVA Results.
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C
Appendix to Chapter 6

C.1 Dataset Additional Details

C.1.1 Noise andOcclusion Annotations

We handled noise and occlusion labels through a mixture of manually identifying these situa-

tions and automatically processing existing labels. We automatically considered labels to be oc-

cluded/occluding when the IoU is greater than 0.3. We also automatically considered frames to
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be noisy if there were a few missing labels in an object track, and interpolated missing labels. We use

interpolation because, particularly in the case of ghosting or motion blur, the true bounding box is

difficult to pinpoint due to noise. We provide examples of noise and occlusion annotations from

this process in Fig. C.1 and Fig. C.2, respectively. We used the red labels in each case to represent

normal animal labels, while the blue labels (in the middle frames) represent the animals with noise

or occlusion. The separate distinction allows these cases to be used or discarded as needed depend-

ing on the task, whether object detection, tracking, etc.

C.1.2 Simulated Data

We added a lion to the simulation. We used 38 (311 K) for temperature in summer, 39 (310 K) for

temperature in winter295, and 0.98 for emissivity199. Object IDs and species labels for all objects

of interest in the simulation were collected by using individual segmentation IDs corresponding to

the actor name for each object. Videos were generated by following objects of interest with various

offsets (sometimes within videos to break the smooth motion), camera angles, seasonality, and al-

titudes. Finally, if there was a small object along the border of an image, it was removed if less than

100 pixels in area. There is no noise in these synthetic data.

Figure C.1: Consecutive frames from a video in the dataset showing noise. Blue colored labels are noisy labels, while red
are normal animal labels.
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C.2 Additional Experiments

C.2.1 Detections

Table C.1 contains the results for two of the detection models on the proposed dataset, BIRDSAI,

with ResNet124 as the base model (instead of VGG16 results shown in Table 2 in the main paper),

and the same experimental setup as described in Section 5.1 of the main paper. SSD and Faster-

RCNNwith ResNet perform better in some cases compared to VGG16, but overall, and especially

for Faster-RCNNwith weighted cross entropy, VGG16 outperforms ResNet.

Table C.2 (extension of Table 3 in the main paper, including the same Syn→Real row for easy

reference) tabulates the performance baselines for detection in the unsupervised, semi-supervised

and supervised domain adaptation setting. We still use the architecture fromDomain Adaptive

Faster-RCNN64, but we include labeled real data at train time. The columns corresponding to FR-

CE and FR-WCE are the standard Faster-RCNN trained over a training set that is a union of the

synthetic and any available labeled real data (e.g., at 0% real data, it is only trained with synthetic

data, while at 50% real data, all synthetic data is used plus half of the labeled real data). The columns

for DA-FR-CE and DA-FR-WCE, on the other hand, indicate that in addition to the domain adap-

tive losses (image and instance level), the available labeled real data is also used to compute the label

prediction loss included in the Domain Adaptive Faster-RCNN setting. We used three settings by

Figure C.2: Near‐consecutive frames from a video in the dataset showing occlusion. Blue colored labels are occlusion
labels, while red are normal animal labels.
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Scale FR-WCE (ResNet) SSD (ResNet)
SA 0.202 0.137
MA 0.442 0.368
LA 0.884 0.886

Animals 0.616 0.569
SH 0.149 0.172
MH 0.193 0.214
LH 0.106 0.195

Humans 0.142 0.196
Overall 0.403 0.390

Table C.1: Detection performance baseline using the mAP metric for different scales ((S)mall, (M)edium, (L)arge) of
objects ((A)nimals, (H)umans) in the dataset with ResNet as the base model.

Configuration DA-FR-CE DA-FR-WCE FR-CE FR-WCE
Syn→Real 0.443 0.459 0.309 0.313

Syn→Real (50% Sup. DA) 0.466 0.474 0.384 0.398
Syn→Real (100% Sup. DA) 0.522 0.518 0.448 0.472

Table C.2: Detection performance baselines using synthetic data. The mAP metric is reported.

using 0%, 50%, and 100% of the labeled real data to the training set of the synthetic data. All exper-

iments were performed with VGG16 as the backbone network for 10 epochs with a batch size of

1, as well as an initial learning rate of 1e-4, a decay of 0.1 after a step of 4 epochs, and optimization

with SGD. This table confirms that the synthetic data brings value despite the visible domain shift

with respect to the real data. Unsupervised Domain Adaptation techniques help in improving per-

formance, but using labeled real data improves the mAP results by over 10%. We expect BIRDSAI

to be helpful in the development of more powerful unsupervised and semi-supervised domain adap-

tation techniques for object detection.

