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Abstract 
Deceptive signaling has proven an effective method 

that can aid security analysists and deter attacks on 

unprotected targets by strategically revealing 

information to an attacker. However, recent research 

has shown that uncertainty in real-time information 

processing can have a negative impact on the 

effectiveness of the defense algorithm. The current 

research developed a new algorithm, dubbed Confusion 

Signaling, that aims to account for uncertainty in an 

abstracted insider attack scenario. The results of 

cognitive model simulations and a human behavioral 

experiment reveal interesting and unexpected reactions 

under uncertainty. We discuss the implications of these 

findings for signaling algorithms that aim to account for 

uncertainty using deceptive signaling for cybersecurity. 

Keywords: deceptive signaling, uncertainty, insider 

attack, cognitive model, instance-based learning 

1. Introduction 

To protect a network from insider threats, a limited 

number of security analysts must monitor a larger 

number of potential targets. Therefore, to expand the 

perceived coverage of analysts, deceptive signaling for 

cybersecurity has been formally proven to be an 

effective strategy for mitigating attacks on unprotected 

targets against perfectly rational adversaries (Xu, 

Rabinovich, Dughmi, & Tambe, 2015). In addition, 

Cranford et al. (2021) showed that, while the strategy is 

less effective against boundedly rational human 

adversaries, it still proves better than not using deceptive 

signals at all. Signaling is a technique whereby 

information is revealed to an attacker regarding the 

protection status of a potential target, and the key is 

finding the correct balance between truthful and 

deceptive signals to maintain belief in the signal 

(Cooney et al, 2019). Recently, Bondi et al. (2020) 

showed that an important factor that affects this balance 

and influences attacker behavior is uncertainty in real-

time information processing. For example, ignoring 

uncertainty in the adversaries’ observation of a signal 

(i.e., missing a signal or perceiving a signal when there 

isn’t one) can lead to unexpected adversary reactions 

that have a negative impact on the effectiveness of the 

signaling scheme. Therefore, the current research 

addresses these issues discovered by Bondi et al. to 

account for uncertainty when designing deceptive 

signaling schemes for cybersecurity. 

Bondi et al. (2020) examined the effectiveness of 

deceptive signaling in a physical security setting, 

wildlife conservation for mitigating poaching. A 

security team (i.e., park rangers) patrols a set of 

geographic locations (i.e., targets), and drones are used 

to send signals to would-be attackers (i.e., poachers). 

The drones send a signal by flashing lights to indicate a 

ranger is nearby. If a poacher observes the signal, they 

are expected to flee the area or else be caught. The 

drones sometimes send deceptive signals indicating a 

ranger is nearby when in fact they are not. The goal for 

the security algorithm is to determine how often they 

can send deceptive signals while maintaining their 

effectiveness. Game-theoretic models are used to 

optimize the rate of signaling. 

The scenario is modeled as a two-stage Stackelberg 

Security Game (SSG; Tambe, 2011; Xu et al, 2015) in 

which the first stage allocates defenders to targets and a 

second stage optimizes the rate of deceptive signaling. 

After the defender deploys a fixed strategy and allocates 

defenders to targets, the attacker may then observe the 

strategy and select a target to attack. The defender then 

detects intrusions and sends a signal or not, and the 

attacker reacts by continuing the attack or withdrawing. 

Theoretically, the algorithm (the Strong Stackelberg 

Equilibrium with Persuasion, peSSE; Xu et al., 2015) is 

predicted to reduce the defender’s expected losses. 

However, when deployed in a real-world situation, the 

effectiveness of the algorithm is limited because it does 

not account for uncertainties in real-time information. 
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Bondi et al. (2020) presented an algorithm, Games 

with Uncertainty And Response to Detection with 

Signaling Solver (GUARDSS), that accounts for two 

types of uncertainty observed in the poaching domain: 

1) defender uncertainty in detecting the attacker 

(henceforth detection uncertainty), and 2) attacker 

uncertainty in observing the signal (henceforth signal 

uncertainty). In a simulation experiment, Bondi et al. 

showed that the original peSSE algorithm results in 

significant decline in defender expected utility (i.e., the 

amount of loss incurred by the defender as a function of 

the number of attacks on uncovered targets) as the 

amount of uncertainty increases. Meanwhile, the 

GUARDSS algorithm maintains the effectiveness of 

deceptive signaling as uncertainty increases, with 

minimal decline in defender expected utility. 

