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Abstract

In the past decade, breakthroughs of Artificial Intelligence (AI) in its multiple sub-area have made
new applications in various domains possible. One typical yet essential example is the public health
domain. There are many challenges for humans in our never-ending battle with diseases. Among
them, problems involving harnessing data with network structures and future planning, such as dis-
ease control or resource allocation, demand effective solutions significantly. However, unfortunately,
some of them are too complicated or unscalable for humans to solve optimally. This thesis tackles
these challenging sequential network planning problems for the public health domain by advancing
the state-of-the-art to a new level of effectiveness.

In particular, My thesis provides three main contributions to overcome the emerging challenges
when applying sequential network planning problems in the public health domain, namely (1) a novel
sequential network-based screening/contact tracing framework under uncertainty, (2) a novel sequen-
tial network-basedmobile interventions framework, (3) theoretical analysis, algorithmic solutions and
empirical experiments that shows superior performance compared to previous approaches both the-
oretically and empirically.

More concretely, the first part of this thesis studies the active screening problem as an emerging ap-
plication for disease prevention. I introduce a new approach tomodelingmulti-round network-based
screening/contact tracing under uncertainty. Based on the well-known network SIS model in com-
putational epidemiology, which is applicable for many diseases, I propose a model of the multi-agent
active screening problem (ACTS) and prove its NP-hardness. I further proposed the REMEDY (RE-
current screening Multi-round Efficient DYnamic agent) algorithm for solving this problem. With a
time and solutionquality trade-off,REMEDYhas twovariants, Full- andFast-REMEDY. It is a Frank-
Wolfe-style gradient descent algorithm realized by compacting the representation of belief states to
represent uncertainty. As shown in the experiment conducted, Full- and Fast-REMEDY are not only
being superior in controlling diseases to all the previous approaches; they are also robust to varying
levels ofmissing information in the social graph and budget change, thus enabling the use of our agent
to improve the current practice of real-world screening contexts.

The second part of this thesis focuses on the scalability issue for the time horizon for the ACTS
problem. Although Full-REMEDY provides excellent solution qualities, it fails to scale to large time
horizons while fully considering the future effect of current interventions. Thus, I proposed a novel
reinforcement learning (RL) approach based onDeepQ-Networks (DQN). Due to the nature of the
ACTS problem, several challenges that the traditional RL can not handle have emerged, including (1)
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the combinatorial nature of the problem, (2) the need for sequential planning, and (3) the uncertain-
ties in the infectiousness states of the population. I design several innovative adaptations in my RL
approach to address the above challenges. I will introduce why and how these adaptations are made
in this part.

For the third part, I introduce a novel sequential network-based mobile interventions framework.
It is a restless multi-armed bandits (RMABs) with network pulling effects. In the proposed model,
arms are partially recharging and connected through a graph. Pulling one arm also improves the state
of neighboring arms, significantly extending the previously studied setting of fully recharging bandits
with no network effects. Such network effect may arise due to regular population movements (such
as commuting between home and work) for mobile intervention applications. In my thesis, I show
that network effects in RMABs induce strong reward coupling that is not accounted for by existing
solution methods. I also propose a new solution approach for the networked RMABs by exploiting
concavity properties that arise under natural assumptions on the structure of intervention effects. In
addition, I show the optimality of such a method in idealized settings and demonstrate that it empir-
ically outperforms state-of-the-art baselines.
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1
Introduction

The science and art of preventing disease and promoting people’s health has gained increasing atten-

tion as technologies advanced. Among these technologies, the development of various sub-areas in

AI has made promising progress by reducing human physical and mental efforts to perform diffi-

cult and complex tasks Murphy et al. [2007], Dickerson et al. [2012]. One of the most complex yet

widely applicable types of tasks is sequential planning on network structure. It requires dealing with a

large number of combinatorial actions and future planning simultaneously. In the previous approach,
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health workers often struggled when planning for complex tasks. They either relied on naive guides

that were short-sighted or nothing but their own experience. By studying sequential planning prob-

lems on network structure, we reveal the insight hidden behind the veil of these complex problems

and help health workers make wiser decisions and plan more effectively.

1.1 Why Sequential Network Planning

Network analysis is a vital tool for public health analysis due to its flexibility and accuracy compared to

othermodels. In addition, it facilitates communication between technical experts and stakeholders by

providing a language to visualize and understand complex concepts. Furthermore, network models

are usually amenable to scaleable computational techniques thanks to the numerous efforts to develop

related theories and algorithms.

One example of network analysis in thepublic healthdomain is tomodel disease transmission, espe-

cially for infectious diseases such as tuberculosis, influenza, and sexually transmitted diseases (STDs)

(e.g., gonorrhea and chlamydia). These contagious illnesses are responsible for millions of deaths ev-

ery year. The ability to accurately model them enables further planning of inoculation or isolation

and may significantly affect the mortality rate of a particular epidemic. In particular, network mod-

els are often more intuitive and accurate for predicting disease spread through heterogeneous host

populationsBansal et al. [2007], Danon et al. [2011]. This is because the contact between individuals

allows an infectious disease to propagate naturally define a network. Such a network will enable us

to distinguish spreading events of different properties and gain insights into the epidemiological dy-

namics. The network epidemic model also opens up the possibility of active screening optimization

(or contact tracing). Unlike homogeneous models, the transmission routes defined by the network

made it possible to exploit the knowledge of structure for disease control. In my thesis, the sequential

planning further captures the dynamic of disease spread compared to previous one-shot vaccination
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models. Therefore, it is clear the sequential planning on epidemic networks for active screening has a

vast potential for improving the current practice.

Another example of the network model is the commuting network of the potential patients’ com-

munities. Besides contact between individuals, their commuting behavior between different locations

also naturally forms a network. Studying such a network allows the health service providers to engage

(usually done by usingmobile health clinics) the potential patients more effectively, allowing vulnera-

ble communities to access otherwise not viable assistance Stephanie et al. [2017]. Again, the dynamic

properties of the commuting behavior have made the sequential planning for the schedule difficult

but essential, especially when the interplay between time and space are involved. The following sec-

tion will elaborate on more background, challenges, and contributions to addressing the sequential

network planning problems for these two example applications in this thesis.

1.2 Sequential Network Planning Problems Addressed

My thesis provides two representative sequential network planning problems with public health ap-

plications and their solutions.

1.2.1 Active Screening

Contagious diseases are critical public-health challenges that continue to threaten lives and impose

significant economic burdens on society. For example, the economic loss due to influenza in the USA

alone is estimated to be $11.2 billion in 2015 Putri et al. [2018]. While low-cost treatment programs

are available, individuals ignore symptoms and delay care, increasing transmission risk. As a result,

health agencies engage in active screening or contact tracing efforts as figure 1.1 shows, where individ-

uals are asked to undergo diagnostic tests and offered treatment if tests are positive Eames & Keeling

[2003], Cadman et al. [1984]. However, active screening is expensive in developing countries. Even in
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theUSA, Braxton et al. Braxton et al. [2017] state that “In 2012, 52% of state and local STDprograms

experienced budget cuts. This amounts to reductions in clinic hours, contact tracing, and screening

for common STDs.” In India, an estimated 1 million missing tuberculosis (TB) cases require an ef-

ficient method of active screening, particularly given limited health budgets Chinnakali et al. [2016].

Efficiently identifying and intervening for infectious cases is therefore of vital importance.

(a) Passive screening (b) Active screening

Figure 1.1: Passive screening only treats patients who come to a clinic voluntarily whereas active screening can treat
patients in hard‐to‐reach tribal areas at a higher cost Tuberculosis & Disease [2018]

Active screening (or contact tracing) aims at selecting a subset of nodes in a social network for

screening, so as to prevent the spread of transmissive diseases. When an individual is tested positive,

they are marked as infected. The health worker, or contact tracer, records who else has been exposed

and marks them as contacts or potentially infected individuals. The potentially infected individuals

might not voluntarily seek treatment and testing. In case any of such individuals are infected, they can

spread the disease further. Active screening aims to target these individuals and slow down the spread

of the disease Eames & Keeling [2003], Taylor-Robinson [1994].

There is a huge body of literature on spread and control of recurrent diseases (no permanent im-

munity) Ball et al. [2015], Sun&Hsieh [2010],Wang [2005], Zhang& Prakash [2015], Ganesh et al.

[2005]. However, these prior studies assume perfect observation of who is infected and who is not.

Also, most of these methods focus on eradication of disease, which is not possible if the screening re-

sources are limited. Thus, important real world characteristics such as partial observation and limited

4



resources have not been adequately handled in prior work.

Figure 1.2: The active screening problem: Given as input a network of individuals, their contact, and disease transition
model, the active screening problem is to provide a policy that maps the observations of the network to state to a set of
individuals to screen every time step.

There are many challenges in implementing active screening. First, not every individual in a social

network can be screened due to limited resources (in this case contact tracers or amount of tests avail-

able). Therefore, for each screening round, we need to optimally select a subset of nodes which is a

combinatorial optimization problem. Second, the health states of themany individuals in the network

are unknown (sans people who get tested actively or passively). Finally, the above challenges are sig-

nificantly amplified when sequential planning is involved as we need to account for the future effects

of current screening actions.

Active Screening-Contributions

To address this shortcoming in active screening of recurrent diseases, this thesis develop a model of

the active screening problem and present different approaches for two different scenarios: short-term

and long-term planning.

Model of active screening problem (ACTS):The first contribution for this thesis in active screening

is a model of the multiagent active screening problem (ACTS). Given as input a network (G(V,E))

of individuals(V), their contact (E), and disease transition model, the active screening problem is to

5



provide a policy that maps the observations of the network to state to a set of individuals to screen

every time step. We focus on spread of recurrent infectious diseases modeled using the well-known

network SIS model in computational epidemiology Wang et al. [2003], which is applicable for many

diseases such as syphilis and typhoid. It is the foundation of more complex models that capture more

disease dynamics (such as latent states, variation in birth/death rates, or multiple treatment states).

The network SISmodel is specified by a graphwhere nodes are individuals and edges indicate physical

contact through which disease spread is probabilistic. ACTSmodels multi-agent interactions in that

the nodes in the graphmodel individuals who interact with other individuals. The individuals can be

either susceptible (S) or infected (I). The contribution of multiagent systems in computational epi-

demiology is well recognized in previous literature Swarup et al. [2014]. Our model further includes

real-world constraints, namely that health workers are uncertain about the health state of individu-

als, have a small screening budget relative to the population size, and must engage in active screening

over multiple rounds (time periods) due to recurrent of the disease. As a first result, we prove that the

ACTS problem is NP-hard. To the best of our knowledge, no other model in the AI literature has

considered multi-round active screening with partially observable health state for controlling disease

spread.

Short-term Planning: For diseases of slow treatment and limitted horizon, I proposed an adaptive

software agent, REMEDY (REcurrent screeningMulti-round Efficient DYnamic agent) to address

such scenario. The model is developed in cooperation with a research institute in India (name with-

held for anonymity of authors), which partners with the Central Tuberculosis Division (CTD) of

India to facilitate active screening for TB. REMEDY assists maximizing effectiveness of active screen-

ing under real world budgetary constraints and limited contact information. Such screening of TB

patients currently takes place quarterly in over 50 districts scattered across 18 states of India. REM-

EDY is intended to assist health workers in India in their work in active screening in the field. Our

software agent is currently under review before deployment as a means to improve the efficiency of
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district-wise active screening for tuberculosis in India, althoughREMEDY has applicability for active

screening of other recurrent diseases.

The next contribution of this thesis toward active screening problem is two novel algorithms for

short-term planning, Full- and Fast-REMEDY. In the former, we consider the effect of both cur-

rent and future screening actions to solve the ACTS problem. Full-REMEDY achieves scale-up

via an innovative combination of : (i) easier to optimize upper-bound of the ACTS objective; (ii) a

Frank-Wolfe Style gradient descent algorithm; (iii) compact representation of belief states to represent

uncertainty. Fast-REMEDY works in a similar fashion as Full-REMEDY, but by optimizing just

the current step actions runs almost two orders of magnitude faster than Full-REMEDY in prac-

tice. As another contribution, we illustrate the benefits of Full- and Fast-REMEDY via extensive

testing on seven different real-world human contact networks against various baselines across a range

of realistic disease parameters. For the largest network of∼76,000 individuals we see improvements

in performance of almost 40% over the prior best method which directly maps to thousands of fewer

infections every six months.

REMEDY is developed to assist screening for infectious diseases under conditions where screening

tests are slow and expensive, budgets are limited, and information on the underlying social graph is

available. As we also show, the performance improvements exhibited by Full- and Fast-REMEDY

are robust to varying levels of missing information in the social graph and budget change, thus en-

abling the use of our agent to improve the current practice of real-world screening contexts.

Long-term Planning: Due to the superior performance of RL approaches in solving long term plan-

ning problems Mnih et al. [2015], Silver et al. [2016, 2017], in my thesis I propose a novel RL ap-

proach that builds upon a powerful variant of RL called DQNMnih et al. [2013]. We first formulate

the multi-round active screening problem as a Markov Decision Process (MDP), where the state is a

vector representing the probability of each node in the network being infected, and the action is to

select which subset of nodes to actively screen. Due to the extremely high-dimensional state and ac-
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tion spaces, vanilla DQN algorithms cannot be directly applied to solve our problem efficiently. We

therefore design several innovative adaptations over vanilla DQN that fully exploit the problem struc-

ture of multi-round active screening. First, we show that the node features in the underlying contact

network are inter-correlated. To efficiently capture the intrinsic correlations between different nodes,

we use GCNs as the function approximator to represent the Q-function. Second, because in each

time period we need to select a subset of nodes to actively screen, this leaves vanilla DQN un-scalable

as it needs to solve a combinatorial optimization problem in the action selection procedure. To avoid

this we decompose the node set selection problem in each time period as a sub-sequence of decisions,

and then design a novel two-level RL framework that solves the problem in a hierarchical manner.

It has two types of agents. The primary agent works at the main sequence level and interacts with

the environment, while multiple secondary agents work at the sub-sequence level and are responsible

for generating actions sequentially within each time period. Last, we find that the reward signals for

the secondary agents are sparse. To speed up the slow convergence of secondary agents’ policies that

arises from the sparseness of rewards, we incorporate ideas from curriculum learning into our algo-

rithm. Intuitively, the algorithm warm-starts at the beginning of training with a simpler task, which

has limited action choice and true state information. As the training goes on, the algorithm gradually

increases task difficulty by providing uncertain state information and more action choice until the

problem becomes the same as the original active screening problem.

The main contributions of this thesis for long-term planning active screening are summarized as

follows. (i) I formulate the multi-round active screening problem for recurrent diseases as a Markov

Decision Process (MDP). (ii) To solve the formulated MDP, I propose a novel solution algorithm on

the basis of DQN, with several innovative adaptations that fully exploit the problem structure of the

formulated MDP. (iii) Extensive experiments were conducted on various real-world networks with

distinct network properties to evaluate the effectiveness of our proposed approach. The empirical

results show that our approach can scale up to 10 times the problem size of Full-REMEDY in terms
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of planning time horizon. Meanwhile, it outperforms Fast-REMEDY by up to 33% in terms of the

total number of healthy people over time. The robustness analysis shows that it works better than

baselines even with network structure uncertainty. Interestingly, the policy analysis results show that

compared with the baselines, our approach does not rely on node structural importance (e.g., degree

and betweenness), and thus is fairer in the sense that it tends to spread the screening across different

nodes.

1.2.2 Mobile Health Intervention

Mobile interventions are a model for providing services in which agents are sent to different loca-

tions where they provide various forms of interventions locally. Of particular importance are mobile

health clinics (MHCs), a model of healthcare delivery in which mobile units deliver health services

directly to target communities. MHCs are successful in reaching vulnerable populations; they over-

come typical barriers to health services access, such as limited transportation, finances, insurance, or

legal status Stephanie et al. [2017]. Awide variety ofMHCservices—such as primary care, prevention

screenings, disease management, and treatment support—have been very successful. Their success is

based on their flexibility in meeting the changing needs of target communities, and providing these

services at discounted rates or free of charge. Compared to other healthcare service models, MHCs

have been observed to provide cost savings and cost-effectiveness Stephanie et al. [2017]. Another

important application of mobile interventions is in food pantry services, which cater to communities

experiencing food insecurity by dispatching food trucks. We focus specifically on interventions for

managing non-communicable diseases such as diabetes, cardiovascular disease, cancer, chronic respi-

ratory disease, and mental health problems.

Network Restless multi-armed bandits Problems: These mobile intervention applications can be

modeled as Restless multi-armed bandits (RMABs). RMABs have become a widely adopted mathe-

matical model for studying various types of intervention services Kumar & Saranga [2010], Deo et al.
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Figure 1.3: Example of mobile health service.

[2013], Mansour et al. [2015], Lee et al. [2019], Mate et al. [2020], Biswas et al. [2021], Xu et al.

[2021]. RMABs are a model for sequential planning problems: in each round, a planner has to select

k out ofm arms to pull. Arms transition randomly between states, but the transition probabilities dif-

fer based on whether an arm was pulled or not. The arms dispense rewards depending on their state.

In above applications, arms represent locations, kmay represent the budget (e.g., number of available

MHC units), and rewards are the number of people positively affected by an intervention. I extend

existing RMABmodels for interventions by considering network effects. Such network effects often

arise due to individual commuting behavior: when anMHC visits one location, it provides interven-

tions not only to people who reside there, but also to others who have traveled to this location (e.g.,

as a part of their routine work-related commuting). On the flip side, the sameMHCmaymiss people

who have traveled to a different location. Visiting one location may thus deliver an intervention to

residents of multiple locations, giving rise to network effects.

Mobile Health Intervention-Contributions

Network effects lead to significant new challenges in the formalmodel. Common solution approaches

for RMABs treat each arm as aMarkovDecision Process (MDP) and exploit the fact that theseMDPs
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are coupled only through the joint budget constraint. Thisweak coupling forms the basis for solutions

based on index values, which are computed separately for each of them arms. Policies that select the k

armswith the highest indices can be shown to be asymptotically optimal for several domainsHonda&

Takemura [2010],Maillard et al. [2011],Kaufmann et al. [2012]. This thesis shows that the aforemen-

tioned network effects induce a stronger coupling between arms, making these solution approaches

significantly less effective. The main contributions of this thesis toward MHC scheduling problem

are (1) we present a class of RMAB models with network effects suitable for modeling mobile inter-

vention domains, (2) we present a solution approach for this class of problems and provide sufficient

conditions for the optimality of our approach, and (3) we show empirically that our solution delivers

superior performance compared to existing approaches across multiple domains.

