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Abstract. Recent works have growingly shown that Cyber deception
can effectively impede the reconnaissance efforts of intelligent cyber at-
tackers. Recently proposed models to optimize a deceptive defense based
on camouflaging network and system attributes, have shown effective
numerical results on simulated data. However, these models possess a
fundamental drawback due to the assumption that an attempted attack
is always successful — as a direct consequence of the deceptive strategies
being deployed, the attacker runs a significant risk that the attack fails.
Further, this risk or uncertainty in the rewards magnifies the boundedly
rational behavior in humans which the previous models do not han-
dle. To that end, we present Risk-based Cyber Camouflage Games — a
general-sum game model that captures the uncertainty in the attack’s
success. In case of the rational attackers, we show that optimal defender
strategy computation is NP-hard even in the zero-sum case. We pro-
vide an MILP formulation for the general problem with constraints on
cost and feasibility, along with a pseudo-polynomial time algorithm for
the special unconstrained setting. Second, for risk-averse attackers, we
present a solution based on Prospect theoretic modeling along with a
robust variant that minimizes regret. Third, we propose a solution that
does not rely on the attacker behavior model or past data, and effective
for the broad setting of strictly competitive games where previous solu-
tions against bounded rationality prove ineffective. Finally, we provide
numerical results that our solutions effectively lower the defender loss.

Keywords: Game Theory · Cyber Deception · Rationality

1 Introduction

Rapidly growing cybercrime [15, 13, 24], has elicited effective defense against
adept attackers. Many recent works have proposed Cyber deception techniques to
thwart the reconnaissance — typically a crucial phase prior to attacking [21, 17].
One deception approach is to camouflage the network by attribute obfusca-
tion [10, 35, 7] to render an attacker’s information incomplete or incorrect, cre-
ating indecision over their infiltration plan [12, 10, 4, 28]. Optimizing such a
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deceptive strategy is challenging due to many practical constraints on feasi-
bility and costs of deploying, as well as critically dependent on the attacker’s
decision-making governed by his behavioral profile, and attacking motives and
capabilities. Game theory offers an effective framework for tackling both these
aspects and has been successfully adopted in security problems [2, 20, 31, 29].

Attacking a machine amounts to launching an exploit for a particular system
configuration — information that is concealed or distorted due to the decep-
tive defense, thus, an attempted attack may not succeed. Recent game theoretic
models for deception via attribute obfuscation [30, 34] have a major shortcoming
in ignoring this risk of attack failure as they assume that an attempted attack is
guaranteed to provide utility to the attacker. Further, results from recent human
subject studies [1] suggest that this risk may unveil risk-aversion in human at-
tackers rather than a perfectly rational behavior of maximizing expected utility
that the models assume. Apart from risk-aversion, other behavioral models, e.g.,
the Quantal response theory [22], also assert that humans exhibit bounded ra-
tionality. This can severely affect the performance of a deployed strategy, which
has not been considered by the previous works.

As our first main contribution, we present Risk-based Cyber Camouflage
Games (RCCG) — a crucial refinement over previous models via redefined strat-
egy space and rewards to explicitly capture the uncertainty in attack success. As
foundation, we first consider rational attackers and show analytical results in-
cluding NP-hardness of optimal strategy computation and its MILP formulation
which, while akin to previous models, largely require independent reasoning. Fur-
ther, we consider risk-averse attackers modeled using Prospect theory [36] and
present a solution (PT ) that estimates model parameters from data to compute
optimal defense. To circumvent the limitations of parametrization and learn-
ing errors, we also present a robust solution (MMR) that minimizes worst-case
regret for a general prospect theoretic attacker. Finally, we propose a solution
(GEBRA) free of behavioral modeling assumptions and avoiding reliance on data
altogether, that can exploit arbitrary deviations from rationality. Our numerical
results show the efficacy of our solutions summarized at the end.

1.1 Related work

Cyber Deception Games [30], and Cyber Camouflage Games (CCG) [34] are
game-theoretic models for Cyber deception via attribute obfuscation. In these,
the defender can mask the true configuration of a machine, creating an uncer-
tainty in the associated reward the attacker receives for attacking the machine.
These have a fundamental limitation, namely, the assumption that the attacked
machine is guaranteed to provide utility to the attacker. Further, they do not
consider that human agents tend to deviate from rationality, particularly when
making decisions under risk. Our refined model handles both these crucial issues.

A model using Prospect theory is proposed in [38] for boundedly rational
attackers in Stackelberg security games (SSG) [33]. However, it relies on using
model parameters from previous literature, discounting the fact that they can
largely vary for the specific experimental setups. We provide a solution that
learns the parameters from data, as well as a robust solution to deal with uncer-
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tainty in the degree of risk-aversion and broadly the parametrization hypothesis.
A robust solution for unknown risk-averse attackers has been proposed for SSGs
in [27], however, it aims to minimize the worst-case utility, whereas, we take
the less conservative approach of minimizing worst-case regret. Previous works
on uncertainty in security games consider Bayesian [18], interval-based [19], and
regret-based approaches [23], however, these do not directly apply due to funda-
mental differences between RCCGs and SSGs as explained in [34].

Another approach in [38] is based on the Quantal Response model [22]. How-
ever, the attack probabilities therein involve terms that are exponential in re-
wards, which in turn are non-linear functions of integer variables in our model,
leading to an intractable formulation. However, we show effectiveness of our
model-free solution for this behavior model as well.

Machine learning models such as Decision Tree and Neural Networks have
been used for estimating human behavior [8]. However, the predictive power
of such models typically comes with an indispensable complexity (non-linear
kernels, functions and deep hidden layers of neural nets, sizeable depth and
branching factor of decision trees etc). This does not allow the predicted human
response to be written as a simple closed-form expression of the instance features,
viz, the strategy decision variables, preventing a concise optimization problem
formulation. This is particularly problematic since the alternative of searching
for an optimal solution via strategy enumeration is also non-viable — due to the
compact input representation via a polytopal strategy space [16] in our model.