The present research aims to apply the insights and 

lessons learned from Bondi et al. (2020) to the domain 

of cybersecurity. Cranford et al. (2021), developed an 

abstraction of a cybersecurity task called the Insider 

Attack Game (IAG) to investigate attacker decision-

making in an insider-attack scenario when faced with 

deceptive signals. In that study, human participants 

played the role of attackers, and their task was to first 

choose one of six targets to attack. They were then sent 

a message that either claims a target is monitored 

(signal) or is not monitored (no signal), after which the 

attacker must decide to continue their attack or 

withdraw. When the message claims a target is 

monitored, this signal is sometimes deceptive. The 

attackers made repeated decisions, and the system 

predetermines which targets to defend and which targets 

to send signals for each trial as determined by the 

peSSE. The results showed that the peSSE was more 

effective at mitigating attacks and reducing defender 

losses compared to never signaling or only truthfully 

signaling. However, the study was not designed to 

account for uncertainty in information processing 

because the presentation of signals was clear, and the 

environment controlled. It is likely that uncertainty 

would exist in a real-world situation. Therefore, in the 

present research we aim to investigate the impact of 

uncertainty on the peSSE, and to design a new algorithm 

that effectively accounts for uncertainty. 

There are key differences between the poaching 

scenario and the insider attack scenario that influence 

the design of the new algorithm. In the IAG, there is no 

sensor that detects attacks, network security analysts 

have no constraints on which target they can travel to at 

each time point, and sending signals does not require a 

drone be present at a target. Instead, at each time point, 

we envision the defender allocating security analysts to 

monitor a set of targets and each target is assigned a 

signal or not. When an attacker selects a target to attack, 

if the signal is present, it can be observed (e.g., an icon 

in the taskbar could be red to indicate the computer is 

actively being monitored or green to indicate that it is 

not monitored). Given this type of scenario, the 

signaling algorithm does not need to detect attackers to 

be deployed. Therefore, for the present research we 

focus solely on accounting for signal uncertainty. We 

must note however that, for signaling algorithms that are 

adaptive and personalized to individuals, such as that 

proposed by Cranford et al. (2020a; 2020b), it is 

important to know which targets were attacked when an 

analyst is not present to detect them, and to account for 

detection uncertainty, to maintain accurate models and 

predictions of attacker behavior that can be used to adapt 

the signal and/or coverage appropriately. 

The GUARDSS approach uses a branch and price 

algorithm to solve an exponentially large linear 

program. However, the approach is a bit overkill for our 

current problem because, in the IAG, there is no reliance 

on drones for detecting attacks or sending signals, 

constraints on movement of analysts is not limited by 

physical distances, and there is no subsequent 

reallocation of defenses to sensor locations. Because the 

structure of the IAG is substantially different from the 

poaching domain, our approach to accounting for signal 

uncertainty in the IAG is to remain closer to the original 

peSSE. As described in more detail later, we add a layer 

of confusion to the signaling state via a confusion matrix 

(i.e., whether a signal was perceived or not if presented 

or not) and likewise adjust the equation for determining 

signaling probabilities to account for said confusion. 

Hence, the algorithm is dubbed Confusion Signaling. 

We conducted a human behavioral experiment to 

examine the effectiveness of the Confusion Signaling 

algorithm. Our results reveal surprising and interesting 

human responses to uncertainty. Particularly, that 

humans seem to mull on unexpected events brought on 

via signal uncertainty, but which impacts behavior in a 

different direction than predicted (Erev et al., 2010). 

These results led us to revise our cognitive model to 

make more accurate predictions, as will be discussed. 

In what follows, we first describe the IAG, the 

peSSE, and the new Confusion Signaling algorithm that 

accounts for uncertainty in the IAG. We then present a 

cognitive model of human attack decisions in the IAG 

and model predictions of the impact of uncertainty on 

the effectiveness of deceptive signaling algorithms that 

do not account for signal uncertainty (i.e., the peSSE) 

and one that does (i.e., Confusion Signaling). We then 

present the results of a human-behavioral experiment 

that was designed to validate the model predictions, 

followed by new model predictions given revisions to 

the cognitive model. Finally, we discuss the results and 

their implications for signaling algorithms, including 

future research that aims to account for uncertainty in 

personalized, adaptive signaling algorithms. 
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2. Deceptive signaling for cybersecurity 

For the present research, we designed a signaling 

algorithm that accounts for uncertainty in the IAG. We 

first describe the IAG and the original peSSE algorithm 

before describing the Confusion Signaling algorithm. 

2.1. Insider Attack Game 

The IAG is an abstraction of a cybersecurity task, 

designed to investigate the influence of deceptive 

signals on cyber-attacker decision making in an insider 

attack scenario (for brevity we summarize the procedure 

here, while complete details can be found in Cranford et 

al., 2021). Players take the role of an insider attacker and 

make repeated decisions of “hacking” computers to steal 

proprietary data. Attackers are presented six targets, of 

which two of the targets are monitored, or covered, by 

security analysts (i.e., simulated defenders controlled by 

a defense algorithm). Each target displays the reward 

earned if they successfully attack a target, the penalty 

imposed if the attack is unsuccessful, and the probability 

that the target is being monitored by an analyst. This 

information represents the full information of the payoff 

structure that could be acquired by an attacker by 

probing the network prior to an attack. 

