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ABSTRACT
Mobile Health Awareness programs in underserved communities
often suffer from diminishing engagement over time and health
workers have to make live service calls to encourage beneficiaries’
participation. Owing to health workers’ limited availability, we
consider the optimization problem of scheduling live service calls
in a Maternal and Child Health Awareness Program and model
it using Restless Multi-Armed Bandits (RMAB). Since the param-
eters of the RMAB formulation are unknown, a model is learnt
to first predict the parameters of the RMAB problem, which is
subsequently solved using the Whittle Index algorithm. However,
this Predict-then-Optimize framework maximises for the predic-
tive accuracy rather than the quality of the final solution. Decision
Focused Learning (DFL) solves this mismatch by integrating the
optimization problem in the learning pipeline. Previous works have
only shown the applicability of DFL in simulation setting. In collabo-
ration with an NGO, we conduct a large-scale field study consisting
of 9000 beneficiaries for 6 weeks and track key engagement metrics
in a mobile health awareness program. To the best of our knowl-
edge this is the first real-world study involving Decision Focused
Learning. We demonstrate that beneficiaries in the DFL group expe-
rience statistically significant reductions in cumulative engagement
drop, while those in the Predict-then-Optimize group do not. This
establishes the practicality of use of decision focused learning for
real world problems. We also demonstrate that DFL learns a better
decision boundary between the RMAB actions, and strategically
predicts parameters for arms which contribute most to the final
decision outcome.
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1 INTRODUCTION

Figure 1: Beneficiary receiving preventive health information

Non-profits often leverage the extensive cell phone coverage to
feasibly reach underserved communities for information dissemi-
nation programs. In particular, NGOs working in the mobile health
space can deliver timely and targeted health information via text
or voice messages [12, 20]. Unfortunately, such programs suffer
from a dwindling engagement over time, with large number of
beneficiaries dropping out from the program. NGOs can make use
of health workers to personally reach out to beneficiaries through
service calls, encourage their participation and address complaints.
However, health workers’ availability and time are scarce resources;
only a limited number of beneficiaries can be given a service call
every week. It is thus crucial to optimize which beneficiaries receive
these personal service calls. We pose this as optimization problem
of constrained sequential resource allocation solved using Restless
Multi-Armed Bandits (RMAB). Each beneficiary is modelled as an
arm following a Markov Decision Process and the action of whether
to place a service call or not results in state change. The Whittle
index heuristic [30] is the dominant approach for solving RMABs.
However, for computing Whittle Indices, transition dynamics of
each arm must be known. While many previous works make the as-
sumption that transition dynamics parameters are already known,
in the real world, these parameters must be inferred. When arm
features are correlated with transition dynamics, historical data



on arm pulls is leveraged to learn a mapping from arm features to
transition dynamics [16, 23]. The learnt mapping function is then
used to predict the unknown parameters for new arms and solve
the subsequent optimization problem.

This approach thus falls under the Predict-then-Optimize [4–6]
framework, where an optimization problem is to be solved but the
parameters defining the optimization problem are unknown. This
is a two-stage approach: The first stage is to learn a predictive model
which maps from some environment features to the parameters.
Subsequently, in the second stage, the optimization problem for-
mulated using the predicted parameters is solved. However, there
is a key shortcoming in this two-stage framework. While the map-
ping function maximizes for the predictive accuracy of parameters,
we are interested in the solution quality of the optimization prob-
lem parameterized by the predicted parameters. Decision-Focused
Learning (DFL) [3, 14, 27, 31] is proposed to address this mismatch
between the training objective and the evaluation objective by
embedding the optimization problem within the training pipeline.
However, until now, Decision Focused Learning has only been
studied through simulated experiments.

In this paper, we present the first work showcasing the real-
world impact of DFL for RMABs through a large scale field study.
For conducting the field study, we collaborate with ARMMAN, an
NGO in India working in mobile health space for maternal and
child health awareness (Figure 1). In prior works, a RMAB model
using the previously mentioned two-stage learning approach has
been used for optimizing live service call scheduling in the field
[16]. We compare this two-stage approach with a DFL approach
in optimizing service calls. Engagement is a key metric that cap-
tures beneficiaries’ participation in the mobile program. Our results
show that allocating health worker resources using a DFL policy
reduces drop in engagement by 31% as compared to the no-service
call baseline. On the other hand, the benefit from TS policy is not
statistically significant. We also show that live service calls made
by health care workers using DFL policy have higher effectiveness
than TS policy resulting in better short-term as well as long-term
outcomes in listenership behaviour.

