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Abstract

This work is an initial step toward developing a cognitive theory of cyber deception. While widely
studied, the psychology of deception has largely focused on physical cues of deception. Given that
present-day communication among humans is largely electronic, we focus on the cyber domain where
physical cues are unavailable and for which there is less psychological research. To improve cyber
defense, researchers have used signaling theory to extended algorithms developed for the optimal allo-
cation of limited defense resources by using deceptive signals to trick the human mind. However,
the algorithms are designed to protect against adversaries that make perfectly rational decisions. In
behavioral experiments using an abstract cybersecurity game (i.e., Insider Attack Game), we examined
human decision-making when paired against the defense algorithm. We developed an instance-based
learning (IBL) model of an attacker using the Adaptive Control of Thought-Rational (ACT-R) cogni-
tive architecture to investigate how humans make decisions under deception in cyber-attack scenarios.
Our results show that the defense algorithm is more effective at reducing the probability of attack and
protecting assets when using deceptive signaling, compared to no signaling, but is less effective than
predicted against a perfectly rational adversary. Also, the IBL model replicates human attack deci-
sions accurately. The IBL model shows how human decisions arise from experience, and how memory
retrieval dynamics can give rise to cognitive biases, such as confirmation bias. The implications of
these findings are discussed in the perspective of informing theories of deception and designing more
effective signaling schemes that consider human bounded rationality.
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All warfare is based on deception…when [we are] far away, we must make [the enemy]
believe we are near.

–Sun Tzu, The Art of War

1. Introduction

In the surging world of cyber communication, deception thrives due to a lack of physical
cues for detection. We are presented with an abundance of data through the internet and
social media, where increasingly more human interactions take place. Thus, it is important to
understand how deception influences human decision-making in the cyber domain. Through-
out history, the psychology of deception has spanned the biological, cognitive, and social
levels of cognition, with research examining physiological reactions, cognitive biases, and
other effects on decisions, social interactions, as well as societal implications (for review, see
Hyman, 1989; Newell, 1990). While there is much research in the psychology of deception,
most of what is currently known consists of the use of verbal and nonverbal physical cues,
including appearance, gestures, and descriptions, and the role of these attributes in the context
of social interaction (Bond & DePaulo, 2008; Morgan, LeSage, & Kosslyn, 2009; Riggio &
Friedman, 1983). For example, most studies frame the study of deception as it relates to the
body, face, and the cues that may be leaked through gestures and words (Riggio & Friedman,
1983). In other words, most of what we know about the psychology of deception relies on the
physical observation of behavior, and little is known regarding the psychology of deception
in cyber domains.

Deception typically involves one agent (the sender) presenting truthful or false information
(a signal) to an opponent (the receiver) in order to gain an advantage over the opponent. For
example, a poker player with a weak hand may make a high raise (a false signal) in an attempt
to intimidate their opponent into thinking they have a strong hand. If the opponent believes the
signal, then the deception is successful and the opponent will fold; otherwise, the deception
fails. Formally, deception has been defined as a form of persuasion where one intentionally
misleads an agent into a false belief, in order to gain an advantage over the agent and to
achieve one’s goals (Rowe & Rrushi, 2016).

A deception succeeds through the exploitation of human processing constraints and per-
ceptual, cognitive, and social biases (Mokkonen & Lindstedt, 2016). For example, magicians
use sleight-of-hand by exploiting perceptual biases and limitations of the visual and attention
systems (Ekroll & Wagemans, 2016). Other research showed that basketball referees had a
tendency to refrain from calling a penalty on the offense for charging into a defender when the
defender did not fall down, which can be explained through the representative heuristic that
defenders typically fall down on illegal charges (Morgulev, Azar, Lidor, Sabag, & Bar-Eli,
2014). The defenders then exploited this bias and tried to deceive the referees by intention-
ally falling even when there was no penalty committed in order to draw a call. However, due
to the high rate of deception from defenders, the referees responded by calling fewer penalties
when the defenders fall from a legitimate contact. While this resulted in fewer incorrect calls
(i.e., lower false alarm rate), fewer legitimate calls were made (i.e., lower hit rate), aligning
with utility-maximizing decision-making and ecological rationality (Morgulev et al., 2014).
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In the physical world, there is an abundance of cues that a deceiver must conceal from the
adversary to avoid detection, including physiological, verbal, and nonverbal cues (Rowe &
Rrushi, 2016). For example, our poker player tries to keep a “straight face” to avoid leaking
any physical cues to their deception. On the other hand, in the cyber world, deception is
highly successful given that there are very few physical cues available, making it easier to
conceal. Cyber attackers use deception in the form of phishing emails, fake websites and
malware, social engineering, misinformation campaigns, and so on. Defenders also employ
deception using tactics such as honeypots, which are “fake” nodes in a network designed
to appear attractive to attackers (Gonzalez, Aggarwal, Cranford, & Lebiere, 2020). In these
examples, only a few verbal cues may be leaked through text (especially so for phishing
emails and other deceptions involving text or dialogue), and nonverbal cues only include
inconsistent interactions with technology (e.g., the system responds too fast/slow; Rowe &
Rrushi, 2016). Therefore, most cyber deceptions focus on exploiting social and cognitive
biases (Almeshekah & Spafford, 2016).

Stech, Heckman, and Strom (2016) propose that cyber deception for defense could be
achieved by revealing or concealing the facts and fictions about the system. Deception tech-
niques such as masking and repackaging conceal the facts to hide the true state of the network
(Aggarwal et al., 2020). In contrast, techniques such as decoying and mimicking reveal the
fictitious state of the network to mislead attackers (Aggarwal, Gonzalez, & Dutt, 2016). In this
paper, we use signaling as a deception technique that combines revealing the facts and fiction
about the true state of the network. The focus of the present research is on how deception
using signaling influences human decision-making, and what biases influence those decisions
when there are no observable cues for detecting deception. When humans are aware of the
possibility of deception but have no cues to detect deception in the current context, the situ-
ation requires decision-making under uncertainty. In these situations, human vulnerabilities
can make them susceptible to deception. Almeshekah and Spafford (2016) suggest that the
same cognitive biases that influence human decision-making under physical deception can be
exploited with cyber deception, including representativeness, availability, anchoring heuris-
tics, and confirmation bias, to name a few.

A useful framework for studying decision-making under deception is with economic sig-
naling games (Jenkins, Zhu, & Hsu, 2016; Moisan & Gonzalez, 2017). Signaling games are
two-player games involving a sender and a receiver with incomplete information (Pawlick,
Colbert, & Zhu, 2019). The sender has information unknown to the receiver and strategi-
cally reveals this information (either truthfully or deceptively) to the receiver in order to
influence their decision-making (Battigalli, 2006; Cho & Kreps, 1987). According to Jenkins
et al. (2016), after being presented a signal, the receiver’s decision-making process includes:
(1) perceiving and comprehending the signal, (2) anticipating the outcome resulting from
the signal, (3) evaluating the expected utility of possible actions, and (4) selecting the best
action. This process is consistent with research on how humans make decisions under uncer-
tainty. People rely on their own experience (e.g., in accordance with instance-based learning
theory (IBLT); Gonzalez, Lerch, & Lebiere, 2003). Specifically, IBLT’s cognitive processes
include information search, recognition and similarity processes, integration and accumula-
tion of information, feedback, and learning (Gonzalez, 2013). These processes involve the
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estimation and anticipation of outcomes for possible actions and their probabilities based on
prior observations and learning through feedback. The signaling framework and the underly-
ing theories of decisions from experience provide a foundation for investigating deception as
an adaptive process and how it influences dynamic decision making.