On each turn, attackers must first decide which of 

six targets to attack, with the goal of avoiding the two 

analysts. After selecting a target, the attacker is 

presented a message stating whether the computer is 

being monitored (i.e., signal) or not (i.e., no signal). In 

the instructions, the attacker is informed that the 

message is always truthful when claiming a target is not 

being monitored, but it is sometimes deceptive when 

claiming the target is being monitored. The attacker 

must then decide to either continue the attack or 

withdraw, after which they are provided feedback based 

on their decision. If they continue the attack, they are 

given a reward or penalty, depending on the true 

underlying coverage. If they withdraw then they are 

awarded zero points. Attackers are incentivized to earn 

as many points as possible across four rounds of 25 trials 

each, and a new set of targets are presented at the start 

of each round. Attackers play a practice round of five 

trials before proceeding with the main trials to become 

familiar with the interface and sequence of decisions. 

2.2. Defense algorithm for deceptive signaling 

The IAG is modeled as a Stackelberg Security 

Game (SSG; Tambe, 2011). SSGs model the interaction 

between an attacker and a defender under a game-

theoretic framework. According to the SSG, a defender 

first plays a particular strategy (e.g., random patrolling 

of a set of targets) that is then observed by the attacker. 

The attacker then takes action by deciding which target 

to attack. Algorithms such as the Strong Stackelberg 

Equilibrium (e.g., Tambe, 2011) have been designed to 

optimize the allocation of limited defense resources and 

we have adapted it to the cybersecurity domain to assist 

network security analysts in defending a typically large 

number of targets given limited defense resources. 

Xu et al. (2015) extended the SSG by incorporating 

elements of signaling, whereby defenders strategically 

reveal information about their strategy to the attacker to 

influence the attacker’s decision making. For example, 

by using a combination of truthful and deceptive 

messages that claim a target is monitored, the defender 

can increase the perceived coverage of the targets. Xu et 

al.’s peSSE defense algorithm improves defense by 

finding the optimal combination of bluffing (sending a 

deceptive message that the target is monitored when it 

is not) and truth-telling (sending a truthful message as 

to whether the target is monitored) so that a rational 

attacker would not attack in the presence of a signal. 

In practice, the peSSE first allocates defenses 

proportionally across the set of targets so that the 

expected values of all targets are equal. The attacker 

then chooses a target to attack. A message is then sent 

to the attacker revealing the protection status of the 

target. When the message claims the target is not 

monitored, this is referred to as no signal, and is always 

truthful. When the message claims the target is 

monitored, this is referred to as the signal, which is 

sometimes deceptive. If signals were always truthful, 

the expected value of attacking a target given a signal 

would be negative and so a perfectly rational adversary 

should withdraw. However, due to limited defense 

resources, there would be many targets that are not 

signaled in which the attacker may attack with impunity. 

A signal is always sent when the target is truly 

monitored (i.e., ℙ(𝑠𝑖𝑔𝑛𝑎𝑙|𝑐𝑜𝑣𝑒𝑟𝑒𝑑) = 1), and the peSSE 

determines the optimal rate of sending deceptive 

signals, ℙ(𝑠𝑖𝑔𝑛𝑎𝑙|𝑢𝑛𝑐𝑜𝑣𝑒𝑟𝑒𝑑), such that the expected 

value of attacking a target, given a signal, is equal to the 

expected value of withdrawing, or zero. Therefore, a 

perfectly rational adversary would continue to withdraw 

in the presence of a signal while the defender increases 

the perceived coverage of targets. The goal of the peSSE 

is to minimize the defender’s loss, or defender expected 

utility (DEU), where the defender receives -1 point for 

every successful attack (i.e., attacks on uncovered 

targets), and is operationalized as: 

𝐷𝐸𝑈 = −1 ∗ # 𝑎𝑡𝑡𝑎𝑐𝑘𝑠 𝑜𝑛 𝑢𝑛𝑐𝑜𝑣𝑒𝑟𝑒𝑑 𝑡𝑎𝑟𝑔𝑒𝑡𝑠 (1) 

For the IAG, the coverage and signaling of targets 

is precomputed for each trial, and therefore each 

attacker experiences the same schedule of coverage and 

signaling, which controls for differences in behavior 

Page 878



that could be attributed to differences in coverage and 

signaling schedules. 