Furthermore, we perform detailed post-hoc analysis of the real-
world study and back the observations using simulated experiments
to explain how DFL is making decisions and why those decisions
result in a better performance. Our novel contributions are as fol-
lows:

• We show results from the first large-scale field study of De-
cision Focused Learning being applied to maternal and child
health domain.

• We show that by optimizing for decision quality rather than
predictive accuracy, DFL results in statistically significant
improvement in final decision quality measured through
engagement metric in the mobile health program.

• We provide an interpretation of how DFL strategically learns
to distinguish between arms that benefit most from interven-
tions, resulting in improved parameter predictions compared
to the TS model.

Our positive results thus pave the way for future works applying
Decision Focused Learning in real world agent-modelling tasks

as well as optimization problems with unknown underlying prob-
lem parameters. We shall release the code for experiments upon
acceptance.

2 RELATEDWORK
The optimization problem of constrained sequential resource allo-
cation can be solved using Restless Multi-Armed Bandits (RMAB).
RMABs have been used in real world applications such as anti-
poaching patrol planning [22], healthcare interventions [15, 16],
and machine repair and maintenance [9]. The complexity of opti-
mally solving RMAB problems is known to be PSPACE hard [17].
Whittle Index approach [30] is an approximate solution to RMAB
problem which is aymptotically optimal under the indexability
condition [1, 28, 29]. However, for computing the Whittle Index,
transitions dynamics must be known. Under unknown system dy-
namics, [16, 23] leverage the predict-then-optimize framework for
learning a predictive model of transition dynamics from features
using historical data.

The predict-then-optimization [7] framework (or two-stage learn-
ing) solves for an optimization problem with unknown parameters
by learning a predictive model of parameters from environment fea-
tures and subsequently solving the optimization problem. However,
this two-stage process separates out the prediction and optimiza-
tion problems, thereby causing a mismatch between the predictive
loss that is minimized and the evaluation metric that is desired to
be maximized [10, 11, 13]. Decision Focused Learning [6, 14, 31],
solves this problem by embedding optimization problem as a dif-
ferentiable layer in a deep learning pipeline. Most previous DFL
[3, 6, 14, 19] approaches solve one-shot optimization problems such
as stochastic programming and security games in an end-to-end
manner. Recently, [8, 26] propose an extension of Decision Focused
Learning for sequential decision making problems. At AAMAS,
Decision Focused Learning has been applied in directly optimizing
game utilities in Network Security Games [25] and Stackelberg
Security Games [18]. [27] further extend the Decision Focused
learning methodology for Restless Multi Armed Bandit problems
for generalized N-state MDP as well as a belief state MDP to opti-
mze for decision quality. However, none of these works, either in
the single shot setting or the sequential decision making settings,
have ever been tested in the real world in the field; and hence were
unable to thoroughly analyze comparative advantages of decision
focused learning over baseline approaches with real world data.

3 MOBILE HEALTH ADHERENCE
3.1 Mobile Health Program
ARMMAN is a non-governmental organization in India focused
on reducing maternal and neonatal mortality among underpriv-
iledged communities. The NGO operates a mobile health service
that disseminates preventive health information to expectant or
new mothers (beneficiaries) on a weekly basis via automated voice
messages. A large fraction (∼ 90%) of mothers in the program are
below the World Bank international poverty line [32] and the pro-
gram has so far served over a million mothers. However, despite the
success of the program, beneficiaries’ engagement with the voice
calls dwindles over time with 22% of beneficiaries dropping out of



the program within just 3 months of enrolment. Live Service calls
made by health workers can encourage beneficiaires’ participation.
However, the health workers’ availability is limited and thus, only
a fixed number of live service calls can be made every week. This
constraint necessitates a smart scheduling strategy of which ben-
eficiaries to reach out every week to best utilize health workers’
efforts.

3.2 Restless Multi-Armed Bandits
We consider the Restless Multi-Armed Bandit model with N in-
dependent arms each characterized by a 2-action Markov Deci-
sion Process (MDP) Figure 2. Each MDP is defined using the tuple
{S,A, 𝑅,P}whereS refers to the state space,A is the action space,
which in our case is discrete and binary,A ∈ {0, 1}. 𝑅 is the reward
function such that 𝑅 : S×A×S ↦→ R. P is the transition function,
such that P(𝑠, 𝑎, 𝑠′), (𝑠, 𝑠′) ∈ S, 𝑎 ∈ A represents the probability of
transitioning from state 𝑠 to 𝑠′ under action 𝑎. The policy function
𝜋 : S ↦→ A is defined as the mapping from states to action.

Figure 2: The beneficiary transitions from a current state 𝑠
to a next state 𝑠′ under action 𝛼 , with probability 𝑃 (𝑠, 𝛼, 𝑠′).