MATCH [25] and COBRA [26] aim to tackle human attackers in SSGs that
avoid the complex task of modeling human decision-making and provide robust-
ness against deviations from rationality. However, their applicability is limited
— in Strictly Competitive games where deviation from rationality always bene-
fits the defender, they reduce to the standard minimax solution. Our model-free
solution GEBRA on the other hand, achieves better computational results than
minimax, and MATCH can be seen as its conservative derivative.

2 Risk-based Cyber Camouflage Games (RCCG) model

Here, we describe the components of the RCCG model, explicitly highlighting
the key differences with respect to the CCG model [34].

Network Configurations. The network is a set of k machines K := {1, . . . , k}.
Each machine has a true configuration (TC), which is simply an exhaustive tuple
of attributes so that machines having the same TC are identical. S := {1, . . . , s}
is the set of all TCs. The true state of the network (TSN) is a vector n = (ni)i∈S
with ni denoting the number of machines with TC i. Note that

∑
i∈S ni = k.

The defender can disguise the TCs using deception techniques. Each machine
is “masked” with an observed configuration (OC). The set of OCs is denoted by
T . Similar to a TC, an OC corresponds to an attribute tuple that fully comprises
the attacker view, so that machines with the same OC are indistinguishable.

Deception Strategies. We represent the defender strategy as an integer matrix
Φ, where Φij is the no. of machines with TC i, masked with OC j. The observed
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state of the network (OSN) is a function of Φ, denoted as m(Φ) := (mj(Φ))j∈T ,
where mj(Φ) =

∑
i Φij denotes the no. of machines under OC j for strategy Φ.

Deception feasibility and costs. Achieving deception is often costly and not arbi-
trarily feasible. We have feasibility constraints given by a (0,1)-matrix Π, where
Πij = 1 if a machine with TC i can be masked with OC j. Next, we assume that
masking a TC i with an OC j (if so feasible), has a cost of cij incurred by the
defender, denoting the aggregated cost from deployment, maintenance, degraded
functionality, etc. We assume the total cost is to be bounded by a budget B.

These translate to linear constraints to define the valid defender strategy set:

F =

Φ
∣∣∣∣∣∣
Φij ∈ Z≥0, Φij ≤ Πijni ∀(i, j) ∈ S × T ,∑
j∈T

Φij = ni ∀i ∈ S,
∑
i∈S

∑
j∈T

Φij cij ≤ B


The first and the third constraints follow from the definitions of Φ and n. The
second imposes the feasibility constraints, and the fourth, the budget constraint.

Remark 1. The budget constraint can encode feasibility constraints as a special
case by setting a cost higher than the budget for an infeasible masking. The latter
are still stated explicitly for the useful interpretation and practical significance.

Defender and Attacker Valuations. A machine with TC i gets successfully at-
tacked if the attacker uncovers the disguised OC and uses the correct exploit
corresponding to TC i. In such a case, the attacker gets a utility vi — his valu-
ation of TC i. Collectively, these are represented as a vector v. Analogously, we
define valuations u representing the defender’s loss.

Remark 2. For ease of interpretation, we assign a 0 utility to the players when
the attack is unsuccessful, which sets a constant reference point. Hence, unlike
CCGs, valuations cannot be freely shifted. Further, a successful attack typically
is undesirable for the defender (except, e.g., honeypots), and to let the valuations
be typically positive values, they represent the defender’s loss; its minimization
is the defender objective unlike maximization in CCGs.

Attacker Strategies. As the attacker cannot distinguish between machines with
the same OC, he chooses an OC from which to attack a random machine. At-
tacking a machine requires choosing an exploit to launch for a particular TC.
Thus, the attack can be described as a pair of decisions (i, j) ∈ S × T . This
significant difference in attack strategy space definition and the imminent player
utility definitions as a consequence, cause the fundamental distinction in the
practical scope as well as the technical solutions of the RCCG model.

We model the interaction as a Stackelberg game to capture the order of
player decisions. The defender is the leader who knows the TSN n and can
deploy a deception strategy Φ, and the attacker chooses a pair (i, j) ∈ S × T .
The defender can only play a pure strategy since it is typically not possible to
change the network frequently, making the attacker’s view of the network static.
As in Schlenker et al. [30], Thakoor et al. [34], we assume the attacker can use the
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defender’s strategy Φ to perfectly compute the utilities from different attacks,
which is justified via insider information leakage or other means of surveillance.

Suppose the defender plays a strategy Φ, and the attacker attacks using an ex-
ploit for TC i on a machine masked with OC j. Among mj(Φ) machines masked
by OC j, Φij are of TC i. Hence, the attack is successful with a probability
Φij

mj(Φ)
. Consequently, the player utilities are given by

Ua(Φ, i, j) =
Φij

mj(Φ)
vi , Ud(Φ, i, j) =

Φij
mj(Φ)

ui. (1)

Note that these expressions imply that if the player valuations (v or u) are
simultaneously scaled by a positive constant (for normalization etc.), it preserves
the relative order of player utilities, and in particular, the best responses to any
strategies, thus keeping the problem equivalent.

Next, we show analytical results on optimal strategy computation for a ratio-
nal attacker, which lay the foundation for further tackling bounded rationality.

3 Rational attackers

The attacker having to choose a TC-OC pair as an attack here rather than just an
OC as in the CCG model [34], requires entirely new techniques for our analytical
results, despite close resemblance in the optimization problem as below.

Optimization problem Previous work on general-sum Stackelberg games has
typically used Strong Stackelberg equilibria (SSE). This assumes that in case of
multiple best responses, the follower breaks ties in favor of the leader (i.e., min-
imizing defender loss). The leader can induce this with mixed strategies, which
is not possible in RCCGs as the defender is restricted to pure strategies [14].

Hence, we consider the worst-case assumption that the attacker breaks ties
against the defender, leading to Weak Stackelberg Equilibria (WSE) [6]. WSE
may not always exist [37], but it does when the leader can only play a finite set
of pure strategies as in CCG. Hence, we assume that the attacker chooses a best
response to the defender strategy Φ, maximizing the defender loss in case of a
tie. This defender utility is denoted as Uwse(Φ), defined as the optimal value of
the inner Optimization Problem (OP) in the following, while the defender aims
to compute a strategy to minimize Uwse(Φ) as given by the outer objective.

argmin
Φ

max
i,j

Ud(Φ, i, j) (2)

s.t. Ua(Φ, i, j) ≥ Ua(Φ, i′, j′) ∀i′ ∈ S, ∀j′ ∈ T .