This paper studies the behavior of humans (in the role of attackers), who make deci-
sions under various types of deceptive signaling defense strategies. We use the cybersecurity
domain because it presents particular challenges regarding the non-physical cues for study-
ing decisions under uncertainty and in the face of deception. Through laboratory experiments
and the development of cognitive models that mimic human behavior, we aim at informing
theories of deception in general and improving the design of cyber-defense mechanisms.

2. Game-theoretic models, signaling, and security

Recent work using game-theoretic models (Al-Shaer, Wei, Hamlen, & Wang, 2019), in par-
ticular, the research program on Stackelberg Security Games (SSGs; Sinha, Fang, An, Kiek-
intveld, & Tambe, 2018) has greatly improved physical security systems. Examples range
from protecting ports and airports, scheduling air marshals, and mitigating poacher attacks.
SSGs model the interaction between a defender and an adversary as a leader-follower game
(Tambe, 2011) and are used to develop algorithms that optimally allocate limited defense
resources over a set of targets (Pita et al., 2008; Shieh et al., 2012; Sinha et al., 2018; Tambe,
2011). Such algorithms could prove useful for cybersecurity, where it is often the case that
organizations have limited defense resources to actively monitor a large number of computers
on a network. These defense-allocation methods could be cost-effective if they use decep-
tive techniques to fool the attacker into thinking the defender is monitoring a target when
in fact they are not and more generally reduce the attacker’s assessment of his prospects by
increasing the perceived coverage.

Typically, SSGs do not involve deception (Abbasi et al., 2016). However, Xu, Rabinovich,
Dughmi, and Tambe (2015) extended the SSG by incorporating signaling, in which a defender
(sender) deliberately reveals information about their strategy to the attacker (receiver) in
order to influence the attacker’s decision-making (Battigalli, 2006; Cho & Kreps, 1987). The
attacker selects a target they wish to attack, then the defender sends a signal that divulges the
protection status of a target (i.e., the target is monitored or not monitored), and finally the
attacker decides whether to continue the attack or withdraw. Adopting this approach, truth-
ful signals can deter some attacks on protected targets, but if a target is unprotected, then
the attacker can attack with impunity. To help protect the unprotected resources, defenders
can use a combination of truthful and deceptive signals to increase the perceived coverage of
the targets. Xu et al.’s (2015) solution, the Strong Stackelberg Equilibrium with Persuasion
(peSSE), determines the optimal combination of bluffing (sending a message that the target is
covered when it is not) and truth-telling (sending a truthful message that the target is covered
or not) so the attacker continues to believe the signal.

The peSSE has been formally proven to improve defender utility against a perfectly rational
attacker (i.e., one that has complete information and unlimited processing capacity to make
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decisions that maximize reward), compared to strategies that do not use signaling (Xu et al.,
2015). However, humans exhibit, at best, bounded rationality (Simon, 1956) and may interpret
and react to deceptive signals in uncertain ways. From a rational analysis perspective (Ander-
son, 1991), the peSSE is optimized for environments in which there is no uncertainty because
decision-makers are perfectly rational. In environments where signals are always truthful,
humans may make decisions that look perfectly rational because the available information
provides certainty. However, for environments in which the signals are sometimes deceptive,
the assumptions of certainty may not be optimal for boundedly rational humans. While a
perfectly rational adversary, with unlimited resources, can make optimal decisions in such
environments, a boundedly rational human will make decisions based on the limited informa-
tion that is often incomplete or incorrect (i.e., retrieved incorrectly from memory). Therefore,
we can expect humans to make decisions that include bias, emerging from decision heuristics
and memory retrieval processes over past experiences that reflect the probabilistic nature of
cues in the world.

To gain a better understanding of how deceptive signals influence human decision-making,
we pit humans against the peSSE in a cybersecurity game called the Insider Attack Game
(IAG). Our methods involve a combination of game theoretical defense and signaling algo-
rithms, cognitive modeling for representing attacker’s behavior, and human laboratory stud-
ies to gain a better understanding of attacker behavior playing against the different defense
strategies (Gonzalez et al., 2020). The present research advances the psychology of deception
through understanding the cognitive processes involved in making decisions in the face of
deceptive signals and the emergent biases that affect those decisions, leading to better signal-
ing algorithms for defense against boundedly rational humans (see Cooney et al., 2019).

In what follows, we first describe the IAG. Then, we introduce a cognitive model of attacker
behavior, constructed according to IBLT of decisions from experience (Gonzalez et al., 2003),
and implemented in the Adaptive Control of Thought-Rational (ACT-R) cognitive architec-
ture (Anderson & Lebiere, 1998; Anderson et al., 2004). This model is pitted against various
defense algorithms to provide predictions of human behavior and the effectiveness of decep-
tive signals. These predictions are then tested against human performance in the IAG obtained
from laboratory experimentation. Our analyses reveal human reactions and biases to decep-
tive signals. We discuss the implications of our findings for the psychology of deception, key
insights and lessons learned through cognitive modeling efforts, and the potential of cogni-
tive models for the design of novel signaling schemes that account for boundedly rational
human adversaries. The experimental materials, data, analysis scripts, model code, and other
supplemental material can be accessed at https://osf.io/jn69t.

3. IAG

We developed an abstract game for which we can carefully examine the basic underlying
cognitive processes of decision-making in the presence of deceptive signals. The SSG is a
generic algorithm that has been applied in naturalistic settings (e.g., Tambe, 2011), and we
adapted it to an insider attack scenario. In the IAG, players take the role of employees at a

https://osf.io/jn69t
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Fig. 1. (a) Screenshot of the insider attack game. The attacker is represented in the center surrounded by six
computer targets. Each target shows the probability of the computer being monitored displayed as a percentage
in text and represented in a fillable gauge (the red bars), the payment one would receive if they attacked an
uncovered target (yellow stars), and the penalty one would receive if they attacked a covered target (red stars). (b)
Example message for the Strong Stackelberg Equilibrium with Persuasion (peSSE)-Full Information (FI; peSSE-
FI) condition when a signal is present. The peSSE condition omits line two from the message. When the signal is
absent (and for all messages in the NoSignal condition), lines one and two are omitted.

company, and their goal is to maximize their score by “hacking” computers to steal propri-
etary information (i.e., human players take the role of “attackers”). However, two security
analysts (i.e., “defenders”) monitor the computers. Attackers can earn points if they avoid
the defenders but lose points if they are caught. From the defenders’ perspective, the game
is a two-stage SSG. As in classic single-stage SSGs, the first stage involves allocating the
defenders. The allocation of the defenders is optimized by computing the Strong Stackelberg
Equilibrium (SSE), which provides the monitoring probability (m-prob) of each computer
based on their reward and penalty values (Tambe, 2011). An attacker then makes a move by
selecting a computer to attack. In the second stage, after a computer is selected, defenders can
take advantage of deceptive signaling techniques by strategically revealing potentially decep-
tive information to the attacker about whether the computer is being monitored (Xu et al.,
2015). The attacker follows by deciding whether to continue the attack or withdraw.