In our problem setup, we consider a 2-state 2-action MDP prob-
lem. Based on our discussions with the NGO, states are defined
using the engagement metric. If a beneficiary listens to at least 1 call
for more than 30 seconds in a week, they are said to be in Engaging
state (𝑠 = 1). Otherwise, the beneficiary is in Non-Engaging state
(𝑠 = 0). The timestep of the MDP is chosen to be a period of 1 week.
The actions correspond to whether to deliver (active) or not deliver
(passive) live service call to a beneficiary. Additionally, the NGO
can only deliver 𝐾 live service calls in a week. The reward function
at any given timestep is defined to be same as the current state
𝑅(𝑠, 𝑎) = 𝑠 . The planner’s goal is then to maximize expected long
term reward (engagement). Starting from a state 𝑠0, this is defined
using the value function 𝑉 as :

𝑉 (𝑠0) = E𝑠𝑡+1∼𝑃

[ ∞∑︁
𝑡=0

𝛾𝑡𝑅(𝑠𝑡 , 𝜋 (𝑠𝑡 ), 𝑠𝑡+1 |𝜋, 𝑠0)
]

(1)

where 𝛾 is the discount factor for rewards.
The Whittle Index for every arm is defined using the ‘passive

subsidy’. The passive subsidy is the additional reward accrued by
an arm when the passive action is chosen. The whittle index is
then defined as the passive subsidy such that expected future value
is identical for both the passive and active actions. Formally, the

whittle index𝑊𝐼𝑖 for an arm 𝑖 in state 𝑠 can be defined as:

𝑊𝑖 (𝑠) = inf𝑚{𝑉𝑚
𝑖 (𝑠;𝑎 = 0) = 𝑉𝑚

𝑖 (𝑠;𝑎 = 1)} (2)

where 𝑉𝑚
𝑖

is subsidized value function under passive subsidy𝑚.
Intuitively, the Whittle index measures the value of pulling an

arm conditioned on the observed state. Therefore, at every timestep,
theWhittle Index Policy ranks all arms by their current state whittle
index. The top-K arms with the highest whittle indices are chosen
for active action to maximize the total pulling performance.

3.3 Missing Transition Probabilities in RMAB
Most works using RMABs make the assumption that MDP param-
eters are known beforehand. However, in practice, we may not
have access to beneficiaries’ transition probabilities to define the
RMAB model. In our problem, the mobile health program receives
new sets of beneficiaries without information about their transition
behavior. This prevents us from applying techniques in RMAB to
properly schedule service calls.

Learning challenge. The solution we adopt here is to learn a
mapping from the beneficiaries’ demographic features and prior
interaction with the program to forecast the transition probabil-
ities. Similar to Predict-then-Optimize framework [5] we learn a
predictive model and then determine the live service call schedule
using the RMAB model.

Dataset. Weuse the historical beneficiaries’ listenership behaviour
between January 2022 to May 2022 as the training dataset. Specifi-
cally, we have access to state trajectories of 19944 (N) beneficiaries
over a period of 5 weeks (T), along with the action chosen for ev-
ery beneficiary at every timestep. Note that passive actions make
up majority of the historical data with only 3% of transitions hap-
pening under an active action. In addition to the trajectories, we
have socio-demographic features for every beneficiary obtained
at registration time. These features cover information such as age,
gestational age, income, education, parity, gravidity, language of
automated call, and registration channel.

4 COMPARISON OF LEARNING METHODS
In this section, we summarize the Two-Stage and the Decision-
Focused learning approaches for obtaining the transition probability
parameters of beneficiaries. Crucially, the TS approach maximizes
for the predictive accuracy while the DFL approaches maximizes
the decision objective.

4.1 Two-stage Learning
In [16], TS model is shown to cut ∼ 28% engagement drops as
compared to a Round-Robin baseline. In our work, we consider
outperforming the TS baseline to show applicability of DFL model.
Thus we follow similar setup of the TS model as described in [16].
A mapping function 𝑓 is learnt that predicts the Transition Prob-
abilities given the socio-demographic features 𝑥𝑖 for the 𝑖𝑡ℎ arm.
Predicted Transition Probabilities for arm 𝑃𝑖 can then be obtained
as 𝑃𝑖 = 𝑓 (𝑥𝑖 ), 𝑖 ∈ [𝑁 ]. Since our problem domain consists of two
states and two actions, we have to predict four transition proba-
bilities. We model the mapping function as a neural network 𝑓𝑤
parameterized by the weights 𝑤 . 𝑓𝑤 is designed using two fully



connected layers followed by four outputs and finally logistic func-
tion is applied to obtain probabilities. 𝑓𝑤 is learnt by minimizing
the negative log-liklihood of observed trajectories T under the
predicted transition probabilities 𝑓𝑤 (𝑥). The loss function L is thus
given by

L(𝑓𝑤 (𝑥),T) = E𝑖∈[𝑁 ] −log(T 𝑖 |𝑓𝑤 (𝑥𝑖 )) (3)

The weights𝑤 of the neural network 𝑓𝑤 are optimized by backpro-
pogating the gradient 𝑑L(𝑓𝑤 (𝑥 ),T)

𝑑𝑤
.