Next, we show results on optimal strategy computation shown for the im-
portant special cases — the zero-sum and unconstrained settings. While similar
results have been shown for CCG, independent proof techniques are needed
herein due to a distinctive model structure (see Appendix for omitted proofs).

3.1 Zero-sum RCCG

In the zero-sum setting, the defender loss equals the attacker reward, i.e. v = u.

Theorem 1. Zero-sum RCCG is NP-hard.
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Proof Sketch. We reduce from the problem “Exact Cover by 3-Sets” (ExC3 for
brevity) which is known to be NP-complete. Given an instance of ExC3, we
construct an instance of RCCG for which the minimum defender loss is precisely
equal to a certain value if and only if the given ExC3 instance is YES.

For the special unconstrained setting4(i.e. with no feasibility or budget con-
straints), we show the following.

Proposition 1. Unconstrained zero-sum RCCG always has an optimal strategy
that uses just one OC, thus computable in O(1) time.

Thus, both these results hold for RCCG, same as for CCG (albeit, they do
not follow from the latter, requiring independent derivation).

3.2 Unconstrained General-sum RCCG

Proposition 2. Unconstrained RCCG always has an optimal strategy that uses
just two OCs.

This result is crucial for an efficient algorithm to compute an optimal strat-
egy (Algorithm 1), named Strategy Optimization by Best Response Enumeration
(SOBRE). SOBRE constructs an optimal strategy with two OCs, due to Propo-
sition 2, with attacker best response being (say) OC 1 (Note: this is without loss
of generality in the unconstrained setting). It classifies the candidate strategies
by triplets (i, n,m) (Line 2) where the attacker best response is (i, 1), and OC 1
masks n machines of TC i, and m machines in total. It uses a subroutine DPBRF
(Dynamic Programming for Best Response Feasibility) to construct a strategy
yieldsing the desired best response (Line 6) if it exists, and then compares the
defender utility from all such feasible candidates, to compute the optimal (Lines
7,8). For details on DPBRF and runtime analysis, refer to the Appendix.

Algorithm 1: SOBRE

1 Initialize minUtil←∞
2 for i = 1, . . . , s;n = 0, . . . ni;m = n, . . . , k do
3 if (n/m < (ni − n)/(|K| −m)) continue
4 util← (n/m)ui

5 if (util ≥ minUtil) continue
6 if DPBRF (i, n,m)
7 Update minUtil← util
8 Return minUtil

Theorem 2. The optimal strategy in an unconstrained RCCG can be computed
in time O(k)4.

Remark 3. Note that the input can be expressed in O(st) bits, which makes this
algorithm pseudo-polynomial. However, it becomes a poly-time algorithm under
the practical assumption of constant-bounded no. of machines per TC, (so that,

4 The unconstrained setting accents the inherent challenge of strategic deception even
when sophisticated techniques can arbitrarily mask TCs with any OCs at low cost.
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k = O(s), or more generally, if k in terms of s is polynomially bounded). In
contrast, unconstrained CCG is NP-hard even under this restriction. This dis-
tinction arises since in RCCG, the best response utility given the attack strategy
and the no. of machines masked by the corresponding OC, depends on only the
count of attacked TC as opposed to all the TCs in CCG.

3.3 Constrained General-sum RCCG

For this general setting of RCCG, Uwse(Φ) is given by OP (2), and thus, comput-
ing its minimum is a bilevel OP. Reducing to a single-level Mixed Integer Linear
Program (MILP) is typically hard [32]. (in particular, computing an SSE allows
such a reduction due to attacker’s tiebreaking favoring the defender’s objective
therein, however, the worst-case tiebreaking of WSE does not). Notwithstanding
the redefined attack strategies, a single-level OP can be formulated analogous to
CCGs by assuming an ε-rational attacker instead of fully rational (as it can be
shown that for sufficiently small ε, it gives the optimal solution for rationality):

min
Φ,q,γ,α

γ (3)

s.t. α, γ ∈ R, Φ ∈ F , q ∈ {0, 1}|I|×|J |
q11 + . . .+ qst ≥ 1 (3a)

ε(1− qij) ≤ α− Ua(Φ, j, i) ∀i ∈ S ∀j ∈ T (3b)

M(1− qij) ≥ α− Ua(Φ, j, i) ∀i ∈ S ∀j ∈ T (3c)

Ud(Φ, j, i) ≤ γ +M(1− qij) ∀i ∈ S ∀j ∈ T (3d)

qij ≤ Φij ∀i ∈ S ∀j ∈ T . (3e)

The defender aims to minimize the objective γ which captures the defender’s
optimal utility. The binary variables qij indicate if attacking (i, j) is an optimal
attacker strategy, and as specified by (3a), there must be at least one. As per
(3b) and (3c), α is the optimal attacker utility, and this enforces qij = 1 for
all the ε-optimal attacker strategies (using a big-M constant). (3e) ensures that
only the OCs which actually mask a machine are considered as valid attacker
responses. Finally, (3d) captures the worst-case tie-breaking by requiring that
γ is the highest defender loss from a possible ε-optimal attacker response. Us-
ing an alternate strategy representation with binary decision variables enables
linearization to an MILP, that can be sped up with symmetry-breaking cuts [34].

Next, we consider human attackers who typically exhibit bounded rationality.

4 A Model-driven Approach with Prospect Theory

A well-studied model for the risk-behavior of humans is Prospect theory [36].
As per this, humans under risk make decisions to maximize the prospect, which
differs from the utilitarian approach in that the reward value and the proba-
bility of any event are transformed as follows. We have a value transformation
function R that is monotone increasing and concave, s.t., the outcome reward
v (value of the machine attacked), gets perceived as R(v) by the attacker. A
parameterization of the form Rλ(v) = c(v/c)λ is commonly considered in the
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literature, with λ < 1 capturing the risk-aversion of the attacker5, and we use
c = maxi vi so that the perceived values are normalized to the same range as
true values. Prospect theory also proposes a probability weighting function Π,
such that the probability p of an event is perceived as Π(p). A function of the
form Πδ(p) = pδ/(pδ + (1 − p)δ)1/δ has been previously proposed in literature,
parametrized by δ. In our problem, the attack success probability p is a non-
linear non-convex function of the decision variables Φij and applying a function
as above loses tractability. For simplicity, we omit the probability weighting from
our solution which shows effective results regardless. Future work could explore
the benefits of incorporating this additional complexity.