1.3 Thesis Outline

In Chapter 2, I discussed the related work for the network epidemic models, previous common prac-

tices of the health applications in my thesis, different sequential planning models, and some related

network problems. Next, InChapter 3, I introduce the active screeningmodel I proposed and its solu-

tion for short term planning. Chapter 4 further extended themodel for a long term planning solution

by applying RL and overcome several challenges that traditional RL cannot handle. In Chapter 5, I

presented the network mobile health intervention problem modeled as RMAB as another example

of sequential network planning problem and its solution. Finally, In Chapter 6 I discuss the relevant

future work for solving sequential planning problems on active screening, mobile health interven-

tions and other public health applications and the challenges of applying them to the real-world and

conclude my thesis.
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2
Background and RelatedWork

2.1 Sequential Network Planning Problems for Public Health

Sequential resource allocationproblems onnetworks constitute another active area of research in their

applications in the real-world domain. The network effect can be roughly categorized into two types:

(1) effect on state transitions (2) interventions that have network effects. Each type of network effect

has its application in the public health domain. Due to the interaction between individuals or com-
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munications between locations in the real world, it is vital to harness the network structure as a whole

instead of just single entries of data points.

My thesis provides an iconic application for each type of network effect. The first application is

active screening, where the network effect arises from the physical contact between individuals. The

main challenge of this problem comes from the network effect and the uncertainty of its state tran-

sition. The second application is mobile health intervention. In this application, communications

between each location have caused a strong coupling effect of our intervention. Such coupling can-

not be handled by previous standard approaches such as index policies due to the need to consider

the set to intervene together instead of nodes to intervene individually. Chapter 4 of this thesis will

illustrate more details, including examples.

2.2 NetworkModels in Public Health domain

In this sectionwediscuss the networkmodels used inprevious literature of public health domain. One

of the most popular model is the network epidemic Model. Epidemic models continue to be widely

used across biological, social, and computer sciences. Applications range widely, including influence

propagationKempe et al. [2003], Yadav et al. [2016a],Wilder et al. [2017], rumor adoptionWeenig&

Midden [1991], computer virus suppression Garetto et al. [2003], and of course, disease spread. The

studies of disease spreading history can date back to as early as 1760when Bernoulli proposed the first

mathematical epidemicmodel for smallpox (VariolaMajor) Bernoulli&Blower [2004]. In early 2000,

studies Wang et al. [2003] have found that graph-based epidemic propagation models provide a more

realistic approach compared to fullymixedmodels of earlier literature. Under these graph-basedmod-

els, non-recurrent and recurrent disease suppression and eradication have been studied using different

approaches.
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2.2.1 Non-Recurrent Diseases

A large portion ofwork related to active screening deals primarilywith SIRor SEIR type diseases (with

two extra state Exposed andRecovered), often referred to as theVaccination Problem Ball et al. [2015],

Sun & Hsieh [2010], Wang [2005], Zhang & Prakash [2015], Ganesh et al. [2005], where perma-

nent immunization (entry intoR state) can be viewed as removing nodes from the graph. Exploiting

this idea, Saha et al. [2015] and Tong et al. [2012] focus on immunization ahead of an epidemic and

suggest a heuristic method of removing a set of k nodes based on the eigenvalues of the adjacency

matrix. Zhang & Prakash [2015] consider the problem of selecting the best k nodes to immunize in a

network after the disease has started to spread. Ren et al. [2018] extend the problem to tackle network

with graph structure uncertainty. These methods do not apply to our scenario as they assume that a

single round of screening offers permanent immunity.

2.2.2 Recurrent Diseases

For diseases in which there is no permanent immunity, one-time screening (cure) is not enough and,

further, it may not be reasonable to quarantine patients until the disease has died out. When the

true state of the graph in every round is known (in other words, when the policymaker has perfect

observations), given certain budget constraints, Drakopoulos et al. [2016, 2014] provide a theoretical

lower bound on the expected time needed to eradicate the disease, which grows linearly in the number

of nodes. The authors provide a policy to show that disease eradication is possible when the graph

structure and budget have specific properties under such perfect observation. Scaman et al. [2016]

provide a scalable algorithm maxcut minimization and tighter theoretical bound of the eradication

time based on the idea.
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2.2.3 Comparison

Mywork differs from studies of recurrent diseases that assume perfect observations and seek to bound

eradication time Drakopoulos et al. [2016, 2014], Scaman et al. [2016]. The impact of curing un-

certainty in these previous works is analyzed in Hoffmann & Caramanis [2018] by providing non-

constructive, algorithm-independent bounds, motivating this work. Chapter 2 of this thesis focus on

developing algorithms tominimize the disease spread. This complex setting has not been studied pre-

viously. Although both inherently a multiagent problem because nodes (agents) make decisions in

response to those around them, this problem of minimizing disease spread is different from another

well-studiedmultiagent problemof influencemaximization in generalKempe et al. [2003],Chen et al.

[2009],Maghami&Sukthankar [2012], Yadav et al. [2016b],Wilder et al. [2018]. The influencemax-

imization problem optimizes the selection of seeds or starting nodes for maximizing influence spread

that usually has sub-modular property to exploit, as opposed to optimizing the selection of nodes on

which to intervene to minimize disease spread.

2.3 Approaches for Solving Sequential Planning Problems

In this section we discussed the approaches for solving sequential planning problems in previous

literature. We also discuss some of the new challenges emerged when applying these technique to the

health applications with network effects we focused on.

2.3.1 Reinforcement Learning

Reinforcement Learning has attracted a lot of interest from researchers in the machine learning and

artificial intelligence communities Mnih et al. [2015], Silver et al. [2016, 2017]. It is an experiment-

driven andmathematical framework that trains an agent through trial and errorKaelbling et al. [1996],

Sutton et al. [1998], Sutton & Barto [2018]. With the rise of deep learning, researchers further over-
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come the computational limitations of traditional RL by utilizing the representation power of deep

neural networks Mnih et al. [2013], Arulkumaran et al. [2017], such as recurrent neural networks

(RNNs) Zaremba et al. [2014], convolutional neural networks (CNNs) Krizhevsky et al. [2012] and

graph convolutional neural networks (GCNs) Kipf &Welling [2017].

InChapter 2 I address the challenges of uncertain states and limitedbudget byproposing theREM-

EDY algorithm. However, the variants of this approach either do not scale with the planning time

horizon or fail to fully account for future actions. Due to the superior performance of RL approaches

in solving long term planning problems Mnih et al. [2015], Silver et al. [2016, 2017], in Chapter 3 I

propose a novel RL approach that builds upon a powerful variant of RL called DQN Mnih et al.

[2013]. I first formulate the multi-round active screening problem as a Markov Decision Process

(MDP), where the state is a vector representing the probability of each node in the network being

infected, and the action is to select which subset of nodes to actively screen. Due to the extremely

high-dimensional state and action spaces, vanilla DQN algorithms cannot be directly applied to solve

our problem efficiently. I therefore design several innovative adaptations over vanilla DQN that fully

exploit the problem structure of multi-round active screening. First, I show that the node features in

the underlying contact network are inter-correlated. To efficiently capture the intrinsic correlations

between different nodes, I use GCNs as the function approximator to represent the Q-function. Sec-

ond, because in each time period we need to select a subset of nodes to actively screen, this leaves

vanilla DQN un-scalable as it needs to solve a combinatorial optimization problem in the action se-

lection procedure. To avoid this we decompose the node set selection problem in each time period as

a sub-sequence of decisions, and then design a novel two-level RL framework that solves the problem

in a hierarchical manner. It has two types of agents. The primary agent works at the main sequence

level and interacts with the environment, while multiple secondary agents work at the sub-sequence

level and are responsible for generating actions sequentiallywithin each time period. Last, we find that

the reward signals for the secondary agents are sparse. To speed up the slow convergence of secondary
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agents’ policies that arises from the sparseness of rewards, we incorporate ideas from curriculum learn-

ing into our algorithm. Intuitively, the algorithm warm-starts at the beginning of training with a

simpler task, which has limited action choice and true state information. As the training goes on, the

algorithm gradually increases task difficulty by providing uncertain state information andmore action

choice until the problem becomes the same as the original active screening problem.

2.3.2 RestlessMulti-Arm Bandit

Restlessmulti-armedbandits (RMABs) have become awidely adoptedmathematicalmodel for study-

ing various types of intervention services Kumar & Saranga [2010], Deo et al. [2013], Mansour et al.

[2015], Lee et al. [2019],Mate et al. [2020], Biswas et al. [2021], Xu et al. [2021]. RMABs are amodel

for sequential planning problems: in each round, a planner has to select k out ofm arms to pull. Arms

transition randomly between states, but the transition probabilities differ based on whether an arm

was pulled or not. The arms dispense rewards depending on their state. In the motivating applica-

tions of Chapter 4, arms represent locations, k may represent the budget (e.g., number of available

MHC units), and rewards are the number of people positively affected by an intervention. In Chap-

ter 4 of this thesis, I extend existing RMABmodels for interventions by considering network effects.

Such network effects often arise due to individual commuting behavior: when an MHC visits one

location, it provides interventions not only to people who reside there, but also to others who have

traveled to this location (e.g., as a part of their routine work-related commuting). On the flip side, the

sameMHCmaymiss people who have traveled to a different location. Visiting one locationmay thus

deliver an intervention to residents of multiple locations, giving rise to network effects.

Network effects lead to significant new challenges in the formal model. Common solution ap-

proaches for RMABs treat each arm as a Markov Decision Process (MDP) and exploit the fact that

theseMDPs are coupled only through the joint budget constraint. This weak coupling forms the basis

for solutions based on index values, which are computed separately for each of the m arms. Policies
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that select the k arms with the highest indices can be shown to be asymptotically optimal for several

domains Honda & Takemura [2010], Maillard et al. [2011], Kaufmann et al. [2012]. In Chapter 4,

I show that the aforementioned network effects induce a stronger coupling between arms, making

these solution approaches significantly less effective.

In the most general setting, the RMAB problem is known to be PSPACE-hard to solve optimally

Papadimitriou&Tsitsiklis [1994]. However, by exploiting the problem structure of certain restricted

classes of RMABs, efficient algorithms have been derived, sometimes with performance guarantees.

Themost popular of these is theWhittle index policyWhittle [1988] which is asymptotically optimal

for indexable banditsWeber&Weiss [1990] and fast to compute if a closed form can be derived for the

index. Many works are dedicated to proving the indexability of different RMAB subclasses and deriv-

ing closed-form or efficient approximations of theWhittle index Glazebrook et al. [2006], Mate et al.

[2020], Hsu [2018], Akbarzadeh &Mahajan [2019]. Others have provided sufficient conditions for

indexability Nino-Mora [2001] or developed expensive methods for computing policies with tighter

reward bounds Bertsimas&Niño-Mora [2000], Adelman&Mersereau [2008]. However, all of these

methods rely on the idea that the only factor coupling the arms are one or more budget constraints

which we refer to as the weakly coupled property. Thus, previous RMABmethods will not be applica-

ble for our work as the network effect strongly couples the states, actions, transitions, and rewards of

neighboring arms.

In terms of applications, RMAB models have been widely used for scheduling problems, such as

machine maintenance and repair Wang [2002], Abbou &Makis [2019], Glazebrook et al. [2006]. In

these works, machines in factories are modeled as arms, and the goal is to find the optimal schedule

to visit factories to maintain the machines. Other examples include anti-poaching patrol planning

(Qian et al. [2016] propose a RMAB framework in which arms are poaching targets, and playing an

arm corresponds to a patrol) or recommendation systems (e.g., formusic streaming Zeng et al. [2016],

Yi et al. [2017]). Such problems also motivated the recharging bandit model Kleinberg & Immorlica
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[2018].

In this model, each arm’s reward is determined by a function of the time elapsed since the arm was

last pulled. Implicitly, this resets the arm’s reward to time 0 whenever the arm is pulled. When these

functions are increasing and concave for each arm, Kleinberg & Immorlica [2018] develop a concave

program to solve the optimal frequency of pulling each arm; the program’s value upper-bounds the

value of an optimal schedule. Scheduling the arm then becomes a pinwheel scheduling problemHolte

et al. [1989], and Kleinberg & Immorlica [2018] use a rounding scheme to approximate the schedul-

ing of arm pulls, while obeying the frequency restriction. I extend this setting by allowing the arms’

rewards to be only partially reset when the arm is selected, as well as by considering network effects.

In the public health domain, this work’s focus, Mate et al. [2020] proposed collapsing bandits to

improve medication adherence through interventions on patients. Lee et al. [2019] and Ayer et al.

[2019]proposedRMABs for scheduling cancer screenings andhepatitis treatments, respectively. InDeo

et al. [2013], the closest RMAB application to ours, the authors model the resource allocation prob-

lem of delivering school-based asthma care for children. The most important difference between my

work and theirs is that my work consider network effects in the RMABmodel.
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3
Active Screening Problem:

Short-term Planning

In this chapter, we discuss the REMEDY algorithm I developed to solve the active screening problem

with short-term planning. The active screening problem is a sequential network planning problem

with the network effect of the state transition. We will first discuss the detail of our network model in

the following section.
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Notations for Model
Notation Definition

S susceptible state
I infected state
β transmission rate
γ cure rate
t time step number
T terminal time step
k budget for each time step

δ(v) set of v’s neighbors
sv(t) state of v at time t
Ca(t) set of nodes actively screened
Cn(t) set of nodes naturally cured
tv(t) true state vector of node v at time t
TN

v (t) true state transition matrix forV \ Ca(t)
TA

v (t) true state transition matrix for Ca(t)

Notations for Algorithm
Notation Definition

bv(t) marginal belief state vector of node v at time t
bv(t) intermediate belief state after knowing Cn(t)
BN
v (t) transition matrix forV \ Ca(t) ∪ Cn(t)

BA
v (t) transition matrix for Ca(t) ∪ Cn(t)
xv(t) marginal probability of v being in I state
x(t) probability vector of all nodes being in I state
A adjacency matrix of the graph

Ra(t) action choice matrix decided by the algorithm
Ma(t) upper bound transition matrix, function ofRa
F upper bound of objective function with true probability

Table 3.1: Notations Summery for this Chapter

3.1 DiseaseModel

We introduce the diseasemodel for our problem, which is based on the well-known SISmodel Ander-

son &May [1992], Bailey [1975]. An individual can either be in state S (a healthy individual suscepti-

ble to disease) or I (the individual is infected). SIS models capture the dynamics of recurrent diseases,

where permanent immunity is not possible (e.g., TB, typhoid).

We adopt a discrete time SIS model for modeling the disease dynamics propagating on a graph.

Given a contact networkG(V,E), infection spreads via the edges in the network. There are |V| indi-

21



viduals, and we use δ(v) to denote neighbors of node v in the network. Each individual (node) v in

the network at time t is in state sv(t) ∈ {S, I}. Let tv(t) denote the state vector that represents the

true state of node v at time twhere S is represented as [1, 0]⊤ and I as [0, 1]⊤. Given the initial state, an

infected node infects its healthy neighbors with rate β independently and recovers with probability γ.

The latter term represents the probability that the node may visit a doctor on its own initiative. The

health state transition probabilities of a node is then given by P [sv(t+ 1) = {S, I}] = TN
v (t)tv(t)

where

TN
v (t) =

S I S 1− qv γ

I qv 1− γ

, (3.1)

and qv = 1 − (1 − β)|{u∈δ(v) | su(t)=I}|. The columns denote the state of v at time t and the rows

denote the state at t + 1. The transition probabilities follow the disease dynamics described earlier.

In particular, qv captures the exact probability that node v becomes infected from its neighbors {u ∈

δ(v) | su(t) = I} and γ captures the probability that I individuals seek treatment voluntarily.

Given such transition probabilities and an initial state, if no intervention happens, the network

state evolves by flipping biased coins for each node to determine their next true state in each round.

The process is repeated until the terminal step T is reached.

3.2 The Active Screening (ACTS) Problem

Motivatedby active screening/contact tracing campaigns that havebeenpracticed since the 1980sCad-

man et al. [1984] and applied in various forms/diseases Braxton et al. [2017], we propose the Ac-

tive Screening (ACTS) Problem. Given the SIS model in the previous section, an active screening
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agent seeks to determine the best node sets Ca(t) ⊂ V to actively screen and cure with a limited

budget of |Ca(t)| ≤ k at each round t. The agent does not know the ground truth health state of

all individuals. The agent knows the network structure G(V,E), the infection probability β, and

recovery probability γ. In addition, the agent observes the naturally cured node set Cn(t) at time

t—because this set of patients come to the clinic voluntarily. Active screening starts after the agent

acquires information about Cn(t). Let Ca(t) be the set of nodes that are actively screened at time t.

A node v ∈ Ca(t) becomes cured at time t + 1. Thus, the transition matrix for a node v ∈ Ca(t) is

P [sv(t+ 1) = {S, I}] = TA
v (t)tv(t), where

TA
v (t) =

S I S 1 1

I 0 0

. (3.2)

True state

Information available to the algorithm 
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Figure 3.1: The procedure of the ACTS problem.

The action the agent takes at time t does not affect the transition matrix TN
v (t) of the nodes not
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involved in active screening. Fig. 3.1 illustrates an example of the problem procedure. The upper part

of the figure shows how the true state of the network evolves and the lower part of the figure shows the

information available to the algorithm. In this example, there are seven nodes A∼G. In each round,

infected nodes (nodes B, D, and G in the example) flip a coin and report to the clinic with probability

γ. The algorithm acquires the information of the nodes that eventually report to the clinic and are

about to be cured, which is {G} this round. Based on this information, the algorithm will choose a

set of nodes, say {D}, to actively screen. These two sets of nodes are guaranteed to be in S state in the

next round. After that, the state of the network transitions and the next round starts.