2.3. Accounting for uncertainty in the IAG via 

Confusion Signaling 

To account for uncertainty in the IAG, we add a 

confusion matrix to the algorithm that maintains the 

equilibrium for deceptive signaling so that the expected 

value of attacking given a signal remains at 0. As shown 

in Figure 1, the top portion depicts the peSSE without 

uncertainty, showing the average probability that a 

target is covered, in blue, and the average probability 

that a target is signaled given coverage or not, in red. 

The peSSE aims to maintain the equilibrium: 

ℙ(𝑐𝑜𝑣𝑒𝑟𝑒𝑑|𝑠𝑖𝑔𝑛𝑎𝑙)𝑈𝑎𝑐 = −ℙ(𝑢𝑛𝑐𝑜𝑣𝑒𝑟𝑒𝑑|𝑠𝑖𝑔𝑛𝑎𝑙)𝑈𝑎𝑢 (2) 

where 𝑈𝑎𝑐  is the utility of attacking a covered target 

(i.e., the penalty) and 𝑈𝑎𝑢 is the utility of attacking an 

uncovered target (i.e., the reward). If reward and penalty 

are equal, then the corresponding signaling probabilities 

will be equal. More generally, the probability of 

signaling when the target is uncovered is: 

ℙ(𝑠𝑖𝑔𝑛𝑎𝑙|𝑢𝑛𝑐𝑜𝑣𝑒𝑟𝑒𝑑) = −
𝑝𝑈𝑎𝑐

(1 − 𝑝)𝑈𝑎𝑢
 (3) 

where 𝑝 is the coverage probability of the target. 

As shown in the bottom portion of Figure 1, given 

signal uncertainty, a portion of the signals are not 

observed (i.e., in gray; kappa, κ), and a portion of the 

time when no signals are sent, they are falsely perceived 

(i.e., in green; lambda, λ). To maintain the equilibrium 

of Equation (2), and to account for signal perception, we 

must adjust the rate of signaling when a target is not 

covered and compute the new probability to send a 

signal given an uncovered target, ℙ′(𝑠𝑖𝑔𝑛𝑎𝑙|𝑢𝑛𝑐𝑜𝑣𝑒𝑟𝑒𝑑). 

Therefore, we must consider the additional confusion 

matrix of uncertainty, shown in Table 1, when adapting 

the signaling algorithm. 

 

Figure 1. Depiction of signal uncertainties in the IAG. 

Table 1. Confusion matrix for signal uncertainty 

 Perceived 

True no signal signal 

no signal 𝟏 − 𝝀 𝝀 

signal 𝜿 𝟏 − 𝜿 

 

Given the confusion matrix in Table 1, we wish to 

maintain the equilibrium of Equation (2): 

ℙ(𝑐𝑜𝑣𝑒𝑟𝑒𝑑|𝑠𝑖𝑔𝑛𝑎𝑙 𝑝𝑒𝑟𝑐𝑒𝑖𝑣𝑒𝑑)𝑈𝑎𝑐 =

−ℙ(𝑢𝑛𝑐𝑜𝑣𝑒𝑟𝑒𝑑|𝑠𝑖𝑔𝑛𝑎𝑙 𝑝𝑒𝑟𝑐𝑒𝑖𝑣𝑒𝑑)𝑈𝑎𝑢
 (4) 

Therefore, we continue to always signal when a target is 

covered and keep the ℙ′(𝑠𝑖𝑔𝑛𝑎𝑙|𝑐𝑜𝑣𝑒𝑟𝑒𝑑) = 1, and solve 

for ℙ′(𝑠𝑖𝑔𝑛𝑎𝑙|𝑢𝑛𝑐𝑜𝑣𝑒𝑟𝑒𝑑) by using Bayes’ rule: 

ℙ′(𝑠𝑖𝑔𝑛𝑎𝑙|𝑢𝑛𝑐𝑜𝑣𝑒𝑟𝑒𝑑) =                                                

𝑚𝑎𝑥(0, 𝑚𝑖𝑛 (1, −
𝑝(1 − 𝜅)𝑈𝑎𝑐 + (1 − 𝑝)𝜆𝑈𝑎𝑢

(1 − 𝑝)(1 − 𝜅 − 𝜆)𝑈𝑎𝑢
))

 (5) 

where 𝑝 is the probability a target is covered. 

The new signaling equation is not without its 

limitations. When 𝜅 + 𝜆 ≥ 1, the scheme will default to 

always signaling (i.e., the bottom right of the diagonal 

in the plots in Figure 2, described below). Additionally, 

when 
𝜆

1−𝜅
≥ −

𝑝𝑈𝑎𝑐

(1−𝑝)𝑈𝑎𝑢
, the scheme will default to never 

signaling. This creates a “safe zone” for using 

Confusion Signaling such that within the safe zone, the 

utility of attacking will remain constant and maintain the 

equilibrium while defender losses are expected to 

decrease as the number of false negatives increase. 