4.2 Decision-focused Learning
We replicate theDecision Focused learning pipeline from [27]where
instead of optimizing for predictive accuracy, the final decision out-
come is optimized. Off-Policy Policy Evaluation (OPE) is used to
quantify the decision outcome. It measures the reward obtained
from a learnt policy given the past trajectories from a different pol-
icy. The DFL architecture uses the same predictive model 𝑓𝑤 as TS,
described in the previous section. However, once Transition Prob-
abilities are predicted as 𝑃 = 𝑓𝑤 (𝑥), we compute Whittle Indices
using a differentiable function𝑊 . The whittle indices𝑊𝐼 =𝑊 (𝑃)
parameterize a differentiable policy which we denote as 𝜋𝑊𝐼 . Fi-
nally, the differentiable evaluation objective is formulated using
OPE of learnt policy under the observed trajectories T which is
represented as 𝑂𝑃𝐸 (𝜋𝑊𝐼 ,T). The weights of the predictive model
are learnt by maximizing the final objective and backpropogat-
ing through the complete pipeline. The gradient is thus given by
𝑑 OPE(𝜋𝑊𝐼 ,T)

𝑑𝑤
.

In Decision Focused Learning, we calculate this gradient by using
the chain rule:

𝑑 OPE(𝜋𝑊𝐼 ,T)
𝑑𝑤

=
𝑑 OPE(𝜋𝑊𝐼 ,T)

𝑑𝜋𝑊𝐼

𝑑𝜋𝑊𝐼

𝑑𝑊 𝐼

𝑑𝑊 𝐼

𝑑𝑃

𝑑𝑃

𝑑𝑤
(4)

We refer the reader to the appendix for more details on DFL pipeline.

5 FIELD STUDY
We collaborated with the NGO on the maternal and child health
problem and conducted a service quality improvement field study
to compare the performance of different learning approaches. All
experiments reported in this paper are approved by an ethics review
board at the NGO.

Hypothesis and research question: The main goal in this paper
is to understand the performance of decision-focused learning in
real-world problems. Decision-focused learning has shown better
performance in many applications but only in simulation. There is
no deployment or real-world evidences of whether decision-focused
learning actually outperforms other learning methods in practice.

Control methods. In earlier work [16], the two-stage approach
was shown to outperform a benchmark of Round Robin Policy.
The work also provides statistical significance results, illustrating
the superiority of two-stage RMAB policy over non-AI baseline.
Therefore outperforming the two-stage approach is important to
show the utility of decision-focused learning. In our field study,
we compare the following live service call scheduling strategies:
(1) Current Standard of care (CSOC), where no live service calls
are delivered to the beneficiaries, (ii) Two-stage (TS) approach
where beneficiaries are chosen for live service calls according to

the Whittle Index Policy learnt using Two-Stage learning, and (iii)
Decision-Focused Learning (DFL) approach where beneficiaries are
chosen for live service calls according to the Whittle Index Policy
learnt using Decision Focused learning. We use the performance
of the CSOC group to anchor the performance of other AI-based
methods. The performance of the CSOC group also measures the
baseline engagement rate that the mobile health program receives
without any intervention. Therefore, we focus on the improvement
of AI-based methods against the CSOC method.

Eligibility criterion and randomization. We consider the group of
beneficiaries registered between the months of April 2022 to June
2022. Further, we filter out beneficiaries who have not listened to
even a single automated voice call in the time period of 30 days
before the study begins. This filtering is done to remove beneficia-
ries from the cohort who have long term connectivity issues such
as phone number out of service or misentry of phone number at
enrolment. Lastly, we randomly sample 9000 beneficiaries out of
these eligible candidates to form our study cohort. We split these
set of beneficiaries into three groups of 3000 beneficiares each - (i)
CSOC group, (ii) TS group, and (iii) DFL group. We make sure that
the distribution of socio-demographic features and start-state are
the same across the three groups.