It is worth noting that although both the nodes that voluntarily report to the clinic and the nodes

that are actively screened are guaranteed to be in S state in the next round, their neighbors may still be

infected by them in the current round. In the example, node E is infected by nodeD even thoughnode

D was actively screened. This allows us to simplify the state transitions because curing and spreading

infection occur at the same time.

Our objective is to maximize the health quality of each individual at each round (in contrast to

past work, which primarily focuses on the cost of eradicating the disease entirely). The objective of

the ACTS problem is:

min
Ca(0),...,Ca(T)

E
[∑T

t=0

∑
v∈V

1sv(t)=I

]
. (3.3)

Problem Statement. (ACTS Problem) Given a contact network G(V,E), the disease and active screen-

ingmodel, find an active screening policy such that the expectation of
∑T

t=0
∑

v∈V 1sv(t)=I is minimized.

Even assuming we know the ground truth infected state for each node, ACTS is NP-hard. All

proofs are in the supplemental material.

Theorem 1. The ACTS Problem is NP-hard.
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Proof. We reduce the VertexCover decision problem “Is there a vertex cover of size k” to “Does

there exist a curing strategy of objective function smaller or equal to 5|V| − 2kwith budget of k each

round of the constructed ACTS problem?”

Given a VertexCover decision problem with graph G = (V,E) and budget k, we construct a

new graph G∗ = (V∗
0 ∪ V∗

1 ∪ V∗
2,E∗) as follows: First, for each node v ∈ V, create three nodes v0,

v1 and v2 in G∗. Second, for each node v ∈ V, create an edge (v0, v1) in G∗. Finally, for each edge

(u, v) ∈ E create two edges, (u1, v2) and (u2, v1) inG∗. We set the parameters of the ACTS problem

to be (β, c) = (1, 0) and T = 2 with budget of k in each round. The initial state of the graphs are

sv(0) = I ∀ v ∈ V∗
0 and sv(0) = S ∀ v ∈ V∗

1 ∪ V∗
2. Figure.3.2 shows a simple example.

A

B

C

A0*

B0*

C0*

A1*

B1*

C1*

A2*

B2*

C2*

G(V,E) G*(V*,E*)

Infected

Susceptible

Figure 3.2: A simple example of graph transformation for problem deduction.

We now argue that G has a vertex cover of size k if and only if the ACTS problem of the above

setting has the objective function smaller or equal to 5|V| − 2k. In the above setting, we get to act

twice. Acting at t = 0 allows us to force k nodes into S state at t = 1. Denote the objective function
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we get at time t as Score(t), no matter what nodes we chose at t = 0, our sum of score in the first

two rounds is always going to be Score(0) = |V|, Score(1) = 2|V| − k and for the action we take

at t = 1 will only reduce Score(2) by amount of k, as long as we pick nodes in I state since it has no

chance to propagate. Thus the only action matters is the action on t = 0 toward Score(2). In the

case where k equals tominimum vertex cover, picking the copy of vertex cover set ofG inV∗
1 results in

|V|+(|V|−k)+k of I nodes in t = 2, which are all the nodes inV∗
0, all the nodes inV∗

1 except vertex

cover copy and the vertex cover in V∗
2. We argue that this is the optimal strategy as picking anything

that is not vertex cover results more than k infected nodes in V∗
2. Then we pick arbitrary k nodes as

our action in t = 1 and results a score of Score(2) = 2|V| − k. For the case where k is larger then

minimum vertex cover, containing any vertex cover will result in an objective function smaller then

the 5|V| − 2k threshold. The intuition is the infected node inV∗
2 set is either result in (1) some of its

edges are not covered (2) the node itself is covering the edge. In the case that an arbitrary vertex cover

is picked, (1) will not happen and (2) is always smaller (if some picked nodes are fully covered by other

nodes already) or equal (otherwise) to k. Thus one can always achieve an objective function less then

the threshold. For budget size smaller then minimum cover, it is clear that the infection of layerV∗
2 is

always going to result in an objective function higher then threshold since there must be some edges

are not covered. Thus checking this threshold determines if the vertex cover exist or not. Thus we

have proven the ACTS problem to be NP-hard.

We introduce REMEDY, a software agent for assisting to select nodes to actively screen in the

ACTS problem. REMEDY, shown in Algorithm 1 has two components: (i) a marginal belief state

update that we use for reasoning about the infected status of nodes, and (ii) an algorithm for selecting

which nodes to actively screen based on the marginal belief state and an upper bound of the ACTS

objective.

Figure 3.3 shows how REMEDY observes and interacts with environment repeatedly. In each
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Choose to screen

REMEDY Agent

Belief Update

Action Choice
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Figure 3.3: REMEDY overview

round, agents who are naturally cured (Cn(t)) in the environment (left rectangle) report to the clinic

and are observed by REMEDY. After REMEDY perceives such information, it uses (i) to update its

belief. Then, based on the current belief, it determines a set of agents to actively screen (Ca(t)) as

its action by (ii). Finally, based on the action it takes and its prediction of environment transition, it

updates its belief again by (i) and is ready for the next round observation.

3.2.1 Belief State Update

Tracking the exact probability that a node is infected in ACTS requires storingO(2|V|) values, which

is computationally intractable for reasonably sized graphs. Thus, REMEDY maintains a belief state

based on themarginal probability that each node is infected, requiring onlyO(|V|) values for storage.

To calculate the marginal infection probability for the next round, we have to consider all possible

events of a node’s neighbors are infected or not, which appears to require computing a sum with
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exponentially many terms. We prove in Lemma 1 that the sum may be written with a linear number

of terms. However, the marginal belief state discards correlation between nodes and this may lead to

underestimating the number of infected nodes. We address this issue in the next section by deriving

an upper bound for the true ACTS in terms of the marginal belief state. we form an upper bound on

the ACTS objective that accounts for the imprecision of the marginal belief state. Fig. 3.3 illustrates

the procedure of our algorithm.

The marginal belief update is lines 1–7 and 9–15 of Alg. 1. At each round t ∈ {0, . . . ,T − 1},

we acquire perfect information about the infected state of each I node that naturally recovers, i.e., the

nodes that satisfy s(t) = I and s(t+ 1) = S. The state of the remaining nodes is unknown.

Let xv(t) ∈ [0, 1] be the probability that node v is in state I at time t, and let bv(t) = [1 −

xv(t), xv(t)]⊤ be the marginal belief vector. For each node, we update an intermediate belief state

bv(t) = [1 − xv(t), xv(t)]⊤ in which xv(t) = 1 for v ∈ Cn(t) and xv(t) =
(1−γ)xv(t)

(1−xv(t))+(1−γ)xv(t)

for the remaining nodes v ∈ V \ Cn(t). These update steps are in lines 1–7 of Algorithm 1. This

intermediate belief state is then exploited by the action choice subroutine to select Ca(t), the node

set we actively cure (line 8). After that, we calculate the marginal belief state at the next round:

bv(t+1) = BN
v (t)bv(t) andbv(t+1) = BA

v (t)bv(t) for v ∈ V\(Cn(t)∪Ca(t)) and v ∈ Cn(t)∪Ca(t)

respectively where

BN
v (t) =

S I S 1− pv 0

I pv 1

,BA
v (t) =

S I S 1 1

I 0 0

(3.4)

and pv = 1 −
∏

u∈δ(v)(1 − βxu(t)). These steps are shown in lines 9-15 of Alg. 1. The transition

matrixBN does not contain parameter γ because each node in the I state that did not naturally recover

will remain in I state with probability 1. It is worth noting that, intuitively, to update the marginal
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belief state for node v, one has to calculate the probability of all possible event of its neighbors being

infected, which scales exponentially to the number of neighbors. Note that pv is not an approximation

but the exact value calculated by listing all possible events of v’s neighbor being infected or not which

we show in Lemma 1 that scales exponentially (2|δ(v)|). We showbelow in Lemma 1 that the approach

adopted by Eq. 3.4 to calculate pv yields the exact probability of v becoming infected by its neighbors

given it is currently in Swhich saves a great amount of computational time.

Lemma 1. The exact marginal probabilities of P[s(t+ 1) = I|s(t) = S] can be calculated by pv without

listing the probability associated with each possible set of infected neighbors.

Proof. The theorem can be proved by induction. For the base case where there is only one neighbor,

the probability that node v is infected in the next time step given it is currently in S is pv,1 = xu(1 −

(1− β)1) + (1− xu)(1− (1− β)0) = βxu. Assume pv,k = 1−
∏

u∈δ(v)
(1− βxtu) for |δ(v) ≤ k| is true,

for |δ(v) = k+ 1|, where w denotes the newly added neighbor, we have:

pv,k+1 = pv,k + xwβ− pv,kxwβ

= (1− xwβ)(1−
∏

u∈δ(v)\w

(1− βxu)) + xwβ

= 1−
∏

u∈δ(v)

(1− βxu)

Thus we proved that pv evaluates the exact probability of P[sv(t+ 1) = I|sv(t) = S].

3.2.2 Action Choice Algorithm

Possible approaches: We now turn our attention to selecting the set of nodes to actively screen, i.e.,

line 8 in Alg. 1. First, treating the Acts problem as a POMDP and applying state of the art reinforce-

ment learning techniques is not feasible for the realworld scenariowe are aiming forMnih et al. [2015].
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Algorithm 1 REMEDY

Input: A, b(t), β, γ, Cn(t), t,T, k
Output: Ca(t), b(t+ 1)

1: for v ∈ V do
2: if v ∈ Cn(t) then
3: bv(t)← [0, 1]⊤

4: else
5: bv(t)← [(1−xv(t)),(1−γ)xv(t)]⊤

((1−xv(t))+(1−γ)xv(t))
6: end if
7: end for
8: Ca(t)← ActionChoice(A, b(t), β, γ,Cn(t), t,T, k)
9: for v ∈ V do
10: if v ∈ V \ Cn(t) ∪ Ca(t) then
11: bv(t+ 1)← BN

v (t)bv(t)
12: else
13: bv(t+ 1)← BA

v (t)bv(t)
14: end if
15: end for
16: return Ca(t), b(t+ 1)

This is due to the fact that the computation time scales poorly with the high dimension action choice,

which is exponential in the budget for our problem. Even when we approximated the actual feasible

action choice by choosing the nodes greedily one node at a time and estimating the reward function,

the resulting approach performed poorly and did not scale up to 20 nodes, which is less than even the

smallest graph in our dataset.

One fast yet naive approach to this problem is to select the node set withmaximummarginal belief

to be in I state. This approach can be computed inO(|V|), but it does not take the network structure

and future infection probabilities into account. For example, suppose we have a tree structure with

a known infection state: the root is the only infected node. The belief-based approach will screen

the root and spend the remainder of the budget on random nodes. This is suboptimal because the
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remaining budget could be spent on the children of the root to prevent the disease from spreading.

Another approach is to choose nodes based on the graph structure. For example, we can select the

nodes that, if deleted (permanently actively screened), would reduce the largest eigenvalue of the graph

the most Prakash et al. [2012]. This approach guarantees that the infection is eradicated in the long

term if the largest eigenvalue can be reduced below γ
β for sufficient budget k. However, structure based

approaches performpoorlywhen there aremany nodeswith identical roles in the graph structure, e.g.,

in symmetric graphs. Here, belief information would be more useful because it takes into account

current signals from local neighbors of nodes

However, belief-based approaches and structure based approaches do not work well individually.

A simple example where belief based approach fail would be a tree structure where its root is being

infected, inwhich the belief based approachwould not actively screen the children of infected node to

prevent thembeing infect next round. As for structure based approaches, it performs poorlywhen the

structure is rather symmetric like cube or circle graph. Thesemethodwould just cure nodes randomly

without considering belief information.

Although there are many heuristic ways one can combine belief and structure based approach,

it is usually difficult to estimate the performance beforehand or derive the reasoning behind. These

methodmayworkwell on some settings yet fail on another. Wecompare the state of the artCutWidth

method for known state combined with belief state in the experiments.

Remark that though we store the marginal belief state, the upper bound is taken w.r.t. to the true

ACTS objective.

Our approach: The key novelty of our software agent is that it brings together three key features:

the use of belief states, a Frank-Wolfe style gradient-based algorithm for efficient reasoning about the

structure of the graph, anduse of anupper-boundof the trueACTSobjective. Whereas algorithms for

active screening have typically used discrete reasoning such as Markov chain (see Related work) and

have not appealed to gradient-based approaches, it is the novel combination of this gradient-based
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approach with the use of belief states and upper bounds that is key in our work. Note that whereas

marginal belief states avoid the exponential storage requirement of exact belief states, they typically

underestimate the expected number of infected nodes as a result of the lost correlation information.

We rely on using an upper bound on true number of infected nodes reduces this effect— thus we face

the issue of determining a suitable upper bound. Our desiderata for determining this upper bound are

therefore: (i) encapsulate the observations and actions of past and future, (ii) provide a performance

guarantee compensating the information lost from marginal belief state, and (iii) be minimizable in

time polynomial in T, k and |V|.

We develop two different algorithms for action choice: Full-ActionChoice, which looks ahead

through all future actions and Fast-ActionChoice, a less computationally intensive variant that

considers only the current action, allowing it to exploit eigenvalue decomposition. We refer to REM-

EDY agentusingFull andFast-ActionChoiceasFull andFast-REMEDY.BothFull-REMEDY

and Fast-REMEDY, we change the action based on the observation in each round.

The key idea is to derive an alternative upper bound of the true ACTS objective. By establishing

this function, we avoid the pitfall of directly optimizing the problem of NP-hardness and reduce the

effect of often underestimated marginal belief state due to correlation information lost at the same

time. Our desiderata for the upper bound function are (1) encapsulates the observations and actions

of past and future (2) provides a theoretical guarantee of performance of any action choice (3) being

mathematically sound for efficient computing that scales atmost poly-nominal to t, k and |V|. It is not

naive to derive such upper bound since we need to encapsulates the observations and actions of past

and future while maintaining the function to be mathematically workable for efficient computing.

We start with some preliminary notation. To encapsulate the effect of active-screening toward our

objective function, we define the |V| × |V| diagonal action matrixRa(t) at time t asRa(t)v,v = 1 if

and only if v ∈ Ca(t), and 0 otherwise. For the current round, say t0, we observe the nodes that are

cured and need to decide the nodes to actively screen. We define the naturally cured matrix Rn(t0)
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as Rn(t0)v,v = 1 if and only if v ∈ Cn(t0), which encapsulates the knowledge we gain from natural

recovery in the current round. Let vector x(t) represent xv(t) for all v. To bound x(t) across all rounds

given the actions we take, let M′ = βA + I, where A is the adjacency matrix and I is the identity

matrix, define the upper bound transition matrix for the current round (t = t0) asMa(t0) = (I −

Ra(t0)− Rn(t0))M′. And for future rounds (t > t0), we define it asMa(t) = (I− Ra(t))Mwhere

M = βA+ (1− γ)I.

Theorem 2. Let the current time be t0. Ma is defined as above for t0 and t > t0. The ACTS objective

(Eq. 3.3) is bounded above by:

E[

T∑
t=t0

∑
v∈V
|sv(t) = I|] ≤ F = 1⊤

T∑
t=t0

t∏
τ=t0

Ma(τ)x(t0) (3.5)

where
t∏

τ=t0

Ma(τ) = Ma(t)Ma(t− 1)...Ma(t0). (3.6)

Proof. Given the marginal probability of node v and its neighbors, the exact conditional probability

of P [sv(t+ 1) = I|sv(t) = S] is bounded by:

P [sv(t+ 1) = I|sv(t) = S] ≤ 1− (1− β)
∑

u∈δ(v) xu .
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Since

P [sv(t+ 1) = S|sv(t) = I] = 1− P [sv(t+ 1) = S|sv(t) = S]

= 1−
|δ(v)|∑
m=0

pm(1− β)m

= 1−E[(1− β)m]

≤ 1− (1− β)E[m]

= 1− (1− β)
∑

u∈δ(v) xu

We further approximate the right hand side by a first order Taylor series expansion as β
∑

u∈δ(v) xu(t),

yielding

xv(t+ 1) = (1− xv(t))P [sv(t+ 1) = I|sv(t) = S]

+ xv(t)P [sv(t+ 1) = I|sv(t) = I]

= (1− xv(t))(1− (1− β)
∑

u∈δ(v) xu) + xv(t)(1− γ)

≤ (1− xv(t))β
∑
u∈δ(v)

xu(t) + xv(t)(1− γ).

Using a vector x(t) to represent xv(t) for all v, the above yields the following equation in vector form:

x(t+ 1) ≤ Mx(t)− diag(βAx(t))x(t), (3.7)

whereM = βA+(1−γ)I andA is the adjacencymatrix. We drop the negative termdiag(βAx(t))x(t)

and only considerMx(t) as the upper-bound.

While the above holds without intervention, we need the form of matrixMwith intervention and

knowledge of Cn(t0). Suppose a node v is naturally cured or actively screened at time t (v ∈ Cn(t) ∪
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Ca(t)), it is guaranteed to be in S state in t+ 1. Thus it does not accumulate any probability of being

infected from its neighbor in time t nor does it delivers any probability of being infected toward its

neighbors in time t+ 1. The former is equivalent to deleting the column v ofM at time t and the latter

is equivalent to deleting the row v ofM at time t + 1, which are (I − Ra(t))M andM(I − Ra(t))

respectively for t > t0. The two matrix could be combined while the matrix multiplication since

M(I − Ra(t))2M = M(I − Ra(t))M as (I − Ra(t)) is a 0-1 diagonal matrix. Similar equation

can be derived for Ma(t0) and encapsulate the knowledge of Cn(t) in Rc(t) as well. Thus we have

x(t + 1) ≤ Ma(t)x(t) for all t ≥ t0 and finally
∑T

t=t0 1
⊤x(t) ≤ 1⊤

∑T
t=t0
∏t

τ=t0 Ma(τ)x(t0) yields

to the result.

