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Abstract 

Organizations typically use simulation campaigns to train 
employees to detect phishing emails but are non-personalized 
and fail to account for human experiential learning and 
adaptivity. We propose a method to improve the effectiveness 
of training by combining cognitive modeling with machine 
learning methods. We frame the problem as one of scheduling 
and use the restless multi-armed bandit (RMAB) framework to 
select which users to target for intervention at each trial, while 
using a cognitive model of phishing susceptibility to inform the 
parameters of the RMAB. We compare the effectiveness of the 
RMAB solution to two purely cognitive approaches in a series 
of simulation studies using the cognitive model as simulated 
participants. Both approaches show improvement compared to 
random selection and we highlight the pros and cons of each 
approach. We discuss the implications of these findings and 
future research that aims to combine the benefits of both 
methods for a more effective solution. 

Keywords: cognitive models; model-tracing; restless multi-
armed bandit; Instance-Based Learning; ACT-R; phishing 

Introduction 

Phishing remains one of the biggest threats to cybersecurity 

in an organization (APWG Phishing Report, 2021). Typical 

training of employees involves limited cybersecurity 

awareness tutorials and simulation campaigns (Yeoh et al., 

2021). During simulation campaigns, phishing emails are 

sent to employees, usually selected at random, and if a user 

clicks on a link embedded in the email, then they are given 

immediate feedback and training about how to detect 

phishing emails. While the method is effective compared to 

no intervention, it may be ineffective if it targets more phish-

aware users than naïve users who are more susceptible to 

phishing. We believe that simulation campaigns could be 

improved through personalization by strategically selecting 

who to target. However, to determine who to target for 

training, one needs a representation of the cognitive states of 

each individual in the organization (i.e., their propensity to 

fall victim to a phishing attack). 

Recent advances in simulation campaigns attempt to 

personalize training to determine which users to select based 

on risk propensity (e.g., Cyber Guru, 2019), but these 

approaches do not account for human experiential learning 

and adaptivity through repeated interactions with the 

environment. Recent research in end-user susceptibility to 

phishing emails (Cranford et al.., 2021) implies that phishing 

classification decisions can be framed as decisions from 

experience in accordance with Instance-Based Learning 

Theory (IBLT; Gonzalez, Lerch, & Lebiere, 2003). In line 

with IBLT, phishing decisions are made by retrieving 

classifications from memory and generalizing across past 

experiences, or instances, that are similar to the current email. 

Decisions are thus influenced by memory effects such as 

recency, frequency, and similarity of past emails to the 

features of the current email, and contribute to learning and 

adaptivity (e.g., Hakim et al., 2020; Singh et al. 2019; 2020). 

The present research is a first step toward developing a 

training methodology that uses cognitive principles to 

determine what users to select to receive training at each time 



step. The problem can be framed as a scheduling problem that 

aims to optimize the targeting of users in order to maximize 

the overall probability of adopting safe email behavior, 

without bombarding users with interventions. Our solution 

combines cognitive models of end-user susceptibility to 

phishing emails and machine learning methods to identify 

users most in need of training. We use the Restless Multi-

Armed Bandit (RMAB) framework that models each user 

(arm) as a Markov Decision Process (MDP), using the 

cognitive model to define the MDP. RMABs have been used 

successfully in healthcare settings to strategically assign 

intervention to patients most in need (Biswas et al., 2021), 

and anti-phishing training presents an analogous situation. 

We also present a purely cognitive approach that 

incorporates model-tracing techniques to trace user behavior 

and identify which users to select at each time step. The 

RMAB solution is compared to the cognitive solution in a set 

of simulation studies using cognitive models as simulated 

participants. The results show that both approaches are 

equally more effective than random selection but differ in 

selection preferences. We highlight the pros and cons of each 

approach and discuss plans for future research that aims to 

combine the strengths of the MAB and cognitive approaches. 

Modeling a Phishing Training Task 

The task was designed to replicate a real-world phishing 

training scenario that could still be implemented in a human 

laboratory experiment. Users are run simultaneously in 

batches and are presented either a phishing email or a ham 

email on each trial as determined by the selection algorithm. 

Ham emails are non-spam, non-phish, “good” emails, 

intended for the specific recipient with a legitimate purpose. 

After each trial, users are provided feedback only after 

incorrectly classifying a phishing email, which represents 

immediate phishing awareness training from an organization, 

while users do not typically receive feedback otherwise. 