Thus, each of the attacker’s strategies (i, j) has a prospect

fλ(Φ, i, j) =
Φij

mΦ(j)
Rλ(vi) (4)

as a function of the player strategies, parametrized by λ. This value transforma-
tion makes the problem inherently harder (even in the simpler zero-sum setting).

Learning the parameter λ is a key challenge. Once λ is estimated, the defender
computes an optimal strategy for the prospect theoretic attacker, by simply
modifying (3), replacing the valuations vi with the transformed values Rλ(vi).
More generally, with this replacement, all results from Section 3 for rational
attackers apply here too.

4.1 Learning model parameters from data

Suppose we have data consisting of a set of instances N from a study such as
[1]. A particular instance n ∈ N corresponds to a particular human subject that
plays against a particular defense strategy Φn, and decides to attack (in, jn)
having the maximum prospect. The instances come from different subjects who
may have a different parameter λ, however, at the time of deployment, the
defender cannot estimate the risk-averseness of an individual in advance and play
a different strategy accordingly. Hence, we aim to compute a strategy against a
particular λ that works well for the whole population6. Due to different subjects,
different instances may have different attack responses for the same defender
strategy, and requiring a strict prospect-maximization may not yield any feasible
λ. Hence, we define the likelihood of an instance, by considering a soft-max
function instead, so that the probability of attacking (in, jn) is7

Pn(λ) =
exp(fλ(Φn, in, jn))∑
i,j exp(fλ(Φn, i, j))

.

Using the Maximum Likelihood Estimation approach, we choose λ which maxi-
mizes the likelihood

∏
n Pn(λ), or, log likelihood

∑
n logPn(λ). (Note: Manually

5 The conventional usage of the symbol λ in prospect theoretic models is different.
6 This avoids learning a complex distribution of λ from limited data, and the subse-

quent need for a Bayesian game formulation with attackers coming from a continuous
distribution which is not expressible as an MILP

7 When considering a continuous range of λ for payoff transformations, the degenerate
cases of tie-breaking between strategies are zero-probability events and thus ignored.
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eliminating anomalous instances from data which indicate complete irrationality
can help avoid over-fitting). Finding such a solution via the standard approach of
Gradient Descent does not have the convergence guarantee due to the likelihood
being non-convex and we resort to Grid Search instead.

4.2 Robust solution with Prospect Theory

The learning error can be sizeable if the subject population has a high vari-
ance of λ or if limited data is available (for sensitivity analysis, see Appendix).
Further, the parameterization hypothesis may not fit well, degrading solution
quality. To circumvent both these issues, we propose a solution offering robust-
ness when the attacker behavior cannot be predicted with certainty. We assume
a prospect-theoretic attacker, but with no assumption of a parametrized model
or data availability. Thus, the defender knowledge of value transformations has
uncertainty, which we handle with the minimax regret framework [9, 5], seen to
be less conservative in contrast with a purely maximin approach that focuses on
the worst cases of uncertainty.

Value transformation and Uncertainty modelling We assume the attacker
has the transformed values w. Defender does not precisely know w which can be
anything from a setW ⊆ Rs which we call the uncertainty set [3].W is obtained
by requiring that the transformation from v to w is a monotone increasing and
concave function with w normalized to the same range as valuations v. WLOG,
let v be sorted increasingly in the index. Then, W is defined by the constraints

W =

{
w

∣∣∣∣∣0 ≤ w1 ≤ w2 . . . ws = vs
w1

v1
≥ w2

v2
≥ . . . ≥ ws

vs
= 1

}
The first constraints ensure monotonicity, and the second ones convexity. An

equivalent formulation can also be obtained by adapting constraints used in [27].

Minmax Regret Formulation Let Ua(Φ, i, j,w) denote the attacker’s prospect
in terms of w and the player strategies. Similarly, let the defender’s wse utility
in terms of w be denoted by Uwse(Φ,w) defined analogous to Uwse(Φ) in (2):

max
i,j

Ud(Φ, i, j) | Ua(Φ, i, j,w) ≥ Ua(Φ, i′, j′,w) ∀i′ ∈ S ∀j′ ∈ T . (5)

Then, the max regret (MR) of Φ is the worst-case value over all w ∈ W of the
decrements in defender loss that the optimal Φ̂ achieves over Φ for valuations w:

MR(Φ) = max
w∈W

max
Φ̂∈F

[
Uwse(Φ,w)− Uwse(Φ̂,w)

]
. (6)

The minmax regret (MMR) approach looks to compute the Φ that minimizes
MR(Φ), i.e., solving the following OP:

min
Φ∈F,β

β | β ≥ Uwse(Φ,w)− Uwse(Φ̂,w) ∀(w, Φ̂) ∈ W ×F . (7)

OP (7) has a constraint for each (w, Φ̂) ∈ W ×F making it a semi-infinite pro-
gram as W is infinite, and difficult to solve also due to F being large. Hence, we
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adopt the well-studied approach of using constraint sampling [9] with constraint
generation [5], to devise Algorithm 2. It iteratively computes successively tighter
upper and lower bounds on MMR until they converge to the objective value. For
the lower bound, we compute a relaxed version of OP (7), i.e., relaxed MMR by
computing its objective subject to constraints corresponding to a sampled sub-
set S = {(w(n), Φ̂(n))}n instead of W ×F directly, giving an interim solution Φ
(line 4). Since only partial constraints were considered, the regret thus computed
must be a lower bound on the true MMR. Next, if this interim solution is not
optimal, there must be a constraint of OP (7) not satisfied by Φ. In particular,
such a violated constraint can be found by computing the max regret (MR) of
the interim solution Φ (as per OP (6)) and by definition of max regret, must be
an upper bound on the overall MMR (line 5). We use the new sample (w, Φ̂) thus
computed and add to S (line 6) and repeat. We get successively tighter lower
bounds as S grows and finally meets the tightest upper bound so far, which
marks the convergence of the algorithm (line 3).