Given that the function F upper bounds our objective function, we next describe the method we

use to select the action matrix Ra(t) that minimizes F for every round. Distinct from previous litera-

ture, our objective takes into account the number of infected nodes at each round. We also have the

flexibility to change the action we take based on the observation we make in each round. Such flexi-

bility results a solution space of size
(|V|

k
)T
, making the bound challenging to optimize exactly, since it

is nonconvex. Hence, we apply a Frank-Wolfe style method Frank &Wolfe [1956] to the continuous

relaxation. The result is Full-ActionChoice (Alg. 2), a gradient-based algorithm that runs forL it-

erations, simultaneously updating the actions taken at each round. It begins with an arbitrary feasible

point and performs three steps per iteration: (i) computes the gradient of the objective at the current

point, (ii) optimizes the linear approximation to the objective over the true (not relaxed) feasible set,

and (iii) steps toward it. After L iterations, we greedily round the solution, selecting the k nodes that

have highest values. Each time we receive a new naturally cured set, we run Alg. 2 over all remaining

rounds and output the action for the current time.

Given the gradient and the naturally cured node set, an approximately optimal action for all times

in the continuous relaxation can be obtained through a projected gradient descent or a Frank-Wolfe
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Algorithm 2 Full-ActionChoice

Input: A, b(t0), β, γ, T, t0, k
Output: Ca(t0)

1: R0
a(t)← 0 ∀t

2: for l = 1...L do
3: for t = t0...T do
4: Δ(t)← GradientOracle(Rl−1

a )
5: R∗

a(t)← ProjectFeasible(Δ, k)
6: Rl

a(t)← (1− αl)Rl−1
a (t) + αlR∗

a(t)
7: end for
8: end for
9: Ca(t0)← argmaxkRL

a(t0)
10: return Ca(t0)

style algorithm, yielding Full-ActionChoice (Alg. 2).

We describe Alg. 2 in more detail. We initialize to an arbitrary feasible point in Ψ, the convex hull

of the binary valuedRa(t): we chooseR0
a(t) = 0 for t = t0 ∼ T in iteration l = 0 (line 1). We then

update the candidate solution for every time step simultaneously in each iteration l in three steps. In

each iteration, we need to caluclate the gradient of F w.r.t. the action choice, which is the Gradien-

tOracle of line 4. We relax the optimization to the continuous problem by allowing Ra(t)v,v to

take real values between 0 and 1, which can be interpreted as the probability of choosing node v. The

feasible solution space is the convex hull of the binary valued Ra(t). We denote this convex hull Ψ.

By taking the derivative of F, the gradient w.r.t. action at each time t is

∂F
∂Ra(t)

= −
T∑

t′=t+1

t+1∏
τ=t′

M⊤
a (τ)1x⊤(t0)

t0∏
τ=t−1

M⊤
a (τ), (3.8)

The above gradient is a matrix Δ(t), where the diagonal elements Δ(t)v,v represent the gradient w.r.t.

the choice of node v to actively screen at time t.
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We then minimize this linear approximation over the true feasible set. Since the objective is linear

and the only constraints are individual variable bounds and the budget constraint, we can optimize

exactly by greedily selecting the knodeswith largest Δ(t)v,v as our current best solutionR∗
a(t) in line 5.

We set the initial point Rl
a(t) of the next iteration in line 6, in which αl = 2/(l + 2) is the step size

of Frank-Wolfe algorithm. Since Ψ is convex and Rl
a(t) is the convex combination of two feasible

points, it is guaranteed that it will remain in the convex hull Ψ after the update. After L iterations, we

output our action in the current round by greedily selecting k nodes of the relaxedRL
a(t0) of the final

iteration, as line 9 shows.

The Full-REMEDY algorithm considers future actions simultaneously and has time complexity

ofO(T2|V|ω), where the exponentω arises from complexity ofmatrixmultiplication (best knownω is

around 2.37). The algorithmused scales well to the budget k. However, calculating such solutions for

a very large network—which is often the case for active screening—can be time consuming. To reduce

time complexity, we further simplify the upper-bound function by assuming that no actions are taken

in the future rounds and ignore their effect on the current decisionmaking in Fast-ActionChoice

(Alg. 3). By ignoring future actions, the actionmatrixMa(t) in Full-REMEDY is simplified to con-

stant M. The contribution of actively screening each node can be written as the following vector

form:

1⊤
∑T−t0−1

τ=0
Mτdiag(Mnx(t0)), (3.9)

whereMn = (I − Rn(t0))M′. Now, sinceM is the same for every future round,M can be decom-

posed as QΛQ⊤ ahead of time, where Q is a matrix comprised of the eigenvectors of M, and Λ a

diagonal matrix comprised of the eigenvalues along the diagonal. Such a matrix can be approximated

by calculating only the topm largest eigenvalues and their eigenvectors using the Lanczos algorithm

Lanczos [1950] that has a complexity of O(|E|) (assuming the large network is sparse), yielding the
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Algorithm 3 Fast-ActionChoice

Input: A, b(t0), β, γ, T, t0, k
Output: Ca(t0)

1: if t0 = 0 then
2: M← βA+ (1− γ)I
3: Qm,Λm ← Lanczos(M,m)
4: end if
5: Scores← 1⊤Qm(

∑T−t0−1
τ=0 Λτ

m)Q⊤
mdiag(Mnx(t0))

6: Ca(t)← k nodes with highest scores in vector Scores

Fast-ActionChoice shown in Alg. 3. The approximateM is given byQmΛmQ⊤
m , where these ma-

trices are computed in line 3. In line 5, the well-known result (QmΛmQ⊤
m)

τ = QmΛτ
mQ⊤

m is used to

approximateMτ. The time complexity of Fast-REMEDY isO(|V|2) assuming constantm.

3.3 Experiments

Weperform experiments comparing Fast- andFull-REMEDY tobaselines on a variety of real-world

datasets. Table 3.3 lists the networks and their properties. Most of the networks were collected in

human contact settings. The networks are carefully selected to have significant variation in size(|V|

ranging from 75 to 75879 nodes), average degrees (d), average shortest path length (ρL), assortativities

(ρD) and epidemic thresholds (1/λA), which is also known as spectral radius.

Setting. Unless explicitly stated otherwise, we assume the budget k allows for screening and treat-

ment of 20% of the total population |V| per round. All results are averages over 30 runs.

In practice, active screening is performed only after conducting initial surveys on the prevalence

and incidence of the disease. To simulate this, we run experiments in two stages.

Stage 1 (Survey Stage). This stage starts at t = 0 with 25% of individuals in I, selected uniformly

at random, and ends at t = 10. No active screening is done and the disease evolves naturally. The
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Table 3.2: Properties of the contact network data sets.

Network |V| 1
λ∗A

d ρL ρD

HospitalVanhems et al. [2013] 75 0.027 15.19 1.60 -0.18
India Banerjee et al. [2013] 202 0.095 3.43 3.11 0.02
Face-to-face Isella et al. [2011] 410 0.042 6.74 3.63 0.23
Flu Salathé et al. [2010] 788 0.003 150.12 1.62 0.05
Irvine Panzarasa et al. [2009] 1893 0.021 7.29 3.06 -0.18
EscortsRocha et al. [2010] 16730 0.032 2.33 4.20 -0.03

initial belief b(0) for all nodes is assumed to be [0.5, 0.5]⊤ since we have no prior information. Beliefs

are updated according to the belief update algorithm in theDisease model section. This belief update

requires knowledge of β and γ. There is a rich literature of how to estimate the disease parameters (β

and γ) in this stage and these methods have been tested on real-world scenarios Kirkeby et al. [2017],

Saad-Roy et al. [2016], Dong et al. [2012]. Here, we assume that such parameters are known.

Such parameters can vary from disease to disease. For example, the transmission rate of Pertussis

can be as high as 0.47 for certain age groups Hethcote [1997], and as low as 0.035 for Syphilis Saad-

Roy et al. [2016]. The cure rate also depends on how resourceful the target regions are. We initially

assume (β, γ) = (0.1, 0.1) and then evaluate a range of values.

Stage 2 (ACTS Stage). Here, we consider various screening algorithms. We perform active screening

from t = 11 to t = T = 20 to represent 5 years of time (each round is 6 months CDC [2011]).

Beliefs are updated according to the belief update scheme presented inDiseaseModel andBackground

section.

3.3.1 Metrics

We compare the outcomes of the following screening strategies compared to no intervention(None).

InNone, the evolution of the health states is based on disease dynamics only, with no active screen-
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Table 3.3: Improvement over None in terms of the number of reduced infections (the larger the better). All computa‐
tions are carried out with β = 0.1, γ = 0.1. Here, TLE signifies that the 24 hour limit was exceeded.

Network Number of reduced infections

Random Max-Degree Eigenvalue Max-Belief BeliefCutWidth Fast-REMEDY Full-REMEDY

HospitalVanhems et al. [2013] 144 150 151 150 147 156 160
India Banerjee et al. [2013] 605 470 420 636 754 890 901
Face-to-face Isella et al. [2011] 809 843 745 1057 1100 1297 1409
Flu Salathé et al. [2010] 1336 1421 1431 1438 1396 1443 1446
Irvine Panzarasa et al. [2009] 4630 5741 3692 4957 5623 6676 7821
EscortsRocha et al. [2010] 27400 30167 TLE 29493 TLE 46549 TLE
Epinion Leskovec & Krevl [2014] 187369 228174 TLE 207565 TLE 285280 TLE

ing for all T rounds. The improvement over None is reported as the number of fewer infections as

compared toNone. Thus, the larger this number the better the performance of the algorithm.

(1a) Random: Randomly select nodes for active screening.

(1b) MaxDegree: Successively choose nodes with the largest degree until the budget is reached.

This baseline uses only the graph structure information and thus does not update the belief

state.

(1c) Eigenvalue: Greedily choose nodes that reduce the largest eigenvalue of A the most until

the budget is reached.

(1d) MaxBelief: Choose nodes with the highest probability of being in the I state.

(1e) BeliefCutWidth: Amodified version of the CutWidthmethod for a problemwith known

infection state Scaman et al. [2016], Drakopoulos et al. [2014]. Since the original method

requires known infection state, wemodified it by using a sample from themarginal belief state

as a substitute of the true state. Note that due to the uncertainty of the network state, cure

latency of active screening and budget limit, this baseline does not guarantee to eradicate the

disease eventually.
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Unfortunately, the data sets from countries that have high infectious disease burden, for which

the algorithms may be applied on the ground in the future, have restrictive terms of use. For privacy

and security reasons, they cannot be shared externally. Instead, we present the result of testing these

algorithms on the following realistic contact networks collected from diverse sources.

(2a) HospitalVanhems et al. [2013]: A dense contact network collected in a university hospital to

study the path of disease spread.

(2b) India Banerjee et al. [2013]: A human contact network collected from a rural village in India

where active screening with limited budget may take place.

(2c) Face-to-face Isella et al. [2011]: A network describing face-to-face contact in which influenza

might spread through the close contact of individuals.

(2d) Flu Salathé et al. [2010]: A network of close proximity interactions in an American high

school. The network is highly dense (λA > 300) with small-world properties and a relatively

homogeneous degree distribution.

(2e) Irvine Panzarasa et al. [2009]: A friendship network collected from students in UC Irvine,

used to study rumor modeled as epidemic spread.

(2f) EscortRocha et al. [2010]: A sexual contact network between escorts and sex buyers in which

STDs may be spread collected over six years. The size falls in the population definitions of

urban area in most U.S. state that the health workers may deploy plans on.

(2g) Epinion Leskovec & Krevl [2014]: A trust network of a general consumer review site. This

dataset is adopted mainly to show the scalability of the algorithms.

The results are shown in Table 3.3. We begin with initial observations and provide a more detailed

analysis in the following section. In most cases, although the baselines behave differently for each
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data set, both versions of REMEDY make substantial improvements over them, and, as expected,

Full-REMEDY exhibits better performance than Fast-REMEDY. In Irvine, the largest network

for which all the algorithms are able to complete running within a 24-hour period, Fast-REMEDY

and Full-REMEDY outperformedMaxDegree, the next best competitor, by 16.29% and 36.23%

respectively. Fast-REMEDY also outperformed its next best competitor (MaxDegree) on Epin-

ion, the largest network, by 37.44%. We further examined the performance of REMEDY for a range

of β and γ values (see Fig. 3.5). FAST- and FULL-REMEDY continue to perform better than their

closest competitors.
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MaxBelief BeliefMaxCut Fast-REMEDY Full-REMEDY

Figure 3.4: The average number of infected nodes (y‐axis) vs. time (x‐axis) of the ACTS stage in the India network.

Specifically, Fig. 3.4 shows the average number of infected nodes in each round on the India net-

work. The values shown in Table 3.3 are the accumulation of the difference between None and each

algorithm. Full-REMEDY steadily outperforms the other algorithms in each round and keeps de-

creasing the infected node number and Fast-REMEDY follows slightly behind it. The other algo-

rithms, however, reach steady state and stop decreasing earlier.

Fig. 3.6 gives the running time of all the algorithms in different networks, sorted by size. Fast-

REMEDY is about two orders of magnitude faster compared to Full-REMEDY, and takes about

two hours on the largest network. All the algorithms that select a fixed set of nodes (Eigenvalue and
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Figure 3.5: Improvement over None (y‐axis) under different parameter settings for India network.

MaxDegree) in every round are timed for the first round only for fairness of comparison. OnEscort

andEpinion, Eigenvalue, BeliefMaxCut and Full-REMEDY exceed 24 hours of computation

time. It appears that only algorithms with complexity of O(|V|2) or less terminate within the time

limit.
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Figure 3.6: Computation time (y‐axis, in seconds) in different contact networks in logarithmic scale. Note that the Escort
and Epinion is significantly larger than the Irvine network and Fast‐REMEDY still terminates under 10 minutes and 2
hours respectively.
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3.3.2 Policy Analysis: Cure, Prevent, andMiss

To analyze the performance differences between algorithms, we introducemetrics that decompose the

effect of active screening. As Figure 3.7 shows, screening a node has one of the following three effects:

• Cure: screening a node that is currently in the I state causes that node to transition to the S

state.

• Prevent: screening a node in the S state prevents that node from entering the I state if it would

have otherwise.

• Miss: screening a node in the S state has no effect if that node would not have transitioned to

the I state.

We analyze theperformance of the algorithmsbymeasuringhowmanyof their active screening actions

result in each effect. Figure 3.8 shows the frequency of each effect for each algorithm, averaged over

the rounds in the ACTS stage.

Effect III : Miss

Round end Next round start

Effect I : Cure Effect II : Prevent

Not Actively Screened

Actively Screened

Round end Next round start

Not Actively Screened

Actively Screened

Round end Next round start

Not Actively Screened

Actively Screened

Susceptible Infected

Figure 3.7: Three possible effects of active screening.

Active screening actions that cure infected nodes or prevent susceptible nodes from becoming in-

fected will generally decrease the amount of infection in the network, whereas a miss has no effect.

Therefore, we expect that algorithms with higher combined cure and prevention rates should have
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Figure 3.8: Frequency of each active screening effect, averaged over the ACTS stage. (R.: Random; M.D.: MaxDegree;
E.:Eigenvalue; M.B.: MaxBelief; B.M.C.: BeliefMaxCut; Fasr‐R:Fast‐REMEDY; Full‐R.:Full‐REMEDY)

higher performance. This is indeed the case as the height of combined cure and prevention in Fig-

ure 3.8 is strongly correlated to the performance in Table 3.3 with only a few exceptions. The success

of Fast- and Full-REMEDY can be explained primarily along these lines. Due to space constraints,

a more detail analysis of the performance variation of each algorithm on each network based on their

properties and three active screening effects is provided in the supplemental material.

3.4 Deployment Considerations

In this section, we consider the effect of practical constraints on deployment of REMEDY in real-

world active screening situations. Our ultimate aim is to be able to use the algorithms in settings such

as active screening for tuberculosis in India.

Active screening implementations usually choose to screen whole districts where disease infections

are severe. Recent experimental attempts that involved screening every first degree contact of reported

patients (these are designated asNaturally Cured in this chapter)Holmes et al. [2017]. To address the

challenge of deploying this work as a next step in active screening implementations, it is essential to

take into account realistic barriers such as limited budget or missing information about the contact

structure.
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3.4.1 Impact of Budget

Determining the improvement an intervention can achieve with various budgets is critical when in-

forming health policy. We therefore study the improvement possible over different budget values for

two realistically modeled diseases: Influenza and Syphilis.
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Figure 3.9: Improvement over None (y‐axis) with specific disease parameters under different budget constraints (corre‐
sponding to 5%, 10%, 15% of total population).

Influenza. For Influenza, we use parameters estimated by previous literature through a continuous

survey administered in a student residence hall community Dong et al. [2012]. The transition rate is

estimated to be β = 0.024 and the self-cure rate is estimated to be γ = 0.3. We test the algorithms

on the Face-to-face network, since this network is used to study the dynamics of SIS-type epidemic

spread in its original paper Isella et al. [2011].

Fig. 3.9 (a) shows that both Fast-REMEDY and Full-REMEDY outperform other baselines un-

der realistic settings. The difference grows larger as the budget increases. According to Prakash et al.

[2012], such a network requires at least k/|V| ≥ βλA = 57% for random screening to fully erad-

icate the disease. However, the epidemic dies out at the end of the 20th round (in all runs) when

Full-REMEDY is deployed with a budget of only k/|V| = 15%.

Syphilis. We use the syphilis parameters derived by Saad-Roy et al. [2016]. The natural cure rate is

estimated to be γ = 0.01 and transmission rate β = 0.035. The network is the Escort network with
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Figure 3.10: The improvement over None for different percentage of edge information lost in the India network.

16730nodes, an STDcontact network. Because the network is large, we showonly the algorithms that

do not exceed running time due to time complexity, which are Random, MaxDegree, MaxBelief and

Fast-REMEDY. Fig. 3.9 (b) shows that Fast-REMEDY achieves significantly better results than all

other baselines. On average, it saves 1140, 2900, and 4600 people from becoming infected every six

months for 5%, 10% and 15% budgets, respectively.

3.4.2 Impact of Structure Uncertainty

In realistic settings, it is quite possible that the contact network is not known precisely. To simulate

this, we randomly remove edges from the graph and then provide the graph with missing edges as

input to the algorithms. All the algorithms make decisions based on this graph with missing edges

without knowing such fact while the disease spread happens along the true network with all edges.