Species Recognition

We also annotated animal species in the real video frames where possible. The annotations were

based on prior expert knowledge, as well as shape information. There were four different species
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Species Human Elephant Lion Giraffe Dog Unknown
# bboxes 34001 83799 1244 12566 2709 21848
# frames 14959 13349 792 2242 2709 6804
mAP 0.068 0.305 0.004 0.142 0.002 0.237

Table C.3: Species label statistics and detection performance with Faster‐RCNN on the real videos. The reported mAP
values are computed over the test set.

apart from humans in the real dataset, and one label for unknown. We used these data to train

Faster-RCNN (without weighting) with a total of six different classes. The annotation statistics

and the test mAP are reported in Table C.3, with performance being loosely related to the number

of examples and typical size of objects (e.g., there are many elephant examples, and these are typically

large). There is room for improvement in all cases.

C.2.2 Tracking

Single Object Tracking

The comparison of SOT performance on perfect subsequences and full sequences (defined in Sec. 5.2

in the main paper) is included again in Table C.4 across different tracking algorithms - ADNet*,

ECO†, Siamese RPN‡ andMCFTS§ - for ease. We show single object tracking (SOT) performance

over the perfect subsequences and full sequences using the standard tracking metrics in Fig. C.3 and

Fig. C.4, respectively.

We observe that Siamese RPN175 performs very poorly on SOT in BIRDSAI. The Siamese RPN

has been shown to work well in the visible spectrum and relies on visual one-shot detection in the

current frame using an exemplar template. This approach seems to work poorly in the BIRDSAI

dataset, likely given the limited textural details and poor resolution in the images due to the ther-

*https://github.com/hellbell/ADNet
†https://github.com/martin-danelljan/ECO
‡https://github.com/songdejia/Siamese-RPN-pytorch
§https://github.com/QiaoLiuHit/MCFTS
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Method Perfect Subsequences Full Sequence
Precision AUC Precision AUC

ECO 0.8103 0.5430 0.4842 0.2972
AD-Net 0.8029 0.5331 0.4545 0.2546
MCFTS 0.7194 0.4946 0.3401 0.1886

Siamese RPN 0.0073 0.0093 0.0041 0.0048

Table C.4: Single Object Tracking Evaluation. Precision is at 20 pixels. “Perfect subsequences” excludes noisy/occluded
frames, while “Full sequence” includes them.

mal infrared sensing modality, and the sometimes large camera motion. ECO79 also relies on some

appearance-based cues and correlation filtering. However, it additionally learns a compact Gaussian

Mixture Model (GMM)-based generative model of the target object and captures a diverse set of

representations. Like Siamese RPN,MCFTS181 also relies on deep convolutional networks, but it

performs much better than the Siamese RPN in all cases. Because MCFTS uses convolutional fea-

tures from a pre-trained network to form an ensemble of correlational trackers, we conjecture that

the ensemble-based approach helps improve performance for weak trackers. AD-Net339 is trained

using a reinforcement learning-based approach where a convolutional neural network is trained as

the policy function. The state is comprised of the cropped bounding box-based region of interest

from the previous frame and a historical sequence of actions, where the actions capture the motion

of the object’s bounding box, e.g., left, right, far right, scale up/down, etc. The performance im-

provements of AD-Net possibly arise from the fact that it uses a history of actions, which captures

the object motion from the last several frames.

The trackers that perform well on the perfect subsequences deteriorate when tested on full se-

quences. This performance drop is evident from the success and precision plots in Figs. C.3 and C.4.

In most real-world scenarios, the sequences will be affected by noise, occlusions, the object leaving

the frame and other such interruptions.
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Figure C.3: Success and precision plots for the SOT with benchmark algorithms on perfect subsequences.

Figure C.4: Success and precision plots for the SOT with benchmark algorithms on the entire set of full sequences.
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Method Object Size MOTA MOTP

IoU Tracker
(GT det.)

S 61.6 100.0
M 91.3 98.9
L 80.6 100.0

MDP
Tracker (GT
init.)

S 21.6 75.9
M 54.6 84.1
L 75.8 90.8

Table C.5: Multiple Object Tracking Evaluation. IoU tracker is given ground truth detections (GT det.), while an
off‐the‐shelf MDP‐based multi‐object tracker is initialized using the ground truth detections (GT init.). S, M, L represents
small, medium, and large objects, respectively.

Class FR-CE FR-WCE YOLOv2 SSD DA-FRCE DA-FRWCE
Animals 0.188 0.204 0.074 0.058 0.112 0.117
Humans 0.177 0.186 0.032 0.092 0.107 0.142
Overall 0.181 0.192 0.044 0.089 0.110 0.129

Table C.6: Cross‐Dataset Detection performance evaluation using the mAP metric.