Algorithm 2: minmax regret computation

1 Initialize u←∞, l← 0

2 Randomly generate samples S = {(w(n), Φ̂(n))}n
3 while u > l do
4 l← relaxed MMR w.r.t S; giving interim solution Φ.

5 u← MR for Φ; giving a new sample s = (w, Φ̂).
6 Update S = S ∪ {s}
7 Return incumbent solution as the true solution.

Next, we look at the two main subroutines of the algorithm.

(i) Relaxed MMR Computation. OP (7) has constraints for each (w, Φ̂) ∈
W ×F . Instead, considering a small subset of samples {(Φ̂(n),w(n))}n ⊆ W×F
to generate a subset of constraints in (7) yields

min
β∈R,Φ∈F

β | β ≥ Uwse(Φ,w(n))− Uwse(Φ̂(n),w(n)) ∀n. (8)

This yields a lower bound on MMR since we consider fewer constraints. For
sample n, let γn = Uwse(Φ,w(n)). Then, minimizing β translates to minimiz-
ing γn and this can be achieved by adding constraints analogous to (3a)∼(3e)
corresponding to each n, to obtain the following OP:

min
Φ,β

β

s.t. β ∈ R, Φ ∈ F
qn ∈ {0, 1}s×t, αn, γn ∈ R
β ≥ γn − Uwse(Φ̂(n),w(n))∑
i,j qnij ≥ 1

 ∀n

ε(1− qnij) ≤ αn − Ua(Φ, i, j,w(n))
M(1− qnij) ≥ αn − Ua(Φ, i, j,w(n))
Ud(Φ, i, j) ≤ γn + (1− qnij)M
qnij ≤ mj(Φ).

 ∀i ∈ S ∀j ∈ T ∀n
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(ii) Max Regret Computation. Here, we consider a candidate solution Φ,
and compute a sample (Φ′,w) which yields MR(Φ) as per (6), giving an upper
bound on MMR by definition. Since Uwse(Φ,w) is defined via an optimization
problem itself (given by (5)), (6) becomes a bilevel problem. To reduce it to
single-level problems, we let (i′, j′), (i′′, j′′) be the attacked targets at WSE for
the two defender strategies Φ′ and Φ (the candidate solution) resp. Introducing
these allows us to write the required defender utility expressions simply as:

Uwse(Φ′,w) = Ud(Φ′, i′, j′) and Uwse(Φ,w) = Ud(Φ, i′′, j′′).

We then iterate over all tuples (i′, j′, i′′, j′′) (O(s2t2) many of them) to com-
pute the max regret corresponding to each pair (via OP described momentarily),
and the tuple leading to maximum objective gives the solution to (6).

Previous works using a similar approach, such as, [23] assume mixed strate-
gies and compute the SSE. In our model, however, computing WSE presents the
challenge of capturing the worst-case tiebreaking, requiring an entirely different
formulation. For given pair of targets (i′, j′), (i′′, j′′) as described above and for
input strategy Φ, we compute the regret maximizing sample (Φ′,w) as follows:

max
Φ′,w,β

β

s.t. Φ′ ∈ F , w ∈ W, β ∈ R, q ∈ {0, 1}s×t
β ≤ Ud(Φ, i′′, j′′)− Ud(Φ′, i′, j′)
Mqij ≥ Ud(Φ′, i, j)− Ud(Φ′, i′, j′)
Ua(Φ′, i′, j′,w) ≥ Ua(Φ′, i, j,w) + εqij
Ua(Φ, i′′, j′′,w) ≥ Ua(Φ, i, j,w).

 ∀ i ∈ S, j ∈ T
The objective β is the the regret to be maximized, while the remaining con-

straints ensure that (i′, j′), (i′′, j′′) are indeed the respective attacked targets, as
follows. The fourth constraint requires (i′′, j′′) to be the attacker best-response
against Φ, and the worst-case tiebreaking is ensured by the first constraint since
maximizing objective β requires maximizing Ud(Φ, i′′, j′′). For (i′, j′) on the
other hand, the third constraint ensures that it is a best response to Φ′. More-
over, ε is a small positive constant used there which sets qij = 0 for each ε-optimal
OC j. As explained previously for computing (3), choosing a small enough ε sets
qij = 0 for precisely every optimal attack j. Consequently, the defender loss for
every such (i, j) is more than for (i′, j′) (by the second constraint, where M is a
large positive constant), thus capturing the worst-case tiebreaking.

5 GEBRA: Exploiting Bounded Rationality Model-free

Here, we aim to tackle bounded rationality without any assumptions on the
attacker model. One simple approach is to use (3) (where ε was set very small for
full rationality), and set an appropriate ε to reflect the extent of sub-optimality
— akin to the COBRA algorithm [26] for SSGs. Another previous approach for
SSGs is MATCH [25] which bounds the defender’s loss due to attacker’s deviation
from rationality, by a (pre-set) constant β times the attacker’s utility reduction.
Thus, it guarantees that if the attacker is close to rationality, the defender is
close to optimal utility. We adapt this principle to propose our solution GEBRA
(Guaranteed Exploitation against Boundedly Rational Attackers).
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Strictly Competitive Games In the security domain, having attack choices
favorable to both the attacker and the defender is rather unlikely. A very practi-
cal class of games here is the Strictly competitive games [11], where all outcomes
are pareto optimal. In particular, if the attacker deviates to lower utility, the de-
fender gets a smaller loss, thus, the attacker playing rationally is the worst case
for the defender. Hence, the previous approaches COBRA and MATCH merely
reduce to the conservative Minimax solution, rendering them unavailing as the
desired robustness is intrinsically present. Hence, we aim to exploit bounded ra-
tionality in this setting, by requiring that the defender loss must improve by at
least (a factor of) the reduction in the attacker utility, as explained momentarily.

Note that, checking if a game is strictly competitive is challenging due to the
compact representation via polytopal strategy spaces in our game. We show an
MILP formulation to determine if a game is strictly competitive (see Appendix).