Both version of REMEDY still significantly outperform other baselines even when the percentage

of edges randomly removed is as high as 80% (Fig. 3.10). In other words, it is able to outperform the

other implementations with only 20% of the contacts are known.
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3.5 Summary

This chapter presents the REMEDY agent for a novel active screening multiagent problem (ACTS)

that takes into account real world constraints such as uncertain health states and limited intervention

resources. Nopreviouswork has addressed the challenge of suchuncertainty raised from the emerging

application active screening of recurrent diseases. Active screening provides a powerful yet expensive

means to control disease spread in the public health domain that passive screening cannot achieve due

to its latency of cure. The agent is developed to assist our collaborator in India to decide who and

when health workers should invest their limited resources and improve the current practice approach.

We introduced two variant of algorithms the agent used, Full-REMEDY and Fast-REMEDY and

examined them on various real human contact networks and realistic disease parameters to show their

superior performance over any past approach.
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4
Active Screening Problem: Long-term

Planning Using Reinforcement Learning

4.1 Problem Formulation

In this chapter, we focus on a sequential decision making problem with a large time horizon, where

in each round (time step) we aim to optimally select which individuals in a social network to actively
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screen, so that the expected number of un-infected individuals over the time horizon is maximized.

4.1.1 Markov Decision Process Formulation

We start by formulating the active screening problem as a MDP. States: The hidden state of our

problem is the combinatorial health state of each individual node which is partially observable. To

represent the observation uncertainty in the current state, we follow chapter 3 by defining a belief

state bv for every node v, which can be interpreted as the approximate probabilities of each node being

infected.

Actions: Given the current state, the agent can choose any subset of nodes C ⊆ V, |C| ≤ k to

screen. The size of the action space is
(V\ot

k
)
at each round,whereot is the set of nodes that are passively

screened (so there is no advantage in actively screening them).

Rewards: The objective of the active screening problem is to maximize the accumulated number

of susceptible nodes. It is natural to consider the step wise reward signal as number of susceptible

nodes after the active screening, denoted as rt = Σv∈V1xvt=S. Since every infected individual has a

fixed probability γ of being observed by the agent, the step wise reward can be easily estimated.

Transitions: In belief of the health states, screened or observed nodes (v ∈ ot ∪ at) are updated

by their ground truth values and the remaining nodes are updated by inferring their posterior prob-

abilities. The key to state transition is the update of belief state, which is defined following chapter

2.

4.2 Methodology

Despite a well definedMDP, it is extremely challenging to solve it due to various reasons. One of the

main challenges is that both state space and action space we are facing are high-dimensional. For the

state space, even when the true state is available, there are a total of 2|V| possible states. When uncer-
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tainty is involved, the state values are continuous and therefore the number of states is infinitely large.

Furthermore, the states of individual nodes are not independent from each other, but are correlated

due to potential contacts from the network. For the action space, in each time period we need to

choose a combination (subset) of nodes from the entire network. For a reasonably large network, this

combinatorial action space grows exponentially with respect to the screening budget k, and becomes

intractable as k typically scales as the graph size grows. In the following we show how these challenges

are handled in our approach. A summary of notations related to the algorithm is included inTable 4.1.

Table 4.1: Notations used in chapter. Most of them are consist with chapter 2 except the newly introduced symbols.

Symbol Description
G contact network
S susceptible state
I infectious state
β transmission probability
γ cure probability
t time step
T time horizon
k screening budget for each time step
xt true state at time t (not available in testing)
at set of nodes actively screened (action at time t)
ot set of self-report nodes (observation at time t)
bt Belief state at time t
st state representation for Q function
rt step wise reward
Q Q function
α future discount factor
τ auxiliary coefficient for curriculum learning
r̄t Initial step wise reward for curriculum learning
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4.2.1 Basics of DQN

Due to the superior performance of RL algorithms in solving large scale MDPs Mnih et al. [2015],

Silver et al. [2016, 2017], we adopt RL as the basis of our solution. More specifically, the backbone of

our approach is a hierarchical RL algorithmbased onDQN. In this sub-section, we first introduce the

basics of RL and DQN, following which we then describe several ideas that further adapt DQN to

our formulated problem. We need to emphasize that we do not claim novelty in each of the adaptions,

but instead the novelty lies in the innovative way of combining the ideas into solving the particular

problem of interest.

RL is a learning framework where agents learn to perform actions in an environment so as to max-

imize a certain objective. The two underlying components of RL are the environment, which is de-

fined as the MDP in this chapter, and the agent, which represents the learning algorithm. At each

time step t, the agent takes an action based on its policy π(at|st), where st and at are respectively the

state and action of the MDP defined above. The agent then interacts with the environment with the

selected action and the environment returns a reward rt for that action as well as the state st+1 of the

next time step. Q-learningWatkins &Dayan [1992] is a value-based RL approach that is based on the

notion of Q-function (i.e., state-action value function). The Q-function measures the expectation of

accumulated rewards of an action at given state st. In the training phase of Q-learning, the policy usu-

ally exploits the action with the highest Q-value with a high probability 1 − ε, and explores random

actions with a small probability ε. The Q-function is typically estimated using the Bellman equa-

tion: Qi+1(st, at) = rt+ αmaxat+1 Qi(st+1, at+1), where i indicates the training iteration and α is the

discount factor. DQNMnih et al. [2013] improves Q-learning by representing it using deep neural

networks, together with other techniques like experience replay over a number of episodes (E), which

basically stores the historical training trajectories in a “replay buffer” and updates the Q-function by

minimizing the loss function (y − Q(s, a))2 with batch data from the replay buffer using gradient
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descent algorithms. Here y is the “target” which is estimated using the above Bellman equation (a

technique usually called Temporal Difference learning), and Q(s, a) is directly obtained by feeding s

and a to the Q-function.

4.2.2 GCN-based Function Approximator

With the deep neural networks based function approximator, DQN addresses the exponentially large

and continuous state space in our formulated MDP. However, one shortcoming of such a function

approximator is that it does not capture the intrinsic correlations between node features. Intuitively,

the infectious statuses of linked nodes in a social network are inter-dependent.

Graph convolutional neural networks (GCNs) Kipf &Welling [2017] embed the graph structure

itself into its network directly, and thus have superior performance on graph type inputs. Each layer

of GCN is given by zl+1 = σ(D− 1
2AD

1
2 zlW), in which zl is the input of l-th layer,D is the diagonal

node-degree matrix that normalizes the adjacencymatrixA,W is the trainable weight matrix and σ(·)

is the activation function. The convolutional layers in GCNs can facilitate the nature of message

passing and automatically aggregate the information from neighboring nodes. Such message passing

is similar to the infection spread in our epidemic model. The advantage of using GCNs is that we do

not need the hand-crafted graph features to represent the information about the graph structure such

as the node degrees or eigenvalue of adjacencymatrix Li et al. [2012]. Inspired by recent advances that

combine the power of RL and GCNs-based deep function approximators Khalil et al. [2017], Qiu

et al. [2019], Kamarthi et al. [2020], we use GCNs in this chapter to represent the Q-function.

Our adaptation of the GCNs takes the belief state as input. The action and observation can be

naturally encoded in the belief state as we can update the corresponding elements in the belief state

vector to their true state. Thus we do not need to encode them as additional features.

We thus combine the observation with the graph structure that is represented as the adjacency

matrixA to our state representation in a very structured way. The GCNs learn the underlying graph
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embedding and automatically form the representation and output theQ-value estimation for our RL

agent.

4.2.3 Sequence of Sequence Framework

In addition to the challenges that arise from the high-dimensional and graph-structured state space, as

described previously, another challenge is the combinatorial action space in each time step of screen-

ing. To address this challenge, we propose a hierarchical RL approach by re-formulating each time

step in the original MDP as a sub-sequence of decisions by itself. We call this framework sequence

of sequence (SOS). We refer to the original multi-rounds of active screening as time sequence. Cor-

respondingly, we refer to the sub-sequence problem of selecting k nodes in each round as the budget

sequence. In each of the budget sequence, we are solving a separate sequential decision making prob-

lem with a final rewardRt, a finite time horizon of k, and an action spaceV \ ot whose size is equal to

the network size.

The SOS framework allows for a tractable action space which can be used by an RL algorithm.

However, two additional issues arise in such conversion of the action space. First, although the states

and actions are well represented by GCNs, the algorithm does not take into account the remaining

budget at the budget sequence. In fact, the policies should be very different when there is plenty of

budget left versus little budget left. Intuitively, this is because the actions taken when there is more

budget left should consider more about its future effect, while actions taken when there is less budget

left tend tobemoremyopic. Therefore, a single-agent framework in the budget sequence, which treats

all states equally for different remaining budget, usually does not work well.

Second, by introducing the SOS framework, only the final step in the k budget-steps for the budget

sequence gets a reward signal. The sparseness of reward is known to slow the convergence ofRL Irpan

[2018]. Therefore distributing the rewardRt to each action in the budget sequence for proper reward

signaling is a non-trivial task.
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Figure 4.1: The overall flow of one round decision making in a budget sequence using our two‐level RL structure. The
top row depicts the environment, the second row is the workflow of the primary agent, and the third row is the work‐
flow of the k secondary agents. The primary agent starts by observing the initial state of the environment. It then up‐
dates the belief of the state. The belief state is passed down to the first secondary agent, which then evaluates the
value of each feasible node action using its own Q network and decides which node to select. The successive secondary
agents work sequentially until the k‐th secondary agent, i.e., when budget k is spent. The selected actions are collected
to get the final action set aIt which is uploaded to the primary agent. The primary agent then interacts with the environ‐
ment using this action and gets reward signals.

4.2.4 Primary and Secondary Agents

Inspired by hierarchical RL Dayan & Hinton [1993], Parr & Russell [1998], Sutton et al. [1999],

Dietterich [2000], we propose amulti-agent RL approachwith a two-level structure thatmanages the

time and budget sequences in a hierarchical way. The overall flowof the two-level structure is depicted

in Fig. 4.1. The idea is to capture the remaining budget information by having k secondary agents,

where each secondary agent maintains a policy for a different remaining budget value. The primary

agent, as shown inAlgorithm 4,manages the time period reward signal in a given time step of the time

sequence. The reward signal acts as the secondary agents’ total reward in the budget sequence and is

distributed over the k secondary agents. In the following, we use superscripts I and II to distinguish

concepts that correspond to the primary and secondary agents.
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Primary Agent In the time sequence, the primary agent works as follows. First, it receives the com-

binatorial action and the secondary agents’ memories that store the trajectories from the secondary

agents (line 6). Passing this action to the environment, it receives the observation and reward (line 7).

It then handles the new state representation of the next time step (lines 9 and 10). Finally, it updates

both primary and secondary agents’ memories (MI andMII) (lines 11 and 12). Each element of

MI andMII is basically a tuple of state, action, next state and rewards that will be used to train the

primary and secondary agents’ Q-functions. Note that the state of the secondary agents is slightly

different from that of the primary agent, which will be explained in the next paragraph. These mem-

ories are used to update the GCN-based Q-functions by minimizing the loss function (y−Q(s, a))2

through gradient descent (lines 16 and 17), where y is the target. At each time step t, the target of each

agent is given by:

yI =rIt + αQI(sIt+1, aIt+1), (4.1)

yIIi =rIIi + αQII
i+1(sIIi , aIIi+1) for i = 1, . . . , k− 1, (4.2)

yIIk =rIIk + αQI(sIt+1, aIt+1). (4.3)

Note that in lines 5 and8, thebelief state and reward are obtainedusing the idea of curriculum learning

that mitigates the reward sparseness issue for the secondary agents. We will elaborate this idea in the

next subsection.

Secondary Agents As for the budget sequence, instead of training a single agent and performing a

batch selection of nodes, we train k secondary agents to handle each budget sequentially. As described

above, the purpose of doing so is to differentiate secondary agents who know there is plenty of budget

left and those who know there is little budget left, so they could learn different policies. The state sIIi

of a secondary agent i is obtained by encoding the primary agent’s action (i.e., the set of nodes selected

so far) taken upon the state of the previous budget step. The action aIIi for each secondary agent i is to
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Algorithm 4 Primary Agent
1: for episodes = 1, ..., E do
2: Initialize and acquire initial belief (b0) and observation (o0)
3: sI0 ← Graph Embeding(A, b0)
4: for t ∈ 0, ...,T do
5: b̃t ← Curriculum Belief Transform(τ, bt)
6: aIt ,mII ← Secondary Agent(b̃t,QI)
7: ot+1, rIt ← Environment(aIt)
8: r̃It ← Curriculum Reward Transform(τ, rIt)
9: bt+1 ← Belief Update(bt, ot, aIt)
10: sIt+1 ← Graph Embeding(A, bt+1)
11: MI ←MI ∪

{
(sIt , aIt , r̃It , sIt+1)

}
12: MII ←MII ∪mII

13: end for
14: Decrease τ
15: end for
16: Fit QIwith regressor net usingMI

17: Fit QII
0 ...QII

k−1with regressor nets using correspondingMII

choose one node to add to the primary agent’s action set aI. aI is initialized as an empty set (in line 1)

andwill be updated by appending actions from each secondary agent. In the for loop that represents a

budget sequence (from line 3 to line 8), each secondary agent iwill select the action aIIi thatmaximizes

its Q-function QII
i (sIIi , aIIi ) and add it to the primary agent’s action set aI (lines 4 and 5). After that,

it receives the reward in line 6, which is obtained from the primary agent (as a proxy) in a temporal

difference learning manner. Next, the secondary agent will encode the primary agent’s action aI (i.e.,

the set of nodes selected so far) into its current state sIIi , which is used as next state sIIi+1 and pass this

information to the next secondary agent (line 7). Finally, it stores the above information as memory,

so it can be used later to update the Q-functions in Equations (4.1)- (4.3). For extremely large graphs,

we reduce thememory and computation time by assigning fewer than k secondary agents, where each

secondary agent is responsible for a portion of the budget instead. For example, for a budget of 20, if

we assign 10 secondary agents, each secondary agent needs to select 20/10 = 2 nodes at a time.
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Algorithm 5 Secondary Agents
1: aI,mII

1 ...mII
k ← ∅

2: sII0 ← Encoding(sI, aI)
3: for i ∈ 1, ..., k do
4: aIIi ← argmaxQII

i (sIIi , aIIi )
5: aI ← aI ∪ aIIi
6: rIIi ← QI(sI, aI)− QI(sI, aI \ aIIi )
7: sIIi+1 ← Encoding(sI, aI)
8: mII

i ← mII
i ∪

{
(sIIi , aIIi , rIIi , sIIi+1)

}
9: end for
10: return aI,mII

4.2.5 Curriculum Learning

As discussed earlier, amajor issuewith the two-level framework is the sparseness of rewards for the sec-

ondary agents. Inspired by curriculum learning Bengio et al. [2009], we address this by incrementally

increasing the complexity of the learning tasks for the secondary agents. This is called Curriculum

Transformation in lines 5 and 8 in Algorithm 4 and is described as the following equations:

b̃t =τxt + (1− τ)bt, (4.4)

r̃It =τr̄t + (1− τ)rIt , (4.5)

where b̃t and r̃It are respectively the belief state and reward of the primary agent (used to update the

target values for both the primary and secondary agents) after curriculum transformation. τ is an aux-

iliary coefficient that gradually decreases from 1 to 0 in the first few epochs of training. It adjusts task

difficulties from a relatively easier problem (τ = 1) to the original problem (τ = 0). At the early stage

of training (τ = 1), we warm up the learning by feeding the algorithmwith the true state information

xt (Eq. (4.4)). Moreover (Eq. (4.5)), we set the reward to be r̄t =
∑

v∈aIt 1bvt=S, which means the total

number of infected nodes in the action set aIt , instead of in the total number of susceptible nodes S.
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In this way, the algorithm learns to greedily cure nodes that are infected. As the training continues,

decreasing the auxiliary coefficient τ takes two effects. First, it gradually removes the true state infor-

mation. It is worth noting that the true state is only used in warming up the training, and is not used

during testing. Second, it shifts the reward from being constrained in the set of infected nodes to the

true reward, and explores potentially more optimal actions outside the set of infected nodes. When τ

is 0, the belief and reward become identical to the original problem (b̃t = bt and r̃It = rIt ).

An alternative is to train a single agent and encode the remaining budget information directly as

part of the state. However, we show via ablation study in figure 4.2 that this leads to sub-optimal

solution quality. To show the effectiveness of our two-level RL framework and the curriculum learn-

ing component, we conduct an ablation study on a sample network Face-to-face. Fig. 4.2 shows the

ablation study results on the Face-to-face network. We evaluate 4 settings: (i) Single agent without

curriculum learning (CL); (ii) Two-level (k agents) RL without CL; (iii) Single agent with CL and

(iv) Full (i.e., two-level RL with CL). Note that in (i) and (iii), the remaining budget is directly hard-

coded as part of the state information to the GCN. By comparing (i) with (iii) or comparing (ii) with

(iv), we can see that curriculum learning is critical in improving the solution quality. On the other

hand, by comparing (i) with (ii) or comparing (iii) with (iv), we can see that the two-level primary and

secondary agents framework, which trains a different secondary agent policy, is also improving the

solution quality by a large margin. On the contrary, hard-coding the remaining budget into the state

leads to sub-optimal solution quality.

4.3 Experiments

DatasetsWe evaluate the effectiveness of our proposed approach on different real-world contact net-

works used in chapter 2 for comparison.

Experimental setting In all experiments, we fix the passive screening rate γ to 0.05. Due the the
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Figure 4.2: Ablation study run on the Face‐to‐face network. The x‐axis is the percentage of improvement over no‐
intervention. The y‐axis denotes different variants of our approach.

high diversity of the networks, it is difficult to find one fixed transmission rate β that is suitable for

every network. A fixed transmission rate is either too high for the dense networks so that the whole

network will become infected no matter what policy is deployed, or too low for the sparse networks

so that the disease will be eradicated without any intervention. We thus adjust the transmission rate

according to the density of the network. Specifically, we adjust β based on the spectral radius 1/λ∗A,

also known as the epidemic threshold, where λ∗A is the largest eigenvalue of the network adjacency

matrix. If there are no additional interventions, the disease will not be eradicated eventually if and

only if β > γ/λ∗A Wang et al. [2003]. We set β = 10γ/λ∗A, which is 10 times the value corresponding

to the epidemic threshold. We further set k = 0.1|V| for the active screening budget in each time

period. Finally, we set the total time horizon to T = 100. All the results presented are averaged over

30 trials. For our RL approach, we set the future discount factor α to 0.98, exploration probability

in the epsilon greedy approach is 0.1 and the learning rate is 0.005. We trained the RL agents for 100

episodes for 100 iterations of refits. The memory capacity of the relay buffer is set to 5000 tuples for
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Table 4.2: Average improvement of different algorithms. Full‐REMEDY does not scale to T = 100. Thus its results are
not included. The numbers in the brackets are improvements over the best alternative Fast‐REMEDY.