While human subjects’ experiments are greatly limited by 

the number of users that can be run simultaneously in a 

laboratory setting (e.g., 10 is a practical number), simulations 

are less restrictive. Therefore, in all reported analyses, we 

simulated 1000 users (near maximum possible for parallel 

simulations with 16GB RAM) for 100 trials of training (near 

maximum trials possible in a 1-hour laboratory experiment). 

Defining Users 

Among the vast individual differences and factors that 

influence phishing susceptibility, including demographics 

such as age, sex, and education (e.g., Sheng et al., 2010), and 

personality and social factors such as the Big 5 or the Dark 

Triad (Curtis et al., 2018; Yang et al., 2022), one of the most 

important factors is amount of email usage and knowledge 

and experience with phishing emails and network security 

(Lin et al., 2019; Sheng et al., 2010; Yang et al., 2022). In 

fact, these factors of overall email usage and phishing and 

network security experience align well with our own theory 

that defines user susceptibility to phishing as arising from 

decisions from experience as outlined by IBLT. Therefore, 

we designed a set of users that we could simulate in our IBL 

model based on individual differences in initialized instances. 

Each user in the model is initialized with a random number 

of emails (10-100 in increments of 10, uniformly distributed; 

Initialized Length), which represents individual differences 

in the amount of email usage, of which a random proportion 

are phishing emails (0.7-1.0, normally distributed within 

limits and rounded to the nearest 0.05, M = 0.85, sd = 0.05; 

Ham Proportion), which represents individual differences in 

the amount of phishing and network security experience. We 

used the same set of users in all simulations reported below. 

Cognitive Model Description 

Cranford et al. (2021) developed a generalizable IBL model 

of phishing susceptibility as arising from decisions from 

experience. The model accurately predicted classification 

decisions in two different tasks with different databases of 

phishing and ham emails: the Phishing Training Task (PTT; 

Singh et al., 2019) and the Phishing Email Susceptibility Test 

(PEST; Hakim et al., 2020). This model was used in the 

simulations reported below to generate predictions of human 

decision making against each selection algorithm and served 

as a basis for designing the Cognitive Selection algorithms. 

The cognitive model was developed in ACT-R (Anderson 

& Lebiere, 1998) and makes classification decisions in 

accordance with the IBL process. On each trial, the model 

generates a classification decision by retrieving similar past 

instances based on the context features of the email. The 

features of the emails include the sender, subject, body, link 

text, and url. Decisions are thus based on the semantic 

similarity between email features. The semantic similarity 

values between features of two emails are computed using the 

University of Maryland Baltimore County’s semantic 

textual-similarity tool (Han et al., 2013), which uses a 

combination of latent semantic analysis (LSA) and WordNet. 

Retrieval of past instances is based on ACT-R’s blending 

mechanism (Lebiere, 1999; Gonzalez et al., 2003) which 

returns a consensus value (in this case, a classification of ham 

or phish) across all memories, rather than from a specific 

memory: 

𝑉 = argmin
𝑉𝑜

∑ 𝑃𝑖 × (1 − 𝑆𝑖𝑚(𝑉𝑜, 𝑉𝑖))
2

𝑖

 (1) 

The value 𝑉 is the one that minimizes the dissimilarity 

between the possible decisions and the actual decision in 

chunk i, weighted by the probability of retrieval 𝑃𝑖  of the 

matching chunk i in memory. 

𝑃𝑖 =  
𝑒

𝐴𝑖
𝑡⁄

∑ 𝑒
𝐴𝑗
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𝑗

 (2) 

𝑃𝑖  reflects the ratio of an instance’s activation 𝐴𝑖 and 

temperature t, which defaults to √2 ∗ 𝑠, where s equals the 

variance parameter of noise. The activation 𝐴𝑖 of an instance 

i, is determined by: 

𝐴𝑖 =  ln ∑ 𝑡𝑗
−𝑑

𝑛

𝑗=1

+ 𝑀𝑃 ∗ ∑  𝑆𝑖𝑚(𝑣𝑘 , 𝑐𝑘)

𝑘  

+ 𝜀𝑖  (3) 



where the first term reflects the power law of practice and 

forgetting, where 𝑡𝑗 is the time since the jth occurrence of 

chunk i and 𝑑 is the decay rate (set to 0.5). The second term 

reflects the sum of similarities of each contextual feature 𝑘 

for the current item 𝑐 and the corresponding element in 

memory chunk 𝑣, weighted by the mismatch penalty 𝑀𝑃 (set 

to 2.0). The final term represents noise, a random value from 

a normal distribution with mean of zero and variance s of 

0.25, and introduces stochasticity in retrieval. 