Optimization problem for GEBRA: In the strictly competitive setting, if
the attacker deviates from his optimal utility, the defender is guaranteed to get
a smaller loss. To have guaranteed exploitation, we require that the decrement
in defender’s loss, is lower-bounded by β times the decrement in attacker utility,
where β is a positive constant. Then, this can be computed by modifying (3) as:

min
Φ,q,h,γ,α

γ (9)

s.t. α, γ ∈ R, Φ ∈ F , q, r ∈ {0, 1}s×t
q11 + . . .+ qst ≥ 1 (9a)

r11 + . . .+ rst ≥ 1 (9b)

ε(1− qij) ≤ α− Ua(Φ, j, i) (9c)

M(1− qij) ≥ α− Ua(Φ, j, i) (9d)

Ud(Φ, j, i) ≤ γ +M(1− qij) (9e)

γ ≤ Ud(Φ, j, i) +M(1− rij) (9f)

rij ≤ qij ≤ Φij (9g)

M(1− hij) + γ − Ud(Φ, j, i) ≥ β(α− Ua(Φ, j, i)) (9h)

hij ≤ Φij ≤Mhij . (9i)


∀i∈S, j∈T

Similar to (3a)∼(3e), constraints (9a)∼(9g) enforce α, γ as wse utilities. Here,
we have binary variables hij for any attack (i, j) the attacker can deviate to
instead of the best response. Constraint (9i) ensures hij = 1 iff Φij is nonzero,
i.e., (i, j) is a valid attack (for a deviation). The gist of GEBRA is captured by
(9h). For any deviation (i, j), the attacker’s utility decreases by α − Ua(Φ, j, i)
relative to optimal. The corresponding decrease in defender loss is γ−Ud(Φ, j, i)
which we require to be at least β-fold (whenever hij = 1, i.e. for every valid
deviation). The constant β represents the magnitude of exploitation guarantee.

Remark 4. Setting β = 0 makes the key constraint of GEBRA always true, and
the last constraint is redundant (since h is not tied to any other variables).
Hence, GEBRA reduces to computing WSE which always exists in this case.

Note that for strictly competitive games (by definition), (9) is guaranteed
to have a feasible solution for some β strictly positive. Importantly, however,
the converse is not true, and in fact, in our numerical results, we use a class of
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games that generalizes strictly competitive games, and GEBRA still always finds
a feasible solution. Further, setting β < 0 in (9), we can rearrange and reinterpret
it as to require that the increase in defender loss is at most |β| times the attacker’s
utility decrement — same robustness guarantee as MATCH, which we resort to
in games where attacker suboptimality can severely increase defender loss.

6 Numerical results

Setup We keep the game parameters small8 for numerical analysis and it suffices
to clearly highlight their efficacy. We use 5 TCs, OCs each and 15 machines. A
game instance is created by randomly creating constraints, player valuations for
TCs and the assignment of machines to TCs. To compute aggregates or averages
across games or attacker populations, we keep the sample size 50 in each case.

Fig. 1: Distributions Beta(α, β)

Fig. 2: Two-piecewise Linear (in green) Vs
Polynomial (in red) transformations (nor-
malized to be from [0, 1] to [0, 1])

Parametrized Prospect Theoretic Model Here, we compare our Prospect
theory based solution (PT) against WSE (i.e., the solution assuming a rational
attacker with worst-case tiebreaking). We consider a population of risk-averse
attackers governed by a parameter λ drawn from a distribution Beta(α, β) (den-
sity functions as shown in Figure 1). PT estimates λ by computing the MLE and
best-responds to it. We vary the parameters α, β so as to cover a spectrum of the
average degree of risk-aversion (captured by distribution mean α

α+β ), and the

homogeneity (captured by distribution variance ≈ αβ
(α+β)3 ) of the population.

As shown in Table 1, PT does significantly better for populations with low
variance, as compared to high variance. Intuitively, this is because the learned
parameter λ can represent the population better when there is more homogeneity
(i.e., low variance). Within each of the sub-tables 1c, 1b, 1a, when the degree of
risk-aversion is high (i.e., low mean λ; left column), the improvement of WSE
over PT is higher, than when the population mean is high (i.e., smaller overall
risk-aversion; right column), as expected. At the extreme with small risk-aversion
on average and low homogeneity, PT does worse than WSE (Table 1c - column
3). For such cases, and others where the parametrization hypothesis may not be
accurate, we show that the model-free algorithms are valuable as shown next.

Prospect-theoretic attackers with arbitrary transformations PT relies
on the assumption of polynomial transformations and homogeneous populations,
which may not hold. Here, we consider a family of Two-piecewise linear (2PL)

8 Essential for quickly solving many instances (to get averaged numbers). Bigger pa-
rameters can be handled when solving a specific instance for real-world deployment.
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Distribution
(32,80) (80,80) (80,32)

WSE 2.712 2.827 2.941

PT 2.178 2.432 2.580

(a) Low variance

Distribution

(8,20) (20,20) (20,8)

2.724 2.832 2.919

2.272 2.662 2.739

(b) Medium variance

Distribution

(2,5) (5,5) (5,2)

2.710 2.829 2.892

2.396 2.749 3.093

(c) High variance

Table 1: Average Defender loss of WSE and PT

(a) Comparing Average Defender Loss (b) Comparing Worst-case Regret

Fig. 3: Comparing PT, MMR, GEBRA and WSE for prospect theoretic attackers

payoff transformations shown in Figure 2 in contrast with the polynomial trans-
formations that PT hypothesizes for parametrization. We compare the average
defender loss of PT, MMR and GEBRA (with overall best parameters β = 0.05
among positive, and β = −0.5 among negative), against attacker populations
with 2PL transformations, and polynomial transformations with high variance.