Network Reduction in infections compared with no intervention

Eigenvalue Max-Degree Random Fast-REMEDY RL

Hospital 1019±99 1015±131 2344±136 3837±340 4196±416 (9.4%)
India 2668±258 3115±292 6388±259 10033±518 11270±501 (12.3%)
Face-to-face 4225±211 4705±219 8948±173 9919±499 13283±301 (33.9%)
Flu 7706±190 7725±203 9636±163 10298±460 11743±503 (14.0%)
Irvine 48490±298 49163±378 42277±270 53159±673 65128±781 (22.5%)

each agent. We used the sigmoid activation function. There are four layers of sizes 8,16,8 and 32. For

all graphs except the largest one, the training finishes within 3 hours on a laptop with 6 cores, 2.60

GHz intel CPU, and 16 GB RAM. For the largest graph, Irvine network, it takes about one day to

finish on the same laptop and is significantly shortened after using an HPC.

Baselines We simply call our approach RL. The baselines we are testing against are (i) Eigenvalue

(greedily choosing nodes that decrease the largest eigenvalue of the remaining sub-graph after removal

until the budget is exhausted), (ii)MaxDegree (choosing k nodes with the largest degrees), (iii) Ran-

dom (randomly selecting nodes), (iv) Full-REMEDY (the algorithm in chapter 2 that is un-scalable

to large time horizons) and (v) Fast-REMEDY (the scalable version of Full-REMEDY that does not

account for the future effect of actions).

4.3.1 Solution Quality

Table 4.2 shows the increase in average reward compared with no intervention. We can see that our

approach outperforms the state-of-art (i.e., Fast-REMEDY ) by a margin of 9 − 33%. There are a

few observations worth noting. First, we are implementing the same baselines on the same datasets

with significantly larger time horizon compared with chapter 2. The ranking of these baselines is

consistent with chapter 2 that are run over a shorter time horizon of 10. Furthermore, results on

Hospital and Flu show a more significant difference as we adjust the transmission rate according to
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Figure 4.3: The performance of each algorithm for different time horizons in the Face‐to‐face network. The x‐axis is the
time horizon and the y‐axis is the improvement of solution quality over no intervention.

the graph density. Second,Eigenvalue andMaxDegree baselines perform similarly to each otherwhen

we increase the time horizon where as in chapter 2,MaxDegree clearly outperforms Eigenvaluewhen

the time horizon is short. This is expected as the Eigenvalue baseline is aimed for long term disease

eradication by increasing the epidemic threshold and thus preforms better in the long term. Finally, in

Face-to-face and Irvine networks, our approach performs significantly better compared with the best

baselineFast-REMEDY. Interestingly, these are also thenetworkswhereFull-REMEDY outperforms

Fast-REMEDY in chapter 2. In these networks, the algorithms can benefit more by looking ahead

compared with other networks.

4.3.2 Scalability Against TimeHorizon

To study how well our approach scales against planning time horizon compared with baselines, we

conduct experiments on various time horizons ranging from 10 − 100. Figure 4.3 shows the perfor-

mance on the face-to-face network for each algorithm on the y-axis when varying the time horizon
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on the x-axis. Full-REMEDY does not scale over time horizons longer than 30 even on a high per-

formance computer and our approach is in par or better with its performance in these short time

horizons. We pick face-to-face network as an example and similar trends can be observed for all the

networks. Particularly, in the largest network Irvine, our approach scales 10 times of that in Full-

REMEDY, meanwhile with better solution quality compared with Fast-REMEDY.

0%

50%

250%

200%

150%

100%

Eigenvalue MaxDegree Random Fast‐REMEDY RL

0% 50% 60% 70% 80% 90%

Figure 4.4: The performance of each baseline for different edge removal fractions. The x‐axis indicates the improvement
over no intervention and y‐axis indicates the percentage of removed edges.

4.3.3 Robustness Against Structure Uncertainty

Although we assume perfect knowledge of graph structure (sans the infectious state of the individu-

als), one of the main obstacles in implementing active screening in practice is the lack of this perfect

knowledge. To evaluate how robust different methods are against structural properties, we design

and run the methods on twomodels for structural uncertainty. In the first one, we assume a constant

fraction of the edges are unobserved where this fraction is a parameter. In the second one, we assume

all the edges adjacent to a constant fraction of nodes in the graph are unobserved. In both of these
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Figure 4.5: The performance of each baseline for different node removal fractions. The x‐axis indicates the improvement
over no intervention and y‐axis indicates the percentage of nodes whose adjacent edges are removed.

models, we train our RL policy on the observed network andmeasure the performance of the learned

policy on the actual network. We call these models edge and node removal, respectively.

We point out that in the first model some of the properties of the original graph like the nodes with

maximum degree are preserved DuBois et al. [2012]. In the second model, many of the properties of

the original network like centrality are likely to be changed Smith &Moody [2013].

Although our approach is the only learning algorithm that can benefit from different training sub-

graphs, to make fair comparison, we train our RL policy on a single sub-graph. This is corresponding

to the real world scenario where partial contact information is missing without being noticed. The

results are summarized inFigures 4.4 and4.5, respectively. Although theperformance of our approach

decays as the uncertainty increases, it still outperforms all the other baselines. Again, we show the

result of face-to-face network as an example due to space limit. The results of the other networks have

similar trends and can be found in figure 4.8 to figure 4.11.
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Figure 4.6: The node picking frequency distribution for each algorithm, sorted from high to low.

4.3.4 Policy Analysis

To gain insight on the patterns of how different approaches select nodes, we study the frequency in

which each of the nodes is selected. The results are summarized in Figure 4.6 for the Face-to-face

network. Similarly, results for other networks are in figure 4.9. Each point in x-axis represents a node,

sorted by the frequency of being picked by the corresponding algorithm. The y-axis represents the

frequency a certainnode is pickedby the algorithm. We sort all the algorithm’s nodepicking frequency

in order to show their distribution. In this figure,Random is the fairest algorithm as it picks each node

with equal frequency,whereasMaxDegree andEigenvalue always pick the same set of nodes aswehave

a static network. Fast-REMEDY selects the most frequently picked nodes half of the times while

almost never picks 40% of the nodes. Our RL approach does not pick the structurally important

nodes as often as Fast-REMEDY does, which is shown in figure 4.7. It is less structure dependent

and tends to select a larger variety of nodes. By taking future actions into account, it depends more

on the observation information and has a surprising side effect that outputs a fairer policy that gives
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more nodes chances to be screened.
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Figure 4.7: Average degree & betweeness of the nodes picked.

4.4 Summary

This chapter makes the first attempt at addressing the multi-round active screening problem using

reinforcement learning. I formulate the problem as a MDP with high dimensional state and action

spaces, which cannot be efficiently solved using classical RL algorithms like DQN. I then design sev-

eral innovative adaptations to vanilla DQN, including GCN-based value function approximator that

exploits the correlations of nodes, a primary-secondary agents framework that decomposes the combi-

natorial action selection in each time period into a sub-sequence of node selection, and a curriculum

learning component that addresses the sparseness of reward for the secondary agents. Empirical results

show that in terms of solution quality, the RL approach outperforms Fast-REMEDY by a margin of

9% − 33%, and works better than baselines even with network structure uncertainty. In the largest

network we experimented which 1899 nodes, our approach is able to scale up to a planning horizon

10 times that in state-of-the-art approach Full-REMEDY. Interestingly, policy analysis results show

that compared with most baselines (except for Random), the RL approach is fairer in the sense that

it tends to spread the screening across different nodes. For future work, we plan to incorporate un-
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certainty on the graph structure in training our RL algorithms and further improve the robustness of

this approach.
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(d) Irvine

Figure 4.8: Performance under node information removal.
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Figure 4.9: Node picking frequency.
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Figure 4.10: Performance under edge information removal.
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Figure 4.11: Performance under node information removal.
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5
Mobile Health Intervention

5.1 Problem Formulation

This chapter discusses the network mobile health intervention problem modeled as RMAB as an-

other example of sequential network planning problems. However, unlike the active screening prob-

lem that only has a network effect for state transition, in this problem, we deal with interventions

that have network effects. Even with fewer stochastic issues than the active screening problem, such
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a network effect makes the planning process of the mobile health intervention problem dramatically

more complicated. I prove that the strong coupling between nodes makes the popular index policies

not applicable and provides an alternative solution. We first introduce the general RMAB problems

and their approaches.

5.1.1 General RMABs

. RMABs are a generalization of the well-studied multi-armed bandit model with many real-world

applications. There are m arms V = {1, 2, . . . ,m}; each arm v ∈ V can be in one of several states

sv,t ∈ S at any time step t ∈ N. At any time step, the decision maker can pull up to k arms. Each

chosen arm v transitions in aMarkovian fashion according to a transitionmatrixPa and yields a reward

rv(sv,t) ≥ 0 that depends only on the state of the arm v at time t. In the restless setting, arms that are

not chosen also transition, according to a differentmatrixPp. The elements pas,s′ (p
p
s,s′) of the transition

matrix capture the probability of transitioning from state s to s′ when the arm is played (not played).

Let Va,t denote the set of arms being played at time step t. The total reward of time step t can be

expressed as Rt =
∑

v∈Va,t
rv,t(sv,t). Each arm can be described as a two-action Markov Decision

Process (MDP) (S, {0, 1},R,P). An action of 1 denotes that the arm is played and 0 that the arm

is not played. Given themMDPs and their initial states, the goal of this work is to find a policy for

playing a sequence of k arms per round to maximize the average rewardR = limT→∞
1
T
∑T

t=0 Rt.*

5.1.2 Networked RMABs for mobile interventions

. We consider a setting where each arm v corresponds to a location which has a population nv ∈ N.

The state sv ∈ S = {0, . . . , nv} of a location is the number of healthy individuals. Individuals can

either be in a healthy or, more generally, “good” state G or in a “bad” state B. Pulling an arm means

visiting a location with a mobile intervention service, thereby exposing individuals at the location to

*Another frequently considered reward criterion is the discounted reward
∑∞

t=0 β
tRt with 0 ≤ β < 1.
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the intervention. We thus consider the transitionmatrices for individuals, depending onwhether they

receive an intervention (Pa
v ) or not (P

p
v):

Pa
v =

G B G 1− pav,GB pav,GB

B pav,BG 1− pav,BG

,Pp
v =

G B G 1− ppv,GB ppv,GB

B ppv,BG 1− ppv,BG

. (5.1)

The transition probabilities are the same for all individuals with the same home location. Below,

we will consider travel by individuals, whichmay result in them being exposed to the intervention at a

different location. We stress that even in that case, an individual with home location v will transition

according to thematrixPv. This is because the characteristics of one’s neighborhood are an important

factor for one’s health Ross &Mirowsky [2001], keeping in mind the intended application domains

of the model. We assume that the transition probabilities and the initial states are known, but the

transitions are not observed. This is because while population-level health data can be monitored,

this rarely happens in real time. We omit subscripts when they are clear from the context.

In order to account for network effects from commuting (or more general travelling) behavior, we

define aprobability distribution for individuals over locations. Letwu,v ∈ [0, 1]denote theprobability

that an individual with home location v is actually present in location u at any given moment (or

that an individual from location v receives the intervention if location u is visited; we assume that

individuals are sampleduniformly). Individuals canonlybe inone location at any given time, implying

that
∑

u∈V wu,v = 1. ThematrixW ∈ [0, 1]m×m with elementswu,v is the weighted adjacencymatrix

of the travelling network. Introducing the travelling network has two effects:

1. Not all individuals from location v are exposed to an intervention that visits v. In expectation,

onlynvwv,v individuals from location vwill receive the intervention (transition according toPav )
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due to a visit at location v. This property is an important extension of the recharging bandits

model Kleinberg& Immorlica [2018]; in that model, it is assumed that each intervention fully

“resets” the arm, i.e., puts all individuals into the good state.

2. Individuals from other locations receive the intervention when v is visited. In expectation,∑
u∈V\{v} nuwv,u individuals from other locations receive the intervention at v.

The total number of individuals reached in any location thus depends on whether other locations

are visited, and we define the vector at ∈ {0, 1}m, with at most k elements equal to 1, to represent all

actions taken in round t. The vector of expected fractions of the populations at each location v reached

by an action vector a is given by ŵ(a) = W · a. Letting ŵv denote the v-th entry of ŵ, we also define

theweighted average transition probabilities for a location v as P̂v(a) = ŵv(at) ·Pa
v+(1− ŵv(at)) ·P

p
v.

Further let sv,t = [sv,t, nv−sv,t]be the total number of individuals in the good andbad state in location

v at time t. By conditioning on the current state sv,t and actions, we are able to obtain a closed form

expression for the expected state in the next time step:

E(sv,t+1 | sv,t, at, . . . , a0) =E(sv,t+1 | sv,t, at)

=ŵvsv,tPa
v + (1− ŵv)sv,tP

p
v

=sv,tP̂v(at).

However, the current state is unknown according to our assumptions. Hencewe seek an expression

for the expected future state that does not require knowledge of the current state. Consider the ex-

pected state at time t conditional only on the action history: Et(sv,t) := E(sv,t | at−1, . . . , a0). Using
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the law of total expectation, we obtain

Et+1(sv,t+1) =E(sv,t+1 | at, . . . , a0)

=E(E(sv,t+1 | sv,t, at) | at, . . . , a0)

=E(sv,tP̂v(at) | at, . . . , a0)

=E(sv,t | at−1, . . . , a0)P̂v(at),

since sv,t does not depend on at (only on previous actions). We thus obtain a recurrence relation for

the expected state:

Et+1(sv,t+1) = Et(sv,t)P̂v(at). (5.2)

Eq. (5.2) allows us to compute the future expected state using only the current expectation and

action vector. In order to fully describe the probability distributionof a single district, onewouldneed(m
k
)
matrices of size (nv + 1) × (nv + 1). Eq. (5.2) allows us to substantially reduce the complexity

of the problem by focusing on the expected state. We write Et(sv,t) = bv,t and use the recursion

bv,t+1 = bv,tP̂v(at), where the initial state bv,0 = sv,0 is known according to our assumptions.

The goal of the planner is to maximize the intervention benefit, taken as the sum of curing effects

(curev = pav,BG − ppv,BG) and prevention effects (preventionv = ppv,GB − pav,GB) for those individuals

who received the intervention (curevŵvbv,t,2 + preventionvŵvbv,t,1, where bv,t,1 and bv,t,2 are the first

and second element of bv,t, which are the expected total number of individuals in the good and bad

state, respectively.), summed over locations and averaged over time steps. This criterion is chosen to

align with the goals of applications such as MHCs which are to maximize the reach of a campaign

Auerbach [2016], and to avoid underserving communities with a high probability of returning to the

bad state, as could happen if only the total number of people in the good state (Rt =
∑

v∈V sv,t)
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were considered. Combining the curing and prevention effects, the reward per time step is given by:

Rt(at) =
∑

v∈V ŵv(at)sv,t(Pa
v − Pp

v) · [1, 0]⊤. As discussed above, we focus on the expected reward

and obtain:

R̂t := Et(Rt(at)) =
∑
v∈V

ŵv(at)bv,t(Pa
v − Pp

v) · [1, 0]⊤. (5.3)

We furthermake three assumptions that are natural inmany relevant application domains; we com-

bine assumptions made in prior work Mate et al. [2020] (assumptions (1) and (2)) with input from

health experts (assumption (3)).

1. The intervention is never bad for the individuals: Health care interventions can help pre-

vent disease or diagnose it early, reduce risk factors, and manage complications. Providing

opportunities for increased access to quality services and interventions can reduce health dis-

parities as well. Interventions provided via MHCs rarely result in negative impacts toward

populations with little or no access to screening opportunities.

2. The individuals aremore likely to stay in the good state than to change from the bad state

to good: Inmost applications,moving to the good state (curing of a disease or access to food) is

unlikely to happen spontaneously. Take oral health for example, Knowledge and implementa-

tion of proper preventivemeasures, such as brushing, flossing, getting dental cleanings, getting

cavities filled timely, etc. is easier to do and less costly for both individual and the health care

system, than treating or reversing diseases of the mouth once they have occurred.

3. The curing effect of the intervention is larger then the prevention effect: MHCs mostly

serve otherwise under-served communities. Those who attendMHCs are typically concerned

about their health andmay already be exhibiting symptoms of underlying disease. Thus, iden-

tification of individuals with symptoms or with a disease may make interventions providing
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services to reverse or manage disease more beneficial than interventions providing education

on preventive measures more beneficial in these communities. This makes curing interven-

tions generally more useful/desired than preventivemeasures. In food pantry applications, the

prevention effect is typically small.

These assumptions are formalized in Eq. (5.4), for all v ∈ V:

ppv,GB ≥ pav,GB and pav,BG ≥ ppv,BG (5.4a)

1− ppv,GB > ppv,BG and 1− pav,GB > pav,BG (5.4b)

pav,BG − ppv,BG > ppv,GB − pav,GB (5.4c)

Next, we show that these assumptions entail two properties that will prove useful later in constructing

effective algorithms for the networkedRMABproblem. Specifically, consider a district v, and suppose

that there are no interventions in adjacent districts. We can then define the reward gain of visiting v

after τv time steps as Hupper
v (τv, ŵv) = (ppv,GB − pav,GB)ŵv̂sv,τv + (pav,BG − ppv,BG)ŵv(nav,τv − ŝv,τv)

where ŝv,τv is the number of individuals in the good state at the time when the arm pull happens. This

function has the following properties:

Theorem 3. Under the assumptions in Eq. (5.4), and assuming no interventions in neighboring dis-

tricts, Hu
v is a monotone increasing concave function with respect to time τv elapsed since the last pull.