3. Modeling uncertainty in the IAG 

Cranford et al. (2021) created a cognitive model of 

attacker decision-making in the IAG to better 

understand how humans react and adapt to deceptive 

signals as assigned by the peSSE defense algorithm. For 

the present research we used the same model to make 

predictions against the Confusion Signaling algorithm. 

3.1. Cognitive model of attackers in the IAG 

We briefly summarize the cognitive model, while 

details can be found in Cranford et al. (2021). The 

cognitive model was developed in the ACT-R cognitive 

architecture (Anderson & Lebiere, 1998; Anderson et 

al., 2004) and decisions are made according to Instance-

Based Learning Theory (IBLT; Gonzalez, 2013; 

Gonzalez, Lerch, & Lebiere, 2003). According to IBLT, 

decisions in dynamic environments are made by 

generalizing across past experiences, learned through 

feedback from repeated interactions. Experiences are 

encoded as instances in declarative memory, and 

represented by the contextual features of the situation, 

the decision/action made, and the outcome/utility of the 
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decision. Decisions are made by generating an expected 

utility of each possible action and selecting the action 

that maximizes that utility. The generation of expected 

utilities is made through a memory retrieval process 

called blending (Lebiere, 1999), which aggregates 

across past outcomes based on the contextual similarity 

of past instances, and their recency and frequency in 

memory, and is computed by the following equation: 

𝑉 = 𝑎𝑟𝑔𝑚𝑖𝑛
𝑉𝑡

∑ 𝑃𝑖 × 𝑆𝑖𝑚(𝑉𝑡, 𝑣𝑖𝑡)2

𝑛

𝑖=1

(6) 

The value, 𝑉, is the aggregate value based on matching 

chunks i, weighted by their retrieval probability 𝑃𝑖 . The 

similarity function, 𝑆𝑖𝑚(𝑉𝑡 , 𝑣𝑖𝑡), is used to compare the 

outcomes in memory chunks 𝑣𝑖𝑡  and candidate 

consensus values 𝑉𝑡, and is effectively the error function 

to be minimized. The similarity function returns a 

linearly scaled value, normalized between 0 and -1.0, 

computed as the absolute difference between 𝑉𝑡 and 𝑣𝑖𝑡 . 

In the simplest case, where the outcomes are numerical 

and the similarity function is linear, as is the case here, 

the process simplifies to a weighted average by the 

probability of retrieval. The retrieval probability is 

based on the activation strength of instances in memory, 

which is computed via standard ACT-R equations (see 

Anderson & Lebiere, 1998; Anderson et al., 2004). 

The IBL model plays the IAG similar to humans. 

The model is run 1000 times to simulate a population of 

individuals and makes different decisions on each run 

based on stochasticity in the retrieval processes, and 

differences in initialization, which lead to unique 

trajectories of experiences. Each run of the model is 

initialized with a set of instances that represent 

knowledge gained from instructions and a simulated 

practice round. The “instruction knowledge” chunks 

include two instances that reflect information acquired 

from reading the instructions about the potential reward 

they could earn given the truthfulness of the messages: 

one represents the knowledge that attacking a target 

given no signal will always result in a reward (warning 

= absent, outcome = 10), and another represents the 

knowledge that attacking a target given a signal will 

only sometimes result in a reward (warning = present, 

outcome = 5). Five additional instances are added to 

represent experience during a practice round. Each 

instance represents an attack on a target during a 

practice trial and is selected uniformly at random. These 

initialized experiences, combined with stochasticity in 

retrieval, drives individual differences between runs. 

On each trial the model first decides which target to 

select. The features include the reward [1, 10], penalty 

[-1, -10], and monitoring probability [0.0, 1.0]. The 

model generates an expected outcome for each target, 

via blending, and selects the target with the highest 

value. Next, the model generates a new expected value 

of attacking given only the signal feature [present, 

absent], and a straightforward decision rule is applied: 

if the value is greater than zero then the model attacks, 

else it withdraws. The model then receives feedback 

about its decision: zero if the decision was to withdraw, 

or the reward or penalty if the decision was to attack, 

given whether the target was uncovered or covered. Two 

instances are saved to memory each trial: one represents 

the expectation generated when deciding to attack or 

withdraw and the other represents the ground truth 

decision and feedback received. Storing expectations 

drives a confirmation bias in which the availability of 

additional positive instances in memory, created via 

positive expectations of attacking, perpetuates a bias to 

attack on future trials even after suffering a loss. 