After making a classification, the instance is saved to 

memory and influences future decisions. However, if the 

email was a phishing email and it was incorrectly classified, 

the user is given feedback, and the decision is changed from 

ham to phishing to reflect the ground truth classification. 

Multi-Armed Bandits Selection Algorithm 

The MAB problem is a well-studied online machine learning 

setting. In the classic problem, also known as stochastic MAB 

(Cesa-Bianchi & Lugosi, 2006), in each round, the learner 

(here the security team of the company) selects an arm (here 

an employee of the company) for an intervention (here 

sending a phishing email) and receives feedback (here the 

proficiency of the participant against the phishing attack) 

which is typically referred to as the reward. This process 

continues for a fixed number of rounds (referred to as the time 

horizon) and the goal is to maximize the total reward 

observed by the learner. 

The classic setting assumes the arms are static such that the 

distribution of rewards for each arm remains stationary 

regardless of past arm selections. This is not the case in our 

setting, as users react to training and potentially become less 

vulnerable to future phishing attacks. Various extensions to 

MAB have been proposed in the literature to model these 

reward distribution changes. The most general framework to 

model such scenario is what is known as the RMAB (Whittle, 

1998) in which each arm is modeled as an MDP. 

Since each arm represents an employee in our problem, the 

MDP can be used to model the progress of an employee 

throughout training. In general, an MDP is a quadruple 

consisting of (1) states (here the different degree of 

proficiency of the employee in detecting phishing attacks), 

(2) actions (here whether the training has been provided for 

the employee or not), (3) rewards or the value associated with 

being in each of the states (here whether or not the phishing 

attack can fool the employee in the employee’s current state 

of proficiency) and the (4) transition probabilities which is a 

distribution over the possible next states given the current 

state and the chosen action (here how proficiency can change 

given the current level of proficiency and whether a training 

has been performed or not). 

In our problem, we propose the following stylized MDP to 

model an employee. We assume there are two states, referred 

to as “good” and “bad” states. We further assume that there 

only two actions: a training intervention (action 1) and no 

intervention (action 2). The rewards for being in a good or 

bad state are assumed to be 1 and 0, respectively. The 

employee-dependent transition probabilities can be 

succinctly represented by 4 parameters: 𝑝𝑔𝑏
1 , 𝑝𝑔𝑏

2 , 𝑝𝑏𝑔
1 , and 

𝑝𝑏𝑔
2 , where 𝑝𝑥𝑦

𝑖  denote the probability of transfer from state x 

to state y when action i is taken.1 

We used the cognitive model, described above, to generate 

the transition probabilities for each user cluster that were 

needed for the MDP. We simulated 1000 cognitive agents 

performing the task paired against a random selection 

algorithm. We defined a good state as a correct classification, 

and a bad state as an incorrect classification. Based on the 

model’s sequence of decisions, probabilities were computed 

as the proportion of transitions from a good or bad state at 

time t to a good state at t+1 as opposed to a bad state at t+1, 

depending on the action (i.e., type of email sent) at time t. 

While cognitive architectures and Markov Decision 

Processes (MDP) are quite different modeling approaches, 

they also share substantial similarities. Both embody the 

Markovian assumption of future behavior being 

probabilistically determined by the current state of the system 

and inputs from the environment. However, the current state 

for cognitive architectures consists of knowledge and skills 

held in memories, together with their activation, enabling 

both a more graded and combinatorial representation. Also, 

state transitions in cognitive architectures are largely 

determined by constrained mechanisms resulting from a 

theory of cognition, rather than needing to be trained from 

data. Therefore, unlike MDPs, cognitive architectures can 

make a priori predictions in the absence of data (Lebiere et 

al, 2003). Cognitive architectures can then be used to provide 

a high-fidelity model of human behavior on a limited set of 

available data, then run many times over new generalization 

conditions to provide large data sets for training MDPs 

(Sycara et al, 2015). 