Experiment design. Beneficiaries become eligible for live service
calls 2 months post their enrolment into the program. Within the
TS and DFL groups, we choose𝐾 = 300 beneficiaries for live service
call every week based on NGO’s constraints. These live service calls
are sent out weekly for a period of 6 weeks. We continue to monitor
the cohort for 4 more weeks even after the study ends to measure
the sustained effect of live service calls. It should be noted that,
automated voice messages are sent to all groups throughout this
period and only the delivery of live service calls by health workers
changes across the three groups.

6 EXPERIMENT RESULTS
In this section, we showcase the results from the field study. We
also define multiple evaluation metrics and demonstrate how the
different policies fare against each other.
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Figure 3: Weekly Cumulative Engagement Drop Prevented
for the DFL and TS groups. Live service calls are only de-
livered for the first 6 weeks, after which, all three groups
are only passively observed. The DFL group prevents more
Cumulative Engagement Drops as compared to the TS group



6.1 Weekly and Cumulative Engagement
We first present the results from our study using the Engagement
Metrics proposed by Mate et al. [16]. Engagement at time 𝑡 for the
𝑖𝑡ℎ beneficiary, represented by 𝐸𝑖 (𝑡), is defined as 1 if the benefi-
ciary listens to at least one automated call in a week for more than
30 seconds and 0 otherwise. Since the engagement of beneficiaries
dwindles over time, we can measure the drop in engagement rel-
ative to the engagement at start. The engagement drop and the
cumulative engagement drop are defined as

𝐸𝑖
𝑑𝑟𝑜𝑝

(𝑡) B 𝐸𝑖 (0) − 𝐸𝑖 (𝑡); 𝐸𝑖
𝑐𝑢𝑚𝑢_𝑑𝑟𝑜𝑝 (𝑡) B

Z=𝑡∑︁
Z=0

𝐸𝑖
𝑑𝑟𝑜𝑝

(Z ) . (5)

The cumulative engagement drop prevented over the CSOC group is
simply the difference in cumulative engagement drop of the policy
and the CSOC group. Figure 3 shows the cumulative engagement
drops prevented over CSOC group for DFL and TS policies. We see
that DFL prevented more drops across all weeks and by the end of
study, DFL group has 560 more engagement drops prevented over
the CSOC group as compared to TS group which only prevents 181
engagement drops. Given a total of 1765 cumulative engagement
drops in the CSOC group, DFL group has 31% fewer cumulative
engagement drops as compared to CSOC group while TS only
results in 10% reduction in cumulative engagement drops.

6.2 Statistical Significance
We also establish statistical significance 1 of DFL’s benefit using
regression analysis [2]. We fit a linear regression model to predict
the output variable 𝐸𝑖

𝑐𝑢𝑚𝑢_𝑑𝑟𝑜𝑝 by giving beneficiary features 𝑥𝑖 as
an input vector of length 𝐽 along with and an indicator variable 𝑇𝑖
denoting whether a beneficiary belongs to DFL (𝑇𝑖 = 1) or CSOC
(𝑇𝑖 = 0) group. The regression model can thus be represented as

𝑌𝑖 = 𝑘 + 𝛽𝑇𝑖 +
𝐽∑︁
𝑗=1

𝛾 𝑗𝑥𝑖, 𝑗 + 𝜖𝑖 (6)

where 𝛽 is the regression coefficient of the indicator variable 𝑇𝑖
measuring the effect of treatment, 𝛾 𝑗 is the regression coefficient of
the 𝑗-th input feature, 𝑘 is the constant term of regression and 𝜖𝑖 is
the error. 𝑌𝑖 is the target variable that is fitted using the regression
model and is same as 𝐸𝑖

𝑐𝑢𝑚𝑢_𝑑𝑟𝑜𝑝 . The regression coefficient for
𝑇 is found to be 0.19 with p-value of 0.024. On the other hand,
similar comparison between TS (𝑇𝑖 = 1) vs CSOC (𝑇𝑖 = 0) yields
a regression coefficient of 0.06 for 𝑇 with p-value of 0.48. Thus,
belonging to the DFL group resulted in significantly positive impact
on cumulative engagement drops while for TS, no such statistical
significance could be established.

6.3 Performance on Listenership Metrics
While the whittle index policy maximimizes the reward, which is
defined using the engagement metric, we also measure if the policy
improved other metrics characterizing listenership. Thus, we define
metrics quantifying listenership behaviour of a beneficiary within
a time window of 14 days before and after receiving a service call.

1See Appendix ?? for erratum

Table 1: Statistical significance for service call impact tested
using a linear regression model

DFL vs CSOC TS vs CSOC
% reduction in cumula-
tive engagement drops

31% 10%

p-value 0.024 0.48
Coefficient 𝛽 0.19 0.06

Table 2: Performance of the DFL and TS policies across mul-
tiple listenership metrics. DFL policy shows a higher change
in listenership behaviour from a service call as compared to
the TS policy.