Proof. Weprove that the reward functionof visiting a single location is amonotone increasing concave

function with respect the the time elapsed since the arm was last pulled, assuming the initial state is

better than the passive steady state ( s0n >
ppBG

ppGB+ppBG
) and no neighboring arms are pulled. We proceed by

proving: (1) Given pav,GB < ppv,GB and p
a
v,BG > ppv,BG ∀v ∈ V (intervention assumption 1), we always

have p̂v,BG
p̂v,GB+p̂v,BG

>
ppv,BG

ppv,GB+ppv,BG
∀v ∈ V. (2) Given st

n ≥
ppBG

ppGB+ppBG
and p̂BG

p̂GB+p̂BG
>

ppBG
ppGB+ppBG

, pulling the
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arm will always result in st+1
n ≥

ppBG
ppGB+ppBG

. (3) For any initial state ŝ0
n ≥

ppBG
ppGB+ppBG

, (1− ppGB − ppBG) > 0

and p̂BG+p̂GB−p
p
BG−p

p
GB > 0 (intervention assumption 2 and 3), the reward function is amonotone

increasing concave function with respect to the time elapsed since the last pull.

We start by proving the first assertion: given pav,GB < ppv,GB and p
a
v,BG > ppv,BG, by our assumptions,

we know that p̂v,GB = ŵvpav,GB + (1− ŵv)p
p
v,GB for some 0 ≤ ŵv ≤ 1 for any action taken. Thus we

have p̂v,GB < ppv,GB and p̂v,BG > ppv,BG. By rearranging the inequalities by

p̂v,BG · p
p
v,GB + p̂v,BG · p

p
v,BG > ppv,BG · p̂v,GB + p̂v,BG · p

p
v,BG,

we obtain the conclusion (1):

p̂v,BG
p̂v,GB + p̂v,BG

>
ppv,BG

ppv,GB + ppv,BG
.

Now, given st
n , the state after pulling the arm can be calculated as:

st+1

n
= (1− p̂GB)

st
n
+ p̂BG(1−

st
n
).

If st
n ≤

p̂BG
p̂GB+p̂BG

, we have:

(p̂GB + p̂BG + 1− 1)
st
n
≤ p̂BG

We can move some of the terms from the left to the right and obtain:

st
n
≤ (1− p̂GB)

st
n
+ p̂BG(1−

st
n
) =

st+1

n
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Combining this with the condition st
n ≥

ppBG
ppGB+ppBG

, we get:

ppBG
ppGB + ppGB

≤ st
n
≤ st+1

n
.

If st
n >

p̂BG
p̂GB+p̂BG

, using (1− p̂GB − p̂BG) > 0 (see intervention assumption 2) we have:

st+1

n
= (1− p̂GB)

st
n
+ p̂BG(1−

st
n
)

> (1− p̂GB)
p̂BG

p̂GB + p̂BG
+ p̂BG(1−

p̂BG
p̂GB + p̂BG

)

= p̂BG + (1− p̂BG − p̂GB)
p̂BG

p̂GB + p̂BG

= (p̂BG + p̂GB)
p̂BG

p̂GB + p̂BG
+ (1− p̂BG − p̂GB)

p̂BG
p̂GB + p̂BG

=
p̂BG

p̂GB + p̂BG

>
ppBG

ppGB + ppBG
,

which proves (2).

Finally, let ŝτ
n denote the fraction of individuals in the good state τ steps after an arm pull, and let

ŝ0
n be its initial state. The reward function H(τ, ŵ), where τ is the time since the last arm pull and ŵ

the share of the population exposed to an intervention, can be calculated as:

H(τ, ŵ) =(ppGB − p̂GB)nŵ
ŝτ
n
+ (p̂BG − ppBG)nŵ(1−

ŝτ
n
)

= (p̂BG − ppBG)ŵn− (p̂BG + p̂GB − ppBG − ppGB)ŵn
ŝτ
n

The only variable here is ŝτ
n with a negative sign and positive coefficient (p̂BG + p̂GB − ppBG − ppGB)ŵn

(from intervention assumption 3). It is sufficient to prove that ŝτ
n is a monotone decreasing convex
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function. Given ŝ0
n , using an eigendecomposition of the matrix Pp, it can be written as:

ŝτ
n
=

ppBG
ppGB + ppBG

+ (1− ppBG − ppGB)
τ ·

(
ŝ0
n
−

ppBG
ppGB + ppBG

)
,

which is a monotone decreasing convex function given the intervention assumption 2 (which states

that (1− ppBG − ppGB) > 0). This proves the third assertion, and the theorem follows.

Theorem 4. Under the assumptions in Eq. (5.4), and assuming no interventions in neighboring dis-

tricts, Hu
v is a monotone increasing concave function with respect to the expected population share ŵv ex-

posed to the intervention.

Proof. Consider two intervention schedules π1 and π2, whose respective intervention shares are given

by (ŵ1(π1), ŵ2(π1), . . . , ŵT(π1)) and (ŵ1(π2), ŵ2(π2), . . . , ŵT(π2)). Given ŵ1(π1) − ŵ1(π2) =

Δw > 0 and ŵt(π1) = ŵt(π2) for all t > 0, we want to prove that π1 always results in higher reward,

assuming the same initial state of the node s0
n . The total reward gain from one location can be written

as

R(π) =
T∑

t=0
(ppGB − p̂GB(π))st(π) + (p̂BG(π)− ppBG)(n− st(π)).

The difference between the rewards of the two policies can thus be calculated as:

R(π1)− R(π2) = Δw
(
(paBG − paGB)− (ppBG − ppGB)

)
s0

+
T∑
t=1

(
(p̂BG(π)− p̂GB(π))− (ppBG − ppGB)

)
Δst;

here, Δst denotes the difference between the states induced by the two policies at time t. Let Δb0 =

[Δws0,−Δws0]⊤, The Δst in each time step can be calculated as:

Δst = [1, 0]
t−1∏
τ=0

P̂Δb0.
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Observe that b0 happens to be an eigenvector of any P̂with corresponding eigenvalue (1− p̂GB(π)−

p̂BG(π)). We have

Δst =
t−1∏
τ=0

(1− p̂GB(π)− p̂BG(π))Δws0.

From intervention assumption 3, we can infer that (1− ppGB− ppBG) > (1− p̂GB(π)− p̂BG(π)). From

intervention assumption 1, we can also infer that paGB − paBG > p̂GB(π) − p̂BG(π) at any time step.

Combining the above, we can infer that

R(π1)− R(π2) = Δw
(
(paBG − paGB)− (ppBG − ppGB)

)
s0

−
T∑
t=1

(
(p̂BG(π) + p̂GB(π))− (ppBG + ppGB)

)
Δst

> Δws0
[
(paBG − paGB)− (ppBG − ppGB)

−
∞∑
t=1

(
(p̂BG(π) + p̂GB(π))− (ppBG + ppGB)

)
· (1− ppGB − ppBG)

t
]

> Δws0
[
(paBG − paGB)− (ppBG − ppGB)

−
(paBG − paGB)− (ppBG − ppGB)

ppGB + ppGB

]
= Δws0

(
(paBG − paGB)− (ppBG − ppGB)

)
·

(
1− 1

ppGB + ppGB

)

> 0.

Thus, we have proved the theorem.

Theorem 3 tells us that adding an extra pull to the intervention schedule of an arm will always im-

prove the reward. From Theorem 4, we know that it is always preferable to intervene on a larger pro-

portion of the population of an arm. These results suggest that the periodic policy is still a reasonable

choice under the networked setting. The periodic policy in the non-networked setting is motivated
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by the following consideration: suppose that instead of pulling exactly k arms, we require only that

on average, k arms are pulled in each round. In this relaxed problem, a periodic policy with suitable

periods is optimal if the reward function is concave Kleinberg & Immorlica [2018].† Theorems 3 and

4 tell us that the reward function for the networked problem is still concave.

5.1.3 WhyModeling as Network RMAB Problem

Restlessness

This section shows that restlessness is essential for modeling the mobile clinic scheduling problem.

One may argue that if the mobile health clinic could treat only a small portion of people in one loca-

tion, its effect on the state of the location is negligible. Thus such a problem can be modeled using a

simpler multi-arm bandit framework with no state transition. The optimal policy for such a simple

model would be to find locations with the highest reward and repeatedly send vans there.

However, even if the fraction of people that mobile vans treat is small compared to the whole pop-

ulation, it may not be small compared to the number of people requiring mobile health van services.

We show this by analyzing the data from Family Van and previous literature.

We looked into the data provided by Family Van and estimated the total population pool in need

of the MHC service. We consider the log of the patient visiting survey collected from July 2019 to

December 2020. There are 1, 897 different patients registered with different IDs across 8, 835 visit

records. If we assume people in the population pool who demand MHC service visit the van uni-

formly at random, we can use the inverse coupon collector’s problem formula to estimate the size of

the total population that would come to the mobile clinic. Imagine that we have a bag with multiple

unique balls with an unknown number, representing the total population that would come to the

van we want to estimate. We draw from the bag 8, 835 times with replacement and find out there

†The constrained version is then a more difficult problem that involves solving a pinwheel problem, which
is NP-hard.
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are a total of 1, 897 types of unique balls in these 8, 835 samples. Based on the result from Dawkins

[1991], we can calculate the total number of balls is most likely 1, 951. Note that this is the size of the

population pool that demands service in the locations visited by the Family Van during a year (listed

in table 5.1) instead of the entire area as in the previous example.

A similar result can be calculated from Stephanie et al. [2017] of children living with asthma in

underserved populations. The sample size and unique IDs are 88, 865 and 15, 986 respectively on

4 mobile clinics in Southern California from November 1995 to December 2010. Again, using the

formula of inverse coupon collector’s problem,we estimate the size of the populationpool demanding

service is about 16, 048.

Although the data from previous examples are collected over a long period, it will not take long for

themobile health clinic to affect a large fractionof the target population. Basedon a study inNorthern

FinlandPohjosenperä et al. [2019], only 6, 622out of a population of 408, 752 are categorized in need

of MHC service. These people live in multiple locations near the route of the 15 vans. From the data

byMalone et al. [2020],mobile clinics provide amediannumber of 3, 491 visits annually. Ifwe assume

the total workday to be 240 days per year, we can estimate that each van serves about 3491/240 ≈ 15

people each day when they are in service. We again assume people visit the van uniformly at random

and that each van serves about the same number of people. Thus each van has about 6622/15 ≈ 441

people needing its service. Eachday, about 15 patientswill visit the vanuniformly at random. Based on

the result of a variance of the coupon collector’s formula
∑T

i=0
441

441−ki ≥
N
2 with (N, k) = (441, 15),

we can solve for a minimum T = 21 days. This means that it would only take 21 days in expectation

for these 15 vans to serve half of the target population by visiting their locations at least once, a large

fraction of the target population that cannot be ignored.

All these examples point to the same conclusion: the fraction of people that mobile vans treat is

not small compared to the potential service pool of each arm. Thus we can not ignore its action effect

on the location state.

82



Recall that the optimal policy for the simpler model with no state transition is to repeatedly send

vans to a fixed set of locations with the highest reward. However, due to the small service pool, it may

not be a good strategy as even fewer populations can be reached by such a policy, especially when the

service provided is one-shot or has low-frequency requirements like flu vaccination or cancer screen-

ing Group et al. [2002]. Furthermore, after enough time steps, if the van visits one location too fre-

quently, most of the population would have already received treatment, and the low demand for ser-

vice would reduce the number of patients who still need service, which may lead to a drop in the

number of visiting patients. Thus the simpler model would lead to an optimal model which may be

problematic to deploy. We avoid such issues by reflecting the effect of a recent visit by modeling the

state of the arms in ourmodel. In addition, we alsowant to capture the fact that the number of people

visiting the clinic will eventually recover after enough timesteps. Thus we include the restlessness of

passive transitions. As a result, our model captures the essential features and leads to a policy with the

desired properties.

Network Effect

Previous literature and our analysis show that the commuting effect in mobile clinic service plays an

essential role in serving the target populations. In a study done in rural Tanzania, Neke et al. [2018]

show the average travel time of mobile clinic users is about 1.39 hours on average, with the maximum

being 4.25 hours. According to the survey done in this study, the plurality of the population (about

41%) willing to travel more than 1.5 hours are those populations who feel they can not afford the cost

of emergency carewhen they need it. In addition, in another study done in ruralMozambique Schwit-

ters et al. [2015], the health service is so scarce that patients are willing to bike for a whole day, trav-

eling up to 150km, and sleep overnight in a family member’s house to get treatment the next day. In

their study, some patients even worry that if more people from different locations learn about the van

schedule, they will travel to the mobile health clinic and exhaust the service. These data indicate that
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Table 5.1: Traveling distance samples of visiting patients of Family Van from July 2019 to December 2020

Locations of Vans Average (miles) Max (miles) ♯ of Logs ♯ of Logs> 3 miles
Codman Square 2.060938 88.99839 225 38 (16.87%)
First Parish Church 18.56992 27.69679 20 19 (95.00%)
Mexican Consulate 34.71698 88.14121 46 40 (87%)
Nubian Square 4.560648 81.37295 171 95 (55.56%)
Salvadoran Consulate 3.858448 81.44579 292 101 (34.59%)
Upham’s Corner 2.07965 44.94942 122 27 (22.13%)
Total 5.242403 88.99839 876 320 (36.53%)

there are indeed networks of commuting effects involved in mobile clinic service.

We have also analyzed the commuting distance using the Family Van survey data mentioned in the

previous section. We use the self-report home zip code of the patients and the parking location of the

van’s service to estimate the commuting distance. After filtering out the data with missing or wrong

zip codes, we have a total number of 876 effective sampling of the commuting distance. In table 5.1,

we show the average commuting distance, maximum commuting distance, number of visiting logs,

and number of visiting logs frommore than 3 miles for each of the van’s parking locations.

Fromthe table, weobserve that there is a large variation in the commuting range of different parking

locations. For example, First Parish Church has most of its patients visiting within 30 miles, while

Codman Square has the patient commuting from the furthest distance of almost 90 miles. Most of

the far distances reported are from Nantucket island, where patients have to travel by boat to reach

the van. Although most of the samples are close to the van’s parking location, there are a total of 320

samples, which is about 37% of the samples that have their home locations further than 3 miles from

the parking location. Thus, many people are willing to go from one location to another for more

affordable medical services, leading to network effects in this problem.

84



5.2 Solution Approaches

As discussed previously, our problem shares significant similarities with the recharging bandits prob-

lem Kleinberg & Immorlica [2018]. Both in the network-free and networked setting, a natural so-

lution approach is to (1) determine the frequencies with which arms should be pulled, and then (2)

sequence the pulls optimally. Importantly, the network effects affect both stages of the solution ap-

proach. As a result, simple optimal (or near-optimal) policies from the non-networked settingmay be

far from optimal when networks are considered.

The fact that network effectsmust be taken into account indetermining armpull frequencies is easy

to see. Consider a star graph in which the central node has population 0, while them − 1 leaf nodes

have population nv = n, and— importantly—have probability 1 of commuting to the central node.

Without considering the network/commuting effect, any policy would choose a non-central node in

each round (because the central node has population 0), whereas picking the central node in each

round is clearly optimal.

Perhaps more interestingly, network effects also impact which sets of arms should be pulled si-

multaneously, even keeping the arm pull frequencies constant (and having identical arms). This is

illustrated in the following example.

Example 1. Consider the example shown in Fig. 5.1. We set k = 2 and (ppGB, p
p
BG, p

a
GB, paBG) =

(pGB, 0, pGB, 1). All arms in Fig. 5.1 are identical. The optimal periodic policy is to select each arm

every two rounds Kleinberg & Immorlica [2018]. Such a policy can be achieved without any rounding

by selecting exactly two arms in each round. However, different ways of choosing these two arms result

in policies with different rewards. Specifically, we consider the following two policies: Policy NN: Select

two non-neighboring locations in each round. Policy NB: select two neighboring locations in each round.

We also consider two different network scenarios with different commuting probabilities. In scenario 1,

wu,v =
1
2 for all (u, v) ∈ E and wv,v = 0 for all v ∈ V, i.e., all individuals commute to adjacent nodes.
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In scenario 2, wu,v =
1
4 for all (u, v) ∈ E and wv,v =

1
2 for all v ∈ V, i.e., half of the individuals stay

put. Table 5.2 summarizes the rewards of the two policies in the two scenarios: In scenario 1, the policy

Table 5.2: Rewards of the two policies, and limits as pGB → 1, in the two scenarios.

Scenario 1 Scenario 2
Policy NN 4pGB−2p2GB

1+pGB−p2GB
→ 2 4pGB

2pGB+1 →
4
3

Policy NB 4pGB
2pGB+1 →

4
3

52pGB−32p2GB
13+16pGB−16p2GB

→ 20
13

NN is the better policy for any pGB, and the relative reward difference can be as large as 2
3 . In scenario

2, the policy NB becomes the better policy. For large pGB, the relative reward difference approaches 1315 . In

particular, we see that the network effects must be taken into account in order to find the optimal way to

coordinate the arm pulls of different arms.

Policy 1:

Policy 2:
Budget: 2/each round

Pulled
Not pulled

Figure 5.1: Example for how network combinatorial effects affect the reward of periodic policies.

Ourproposed solution consists of twoparts. In Section 5.2.1, we present an approach to obtain the

optimal visiting period for each district. In Section 5.2.1, we illustrate our approach for synchronizing

the arm pulls to optimize reward coupling.

Not only because of their schedule convenience, such approach could be beneficial for individuals

who have already been screened by reinforcing the importance of treatment adherence and contin-

ued changes to their diet and lifestyle choices; changing behaviors related to diet and lifestyle require

sustained efforts, long-term persistence, and, often, continued support and monitoring Willett et al.

[2006]. Thus we consider a policy that cycles every T rounds.
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5.2.1 Proposed approach

Despite the added model complexities compared to the non-networked Recharging Bandits model,

our problempreserves similar concavity properties. In a similar vein asKleinberg& Immorlica [2018],

we thus aim to provide periodic policies for the networked RMAB problem, i.e., policies that repeat

after T time steps. This not only facilitates scheduling, but can also reinforce intervention benefits

in MHC domains Willett et al. [2006]. Exhaustively searching the action space of size
(m
k
)T is clearly

impractical for reasonable problem sizesm. Fortunately, we can reduce the search space by exploiting

the concavity we proved in Theorem 3.