We highlight that in our formulation, while the states, the 

actions and the rewards are known, the transition 

probabilities for each of the employees are unknown and 

should be learned during the learning process. In general, 

RMAB problems are computationally hard and optimal 

solutions are only known for specific cases. We build on 

Whittle Index Q-Learning (WIQL), a recent algorithm 

proposed by Biswas et al. (2021), to design an algorithm 

which we call SuperArm-WIQL to solve our formulation of 

the RMAB problem. Intuitively, had we known everything 

about the MDPs in the RMAB problem, we could have used 

heuristic algorithms such as Whittle Index (Whittle, 1998) to 

decide which employee to target for intervention on any 

given round.2 Without knowing the MDPs, one can use any 

off-the-shelf algorithm to simultaneously learn the 

parameters of the MDPs first before applying the Whittle 

Index heuristic. Biswas et al. (2021) use Q-Learning for this 

process and hence the name WIQL. 
 

1 Since there are two states and two actions, it seems like to fully 

represent the transition probabilities we require 8 parameters. 

However, observe that 𝑝𝑥𝑦
𝑖 + 𝑝𝑥𝑥

𝑖 = 1 for all states xy and action i 

as the transition will finally move to either of the two available 

states. Therefore, we can reduce the total parameter to only 4. 
2 We ignore the issue of indexability and conditions in which the 

Whittle Index heuristic is optimal. 



The downside of such an approach is that learning the 

parameters of the MDP for each employee separately will 

result in a time and computational cost which is proportional 

to the number of employees. In practice, each round of 

sending phishing emails is costly and furthermore, the 

amount of available phishing emails is limited. Hence, 

naively applying WIQL will be too time-consuming, slow, 

and impractical. To deal with this problem, we first cluster 

the employees (or arms) into different groups (or super arms) 

and combine the learning experiences of all the users 

together. We call this algorithm SuperArm-WIQL. In the 

extreme, where there is only one arm per group, SuperArm-

WIQL reduces to WIQL but with a small number of groups 

(compared to the total number of employees) and sufficiently 

similar arms in each group, SuperArm-WIQL will converge 

to a good policy much quicker. 

We performed a K-means cluster analysis on the set of 

users described above to minimize the within-cluster sum of 

squares based on the Initialized Length and Ham Proportion 

attributes. A scree plot revealed four clusters were optimal 

(𝑆𝑆𝑏𝑒𝑡 𝑆𝑆𝑡𝑜𝑡⁄ = 71.67%). Figure 1 shows the visualization 

of the four clusters, which we labeled according to their 

location in the landscape of Initialized Length and Ham 

Proportion: 1 = “high-high”, 2 = “low-low”, 3 = “low-high”, 

and 4 = “high-low”. 

 
Figure 1: Cluster plot of simulated users 

 
Figure 2: RMAB simulation results. 

Simulation Results 

The results of the RMAB simulation using the SuperArm-

WIQL are presented in Figure 2, compared to Random and 

NoAction (no users selected for intervention) selection 

algorithms. Rewards are calculated as the sum of users in a 

good state (i.e., correctly classifying a given email) at each 

trial, and the plot shows the moving average reward with a 

window size of 50. To start the simulations, users are 

randomly assigned to states with 50% probability, and 

quickly transition toward good states. The NoAction and 

Random algorithms show that performance quickly plateaus 

as users align with the average transition probabilities given 

the possible actions. The results of the NoAction algorithm 

are a bit misleading because it only measures user proficiency 

in classifying ham emails (which is already high) and does 

not account for proficiency with phishing emails. Most 

notably, the results show that by selecting users strategically, 

the RMAB (blue) outperforms the Random algorithm (green) 

in terms of the number of users in good states, and continues 

to improve across trials, eventually outperforming the 

NoAction algorithm (red). 

Cognitive Selection Algorithms 

We designed two versions of the cognitive selection 

algorithm. The cognitive selection algorithms use cognitive 

principles to select which users to send phishing emails to on 

each trial, given a budget of 20% on each trial. Both methods 

use a technique called model tracing to track a user’s history 

of decision making (e.g., Anderson et al., 1995). For each 

trial, the algorithms store information about what email was 

presented to each user and what their decision was. This 

history is then used in the blending equation described above 

to compute probabilities of classifying an email as ham 

(𝑉ℎ𝑎𝑚) or phishing (𝑉𝑝ℎ𝑖𝑠ℎ), without adding any noise 𝜀𝑖. 