Policy Change in Mean
Duration

Change in No. of
Engagements

Change
in E/S

DFL 17.054 0.094 0.20
TS 6.764 0.009 0.07

Definitions.
(1) Mean Duration: The mean duration of calls listened to within

the time window.
(2) No. of Engagements: The numbers of calls engaged with (30+

seconds listened) within the time window.
(3) Engagements to Scheduled (E/S) Ratio: The ratio of numbers

of calls engaged with to numbers of calls scheduled within
the time window.

Results. We calculate the change in these metrics between the
time window before and after a live service call. Table 2 reports the
mean change in these metrics across the three experimental groups.
We observe that across all the metrics, DFL group has a signifi-
cantly higher change in listenership behaviour through live
service calls as compared to the TS group. For instance, we can
interpret the value of 17.054 in Mean Duration metric for DFL as
active actions in DFL group resulting in beneficiaries listening to on
average 17 seconds more of an automated call. This is in contrast
to TS group, where live service calls only resulted in beneficiaries
listening to 6 seconds more of an automated call. Note that the
average duration of an automated message is 60 seconds. Thus a 17
seconds improvement in listenership corresponds to an average
28% increase in message content listened to among those treated
with live service calls. Using t-test for comparison of means, we find
that for each of the proposed metrics, mean change is statistically
higher for DFL group as compared to TS group with p-value< 0.05.

7 UNDERSTANDING DFL
7.1 Learnings from Real World Experiment
The Decision Focused Learning method consists of an end-to-end
pipeline starting from features to predicted Transition Probabilities
to computed whittle index and finally the decision of whether a
beneficiary is in top-K list chosen for live service call. In this section,
we interpret the DFL’s strategy in contrast with the Two-Stage
policy by performing post-hoc analysis across all these steps.



Table 3: Multiple Error and Rank metrics evaluated for DFL and TS policies. While TS group shows a lower overall error in
predicting transition probabilities, DFL group has lower predictive error in Top-K arms and a higher rank correlation with the
optimal ranking.

Rank Metrics Transition Probability Error Metrics
Policy Precision @ K Spearman’s Correlation MAE All MAE Top-K Mean NLL All Mean NLL Top-K
DFL 0.41 0.30 0.31 0.35 0.79 0.62
TS 0.22 0.179 0.25 0.37 0.42 0.69

As a first step for this analysis, we compute the ground truth
transition probabilities using the observed trajectories of benefi-
ciaries during the time period of field study. Once Ground Truth
Transition Probabilities are estimated, we subsequently compute
the Ground Truth Whittle Index and Ground Truth top-K ranks.

Top-K Rank Lists. We consider the ordered list of beneficiaries ac-
cording to predicted whittle index in the Two-Stage and DFL exper-
iment groups. Additionally, True Top-K rank list is also computed
using the ground truth whittle index. To measure the agreement
between the two lists, we use the following metrics:

(1) Precision @ K: This metric counts the proportion of relevant
beneficiaries in the top-K positions of the policy rank list and
is widely used in classification [21, 33] and ranking problems
[24]. The precision @ K in our problem is given by:

Precision @ K =
|Policy Top-K list ∩ True Top-K list|

𝐾

(2) Spearman’s Rank Correlation: This metric calculates the rank
correlation between the Predicted Whittle Index and Ground
Truth Whittle Index of Policy’s Top-K ranked beneficiaries.

In Table 3, we show the different rank metrics for the two com-
parison groups. In all the weeks, we find that the DFL group has
a higher agreement with the True Top-K ranks as compared
to the Two-Stage experiment group.

Whittle Indices. For beneficiaries belonging to each of the exper-
imental group, we have the corresponding computed Whittle Index
from predicted Transition Probabilities. We call it the Predicted
Whittle Index (note that these values are not directly predicted by
the Neural Network models). Figure 4 shows the distribution of
Predicted Whittle Index for DFL and TS experiment groups in Blue.
We also mark the beneficiaries who are chosen for Active action
within each experimental group in orange.

A striking observation is thatwithin the DFL group, the whit-
tle indices have a bimodal distribution as opposed to a uni-
modal distribution for Two-Stage group. This suggests that in
DFL, the model is trying to learn a decision boundary between the
beneficiaries to deliver active and passive action. This contrasts with
the Two-Stage model where objective is solely to learn accurate
transition probabilities.