A screenshot of the task interface is shown in Fig. 1(a). Attackers perform four rounds of
25 trials each, following an initial practice round of five trials. For each round, attackers are
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Table 1
Attribute values (reward, penalty, monitoring probability) for each computer target in each round

Round Target 1 Target 2 Target 3 Target 4 Target 5 Target 6

Round 1 [2, −1, 0.22] [8, −5, 0.51] [9, −9, 0.42] [9, −10, 0.40] [2, −6, 0.08] [5, −5, 0.36]
Round 2 [5, −3, 0.41] [8, −5, 0.48] [7, −6, 0.41] [8, −9, 0.37] [5, −7, 0.27] [2, −4, 0.05]
Round 3 [3, −3, 0.30] [9, −4, 0.60] [6, −6, 0.40] [5, −8, 0.29] [3, −6, 0.20] [2, −2, 0.20]
Round 4 [4, −3, 0.37] [6, −3, 0.51] [7, −7, 0.40] [5, −10, 0.24] [5, −9, 0.26] [3, −4, 0.23]

presented with six new computer targets, each with a different payoff (reward/penalty) struc-
ture. On a given trial, the two defenders monitor one computer each. Attackers can view
information describing each target’s reward and penalty values, as well as the m-prob (repre-
sented as a percentage and described as the “average amount of time that the target is moni-
tored”). This information is provided to participants because an assumption of perfect ratio-
nality requires that the agent knows all relevant information when making a decision (i.e., we
assume a pre-attack reconnaissance phase in which the attacker can observe and gain as much
information as needed regarding the defender’s strategy).

For each trial, attackers first select one of the targets to attack. After selection, they are
presented with possibly deceptive information about whether the computer is being monitored
(Fig. 1(b)). If the message claims that the computer is monitored, then the signal is deemed
present, else it is absent. The attacker must then decide to either continue or withdraw the
attack. An attack on a computer that is monitored results in losing points equal to the penalty
associated with the target, whereas if the computer is not monitored the attacker gains points
equal to the reward associated with the target. If the attacker chooses to withdraw the attack,
they receive zero points.

Each round consists of a different set of computers with different payoff structures, which
results in a different allocation of defense resources. Table 1 shows the rewards, penalties,
and m-probs for each computer in each round. The m-probs for each target are derived by
computing the SSE, which allocates defenses across in such a manner that the expected value
of attacking each computer is positive and all equal. Each attacker experiences the same
schedule of coverage and signaling throughout the game. That is, the SSE allocates defenses
across the 25 trials for each round, and so predetermines which targets are monitored during
each trial.

The peSSE determines which targets should present warning signals if selected. If a com-
puter is being monitored, then the attacker will always receive a truthful signal claiming that
the computer is currently monitored. However, if a computer is not being monitored, then
sometimes the attacker will not receive a signal, which truthfully indicates that the computer
is unmonitored, and other times the attacker will receive a deceptive signal claiming that the
computer is being monitored. The conditional probability of sending a deceptive signal given
a target is unmonitored is optimized by computing the peSSE (Xu et al., 2015):

p(signal|unmonitored ) = (|penalty| × m−prob) /reward

1 − m−prob
(1)
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Fig. 2. Average probability of signaling given a target is monitored or not monitored. According to the peSSE
algorithm, on average, a target is monitored one-third of the time and unmonitored two-thirds of the time. Signals
are presented two-thirds of the time: 100% of the time when a target is monitored and 50% of the time a target is
unmonitored, on average, so that the expected value of attacking given a signal is equal to zero (and equal to the
expected value of withdrawing). The peSSE is compared to a condition that presents no signals, called NoSignal.

This value is the one that makes the expected value of attacking the computer, given a
signal, equal to zero. In other words, as depicted in Fig. 2, given two defenders for six targets,
a target is monitored one-third of the time on average and the peSSE will send additional
signals on unmonitored targets until the expected value of attacking given a signal reaches
zero.1 This value is equal to the expected value of withdrawing the attack, and based on game-
theoretical assumptions of perfect rationality, it is more advantageous (from an economical
perspective) for an adversary to break ties in favor of the defender and withdraw their attack
when presented a signal.

3.1. Experimental conditions: Defense signaling schemes

The IAG was deployed under several experimental conditions in order to assess the effec-
tiveness of deceptive signals on attackers’ decision-making. The baseline condition of the
game is called the peSSE signaling scheme, which presents signals with probabilities cal-
culated according to the peSSE algorithm as described above. In the NoSignal condition, a
signal is never presented to the attackers, regardless of whether a defender is present or absent
(i.e., no deception was used). The peSSE-Full Information (FI) signaling scheme is similar
to the peSSE except that, upon seeing a signal, attackers are also provided the percent of
time that the signal is deceptive for that target (see Fig. 1(b); e.g., signal messages for each
condition are also provided in the Experimental Methods section). That is, in the peSSE-FI
condition, we extend the assumptions of perfect rationality to ensure that all attackers have
full knowledge of the probabilities of deception available to them, in addition to the m-probs.

4. An IBL model of attackers in the IAG

Cranford et al. (2018) created an IBL cognitive model of an IAG attacker to make predic-
tions about how human participants would perform in the various experimental conditions.
That model was later simplified to better represent human behavior when playing the IAG.
These modifications generally involved replacing overly complex and implausible mecha-
nisms, memories, and procedures and reverting parameter setting to their default values. The
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details and implications of these changes are discussed in the online Supplemental Material
available at https://osf.io/tpfnv/. The cognitive model is implemented in the ACT-R cogni-
tive architecture (Anderson & Lebiere, 1998; Anderson et al., 2004), and decisions are made
following the methodology of IBLT (Gonzalez et al., 2003). A model based on mechanisms
of the ACT-R architecture limits free parameters and constrains assumptions of representa-
tion and processes. More broadly, the model helps understand the interaction between cog-
nitive processes and deceptive signals, particularly how a boundedly rational agent engages
with deceptive interactions. IBLT has been used to model decision-making processes across
several tasks with much success (Hertwig, 2015). Applications of IBL models include sup-
ply chain management (Gonzalez & Lebiere, 2005), social dilemmas (Gonzalez, Ben-Asher,
Martin, & Dutt, 2015; Juvina, Saleem, Martin, Gonzalez, & Lebiere, 2013; Lebiere, Wal-
lach, & West, 2000), two-person games (Sanner, Anderson, Lebiere, & Lovett, 2000; West &
Lebiere, 2001), repeated binary-choice decisions (Gonzalez & Dutt, 2011; Lebiere, Gonzalez,
& Martin, 2007), and classical single-stage SSGs (Abbasi et al., 2016).

In IBLT, decisions are made by generalizing across past experiences, or instances, that are
similar to the current situation. Typically, experiences are encoded as chunks in declarative
memory that contain the attributes describing the context in which each decision is made, the
decision itself, and the outcome of that decision. This is consistent with the no-magic doctrine
of cognitive modeling (Anderson & Lebiere, 1998) in which only the information directly
available to the subject is represented in the cognitive model, and no additional knowledge
constructs or preprocessing stages are assumed. In the attacker’s model of the IAG, the context
attributes include the probability that a computer is being monitored (m-prob; range 0 to 1.0),
the value of the reward (range 0 to 10), the value of the penalty (range 0 to -10), and whether
or not a signal is presented (present or absent). The possible decisions are attack or withdraw,
and the outcome is the actual points received based on the action.