The first method, Cog-Low, simply computes the overall 

probability of classifying an email as ham or phishing at time 

t, without using the partial matching term. Therefore, the 

probabilities only reflect the influence of recency and 

frequency of all past instances. The participants with the 

lowest probability of classifying an email as phishing are 

selected for intervention (i.e., are sent a phishing email), with 

the hypothesis that their future probability of classifying 

phishing emails correctly will improve. The algorithm thus 

seeks to always improve the worst users on each trial. 

The second method, Cog-EV, uses a more complex 

calculation that weighs the anticipated future benefits of 

sending a phishing email, in terms of correctly classifying 

phishing emails, against the anticipated future costs, in terms 

of incorrectly classifying ham emails, to determine which 

users will most benefit from a phishing training intervention. 

As another improvement over Cog-Low, Cog-EV includes 

the partial matching term to determine the probabilities of 

correctly classifying an email of category k (ham or phish). 

Similarities are computed by averaging across the similarity 

of instance i to all other instances of the same category k. 

After computing the initial probabilities, another phishing 

instance is added to the user’s history to compute the future 



probabilities of correctly classifying a ham or phishing email 

given a phishing intervention. The expected value for sending 

a phishing email (𝐸𝑉𝑖𝑛𝑡𝑒𝑟𝑣𝑒𝑛𝑡𝑖𝑜𝑛) is reflected by the equation: 

𝐸𝑉𝑖𝑛𝑡𝑒𝑟𝑣𝑒𝑛𝑡𝑖𝑜𝑛 =
(𝑉𝑝ℎ𝑖𝑠ℎ|𝑖𝑛𝑡𝑒𝑟𝑣𝑒𝑛𝑡𝑖𝑜𝑛

𝑡+1 − 𝑉𝑝ℎ𝑖𝑠ℎ
𝑡 ) −

(𝑉ℎ𝑎𝑚
𝑡 − 𝑉ℎ𝑎𝑚|𝑖𝑛𝑡𝑒𝑟𝑣𝑒𝑛𝑡𝑖𝑜𝑛

𝑡+1 )        
(4) 

where 𝑉𝑝ℎ𝑖𝑠ℎ and 𝑉ℎ𝑎𝑚 are the probabilities of correctly 

classifying a phishing or ham email, respectively, and are 

derived via blending. 

Cognitive Simulations 

We used instances of the cognitive model as simulated users 

to predict the effectiveness of the selection algorithms against 

humans. All simulations were seeded with the same initial 

random state and started with the same set of initialized users 

to ensure consistent replication. We used ACT-R’s built-in 

mechanism for running multiple models in parallel. The 

selection algorithm determined which user to send phishing 

emails to on each trial. To minimize repeated presentation of 

emails per user, we used the 186 phishing emails from the 

PTT but combined the ham emails from both the PTT and the 

PEST, for a total of 177 ham emails. We compared the 

RMAB, Cog-Low, and Cog-EV algorithms to two baseline 

algorithms, NoAction and Random (random selection from a 

uniform distribution), resulting in 5 total conditions. 

Results 

The moving average accuracy across trials, with a window 

size of 50, is presented in Figure 3. The NoAction condition 

represents the high baseline accuracy in classifying ham 

emails correctly given no phishing training intervention. 

Between all other conditions, the RMAB and Cog-EV 

conditions perform best in terms of overall accuracy, but 

there is an interaction between phishing and ham accuracy 

such that phishing accuracy increases at the expense of ham 

accuracy. This reflects the tradeoff in signal detection due to 

frequency and recency effects. 

Phishing accuracy improves the least in the RMAB 

condition, while the Random, Cog-Low, and Cog-EV 

conditions display similar improvements. However, the 

RMAB and Cog-EV conditions display the least decline in 

ham accuracy, while there is a greater decrease in Random. 

and more so in Cog-Low. These results are however difficult 

to interpret because they do not reflect differences in user 

selection preferences. It is possible that some algorithms are 

sending users the type of email that they are most likely to 

get correct, thus artificially inflating the overall accuracy. 