Cranford et al. (2021) showed that the model 

accurately predicts human performance in the IAG 

when playing against the peSSE algorithm. Not only 

does the model accurately predict the mean probability 

of attacking across trials, and the mean defender 

expected utility per round, it also accurately reflects the 

distribution of individual variances in overall attack 

probabilities. Thus, we use this model to make 

predictions about the impact of uncertainty in the IAG. 

3.2. Expected impact of uncertainty on the 

effectiveness of deceptive signaling 

The IBL cognitive model was used to make 

predictions regarding the impact of varying levels of 

both kappa and lambda signal uncertainty on the 

effectiveness of the peSSE. We note that amount of 

uncertainty in a real-world scenario is currently 

unknown, but we expect relatively small values for each 

and particularly small values for lambda. However, we 

make predictions across the full range of values for both 

the probability of kappa and the probability of lambda, 

from 0.0 to 1.0, in increments of 0.1. For each pair of 

values, the model was run 1000 times to simulate a 

population of individuals. On each trial, the signal/no-

signal was misperceived based on the probability of 

uncertainty given by kappa/lambda. This was also done 

for initialized practice trials. 

The top left panel of Figure 2 shows the overall 

mean probability of attack as a function of kappa and 

lambda uncertainties. The results show that as kappa 

increases, the probability of attack is expected to 

increase. As lambda increases, the probability of attack 

is expected to decrease. 

The bottom left panel of Figure 2 shows the overall 

mean defender expected utility as a function of kappa 

and lambda uncertainties. The results mirror those of the 

probability of attack. As kappa increases, the defender’s 

expected utility worsens, and as lambda increases, the 

defender’s expected utility improves. 
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Taken together, we can expect that if we do not 

account for uncertainty in the IAG, the peSSE will 

perform increasingly worse as kappa increases, but 

performs better as lambda increases. However, as 

previously noted, we expect very little lambda 

uncertainty in the real world, and potentially greater 

kappa uncertainty. Kappa uncertainty means that 

sometimes when a target is covered the attacker will not 

perceive a signal, and if they attack then they will be 

caught (κ for covered targets in Figure 1). This should 

add confusion when no signal is experienced so an 

attacker should attack less often given no signal. 

However, because they also experience fewer signals 

when a target is not covered (κ for uncovered targets in 

Figure 1), the expected outcomes given no signal should 

remain positive. Therefore, as kappa increases, the 

attacker is given more opportunities to attack with 

impunity, even if they suffer a few losses. Meanwhile, 

because signals are always sent to covered targets, 

lambda only increases the probability of observing a 

signal when a target is uncovered (λ for uncovered 

targets in Figure 1). The effect is that the expected 

outcome of attacking given a signal should increase 

above zero, but as long as the attacker believes the 

signal, the result is fewer attacks overall. 

 

 

Figure 2. Cognitive model predictions of Confusion Signaling compared to the peSSE across varying levels of signal 
uncertainty. The bottom panel shows the difference between Confusion Signaling and peSSE.
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3.3. Model predictions of Confusion Signaling 

We used the cognitive model to make predictions 

of attacker behavior under the Confusion Signaling 

algorithm. The top center panel of Figure 2 shows the 

overall mean probability of attack as a function of kappa 

and lambda uncertainties, and the bottom center panel 

shows the overall mean defender expected utility. The 

panels on the right of Figure 2 show the expected 

change, delta Δ, from the Confusion Signaling 

algorithm compared to the peSSE for probability of 

attack (top-right) and DEU (bottom-right), respectively. 

Blue represents a lower probability of attack and higher 

defender expected utility for Confusion Signaling than 

the peSSE, indicating improved defenses under 

Confusion Signaling, whereas red indicates worse 

defense under Confusion Signaling. 

Taken together the model predicts that the 

Confusion Signaling algorithm will largely improve 

defenses under signal uncertainty, especially as the 

amount of kappa uncertainty increases. At low levels of 

kappa, Confusion signaling is likely to reduce the 

overall number of attacks, while roughly maintaining 

the defender expected utility of the peSSE. However, 

Confusion Signaling is really expected to shine when 

kappa becomes larger than 0.2. In the real world, we can 

expect some level of kappa and lambda uncertainty, and 

more kappa than lambda, but we do not expect either 

value to be very large. Therefore, as a first test to 

validate the effectiveness of Confusion Signaling, we 

deployed a human behavioral experiment that simulates 

the effects of  𝜅 = 0.3 and 𝜆 = 0.1. 

5. Validation of Confusion Signaling 

scheme in a human behavioral experiment 

We conducted a human behavioral experiment to 

examine human decision making in the IAG under the 

Confusion Signaling algorithm. We recruited 111 

participants via Amazon Mechanical Turk (all resided in 

the United States), of which 10 were removed from 

analysis due to data recording errors, resulting in a final 

sample size of 101. For completing the experiment and 

submitting a completion code, participants were paid a 

base of $1.50, and earned up to $4.50 in bonus payment 

at a rate of $0.01 per point accumulated in the game. For 

brevity, details of the experimental design can be found 

in Cranford et al. (2021). 