In a given situation, for each possible decision, an expected outcome is generated from
memory through a retrieval mechanism called Blending. The decision with the highest
expected outcome is made. In the present game, withdrawing always results in zero points.
Therefore, the model only needs to determine the expected outcome of attacking in order to
make a choice. For each decision, the model takes the description of each target and generates
an expected outcome of attacking that target by retrieving similar past instances. In ACT-R,
the retrieval of past instances is based on the activation strength of the relevant chunk in mem-
ory and its similarity to the current context. The activation Ai of a chunk i is determined by
the following equation:

Ai = ln
n∑

j = 1

t−d
j + MP ∗

∑

k

Sim (vk, ck ) + εi (2)

The first term provides the power law of practice and forgetting, where tj is the time since
the jth occurrence of chunk i and d is the decay rate of each occurrence which is set to
the default ACT-R value of 0.5. The second term reflects a partial matching process, where
Sim(vk,ck) is the similarity between the actual memory value and the corresponding context
element for chunk slot k and is scaled by the mismatch penalty, which was set to 1.0. The

https://osf.io/tpfnv/
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term εi represents transient noise, a random value from a logistic distribution with a mean
of zero and variance parameter s of 0.25 (common ACT-R value, e.g., Lebiere, 1999), to
introduce stochasticity in retrieval. Similarities between numeric slot values are computed on
a linear scale from 0.0 (an exact match) to −1.0. Symbolic values are either an exact match
or maximally different, −2.5, to prevent bleeding between memories for different actions and
signal values.

The activation of a particular chunk determines the probability of retrieving that chunk
according to the softmax equation, also known as the Boltzmann equation, reflecting the ratio
of each chunk activation Ai and the temperature t, which was set to a neutral value of 1.0:

Pi = eAi/t

∑
j eAj/t

(3)

The IBL model uses ACT-R’s blending mechanism (Gonzalez et al., 2003; Lebiere, 1999)
to calculate an expected outcome of attacking a target based on past instances. Blending is a
memory retrieval mechanism that returns a consensus value across all memories rather than a
specific memory as computed by the following equation:

argmin
V

∑

i

Pi × (1 − Sim (V,Vi))
2 (4)

The value V is the one that best satisfies the constraints among actual values in the matching
chunks i weighted by their probability of retrieval Pi. That objective is defined as minimiz-
ing the dissimilarity between the consensus value V and the actual answer Vi contained in
chunk i. For the simple case of continuous values such as real numbers, this equation effec-
tively specifies a weighted averaging process. To generate the expected outcome of a decision,
the model matches memories to the current decision context and intended decision and uses
blending to return the expected outcome. That value is not the true expected outcome but
instead reflects the individual’s limited experience as well as various statistical biases (e.g.,
recency, frequency, etc.; Lebiere et al., 2007; 2013).

4.1. The IBL model procedure

To begin the IAG, the model is initialized with seven instances: five represent a simulated
practice round similar to that experienced by the human participants (i.e., for each practice
trial, the model randomly selects one of the targets, uniformly distributed, and always decides
to attack; a chunk is stored that represents the target context, the action to attack, and the sig-
nal and outcome values based on the coverage and signaling schedule of the practice round),
and two represent knowledge gained from instructions (i.e., one instance had a signal value of
absent and an outcome of 10, representing that attacking when a signal is absent will always
result in a reward; another instance had a signal value of present and an outcome of 5, rep-
resenting that attacking when a signal is present could result in either a penalty or a reward).
This method ensures each run of the model begins with a different set of initial experiences,
much like individual humans. The model requires these initial instances to begin or else it
would fail to retrieve a projected outcome. These initial instances are quickly overwhelmed
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Fig. 3. The instance-based learning (IBL) model procedure.

by actual experience as the activation strengths of these chunks decay and are never rein-
forced. Therefore, they do not play a large role past the initial decisions due to their low
probabilities of retrieval.

Fig. 3 shows how the IBL model of the attacker in the IAG operates on a given trial. In
general, reflecting a bounded rationality approach, the model selects a computer with the
highest projected outcome and then decides to attack if the projected outcome, given the
signal value, is greater than zero. The first step is to select a computer to attack (Fig. 3,
left panel). The model iterates through each of the six computers and generates a projected
outcome of attacking each computer through blending retrieval as described above. At this
point, there is no signal information, so the signal slot is ignored. The model keeps track of
the computer with the highest projected outcome of attacking and then selects that computer
to attack. Target selection is a process driven by generated expectations of ultimate outcomes
(payoff or penalty) rather than past selection decisions; therefore, no instances of selection
decisions are saved in memory since they would not influence future decisions.

Next, the model is presented a signal, or not, based on the computer that was selected. The
context is augmented with a signal slot representing whether a signal is present or absent. In
the peSSE-FI condition, when a signal is present, the context is further augmented with an
additional slot representing the probability the signal is deceptive as presented to the human
participants.

In the second step of the decision process (Fig. 3, right panel), the model retrieves a blended
value representing the updated projected outcome of attacking the selected computer, given
the value of the signal. As can be seen in Fig. 1(b), the pop-up signal message occludes
all information about the selected target, so we inferred that humans base their decisions
only on the value of the signal and ignore, or forget, the occluded target information. In other
words, the target information is unlikely to be used in the decision unless the players explicitly
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maintain that information in working memory. Therefore, the similarity of the selected target’s
context to past instances is based solely on the value of the signal (i.e., m-prob, reward, and
penalty values are ignored in step 2). Because humans tend to remember not only the actual
experience but also their expectations about the experience (Gonzalez et al., 2003), a new
instance is saved in declarative memory that reflects the model’s expectations. This instance
includes only slots for the signal value, decision to attack, and the projected outcome gener-
ated via blending. Therefore, these expectations do not play a role in future target selection
because they lack the full decision context but only during future attack decisions. Finally,
if the projected outcome is less than or equal to zero, then the model withdraws the attack,
the decision slot is set to “withdraw,” and the outcome slot is updated with the value zero. If
the projected outcome is greater than zero, then the model attacks, the decision slot is set to
“attack,” and the outcome slot is updated to reflect the ground-truth outcome observed after
the choice is made (feedback). This final instance, which includes the signal value, target con-
text, ground-truth decision, and ground-truth outcome, is then saved in declarative memory.

In the NoSignal condition, because warning signals are never presented, the signal slot is
removed entirely from the context representation. Therefore, in step 2, the model bases its
decision solely on the action to attack. Additionally, the initialized instance that represents
knowledge from instructions when a signal was present was modified so that the outcome
was set to 10, matching the instance that represents knowledge from instructions when a
signal is absent. This modification was necessary to keep the model exploring in early trials;
otherwise, it could get trapped in a cycle of not attacking because the initial expectations
are negative and never get a chance to increase. This is a common practice for triggering
human-like exploration in early trials of a task without explicitly modeling strategies or other
metacognitive processes (e.g., Lebiere et al., 2007).