Predicted Transition Probabilities. Given the ground truth and
predicted transition probabilities for both DFL and TS policies,
we compute for the whole population (i) the Mean Negative Log
Likelihood (NLL) of observed trajectories under predicted transition
probabilities and (ii) the prediction error using Mean Absolute Error
(MAE). In Table 3, we show that DFL has both higher MAE and
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Figure 4: Predicted Whittle Index Distribution and Beneficia-
ries Intervened for TS and DFL groups across all weeks. The
DFL group has a bimodal distribution of predicted whittle
index as compared to unimodal distribution in the TS group.
Note that the right peak in DFL is not fully covered due to
beneficiaries changing states over the course of study.

higher Mean NLL as compared to TS. Thus DFL model is poorer
in predicting the transition probabilities. However, if we compute
these metrics for just the true top-K beneficiaries (MAE Top-K and
Mean NLL Top-K), we find that DFL has lower MAE as well as Mean
NLL than TS. This suggests that the DFL focuses on correctly
predicting the transition probabilities for beneficiaries who
will actually be picked, in contrast to the TS, which optimizes
for predictive performance for the whole population. It must
be noted, that the predictive performance of TS is impacted due to
limited historical data around active actions (limited service calls
made by the NGO).

7.2 Short-term and Long-term Impact of Live
Service Calls

In Figure 5, we plot the mean reward accrued by beneficiaries in the
immediate next step after an active action for both the Two-Stage
and the DFL group. This quantifies the short term impact of a live
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Figure 5: Mean reward accrued by beneficiaries in short term
(1-step lookahead reward) and long term (4-steps and 6-steps
lookahead rewards) after given an active action, DFL group
has higher reward in both the short-term and the long term
as compared to the TS group.
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Figure 6: Lift in E/S ratio over CSOC for different percentiles.
The highest lift in E/S ratio is in the lowest percentile suggest-
ing that beneficiaries with poor listenership of automated
voice messages benefited the most from live service calls.

service call. In both the NE and E state, we observe that DFL leads
to higher reward.

While short-term impact is only applicable for one timestep
ahead, the Whittle Index policy optimizes for long-term rewards. In
Figure 5, we also plot the reward obtained in 4 weeks and 6 weeks
following the live service call. We show this for both TS and DFL
group. Again, we see that DFL’s live service calls are more effective
than TS policy even in the long term.

7.3 Who Benefits from DFL
In order to determine which beneficiaries benefited the most from
the DFL policy, we first obtain the ratio of calls engaged with over
total scheduled calls (E/S) for every beneficiary over the whole
duration of study. Subsequently, we rank the beneficiaries based
on the 𝐸/𝑆 ratio and compute average 𝐸/𝑆 ratio for different per-
centiles. We calculate these numbers for all three policies. In Figure
6, we plot the lift in E/S ratio over CSOC for different percentiles.
While DFL shows a positive lift in listenership over CSOC across all
percentiles, the maximum lift is achieved in the lowest percentiles.
This shows that those with low listenership are the ones benefiting
most from the DFL policy.

7.4 Learnings from Simulated Experiments
In this section, we conduct simulated experiments to improve our
understanding of the DFL model and verify the observations made
from the real world experiment. Specifically, we consider an RMAB
systemwith 100 arms simulating beneficiaries enrolled in theNGO’s
program. TheMDP parameters of each arm are randomly initialized.
Additionally, we obtain a feature vector corresponding to every
arm such that the features are correlated with the MDP parameters.
Lastly, we simulated multiple trajectories for the whole system and
store that as offline dataset for our experiments. All experimental
results are reported by averaging over five seed values.

The Effect of Training Data Size. While Decision Focused Learn-
ing optimizes for the decision objective, a TS model that perfectly
predicts the optimization problem parameters should also achieve
the optimal decision objective. However, in the real world, predic-
tive models do make errors. These errors can be dependent on the
quantity of training data that is available to the learning model.

We thus formulate the hypothesis that the gain from aDFLmodel
should be higher in limited data scenario. As the size of training data
grows, DFL and TS should converge to similar decision objective.
To test this hypothesis, we run a simulated experiment with varying
number of trajectories per arm. Figure 8a shows the lift in Off-Policy
Policy Evaluation from DFL over TS with increasing training data
size. We observe that the highest lift is with smallest training data
size and as we increase the availability of training data, the lift
diminishes.