The results are compared to human performance 

against the peSSE, as reported in Cranford et al. (2021), 

and to cognitive model simulations. The current study 

used the same targets and coverage schedule that was 

used in the Cranford et al. study. The only difference is 

the underlying signaling scheme. The human results are 

compared to three cognitive simulations. One is a model 

of the peSSE, another is a model of the peSSE that adds 

kappa and lambda signaling uncertainty, and the third is 

a model of the Confusion Signaling. The model was run 

1000 times to simulate a population of attackers and to 

generate stable estimates of performance. The coverage 

and signaling schemes were the same for each 

participant or model agent within each experiment or 

simulation. Since observing the signal in the IAG is 

straightforward, to simulate kappa and lambda 

uncertainty in the experiment and simulations, the 

signals were changed up front according to the 

probabilities of kappa and lambda (i.e., 30% of the time 

a signal was scheduled to be sent, it was not sent, and 

10% of the time no signal was scheduled, one was sent). 

5.1. Refining the cognitive model 

As will be described next in the results section, 

humans did not react to Confusion Signaling as 

expected. Attackers attacked less often than predicted, 

and to model this reduction in attacks, we implemented 

a mulling mechanism that would strengthen the 

activation of unexpected, anomaly events when users 

experienced a loss given no signal. The idea is that 

unexpected events trigger extra thought about them and 

so the activation trace in memory is stronger and has 

more of an impact on future retrievals (e.g., see Erev et 

al., 2010). Due to kappa uncertainty, such mulling 

would decrease the future probability of attack on un-

signaled targets. However, instead we observed that 

attackers continued to attack un-signaled targets at a 

high rate, but the probability of attack on signaled 

targets was reduced. This result is possibly due to the 

fact that the instructions tell the participant that the 

message is always truthful when claiming a target is 

uncovered, which is true of the peSSE given no 

uncertainty, but when uncertainty exists participants 

will sometimes experience a loss when they do not 

perceive a signal. The key insight here is that humans 

seem to either recognize these anomalous events as 

something incorrect with their perception or something 

incorrect with the game, and so instead of encoding the 

instance as a “no signal” event, they encode it as a 

“signal” event. Therefore, when mulling, the instance 

encoded upon feedback and mulled on is encoded as if 

a signal was present, and thus the future probability of 

attack given a signal is reduced. 

We added two parameters that govern mulling: 1) 

the number of events to mull on before ceasing (i.e., 

after a while, the events are no longer unexpected or 

anomalous, or possibly that attackers become fatigued), 

and 2) the number of references added on each event 

(i.e., the number of times the event is rehearsed in 

memory). We explored several parameter values, and 
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the best fit was found with 10 mull events and 1 

reference added per event. For models with uncertainty, 

mulling is also added to the initialized practice trials 

when kappa uncertainty is experienced. 

We also revised the model to generalize better 

across signaling conditions. The following changes are 

based on other research with the IAG. First, we modified 

the model initialization. The “instruction knowledge” 

instances were changed so that when a signal is absent 

the outcome is 5.33 (the average reward of all targets), 

and when a signal is present now two instances are 

encoded, one with a negative outcome of -5.33 and the 

other with a positive outcome of 5.33 (averaging to 0, or 

the expected value given a signal). Secondly, in a study 

on the effects of endowment in the IAG, Cranford et al. 

(2020c) observed that attackers are not affected very 

much by initial losses. Therefore, the penalties are 

reduced to be no greater than the total current points. 

The effect is an improved fit of the model in the initial 

few trials. Lastly, Cranford et al. (2020a) observed that 

some participants attack greater than 95% and these 

participants also reported that they ignored the signal. A 

model that removed the signal feature from the decision 

performed similarly. Therefore, a portion of model 

agents use a strategy of ignoring the signal. This value 

was set at 23% and is based on survey responses 

reported in Cranford et al. (2020a). 

5.2. Results 

To assess performance of humans and models, we 

analyzed the mean probability of attack per round, the 

distributions of overall probabilities of attack, and 

defender expected utilities. Figure 4 shows the mean 

probability of attack per round. Humans attack less often 

under Confusion Signaling than the peSSE. The models 

for the peSSE and Confusion Signaling fit very well to 

the human data; in fact, the correlation and RMSE of the 

mean probability of attack across trials is (r = 0.78, 

RMSE = 0.037) and (r = 0.88, RMSE = 0.051), 

respectively. Compared to the peSSE, when uncertainty 

is added to the peSSE, model predictions show a 

decrease in probability of attack. However, Confusion 

Signaling is expected to further reduce the probability 

of attack beyond that of the peSSE. 