The model’s behavior reflects its experiences. If an action results in a positive/negative out-
come, then the model’s future expectations will be increased/lowered and it will be more/less
likely to select and attack that computer in the future. Also, the impact of a particular past
experience on future decisions strengthens with frequency and weakens with time. Finally,
experiences are generalized across targets reflecting their attributes (payoff, penalty, proba-
bility). Due to the stochastic nature of the model, it was run through 1000 simulations in each
of the experimental conditions of the IAG in order to generate stable predictions of human
behavior. Of emphasis, is that the model behaves differently on each run and can therefore
represent a population of human attackers without the need to parameterize for individual dif-
ferences. The differences in behavior observed between runs are triggered by the stochastic
component in memory retrieval, which underlies the generation of expectations but is espe-
cially amplified by the different experiences resulting from that stochasticity, which serves as
the basis for future expectations. The model’s performance was compared to that of humans.

5. Human experiment

A between-subjects experiment was conducted with human players to examine the effec-
tiveness of the two deceptive signaling conditions, compared to the no signaling condition.
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5.1. Method

5.1.1. Participants
One hundred thirteen participants participated in the peSSE condition, 108 in the peSSE-FI

condition, and 107 in the NoSignal condition. All participants were recruited via Amazon
Mechanical Turk (mTurk) and had a 90% or higher approval rate with at least 100 Human
Intelligence Tasks (HITs) approved, resided in the United States, and had not participated
in other conditions. For completing the experiment and submitting a completion code, par-
ticipants were paid $1 plus $0.02 per point earned in the game, up to a maximum of $4.50
in additional bonus pay. It is well known that mTurk participants are driven by maximiz-
ing payout, and the low base pay and high potential for bonus meant their potential payout
was directly tied to their points earned in the game. This ensured that the defense algorithm,
whose aim is to reduce attacker’s utility by minimizing their points earned, was aligned with
the goals of mTurk participants and thus appropriate for present investigations.

In the peSSE condition, 11 participants did not complete the experiment or submit a com-
pletion code, two participants restarted the experiment after partially completing it, one par-
ticipant had incomplete data due to a recording error, and one participant previously partic-
ipated in another condition (final N = 98). In the peSSE-FI condition, eight participants did
not complete the experiment and four participants had data recording errors (final N = 96).
In the NoSignal condition, six participants did not complete the experiment, one participant
restarted the experiment, and five participants had data recording errors (final N = 96). These
participants were removed from the analysis. Among the final sample in the peSSE condition,
56 were male, 41 were female (one participant did not specify), and the mean age was 34.64
(range: 21–68). In the peSSE-FI condition, 52 were male, 44 were female, and the mean age
was 35.44 (range: 19–65). In the NoSignal condition, 57 were male, 39 were female, and the
mean age was 35.65 (range: 21–73).

5.1.2. Design
The design was a 3 (signaling scheme: peSSE, peSSE-FI, and NoSignal) by 4 (round: 1

through 4) mixed-effects design. The signaling scheme was a between-subjects factor and the
round was a within-subjects factor. Each of the three signaling scheme conditions was run
separately, at different times.

5.1.3. Procedure
The experiment was conducted via mTurk. The experiment was advertised as “A fun game

of decision making to help keep our systems safe!!” Participants clicked the link of one
of the experimental conditions and were first presented with a consent form and asked a
few demographic questions. After providing informed consent, participants were presented
with instructions for how to play the game. Participants were told that they would be tak-
ing the role of an employee in a company, and their goal was to steal proprietary informa-
tion by attacking computers. They could receive points for attacking computers that were
not monitored by one of the two defenders, as denoted by the number of yellow stars dis-
played on the targets (see Fig. 1(a)), but could lose points for attacking computers that
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were monitored by a defender as denoted by the number of red stars displayed. Partici-
pants were informed that they would earn $1 for completing the game and the question-
naire and would earn an additional $0.02 per point accumulated throughout the game up to
a maximum of $4.50. After reading the instructions, participants answered a few questions
to test their knowledge of how to play the game, and they were provided feedback about
the correctness of their answers. After receiving the feedback, they could proceed to the
game.

Participants played a practice round of five trials to become familiar with the interface and
then played four rounds of the game for 25 trials per round. The targets changed for each
round as defined in Table 1. The location of the targets within the display was randomly
assigned between participants but did not change within a round. Participants began a round
by pressing a “continue” button indicating they were ready to begin. For each trial, partici-
pants began by selecting one of the six targets with the click of a mouse. After clicking the
target, one of two messages were displayed depending on the coverage and signaling schedule
defined for the experimental condition (e.g., see Fig. 1(b)). One message read, “This computer
is being monitored! Do you want to access this computer?” if the computer was monitored
or presented with a deceptive signal. The other message read, “Do you want to access this
computer?” if the computer was not monitored (in the NoSignal condition, this message was
displayed every time regardless of coverage, and participants were never warned that the
computer was being monitored). Participants responded by either clicking a “yes” or a “no”
button. If participants responded “yes” and continued the attack, then they received the num-
ber of points denoted by the yellow stars if the target was not monitored but lost the number
of points denoted by the red stars if the target was monitored. The total points earned in a
round are displayed in the top right of the interface. If they responded “no” and withdrew
their attack, then they received zero points. In the peSSE-FI condition, for the second mes-
sage above, participants were also told, “X% of time this computer appears as ‘monitored’ the
analyst is NOT actually present.” Where X was replaced with the percent of time the signal
is deceptive for that target.

After completing 25 trials, participants were provided feedback regarding their score for the
round and their cumulative score across rounds. At the end of the fourth round, participants
were provided their final score and then pressed an “ok” button to continue to a 10-question,
post-game survey. This data was not analyzed and is not further discussed. After complet-
ing the survey, participants were thanked for their participation and given a completion code.
Participants had to return to the experiment website at Mechanical Turk and enter their com-
pletion code to claim their reward. Participants were paid the $1 base rate plus their earned
bonuses within 24 h of completing the experiment.

5.2. Human and IBL model results

In the sections below, we first analyze human behavior/performance in the IAG by exam-
ining the probability of attack across rounds. This data is then compared to the performance
of the IBL model. Next, we examine the number of points earned across rounds, comparing
human and model performance. Finally, we also examined the target selection behavior of
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Fig. 4. Probability of attack across trials and rounds for humans, compared to the IBL model. The flat, dashed
lines represent the predicted behavior under assumptions of perfect rationality.

humans, compared to the model to shed additional light on how deception influences human
decisions in the IAG.

5.2.1. Probability of attack
Fig. 4 shows the mean probability of attack across 25 trials in each of the four rounds.

The probability of an attack was calculated as the proportion of participants (or simulated
attackers, for the IBL model) that continued the attack on a given trial. The results of the
three experimental conditions are compared against three baselines that were built upon the
assumption of a perfectly rational player (p.r.p.). In Fig. 4, these baselines are shown as flat,
dashed lines over the 25 trials for each of the four rounds. First, because the expected value
of attacking each target is positive (ignoring the signal), a p.r.p. is expected to attack every
time (pAttack = 1.0). Second, if all signals were truthful and only presented if a target was
truly covered, and a p.r.p. never attacks when a signal is present, then a p.r.p. is expected
to attack at a rate equal to the average probability a target is not monitored (i.e., pAttack =
0.67; optimal truthful baseline). Third, if signals are sometimes deceptive at a rate determined
by the peSSE, and a p.r.p. never attacks when a signal is present, then a p.r.p is expected to
attack at a rate equal to the average probability a signal is not presented (pAttack = 0.33;
optimal deceptive baseline). In the NoSignal condition, like p.r.p.’s, humans attack almost all
of the time because the expected value of attacking is positive for all targets. In the peSSE and
peSSE-FI conditions, although signaling reduces attacks, humans attack far more often than
predicted by a p.r.p. and also more than a p.r.p. would if all signals were truthful.