Figure 3a shows that against Beta(5, 2) and 2PL, PT has a much higher loss
than WSE which is greatly mitigated with MMR and GEBRA. For Beta(2, 5)
and Beta(5, 5), PT has a smaller loss than WSE as seen before, and so do
MMR and GEBRA(−0.5), even though the reduction margin is lower, while
GEBRA(0.05) does not show much difference. In conclusion, in populations with
high risk-aversion and parametrized populations, PT has an edge, however, in
other cases where PT suffers, MMR and GEBRA perform much better. To com-
pare the robustness quality, we compare the worst-case regret. Figure 3b shows
that the worst-case regret is reduced with MMR compared to WSE and PT in all
4 cases, by up to 40%, 30% respectively, while GEBRA has a worst-case regret
a little lower for Beta(2, 5) and not much different than WSE in other cases.

Exploiting bounded rationality with GEBRA We want to consider the
aforementioned class of strictly competitive games, however, checking this prop-
erty is non-trivial (requiring to solve an MILP for each game, rather than defined
via closed-form constraints). Hence, we consider a slightly more general class of
games with strictly conflicting valuations - for TCs i and j, ui ≥ uj ⇐⇒ vi ≥ vj ,
i.e. if the attacker gets a higher reward from a TC than the other, the defender
suffers a higher loss and vice versa. Unsurprisingly, even for this class, MATCH
(i.e., GEBRA with β < 0) and COBRA achieve an output that differs little from
that of WSE. Hence, we only compare GEBRA (with β > 0) against WSE here.

Having studied risk-averse attackers, we consider a different form of bounded
rationality as given by the Quantal Response (QR) model — an attacker with a
QR parameter ε chooses an attack having utility u, with a probability ∝ exp(εu).
Thus, ε → ∞ for a perfectly rational attacker, while ε = 0 for a fully random
attacker. We consider populations of attackers with varying distributions of ε,



Fig. 4: Average Defender Loss comparison between GEBRA and WSE

Fig. 5: Fraction of games where GEBRA does at least as good as WSE

namely LN(−2, 1), LN(−1, 1), LN(0, 1) where LN(α, β) denotes a LogNormal
Distribution with parameters (α, β). These three distributions have an increasing
order of means and thus, increasing average degree of rationality.

Figure 4 shows the performance of GEBRA for various settings of β (for illus-
tration, we only show a range for β with sizeable loss reduction). For LN(−2, 1)
with least average rationality, GEBRA reduces the absolute loss by about 10%.
However, the loss gets higher by 10% than WSE for attackers nearly rational.

We also measure the fraction of games in which GEBRA surpasses WSE,
shown in Figure 5. With β = 0.05, it does at least as good as WSE in 75% games
for attackers nearly random and over 60% for the ones more rational. As degree
of rationality rises, however, this percentage drops in other two populations.

7 Summary

In this paper, we present Risk-based Cyber Camouflage Games (RCCG) to cap-
ture the crucial uncertainty in the attack success. First, for rational attackers,
we show NP-hardness of equilibrium computation, a pseudo-polynomial time al-
gorithm for the special unconstrained setting, and an MILP formulation for the
general constrained problem. Further, to tackle risk-averse attackers, we propose
a Prospect theory based approach (PT) that estimates the attacker behavior
from data and a variant that is robust against arbitrary payoff transformations
based on Min-Max Regret (MMR). Finally, we also propose a model-free ap-
proach (GEBRA) that can exploit arbitrary deviations from rationality.

Our numerical results show that PT shows significant improvement for ho-
mogeneous populations and for a high risk-aversion, however, for heterogeneous
populations, MMR moderately improves the defender loss while also achieving
much lower regret. Finally, GEBRA is valuable in the Strictly Competitive [11]
setting where previous model-free approaches for handling bounded rationality
prove ineffective, particularly for attackers with a high deviation from rationality.
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A RCCG for rational attackers

Lemma 1. Under a given defender strategy Φ, let j1, j2 be OCs which are mask-
ing subsets of machines K1 and K2 respectively. Let Φ′ be constructed from Φ
by merging the machines in K1 and K2 and masking with a single OC, say j′.
Then, Ua(Φ′, i, j′) ≤ max(Ua(Φ, i, j1), Ua(Φ, i, j2)) ∀ i ∈ S.

Proof. For an arbitrary TC i, for brevity, let’s denote a = Φi,j1 , b = Φi,j2 .
WLOG, let a/|K1| ≤ b/|K2| (these are the probabilities that the attacks on
(i, j1), (i, j2) are successful, resp.). Then,

Ua(Φ′, i, j′) =
(a+ b)

|K1|+ |K2|
vi ≤

b

|K2|
vi = Ua(Φ, i, j2).

This shows that merging the machines in any two OCs under one, cannot
increase the attacker utility for any target, which prompts the following results.

Proposition 1. Unconstrained zero-sum RCCG always has an optimal strategy
that uses just one OC, thus computable in O(1) time.

Proof. Consider an optimal strategy Φ that uses two or more OCs, with i∗, j∗

being the attacker best response. In the unconstrained setting, OCs can be freely
merged. Say we merge machines from OC ĵ to j∗ to obtain Φ′. By Lemma 1,
the attacker utility from any (i, j∗) under Φ′ is at most the utility from (i, j∗) or
(i, ĵ) under Φ, and thus, at most the best response attacker utility against Φ. As
the remaining attack options have an unchanged utility, it follows that the best
response attacker utility against Φ′ is at most that against Φ. Since the game is
zero-sum, the same applies for the defender loss, making Φ′ also optimal while
it uses fewer OCs. It follows via inductive reasoning that there exists an optimal
strategy which uses a single OC to mask all the machines.

Theorem 1. Zero-sum RCCG is NP-hard.

Proof. We reduce from the problem “Exact Cover by 3-Sets” (ExC3 for brevity)
which is NP-complete. In this problem, we are given a set X, with |X| = 3q (so,
the size of X is a multiple of 3), and a collection C of 3-element subsets of X.
The decision problem is whether ∃C ′ ⊂ C where every element of X occurs in
exactly one member of C ′. Given such an instance, construct an RCCG instance
as follows. Construct TCs 1, . . . , 3q corresponding to elements of X. Let the value
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of each TC be 0 and let there be exactly one machine of each. Let there be TC
3q + 1 of value V > 0 and q machines of it. Let there be |C| OCs corresponding
the subsets in C. Suppose OC corresponding to any S ∈ C can mask exactly
the 3 TCs in S & TC 3q+ 1. Let all costs be 0. This is a poly-time reduction by
construction. We claim that an ExC3 instance is YES iff the minimum defender
loss in the constructed RCCG is exactly V/4.