Multi Object Tracking

Table C.5 tabulates the results obtained by trackers in the MOT setting, including results for IoU

tracker provided in the main paper for easier reference. Off-the-shelf MDP322 underperforms the

IoU tracker, when the latter is provided with ground truth detections.

C.2.3 Cross-Dataset Evaluation

We also provide results trained using the LTIR dataset27, as this was one of the most visually similar

datasets to BIRDSAI. The results of cross-dataset detection on all of the baseline detectors as well as

the domain adaptive detectors is shown in Table C.6. Based on these results, we conclude that the

BIRDSAI dataset is substantially different than27. Moreover, based on the results in the previous

sections, we can also conclude that it is sufficiently challenging by itself.
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D
Appendix to Chapter 7

D.1 Additional Data Details

D.1.1 Satellite Data

We used the data shown in Table D.1. We acknowledge the use of data and/or imagery fromNASA’s

Fire Information for Resource Management System (FIRMS) (https://earthdata.nasa.gov/

firms), part of NASA’s Earth Observing System Data and Information System (EOSDIS).
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Feature Collection Time Google EE
Livestock Population Density255 2010

Crop Cover323 2015
Elevation214 2000 ✓

Fire107 2016 ✓
Fishing Hours165 2016 ✓
Forest Cover270 2017 ✓
Forest Change121 2017 ✓
Landcover53 2017 ✓

Nighttime Lights89 2017 ✓
Population Density68 2015 ✓
Presence of Water235 1984-2019 ✓

Weather200,213 2017 ✓
Crop Production135 2017

Markets110 2017-2018
Healthcare Sites130 2020

Table D.1: Satellite data sources, collection time, and availability on Google Earth Engine.

D.1.2 MNDThresholds

In Table D.2, we include the thresholds used to defineMND in this paper, though we are unable to

provide raw data publicly.

MND Biomarker Values
Iron a Ferritin < 30 ng/mL

Vitamin A b Retinol < 0.20055 mg/L
Vitamin B12 c B12 < 300 pmol/L

Table D.2: Micronutrient deficiency thresholds.

ahttps://www.who.int/vmnis/indicators/serum_ferritin.pdf
bhttps://apps.who.int/iris/bitstream/handle/10665/44110/9789241598019_eng.pdf
cUSDA
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D.2 Additional Results

D.2.1 Socioeconomic Status

The causal mechanisms of MND are quite complex, but it is believed that there are multiple factors

that influence MND. For example, we mention in “Possible Causes of MND” some environmental

factors, especially forest presence, as well as socio-economic status. Epidemiological factors are also

potential causes of MND, e.g., malaria.

In our analysis, we included multiple correlates to socio-economic status, such as nighttime

lights, i.e., images of Earth at night, where it is expected that highly populous and resourced areas

have more light. We found that the correlation coefficient between nighttime lights data and ground

truth iron deficiency is 0.127, implying that alone, it may not be highly correlated. The individual

feature with the greatest correlation is the sugarcane crop, with 0.147. If we predict solely with sug-

arcane, we achieve an AUC of 0.428, which is less than our findings of about 0.6 for iron deficiency.

This implies that we need the other factors as well in order to predict MND.

D.2.2 Regression

We also report the regression results in Fig. D.1. We can see that the satellite imagery-based regres-

sion results are still comparable to the two versions of survey-based regression. In particular, MAE

of our method ranges 0.16-0.19 in iron, 0.18-0.35 in Vitamin B12, and 0.19-0.29 in Vitamin A,

which are reasonable considering the range of the regression task is [0, 1] and the means are 0.21,

0.36, and 0.20, respectively. The AUC, F1-score, andMAE results all together demonstrate that our

predictions are reasonably accurate.

217



SE SW WCO CP0.0

0.2

0.4

0.6

0.8

1.0
M

AE

Survey FS
Survey
Satellite Auto FS

(a) Iron deficiency

SE SW WCO CP0.0

0.2

0.4

0.6

0.8

1.0

M
AE

Survey FS
Survey
Satellite Auto FS

(b) Vitamin B12 deficiency

SE SW WCO CP0.0

0.2

0.4

0.6

0.8

1.0

M
AE

Survey FS
Survey
Satellite Auto FS

(c) Vitamin A deficiency

Figure D.1: Regression results comparison between satellite imagery based and survey based predictions. All elements
are the same as Fig. 7.3 except that y‐axis now means MAE of the regression task. Note that in this figure, lower bars
imply better results.

D.2.3 Recall

Recall is important, as false negatives may lead to resources allocated away from people who truly

have MND. Generally, recall is comparable to AUC for these data. However, it is higher in some

cases. For example, for iron deficiency in region SE, recall is nearly 0.9.
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