An examination of the human data reveals that participants attacked on an average of 79.4%
(SD = 24.7%) trials in the peSSE condition, 81.1% (SD = 22.5%) trials in the peSSE-FI
condition, and 98.4% (SD = 5.1%) trials in the NoSignal condition. A mixed-factors ANOVA
revealed the probability of an attack was significantly different between signaling schemes,
F(2, 287) = 28.04, p < .001, being lower in the peSSE and peSSE-FI conditions, compared
to the NoSignal condition, both ts > 7.35, ps < .001. There were no differences between
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Table 2
RMSE and correlations between human and model data for each signaling scheme and round

Round 1 Round 2 Round 3 Round 4 Total

Signaling
Scheme RMSE Corr. RMSE Corr. RMSE Corr. RMSE Corr. RMSE Corr.

peSSE 0.06 0.32 0.04 0.73 0.03 0.81 0.03 0.87 0.04 0.72
peSSE* 0.05 0.53 0.04 0.85 0.04 0.86 0.04 0.93 0.04 0.80
peSSE-FI 0.10 0.54 0.13 0.87 0.15 0.84 0.12 0.92 0.13 0.85
NoSignal 0.02 −0.01 0.01 0.00 0.01 −0.28 0.02 −0.19 0.02 −0.19

Abbreviations: peSSE, Strong Stackelberg Equilibrium with persuasion; peSSE-FI, peSSE-full information
(FI).

*This compares the instance-based learning model in the peSSE condition to the humans in the peSSE-FI
condition.

peSSE and peSSE-FI conditions. In addition, humans showed no evidence of learning as the
probability of attack was quite stable across rounds. In the NoSignal condition, the probability
of attack remains near ceiling across rounds, all ts < 0.59, ps > .555. In the peSSE and peSSE-
FI condition, there is a slight downward trend across rounds, but no significant differences
were detected, all ts < 1.66, ps > .098.

As can be used seen in Fig. 4, the IBL model accounts very well for the overall probability
of attack in the peSSE and NoSignal conditions, as well as the trial-by-trial fluctuations in
the peSSE condition. Table 2 shows the Root Mean Square Error (RMSE) and correlations
between the human data and IBL model data for each signaling scheme and round. In the
peSSE, the RMSEs across rounds are very low (< 0.06), and the overall correlation is very
high (0.72). The IBL model is less accurate in Round 1 but quickly aligns with human per-
formance by Round 2. Importantly, the IBL model in the peSSE condition is more accurate of
humans in the peSSE-FI condition (max RMSE = 0.05) than the IBL model in the peSSE-FI
condition (min RMSE = 0.10), which underestimates the probability of attack. This suggests
humans do not know how to make use of the probability in the full information condition. In
the NoSignal condition, the total RMSE is very low (0.02), but the correlation is small and
negative (−0.19). The fluctuations across trials can be mainly attributed to the schedule of
signaling.

Not only does the model match well with the mean probability of attack across trials, it
also accounts well for the full range of human behavior as can be seen in the histograms in
Fig. 5. The histograms show the distribution of participants (or model simulations) by the
mean probability of attack. In the NoSignal condition, the model shows a similar distribu-
tion as humans, with approximately 60% of simulations attacking 100% of trials and about
25% attacking between 95% and 99% of trials. In the peSSE and peSSE-FI conditions, like
humans, a large proportion of model simulations attacked on more than 95% of trials, while
the distribution tails off to about 20% at minimum. As can be seen in the bottom right panel
of Fig. 5, the model in the peSSE condition matches better with the humans in the peSSE-FI
condition than the model in the peSSE-FI condition, another indicator of human’s lack of use
of the additional probability information.
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Fig. 5. Histogram of the mean probabilities of attack for humans compared to the IBL model in the NoSignal,
peSSE, and peSSE-FI conditions. The bottom right panel shows that the model in the peSSE condition matches
better with the humans in the peSSE-FI condition than the model in the peSSE-FI condition.

If we look more closely at the effects of signaling, the results show that when presented
with a signal, humans (and, likewise, the IBL model in the peSSE condition) tend to continue
the attack more often than withdraw. Fig. 6, panel A, shows the probability of attack when
a signal is present. As before, the model in the peSSE condition matches well to humans in
the peSSE and peSSE-FI conditions, while the model in the peSSE-FI condition underpredicts
the probability of attack. While a p.r.p is predicted to never attack when a signal is present,
humans attack much more often, near 75% probability. This is also more than the average
probability of a loss following an attack given a signal (or 50%), indicating a bias toward
attacking given a signal. In fact, we examined sensitivity (d’) for detecting whether a signal
is truthful or deceptive, and results show that humans in the peSSE and peSSE-FI conditions
have an almost zero sensitivity (d’ = −0.36, −0.24, respectively), which makes sense given
the probability of attacking given a signal when a target is not covered (M = 0.71, 0.72,
respectively) is almost equal to the probability of attack given a signal when a target is covered
(M = 0.72, 0.73, respectively). Additionally, response bias scores (C) indicate a high bias
toward attacking given a signal (C = −2.12, −1.82, respectively). As expected, these results
indicate that humans are insensitive to detecting whether a signal is deceptive in the present
task but also reveal biases to attack given a signal. Compared to humans, the cognitive model
in the peSSE condition displayed similar sensitivity (d’ = −0.12) and bias scores (C = −1.56)
as humans in either condition. However, in the peSSE-FI condition, the model was similarly
insensitive (d’ = −0.27) but exhibited less bias toward attacking (C = −0.41), as reflected in
the comparatively lower probability of attack seen in Fig. 4.



18 of 28 E. A. Cranford et al. / Cognitive Science 45 (2021)

Fig. 6. Probability of attack for humans, compared to the IBL model when a signal is present (panel A) and when
a defender is not monitoring the target (panel B). For panel A, the prediction of a perfectly rational player is not
shown because it is at 0.0.

Ultimately, a primary goal of the peSSE is to reduce attacks on uncovered targets. Fig. 6,
panel B, shows the mean probability of attack per round when a defender is not monitoring the
selected computer. In the peSSE, because deceptive signals are presented, an average of 50%
of trials when a defender is absent, a p.r.p. is expected to attack 50% of the time (i.e., every
time a signal is not presented). Humans attack uncovered targets less often when deceptive
signals are presented (i.e., in both the peSSE and peSSE-FI conditions), compared to never
signaling but at a much higher rate (∼80%) than was predicted by a p.r.p. Once again, we see
that the model in the peSSE condition accurately predicts human behavior in the peSSE and
peSSE-FI conditions better than the model in the peSSE-FI condition.