Shift in Whittle Index Distribution over Training Epochs. As DFL
learns to optimize the decision objective directly, we hypothesise
that it should learn a model which effectively separates the top
ranked and bottom ranked whittle index arms. On the other hand,
since TS optimizes for predictive accuracy, it has no incentive to
learn an optimal ranking of the arms by whittle index. To verify
this hypothesis, we plot the predicted whittle index distributions of
true top-K and bottom-K arms. In Figure 7, we visualize how these
distributions change over the training epochs, giving a glimpse into
the learning process of the two models. We observe that both the
TS and DFL model start with no prior information of the true top-K
and bottom-K arms. However, over the training epochs, DFL learns
whittle indices such that it separate the two groups. The Two-Stage
model fails to learn such segregation in predicted whittle index
distribution.

The Effect of Budget-K. The budget constraint in the RMAB prob-
lem defines the number of arms chosen for active action every week.
In a two-stage model, the learning step outputs the transition prob-
abilities irrespective of the budget value K. However, in Decision
Focused Learning, the mapping model which outputs the transition
probabilities maximizes for the decision objective that relies on the
value of K. To simulate the effect of mismatch in K, we train DFL
model with changing K at train time (𝐾_𝑡𝑟𝑎𝑖𝑛), while keeping the
K fixed at the time of evaluation (𝐾_𝑒𝑣𝑎𝑙 ). Specifically, we note the
OPE at evaluation time with 𝐾 = 20 for different training scenarios
with 𝐾 ∈ [2, 4, 10, 16, 20, 30, 40, 60, 80] as shown in Figure 8b. We
observe that the performance at evaluation time only drops slightly
(by upto 6%) in both the cases of train time budget being greater
or lesser than the evaluation time budget. The sensitivity of the
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Figure 7: Predicted whittle index distribution for optimal top and bottom arms, across the training epochs. DFL policy learns
whittle indices such that the true top ranked and bottom ranked arms are segregated. TS policy fails to learn whittle indices
following this strategy.
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DFL’s performance to the value of 𝐾_𝑡𝑟𝑎𝑖𝑛 supports the hypoth-
esis that DFL learns a decision boundary optimized for the exact
number of beneficiaries chosen for active action. Further, keeping
𝐾_𝑒𝑣𝑎𝑙 = 𝐾_𝑡𝑟𝑎𝑖𝑛 can help maximize the performance of DFL.

8 CONCLUSION
Several applications at AAMAS first require learning a predictive
model of agents’ parameters and then optimizing based on result
of such learning. This paper presents key results on importance of
Decision Focused Learning to such applications. We conduct the
first large-scale field study of Decision Focused learning through an
RMAB problem in maternal and child health domain. We conclude
that learning the MDP parameters of the RMAB problem through
Decision Focused Learning results in higher participation of ben-
eficiaries in the program (Figure 3). DFL’s strategic selection of
actions also results in more effective live service calls as demon-
strated in Table 2. From the analysis showcased in previous sections,
we attribute the success of DFL to the following: (i) The predicted
whittle index distribution from DFL policy is bimodal in contrast
to a unimodal distribution in TS (see Figure 4) indicating that DFL
model learns a decision boundary to highly rank beneficiaries that
would benefit significantly more from receiving the service call
than the rest of the population. (ii) DFL is more aligned with the
optimal policy as shown by a higher rank correlation with the True

Top-K Beneficiaries as compared to TS (Table 3). (iii) While TS re-
sults in a lower predictive error for the population as a whole, DFL
by optimizing for decision quality results in improved transition
probability prediction for the top-K beneficiaries (Table 3).

9 RESPONSIBLE DEPLOYMENT AND DATA
USAGE

We recognize the responsibility associated with deploying real-
world AI systems that impacts underserved communities. In our
approach, we have iteratively designed, developed and deployed
the system in constant coordination with an interdisciplinary team
of ARMMAN’s field staff, social work researchers, public health
researchers and ethical experts. Particularly, all experiments, field
tests and the deployment were performed after obtaining approval
from ethics review board at both ARMMAN and Google.

Consent andData Usage. The consent for participating in themHealth
program is received from beneficiaries. Additionally, all the data
collected through the program is owned by the NGO and only the
NGO is allowed to share data. This dataset will never be used by
Google for any commercial purposes. ’s data pipeline only uses
anonymized data and no personally identifiable information (PII)
is made available to the AI models. The data exchange and use was
thus regulated through clearly defined exchange protocols includ-
ing anonymization, read-access only to researchers, restricted use
of the data for research purposes only, and approval by ARMMAN’s
ethics review committee.

Universal Accessibility of Health Information. The mHealth program
focuses on improving quality of service calls and does not alter,
for any beneficiary, the accessibility of health information. All
participants will receive the same weekly health information by
automated message regardless of whether they are scheduled to
receive service calls or not. The service call program does not
withhold any information from the participants nor conduct any
experimentation on the health information. The health information
is always available to all participants, and participants can always
request service calls via a free missed call service.
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