Therefore, we examined which users are being sent phishing 

emails as well as unbiased signal detection measures.Figure 

4 shows a scatterplot of the mean accuracy for phishing and 

ham emails for each user, colored according to the proportion 

of phishing emails received, which is normalized within each 

selection condition (z-score). The results reveal distinct 

selection profiles. Accounting for the distribution of phishing 

emails across clusters, depicted in Figure 5 (z-scored phishing 

proportions), the Random condition displays no selection 

preferences and user accuracy trends with their phishing 

proportion. The RMAB selects users with high email 

experience and most phishing emails (high-low), which 

incidentally are already good at classifying phishing emails, 

while users that are poor at classifying phishing but good with 

ham emails receive more ham emails (top left tail of 

scatterplot). The Cog-Low mostly selects users with high 

experience and fewest phishing (high-high) which 

hypothetically need the most intervention, while sending the 

fewest phishing emails to the group that needs least 

intervention (low-low). The Cog-EV mostly send phishing 

emails to the users with low email usage (low-low and low-

high), which are ones in which a training intervention will be 

most impactful, while sending the fewest phishing emails to 

the high-low group. However, there are a number of users 

that receive many phishing emails and thus their ham 

accuracy suffers (bottom right tail of scatterplot). If false 

alarms are not costly for a user or organization (i.e., by not 

responding important emails or causing excessive 

verification work for the security team) then this may be an 

acceptable solution. 

Finally, to get a sense of the overall improvement of users 

from the start of the training task (“Initial” state) to the end 

of the training task (“Final” state). We examined change (Δ) 

in d-prime scores from the first 20 trials of the task to the last 

20 trials of the task. We used a loglinear adjustment to 

account for missing cells when computing the hit rates and 

false-alarm rates (Stanislaw & Todorov, 1999). The results in 

Figure 6 show that Random selection improves sensitivity for  

 
Figure 3: Moving average accuracy across trials for each selection condition. Total (left) and by Email Type (right). ws = 50. 



 
Figure 4: Scatterplot of individual ham and phishing 

accuracy colored by the normalized proportion (z-score) of 

phishing emails received within each selection condition. 

 
Figure 5: Normalized mean proportion (z-score) of phishing 

emails sent to each cluster within each selection condition. 

 
Figure 6: Delta d-prime scores from Initial state to Final 

state for each cluster within each selection condition. 

users with lowest ham experience (high-low and high-high). 

The RMAB only improves the high-high even though they 

received the fewest phishing emails, but performance 

declines significantly for the low-low group. The Cog-Low 

improves performance more as the number of phishing 

emails presented increases. And lastly, Cog-EV is the only 

condition that improves sensitivity across all clusters. 

Conclusion 

Our simulations demonstrate the benefits of personalized 

anti-phishing training for organizations. The cognitive model 

proved useful in estimating transition probabilities for the 

MDP, and the RMAB was effective at improving 

performance. However, selection preference analyses 

revealed potential shortcomings of each of the methods. For 

one, the reward function for the RMAB should be redesigned 

so that it learns to send phishing emails to those most in need 

of intervention instead of those doing well. Current research 

is exploring methods such as defining states in terms of only 

phishing accuracy, but this would only lead to improvements 

in phishing classification. Another method could be to define 

rewards in terms of the users that misclassify emails (i.e., 

rewarded for intervening on those users that needed it). 

Overall, the Cog-EV algorithm proved most successful at 

increasing phishing detection while minimizing false alarms. 

Future research will aim at validating these simulation results 

in human laboratory experiments. One limitation of the 

current simulations is that users were only given phishing 

emails as training interventions. However, it may be more 

realistic for users to receive phishing emails with some small 

probability in non-intervention events. We will consider this 

design change and its implications for selection algorithms. 

The cognitive solutions have lower computational 

overhead and thus an advantage of selecting users at the 

individual level, while the RMAB is limited to generalizing 

at the group level. It is likely that the RMAB would perform 

better as the number of clusters approaches the number of 

users. Therefore, future research is aimed at finding the 

optimal tradeoff between the number of clusters and 

computational costs. Future research is also aimed at 

implementing a method that takes advantage of the benefits 

of both RMAB and cognitive models. For example, the 

cognitive model could be used to provide updated transition 

probabilities or additional learning rate parameters that can 

be used by the RMAB. Such an approach could both alleviate 

computational costs for the RMAB while providing more 

accurate predictions of individual behavior than Q-learning. 

Finally, in other future research we plan to investigate not 

only whom to target but also which specific email to send and 

how to tailor emails to an individual. Such an approach could 

leverage information about what email features an individual 

is most susceptible to (e.g., Singh et al., 2020) or the type of 

attack for which they are most likely to fall prey (e.g., email 

characteristics or social engineering strategy used, or topic 

relevance; De Kimpe et al., 2018; Lin et al., 2019; Parsons et 

al., 2019). In this sense, IBL cognitive models are perfectly 

suited for every aspect of personalized anti-phishing training.  
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