5.2.2. Points earned
There were no differences in the total points earned between signaling schemes (analyses

can be found in the online Supplemental Material at https://osf.io/mfb4q); however, important

https://osf.io/mfb4q
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Fig. 7. Mean gains/losses per round for humans, compared to the IBL model in the NoSignal, peSSE, and peSSE-FI
conditions.

differences are observed when points are separated into mean gains and losses. Gains are
points earned from attacking a target when a defender is absent and is complementary to the
analysis of attacks on uncovered targets, while losses are points lost from attacking when
a defender is present. If deceptive signals are effective at influencing human behavior, then
gains should be reduced, compared to not signaling. However, any losses indicate behavior
that is inconsistent with a p.r.p. who would always withdraw attacks in the presence of a
signal. Fig. 7 shows the mean points obtained per round for humans and the IBL model.
For humans, a mixed-factors ANOVA revealed the mean gains were significantly different
between signaling schemes, F(2, 287) = 13.30, p < .001, being lower in the peSSE and
peSSE-FI conditions, compared to the NoSignal condition, both ts > 4.26, ps < .001. There
were no differences between peSSE and peSSE-FI conditions. While deceptive signals reduce
gains, compared to not signaling, participants still suffer losses in the peSSE and peSSE-FI
conditions, although fewer than in the NoSignaling condition, indicating that, while effective,
the peSSE signaling scheme could be improved.

5.2.3. Selection preferences
Finally, in addition to probabilities of attacking and points gained, the IBL model accounts

very well for the selection behavior of humans. Fig. 8 shows the probability to attack a target,
as a function of the probability of being selected, across rounds. The light bars represent the
probability of selecting that target, and the dark bars represent the probability of attacking
that target given it was selected. Targets are ordered by m-prob and then reward. In Round 1,
both humans and the IBL model tend to select the higher reward targets more often, unless the
m-prob is high. However, humans tend to select the moderate targets (i.e., reward = 5; m-prob
= 0.36) more often than the model. In Round 2, both humans and the model tend to select the
target with a higher reward and moderate m-prob more often. In Round 3, this trend continues
and both humans and the model once again tend to select the option with a moderate m-prob
more often. However, unlike the model, humans also tend to select the target that has a very
large difference between the reward and penalty even though it also has a very high m-prob.
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Fig. 8. Probability of attacking a target as a function of the probability of selecting a target, across rounds, for
humans, compared the IBL model in the NoSignal, peSSE, and peSSE-FI conditions. Targets are labeled with their
respective attribute values (reward, penalty, monitoring probability).

This trend is similar in Round 4, where humans prefer the target with the largest difference
between reward and penalty, while the model tends to select targets with lower m-probs and
moderate rewards.

6. Discussion

Compared to not signaling at all, the use of deceptive signals is effective in reducing the
number of attacks on uncovered targets. However, the peSSE does not perform as well as
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predicted under the assumption of perfect rationality. Instead, when faced with a signal, rather
than always withdrawing, humans tend to attack more often than not. Through instructions
and experience, humans learn that the signal is sometimes deceptive and that attacking will
sometimes result in a reward. These experiences, in turn, lead to continued attacks in the
future, which sometimes result in a reward, perpetuating the probability of attacking. The
IBL model sheds additional light on human behavior in the IAG.

The IBL model provides highly accurate predictions of human behavior, even capturing the
trial-by-trial fluctuations that reflect the combination of coverage and signaling schedules and
target selection preferences. Because the target selection distribution is similar to humans,
the model experiences similar patterns of signaling and coverage that influence the probabil-
ity of attack over trials. However, the model does not capture the trial-by-trial fluctuations
in the NoSignal condition, indicating that the fluctuations are largely driven by the signals
themselves.

Deceptive signals influence behavior, although the degree differs across individuals. Some
individuals are more compliant with the signal and attack less, while almost half of the par-
ticipants attacked greater than 95% of the time overall. As a general process model, the IBL
model also produces the full range of human behavior without the need for knowledge engi-
neering or parameter fitting. That is, the same model produces a range of behavior, from
those that comply with the signal and make decisions that look perfectly rational to those
that always attack and make satisficing decisions. The model accounts for these behaviors
in an emergent way, highlighting the importance experience has on decision-making. Thus,
while human decision-making in the IAG reflects the statistics of the environment, accord-
ing to the IBL model, it is largely influenced by at least three factors: (1) memory retrieval
dynamics across past experiences, (2) confirmation bias, and (3) representation of features of
the decision.

The peSSE performs worse than expected because human biases (e.g., recency, frequency,
and confirmation) lead to overweighting of positive outcomes and, in turn, expectations
greater than zero. When past experiences of positive outcomes are more recent, or more fre-
quent, then positive outcomes are more likely to be expected (likewise for past experiences of
negative outcomes). In general, humans fail to fully comply with the signal because they are
more likely to expect a positive outcome than a negative one as belief in the signal deterio-
rates. Only for some did the expectation of a loss given a signal outweigh the expectations of
a reward and persist throughout the game.

Human behavior is not solely driven by recency and frequency of past experiences, or
else the probability of attack given a signal would more accurately reflect the statistics of
the environment and be near 50% (i.e., the average probability of a win). However, humans
attacked almost 75%. According to the IBL model, this tendency to attack can be explained
by retrieving past instances that include memories for prior expectations in addition to the
ground-truth outcome. This memory phenomenon manifests as a form of confirmation bias,
where decisions are influenced by one’s expectations (Gonzalez et al., 2003). The original
IBL model (Cranford et al., 2018) only stored the ground-truth outcome and manually kept
the expectations from being saved to memory and attacked nearly 50% of trials given a signal.
The current model simply allows the expectations to be saved to memory as the architecture
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intended. The effect is that the additional instances alter the availability of information in
memory. More specifically, the net effect on the next trial is the average of the expectation
and the actual outcome instead of just the actual outcome. For example, when expectations
are not stored, a negative experience would drive down future expectations and likely lead to
a subsequent withdrawal action. However, when expectations are stored, the positive expec-
tation will temper the impact of negative experiences on future expectations, and the model
will be more likely to persist in attacking. The IBL model indicates that confirmation bias
emerges from storing prior expectations in memory and explains why many humans continue
to attack in the face of a signal (and also why some continue to never attack in the face of a
signal).

Finally, the IBL model indicates that the representation of features of the decision is impor-
tant. For example, in the original model in Cranford et al. (2018), the context of the selected
target was represented in the decision to attack or withdraw, but this resulted in a much lower
probability of attack on targets with higher m-probs because it served as an indication that the
outcome would more likely be a loss. The current IBL model and humans show a much more
equally distributed probability of attack across targets. Because the signal message occludes
the targets, unless humans explicitly maintain the target information in working memory, it is
likely not represented in the context of the decision.

Another example of the importance of accurately representing the features of the decision
is that, in the peSSE-FI condition, providing humans with information regarding the decep-
tion probability does not further reduce attacks. The additional information does not change
human behavior, and when the model does not consider that information (i.e., in the peSSE
condition), it more accurately predicts human behavior in the peSSE-FI. This is an indication
that participants do not consider, or otherwise know how to use, this information in making
decisions.

7. General discussion

In the cyber domain, it is often very difficult to detect deception due to the lack of physical
cues available (Riggio & Friedman, 1983). Using cognitive models and human experiments,
the present study sought a better understanding of how humans make decisions when faced
with deceptive signals in an insider attack scenario. The results showed that human behavior
in the IAG is largely consistent with IBLT (Gonzalez et al., 2003). Human decisions in such
dynamic and uncertain environments are made through the aggregated retrieval over past deci-
sions based on the similarity of the current context to past instances, recency, and frequency.
Human behavior in the IAG is a result of innate and learned biases, memory dynamics, and
interaction with the environment. Decisions are influenced by individual experiences playing
out over time. The IBL model accounts for these biases and shows that a major source of bias
in the IAG is confirmation bias.