As can be seen in the histograms in Figure 5, 

Confusion Signaling results in many fewer participants 

that attack almost all the time. Many more participants 

cluster around attacking approximately 60% of the time. 

The cognitive models of the peSSE and Confusion 

Signaling match very well to the full distribution of 

human participants. Compared to the peSSE with 

uncertainty, Confusion Signaling is expected to reduce 

the number of participants that attack most of the time 

and shift them toward the middle part of the distribution. 

The defender expected utility is shown in Figure 6. 

The human data shows that the Confusion Signaling 

results in lower defender expected utility than the 

peSSE, but most of the effect is in the first two rounds. 

Meanwhile, defender utilities are about the same in the 

last two rounds. The peSSE and Confusion Signaling 

models match well to the human data, but there is some 

underestimation of the peSSE model in rounds 3 and 4. 

 

Figure 4. Mean probability of attack across trials comparing 
humans and models across signaling algorithms. 

 

Figure 5. Distribution of overall probability of attack 
comparing humans and models across signaling algorithms. 

 

Figure 6. Mean defender expected utility per round 
comparing humans and models across signaling algorithms. 
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Figure 7. Revised cognitive model predictions of Confusion Signaling compared to the peSSE across varying levels of signal 
uncertainty. The rightmost figures show the difference between Confusion Signaling and peSSE. 

5.3. Revised predictions of Confusion Signaling 

Based on the observations of human performance, 

and given the model revisions described above, we 

tasked the model to make new predictions regarding the 

effects of uncertainty on attacker behavior in the IAG. 

As before, for each pair of values, the model was run 

1000 times to simulate a population of individuals. 

The results presented in Figure 7 show a different 

pattern than observed with the original cognitive model. 

Based on the insight that humans adapt to kappa 

uncertainty by overcorrecting given a signal via 

mulling, the peSSE model now attacks less often, 

resulting in lower defender expected utility, as kappa 

and lambda increase together. Within the safe zone, 

Confusion Signaling is expected to mostly reduce 

attacks and improve defender expected utility compared 

to the peSSE, but only maintains about the level of the 

peSSE as kappa uncertainty becomes large. Below the 

safe zone, Confusion Signaling tends to fail and the 

peSSE remains a better signaling algorithm. 

6. Conclusion 

The present research aimed to design a deceptive 

signaling algorithm for cybersecurity that effectively 

accounts for uncertainty in real-time information 

processing. Simulations showed that our solution, the 
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Confusion Signaling algorithm, should prove successful 

in reducing attacks and improving defender expected 

utility, or at least maintaining them, compared to the 

peSSE when signal uncertainty is present. The 

Confusion Signaling algorithm results in differences in 

attacker behavior across levels of uncertainty. This 

makes it clear that it is important to understand the 

amount of uncertainty in a particular environment. It 

also opens the possibility of directly manipulating 

uncertainty to induce desired levels of performance 

from the defense algorithm. The benefit of Confusion 

Signaling is currently limited to a safe zone where the 

combined probability of kappa and lambda uncertainty 

is less than 1. Future research will address this limitation 

by considering how to successfully adapt the signal in 

this zone. One method may be to mirror the signaling 

probabilities within the safe zone. 

The human behavior study revealed interesting and 

unforeseen reaction to signal uncertainty. Particularly, 

given kappa uncertainty, users seem to mull on those 

events in a way that causes fewer attacks on signaled 

targets instead of fewer attacks on un-signaled targets. 

These findings have important implications for 

signaling algorithms that attempt to account for 

uncertainty. Instead of reducing the expected value of 

attacks on un-signaled targets, algorithms need to 

account for kappa uncertainty by reducing the expected 

value of attacks on signaled targets. Future research is 

aimed at revising the Confusion Signaling algorithm to 

account for this behavior of boundedly rational humans. 

Another avenue of future research will be to 

investigate the ecological validity of the current 

findings. The abstracted IAG task does not necessarily 

reflect the scale of real-world rewards and penalties that 

professional attackers would experience, and the 

Mechanical Turk participants lack their decision-

making expertise and motivation. It is possible that 

professional attackers would better account for, and 

remain robust in the face of, environmental uncertainty. 

Finally, the present research only accounts for 

signal uncertainty because detection is not necessary for 

static signaling methods for cybersecurity. However, 

when personalized, adaptive methods are used (e.g., 

Cranford et al., 2020a; 2020b), detection is key to track 

attacker decision-making in order to adapt a model to an 

individual and provide informed recommendations for 

adapting the signaling scheme. Therefore, future 

research is aimed at exploring how to account for 

detection uncertainty in the IAG. 
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