Consider a strategy Φ. Let J ′ ⊆ J be the OCs which mask at least one
machine of some TC i ∈ {1, . . . , 3q}. By construction, J ′ must have q OCs.
Further, machines of TC 3q + 1 must be masked by OCs in j′ to minimize the
defender loss since otherwise the defender loss is V . Now, for an OC j that masks
a machine of TC 3q+1, it must mask only one to minimize the defender loss. For
each such OC j, if it masks xj(≤ 3) machines from TCs 1, . . . , 3q, we can write
Ud(Φ, 3q+1, j) = 1

1+xj
V ≥ V/4 which attains the minimum of V/4 when xj = 3.

Since the attacker chooses to attack (i, j) which maximizes it , the defender loss
is lower bounded by v/4. Now, if the given instance of ExC3 is a YES instance,
it is possible to find q OCs which cover all the TCs, and use them to mask the 3
machines of the corresponding TCs along with one machine of TC 3q + 1 each,
thus achieving the minimum loss of V/4. Conversely, if the minimum defender
loss is V/4, the defender loss when attacked at any OC and TC 3q + 1 (if so
valid) must be at most V/4, which implies that it must contain only 1 machine
of 3q+1, and thus i) there should be q such OCs used, and ii) each of them must
have at least 3 machines of TCs 1, . . . , 3q. So, there must be exactly q such OCs
each with exactly 3 machines. Hence, the subsets corresponding to these OCs
form the exact cover of the given ExC3 making it a YES instance.

Proposition 2. Unconstrained RCCG always has an optimal strategy that uses
just two OCs.

Proof. Consider an optimal strategy Φ that uses three or more OCs, with i∗, j∗

being the attacker best response. In the unconstrained setting, OCs can be freely
merged. Say we merge machines from OC j1 to j2 (with j1, j2 6= j∗) to obtain
Φ′. By Lemma 1, the attacker utility of any (i, j2) under Φ′ is at most the utility
of (i, j1) or (i, j2) under Φ, and thus, i∗, j∗ must still be the best response for
the attacker against Φ. In particular, this also ensures that it remains the worst-
case for the defender in case of tie-breaks. It follows via inductive reasoning that
given an optimal strategy with two or more OCs, another using fewer OCs can be
constructed. Thus, there exists an optimal strategy which uses a single OC.

SOBRE Algorithm

SOBRE uses the subroutine DPBRF (Dynamic Programming for Best Response
Feasibility) which given the input (i, n∗,m∗), computes if the machines can be
masked so that OC 1 has m∗ total machines with n∗ of TC i∗, and (i∗, 1) is
the attacker best response. Function f(i,m), (memoized: Line 2), computes if
such a strategy exists with additional property that TCs 1, . . . , i in total have m
machines in OC1. To compute f(i,m), we consider n out of ni machines of TC
i(6= i∗) to be put in OC 1 (Line 7). If doing so keeps (i∗, 1) at a higher utility
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than (i, 1), (i, 2) (Line 8), and similarly recursively for all smaller-indexed TCs
(Line 9), f(i,m) is true. Lines 5,6 mark the base cases. DPBRF returns true if
f(s,m∗) is true (Line 3) by definition.

f(i,m) is computable in O(ni) (Line 7), hence, DPBRF takes O(km∗) using∑s
i=1 ni = k. Summing over the loops of SOBRE gives its runtime as O(k4).

Algorithm 3: DPBRF(i∗, n∗,m∗)

1 for i = 1, . . . , s;m = 0, . . . ,m∗

2 A[i,m]← f(i,m)
3 Return A[s,m∗]

4 Function f(i,m)
5 if (i = 0) Return m = 0
6 if (i = i∗) Return A[i− 1,m− n∗]
7 for n = 0, . . . , ni

8 if (max{ n
m∗ vi,

ni−n
k−m∗ vi} <

n∗

m∗ vi∗) // ‘<=’ if lower defender loss

9 if (A[i− 1,m− n]) Return true
10 Return false

B Sensitivity to learning error.

Suppose the estimated parameter is λ∗ and the computed optimal solution is
Φ, yielding a defender utility u∗. We want to provide an error interval around
λ∗ s.t. the defender loss does not increase (at all, or beyond a desired margin
ε), if the true λ is within this interval. Equivalently, we compute the least per-
turbation needed s.t. the defender loss increases. We consider all pairs (i, j) s.t.
Ud(Φ, i, j) > u∗+ε. Thus, if the attacker best response is any such (i, j), then the
defender loss increases beyond the desired threshold. We compute the minimum
deviation (of true λ from estimated λ∗) that causes this (if it exists) by solving

min
λ
|λ− λ∗| s.t. log fλ(i, j) ≥ log fλ(i′, j′) ∀ i′ ∈ S ∀ j′ ∈ T (10)

The constraint here ensures that (i, j) is indeed the prospect-maximizing
response, where we use log on both sides to get an LP, for efficient computation.
Then, solving (10) for all (i, j) pairs for which Ud(Φ, i, j) > u∗ + ε, and taking
the minimum of all the perturbations, gives us the required tolerance.

C Computing Strict Competitiveness

We formulate an MILP that is feasible iff for a strategy Φ, deviating from some
(i, j) to (i′, j′) is beneficial to both players — game is not strictly competitive.

M(1− qij) + Ua(Φ, i, j) > α, M(1− rij) + α > Ua(Φ, i, j)
M(1− rij) + Ud(Φ, i, j) > β, M(1− qij) + β > Ud(Φ, i, j)

rij ≤ Φij ≤Mrij , qij ≤ Φij ≤Mqij

∀ i∈S, j∈T
Φ ∈ F , q, r ∈ {0, 1}s×t, q11 + . . .+ qst = 1, r11 + . . .+ rst = 1

Here, binary variables q, r capture (i, j) and (i′, j′) respectively which define
the aforementioned attacker deviation. Line 4 ensures they are unique and Line
3 ensures they are valid attacks. Attacker and defender both prefer (i, j) over
(i′, j′) as per Lines 1,2 respectively.