Without any overt cues to detect deception, humans must rely on exploration for detection
in the cyber world. In the IAG, this means attacking when a signal is presented. However,
once the possibility of deception is known, human decisions are made under uncertainty and
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born from experience. The presentation of a deceptive signal can weaken future belief in
the signal if humans attack due to the experience of a positive outcome. However, attacks
on truthful signals can rebuild that belief. For a majority of participants, those that attacked
greater than 95% of the time, rebuilding that belief was difficult, if not impossible, because
the effects of a positive outcome can persist long enough, through confirmation bias, until
another positive outcome is experienced to reinforce their behavior. For cybersecurity, it is
important to understand these human biases to construct effective defenses that can account
for human bounded rationality and find the optimal rate of signaling (Cooney et al., 2019).

Adversaries will tend to trust signals that are very rarely deceptive. However, the defender
gains very little from the use of deception in such cases. Meanwhile, using too much decep-
tion will erode the meaning of the signal and the adversary may ignore it. Deceptive signaling
schemes have been optimized for an environment that assumes attackers are perfectly rational.
However, the present results show that deceptive signals must be optimized for humans with
imperfect memories that make boundedly rational decisions. Research is currently underway
to find the optimal combination of bluffing and truth-telling that minimizes attacks on uncov-
ered targets for boundedly rational humans. For example, we have developed game-theoretic
models of signaling, and also of masking, that use machine learning methods to predict the
likelihood of an attack in particular situations using real human data to inform the design
of the defense strategy (Aggarwal et al., 2020; Cooney et al., 2019; Thakoor et al., 2020).
Meanwhile, in other research, we have developed techniques that use the present IBL model
to predict human behavior in real time to adapt the signaling scheme to the individual user
(Cranford et al., 2020a, 2020b). These preliminary approaches that account for bounded ratio-
nality show slight improvements over game-theoretic models that assume perfect rationality.

One limitation of the peSSE is that it is static, while humans, like other animals, learn
to adapt to signals through repeated experiences, and these experiences are unique to each
individual (Eliason, 2018). While deception is an effective tool for preventing malicious
behaviors, the experience of successfully calling a bluff can reduce compliance in the sig-
nal. Regaining trust in the signal is difficult if not impossible to do under static signaling
schemes. Unlike statistical, or machine learning, models of attackers that explain the statis-
tics of the environment and the probability of making decisions in particular situations and
that rely on large amounts of data to make accurate predictions of human decisions, the IBL
model is a behavior generative model that helps explain human behavior response to decep-
tive signals. It could therefore serve an applied role in predicting human behavior to aid the
development of alternative signaling schemes. In fact, it has been used to accurately predict
human attacker behavior against several other signaling schemes not reported here. In recent
research, we have explored the possibility of using the cognitive model to adapt the signal-
ing scheme online to be more effective against an individual attacker (Cranford et al., 2020a,
2020b). In Cranford et al. (2020a, 2020b), the IBL model is used to trace human behavior,
make predictions about the probability of attack given a signal, and then adjust the signaling
scheme to present signals at a rate that maintains a belief in the signal. Personalized sig-
naling schemes that use a cognitive model to make predictions about human behavior can
greatly improve security defenses by taking into account an individual attacker’s history of
experience and cognitive biases to better understand their preferences and tendencies. This
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research is in early development and future research is aimed at improving existing methods
and exploring alternative methods that use the IBL model as a tool to adapt the signaling
scheme to an individual to increase compliance with the signal.

The IBL model also highlights the importance of the representation of information in the
context of the decision. Unlike a perfectly rational adversary, humans do not consider all
available information, as was evident in the peSSE-FI condition. For example, in another
experiment with the IAG, about 45% of participants did not seem to represent the signal in
their decision, and a model that also did not represent the signal matched well to human
data (Cranford et al., 2020b). In addition to predicting attack probabilities, an adaptive cog-
nitive model could learn what features are important for an individual’s decision-making (see
Martin, Lebiere, Fields, & Lennon, 2018) to further improve predictions by adapting the
model’s representation of instances to match the individual. Concurrent research is computa-
tionally investigating what are the salient features of IBL decisions, and initial results prove
the methodology useful and highlight the individual differences in what information humans
use to make their decisions (Cranford, Somers, Mitsopoulos, & Lebiere, 2020; Somers, Mit-
sopoulos, Lebiere, & Thomson, 2019).

One concern of the present research is how well the cognitive model and our findings
might generalize to real-world settings. For example, an assumption of the paradigm is that
attackers make repeated decisions and learn from experience. However, in reality, it may be
the case that individuals make few attacking attempts or that a series of attacks could come
from multiple individuals. Fortunately, the IBL model could be used to predict the behavior of
a group of attackers, or the average behavior across a window of time, and we still recognize
the advantage of tools that protect against repeated attackers. Another concern is how well
the model predictions would hold in real-world situations where the payoffs and costs are
potentially much higher. However, we argue that IBL models are well-suited to account for
any possible reward structure precisely because they base decisions by computing expected
utilities of the potential options. To address these and other issues of ecological validity, we
are currently investigating deceptive techniques in the more realistic Cyber Security Virtual
Assured Network (CyberVAN) testbed using domain experts (Aggarwal et al., 2020).

In addition to making the enemy think we are near when we are far, Sun Tzu asserts we
must also make the enemy think we are far when we are near. Another limitation of the peSSE
is that it only uses deception when a target is unmonitored. When the signal is absent, players
may attack with impunity. Therefore, research has begun to investigate the possible benefits
of a defense signaling scheme that adds deception when a target is monitored by sometimes
refraining from sending a signal (Cooney et al., 2019; Cranford et al., 2020a). If signals
were always truthful, attackers would likely always comply because there is no evidence that
attacking given a signal would result in a reward. However, using deception only when a
target is unmonitored does not greatly improve defenses because humans are not perfectly
rational and, once they know a signal is sometimes deceptive, will lose belief in the signal
and (at least sometimes) attack. While attacks on unmonitored targets are reduced, they are
not eliminated. By adding deception when a target is monitored, a signaling scheme could
create further uncertainty in the mind of the attacker, and just a little uncertainty could add
disproportional benefits in the rate of compliance with a signal.
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Our research suggests that in the presence of limited security resources, defenders could
use signaling to create uncertainty in the attacker’s decisions. The benefits of deceptive sig-
naling have been proven effective in physical security such as LA airport security and poach-
ing (Tambe, 2011) and our research indicates the methods can be applied to the design of
defense strategies for cybersecurity. Furthermore, our research provides additional insights
about human decision-making processes under deception, emphasizing the importance of
models that consider human bounded rationality. Although the IAG is a simple abstraction
of naturalistic cyber scenarios, the theoretical developments of our architecture and insights
from our cognitive model can be scaled up to complex systems that require greater expertise.
Therefore, future research will further uncover how humans react to deception in the cyber
domain and inform the design of more effective cyber defenses, scaling in both realism and
complexity.

Note

1. In practice, this value is epsilon lower than zero so that the expected value of attacking
a target given a signal remains slightly negative.
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