Obtaining Visiting Periods

Let xv be the fraction of times that arm v is chosen. When 1/xv is integral, it can easily be shown

that pulling the arm every 1/xv rounds will maximize reward due to the concavity of the reward func-

tion Kleinberg & Immorlica [2018]. Define the period of pulling τv = 1/xv ∈ {1, 2, 3, . . . ,T},

meaning that v is visited every τv time steps. LetTbe themaximumperiod considered, which could be

amonth, a season, or a year , depending on the application. Our goal is to find the optimal time period

for each arm, subject to the sum of intervention frequencies being at most the budget
∑

v∈V xv ≤ k.

Suppose that a policy pulls arm v every τv time steps and follows some schedule π : t → at. We

defineP∗
v (τv, π) =

∏τv
t=0 P̂v(π(t)) as the transitionmatrix of the expected state vector right before the

next armpull. Note that the reward gained frompulling an arm vwill dependonwhether neighboring

arms have recently been pulled, as this would imply that some share of v’s population has already been

exposed to the intervention. For a given τv, the reward gained from pulling v is minimized when all

neighboring arms are visited in every round andmaximizedwhen no locations other than v are visited.

We denote these two policies by πℓ and πu, respectively. We can thus bound the average reward gained
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from pulling arm v every τv rounds (defined asHv(τv)) as:

1
τv
bℓvP∗

v (τv, πℓ)nv,G ≤ Hv(τv) ≤
1
τv
buvP∗

v (τv, πu)nv,G,

where bℓv (b
u
v ) is the steady state ofP∗

v (τv, πℓ) (P∗
v (τv, πu)), which is also its eigenvector corresponding

to its smallest eigenvalue. P∗
v (τv, π) is the τv-step transition matrix of arm v given the policy of other

arms π.

Given the upper bound Hupper
v (τv) = 1

τvb
u
vP∗

v (τv, πu)nv,G, we can construct the reward table for

each arm v by calculating the upper bound of each possible τv. Finding the optimal period for each

arm thus becomes an optimization problem

max
∑
v∈V

Hupper
v (τv) s.t.

∑
v∈V

xv ≤ k.

We explicitly write the optimization problem as a MILP with integer variables xv,t ∈ {0, 1} for all

v ∈ V, t ∈ {1, 2, . . . ,T}. xv,t = 1 denotes that location v has a period of t. In the MILP, we write

Hu
v (t) := 1

tb
u
vP∗

v (t, πu)nv,G for all v and t.

Maximize R

subject to
∑

v
∑T

t=1
xv,t
t ≤ k (budget)∑T

t=1 xv,t ≤ 1 for all v (periods)

R ≤
∑

v∈V
∑T

t=1 xv,tHu
v (t) (reward)

xv,t ∈ {0, 1} for all v, t.

(5.5)

The MILP (5.5) has O(|V|T) constraints. Its implementation can be found in the source code

provided. The first constraint captures that the chosen periods/frequencies allow a fractional solution

of atmost k visits per time step. The second set of constraints captures that each location has only one
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period. The third constraint bounds the reward. From the MILP solution, for each v, the period τv

can be obtained as the (at most one) t such that xv,t = 1. If xv,t = 0 for all t for a particular v, then the

arm is never worth pulling and can be discarded from the candidate pool.

TheMILP can be adjusted to take fairness considerations into account as well. We list a few exam-

ples here; further details are discussed in the appendix:

• To achieve a minimum visiting frequency of fmin, we can replace Twith Tmin = 1/fmin.

• To ensure that individuals from each node v have sufficient access to the intervention (either

at v or a neighboring node), we can add the constraints
∑

u∈V
∑T

t=0
wu,vxu,t

t ≥ L for all v.

• To encourage the algorithm to increase the smallest node rewards, we can replace the reward

with the alternative welfare functionR ≤
∑

v∈V
∑T

t=1 xv,t(
Hu

v (t)
nv )α/α for α ≤ 1.

Finding optimal node sets to account for reward coupling

As illustrated in Example 1, the combinatorial effects of pulling arms in the networked RMAB prob-

lem induce reward coupling between theMDPs of the arms. In contrast to non-networked recharging

bandits, the choice of which set of arms with equal optimal periods to pull in the same rounds thus

matters in networked bandits. The potential loss in reward here stems from the fact that when two

arms that are both neighboring arms of a third arm are intervened on in different time steps, they will

deliver the intervention in part to the same individuals in the third arm.

In any time step t, for any pair of arms that is pulled simultaneously, we seek tomaximize the overlap

between the shares of populations in the set of arms that are neighbors of both arms. For a pair of

arms (v, v′), this intervention overlap can be computed as
∑

u∈δ(v)∩δ(v′) nuwv,uwv′,u. If (and only if)

the optimal periods τv and τv′ are coprime to each other, this intervention overlap is independent

of when the arms are intervened on. (As an example, two arms with periods 2 and 3 will be pulled

together every six rounds, regardless of when the policy starts pulling each arm.) If the periods τu and
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τv have a common factor, on the other hand, they can never be pulled together if they are out of sync.

(Arms with periods 2 and 4 will never be pulled together if their sequences start one time step apart.)

We would thus be losing out on the reward gains from pulling the arms together every lcm(τu, τv)

rounds. In order to minimize this loss, we construct an undirected graphG(V,E)with the following

edge weights:

wv,v′(τv, τv′) =


∑

u∈δ(v)∩δ(v′)
nuwv,uwv′,u
lcm(τv,τv′ )

if gcd(τv, τv′) > 1

0 otherwise
(5.6)

The weight of the cut between the selected and unselected arms on G equals the average reward

loss due to the intervention overlap. We can thus select the arm set to pull by minimizing the cut be-

tween the selected node set (of size k) and the unselected node set. Graph partition problems with

node cardinality constraints are generally NP-hard Vazirani [2013]. We use a heuristic based on spec-

tral graph partitioning, by considering the k nodes with the largest or smallest value in the eigenvector

corresponding to the second-smallest eigenvalue of L (also known as the Fiedler vector), where L de-

notes the Laplacian of the graphG. The ENGAge (Efficient Network Geography Aware scheduling)

Algorithm (Algorithm 6) outputs an intervention policy based on this approach.
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Figure 5.2: Average reward in three different domains under different budget constraints.
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Algorithm 6 ENGAge
1: Vcandidate ← V andVwait ← ∅.
2: Compute periods τv using the MILP (5.5).
3: Construct the new graphG(V,E) according to Eq. (5.6) and compute its Laplacian L.
4: Find the set Λ of Fiedler vectors of L (more than one in case of eigenvaluemultiplicity).
5: for t = 1, . . . ,T do
6: for v ∈ Vwait do
7: Timer(v)← Timer(v)− 1.
8: if Timer(v) = 0 then
9: Move v fromVwait toVcandidate.
10: end if
11: end for
12: Va(t)← ∅.
13: for all η ∈ Λ do
14: Find the sets of nodes with k-th largest and smallest elements in η: Specifically, let

η(k) denote the k-th largest entry of η, set V ← {v ∈ Vcandidate | ηv ≤ η(k)} and
V = {v ∈ Vcandidate | ηv ≥ η(m−k+1)}.

15: If |V| > k or |V| > k, reduce the set size to k by arbitrarily removing tied nodes at
the cutoff threshold.

16: Update Va(t) to the set S that minimizes the cut: Va(t) ←
argminS∈{V,V,Va(t)} c(S). Here, c(S) denotes the cut capacity of the node set
S inG (and is defined as∞ for the empty set). Arbitrarily break ties.

17: end for
18: MoveVa(t) fromVcandidate toVwait, and set Timer(v)← τv for these arms.
19: end for
20: return Va(t) as arms to pull at time t for all times t = 1, . . . ,T.

5.2.2 Analysis

Westart by analyzing the complexity of the solution approachdescribed above. The concaveMILP (5.5)

can be solved efficiently using time O(|V|T log(|V|T)), by sorting the set of slopes of segments, cor-

responding to the differentHu
v (t). Details are given in Kleinberg & Immorlica [2018]. In our imple-

mentation, we instead use an off-the-shelfMILP solver. While its worst-case running time is larger, as

our experiments show, it runs very efficiently in practice. Calculating the Laplacian L requires find-
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Figure 5.4: Average reward in three different domains under different prevention effects (Pp
BG − Pa

BG) .

ing common neighbours (O(d̂|E|) byAn et al. [2019], where d̂ is themaximumdegree inG) and then

computing their gcd (O(logT) using the Euclidean algorithm). The overall cost of computing the

Laplacian is thus O(d̂|E| logT). Again, our actual implementation is less efficient in terms of worst-

case complexity, but runs fast in practice nonetheless. Finding a Fiedler vector takes time O(d|V|)

using Lanczos’ algorithm Lanczos [1950], where d is the average degree of G. The rest of the plan-

ning takes time O(|V|T). Thus, the total time complexity of our algorithm is O(|V|T log(|V|T) +

d̂|E| logT) for the dominant term. Other than being efficient to compute, the schedule our algo-

rithm outputs is likely to have little variance on visiting district v every τv rounds. The underserved

individuals in the area can thus anticipate the intervention visit easier and benefit from the reinforcing

effect mentioned earlier in this section.

In Section 5.3, we experimentally evaluate the performance of our algorithm on various graphs
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from real-world domains. We now turn to analyzing sufficient conditions that guarantee optimality

for various cases that we will discuss below.

First consider the case of homogeneous nodes and edge weights, i.e., all nodes have the same pop-

ulations and transition probabilities between states, and all edges have the same commute probabil-

ities. If we replace the eigenvector-based heuristic in ENGAge with an oracle that optimally solves

the min-cut problem with cardinality constraints, then ENGAge outputs the optimal policy for ar-

bitrary graphs ofN nodes whenever k|N. This is because in this case, the cut on the constructed graph

measures the exact reward loss of the schedule. Solving the min-cut problem optimally will then lead

to the optimal scheduling.

Next, consider the special case in which the graphG has γ connected componentsC1, . . . ,Cγ, each

of size |Ci| = k. Furthermore, we assume that all elements of the same component have the same

optimal period; that is, if u, v ∈ Ci, then τu = τv. For γ ≥ 2, note that L is positive semidefinite

as G is undirected for arbitrary input graphs G by construction. The smallest eigenvalue 0 will have

multiplicity γ in the Laplacian L. Thus, |Λ| = γ, and it is known that each component Ci has a

corresponding Fiedler vector supported entirely on Ci Marsden [2013]. Hence, in each iteration,

Algorithm 6 will select exactly all members of one component. As there are no links between nodes

in different components by definition, all members of a component will be fully intervened on. Our

problem thus reduces to a pinwheel problem with γ arms and optimal periods τi for i = 1, . . . , γ.

Pinwheel problems are known to be NP-hard in general Chan &Chin [1993], but optimal solutions

are known to exist in special cases where all periods aremultiples of one another and
∑γ

i τi ≤ kHolte

et al. [1989]. The optimal solution in these cases can be obtained by a simple greedy policy (see Chan

&Chin [1993]) which is realized by the setsVwait of our algorithm. The latter condition is guaranteed

by the setup of ENGAge; hence, our proposed approach will output an optimal schedule in those

cases. For γ = 1, the same conclusion follows trivially, because the algorithm can visit all locations in

each time step.
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Based on the above analysis, ENGAge will output the optimal policy in the following settings,

among others: (1) Complete graphs with equal edge weights, identical nodes, and k|N. (2) Graphs

withmultiple connected components, each of size k, with equal edge weights and identical nodes. (3)

Rings with edge weights 1/2, identical nodes, and k = N/2. (4) d-dimensional Hypercubes with

edge weights 1/d, identical nodes, and k = N/d. (5) Bipartite or multipartite graphs with partitions

of size k, identical node degrees, and edge weights summing to 1 for all nodes. (6) Strongly d-regular

graphs with equal edge weights and identical nodes. These are illustrative examples of graphs where

our algorithm is guaranteed to perform optimally. In the next section, we will empirically show that

it outperforms existing methods in more general settings, including real-world graphs.
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Figure 5.5: (5.5a): average reward vs. graph average degree (5.5b): intervention rates for 15% most disadvantaged
communities. (5.5c): average runtimes.

5.3 Experimental Evaluation

We perform experiments comparing our algorithm to baselines in a variety of real-world application

scenarios. We begin by describing the application domains and their properties:

Mobile Health Clinics in urban areas: This domain setting is modeled on MHCs that are an

important part of urban health care programs. Specifically, we consider a graph of the city of Boston

(where such MHCs are used by non-profit organizations Chen et al. [2022]), collected from Boeing

[2017]. The graph consists of 431 locations that are used as bandit arms. The populations nv and
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Table 5.3: Properties of the network data sets.

Network |V| average average degree
degree centrality

Boston 431 2.92 0.005
Daniels County 631 2.53 0.008
Los Angeles 561 2.85 0.001

transition probabilities (ppvGB, p
p
vBG, p

a
vBG, pavGB) are generated from uniformly random distributions

subject to the assumptions introduced in the problem formulation section‡.

Mobile Health Clinics in rural areas: In contrast to urban areas, rural areas are characterized by a

larger number of less connected smaller communities, andmay experience lower overall levels of access

to health services. We model this domain using a graph of Daniels County, MT, with 631 locations,

taken from Boeing [2017]. Daniels County is considered one of the most rural counties in the US,

as measured by the index of relative rurality Waldorf [2007]. We modify the previous setting to set

a large portion of districts to have communities with relatively small population, to account for the

characteristics described before.

Mobile Food Pantry: Due to a limited choice of means of transportation, residents of many so-

cially disadvantaged neighborhoods can only access food within shorter distances; as a result, healthy

food options are often limited. Mobile food pantries (MFPs) have become an important source of

healthy food for these communities Algert et al. [2006]. In the MFP scenario, the Los Angeles city

graphwith 561 locations collected fromBoeing [2017] is used, as food insecurity is an important issue

in Los Angeles. In this scenario, it is assumed that there is no prevention effect (paGB = ppGB), as the

provided food needs to be fresh and will only be distributed to individuals in bad states.

We compare our algorithm to three baseline algorithms. Random selects k locations uniformly at

random in each time step. Myopic selects the locations with maximum reward in the current time

‡While we have access to real-world street graph data, we do not have access to population and commuting
data at a matching granularity.
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Figure 5.6: Sensitivity analysis.

step. Recharging is the rounding scheme scheduling provided in Kleinberg & Immorlica [2018].

All experiments are conducted on a system with 6 cores, 2.60 GHz Intel CPU, and 16 GBs of RAM

for 30 simulations over 100 time steps for each trial. All figures include approximate 95% confidence

intervals as error bars. Figures 5.2a–5.2c show the average reward collected with different budgets of

k ∈ {10, 20, 30} arms, for the three domains described above. Our algorithm consistently outper-

forms all baselines. Recharging mostly performs second-best, though in the urban MHC setting,

it is slightly worse than Random. Figure 5.5c shows the average runtime per simulation in seconds.

Interestingly, Myopic is the slowest algorithm, because it has to compute the reward for each node

in each round, while ENGAge and Recharging use pre-computed period tables.

We further analyze the sensitivity of these results to severalmodeling parameters. Figure 5.5a shows

the performance of the algorithms for different densities for a synthetic domain based on a spatial

preferential attachment model Barthélemy [2011], Ferretti & Cortelezzi [2011]. The results are non-
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monotonic for the ENGAge algorithm. A possible explanation could be that there might exist a level

of optimum connectivity, below which adding more links will increase the intervention benefit by

spreading interventionsmore widely, and above which addingmore links will cause toomuch overlap

between the populations that are intervened on in different time steps. Figures 5.3 and 5.4 show that

ENGAge consistently outperforms the baselines across multiple values for cure and prevention rates

in all domains.

We also analyze the impact of our algorithm on the most disadvantaged communities, i.e., those

experiencing the highest risk of transitioning to the bad state, or which have small probability of

recovering from the bad state. Figure 5.5b shows the average intervention frequencies for the 15%

communities with the highest risk (ppGB) and lowest chance of recovery (p
p
BG). All algorithms except

Random intervene on the most disadvantaged communities disproportionately more often, show-

ing that they are not discriminating against them. This is thanks to the design of the reward criterion

that measures intervention benefit for individuals receiving the intervention.

Finally, we conduct a sensitivity analysis of the ENGAge algorithm against graph perturbations.

Figure 5.6 is constructed as follows: Starting with the real-world graphs from the three domains, we

add perturbations by removing a given percentage of the edges, and adding back the same number

of edges randomly. In the optimization, we then use the perturbed graph, while the original, unper-

turbed graph is used to compute the rewards. Overall, we observe that perturbing x% of edges gener-

ally reduces reward by less than x%. For example, with a graph perturbation of 15%, the performance

reductions in the urban, rural and food settings are 6%, 13%, and 14%, respectively.

5.4 Summary

This chapter present a networked RMABmodel motivated by mobile interventions; our model cap-

tures network effects stemming from traveling behavior. Our model was built based on the input
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of domain experts in mobile health interventions. To the best of our knowledge, this is the first pa-

per addressing the challenge of scheduling multiple interventions with network effects in the RMAB

model. Network effects induce strong reward coupling between arms, substantially complicating the

analysis of the RMAB. We propose the ENGAge (Efficient Network Geography Aware scheduling)

algorithm that takes reward coupling and network effects into account. We provide sufficient condi-

tions for optimality and show that our algorithm outperforms several baselines empirically in three

real-world domains and synthetic domains with varying properties.
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6
Conclusion

6.1 Contributions

The rapid advance of artificial intelligence has made new applications possible with the help of do-

main expertise. In particular, public health has gainedmore andmore attention due to growing health

consciousness and pandemic outbreaks in recent years. Previous research has considered numerous

approaches to applying AI to improve the practice of different public health applications. However,
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due to the technical limitation, they all focus on more specific and ideal settings with either one-shot

optimization, no network structure, or fully observable states. My thesis explores and expands AI

techniques on different sequential network planning problems with various challenges. Such plan-

ning problems have a wide range of application scenarios in the public health domain, yet AI litera-

ture has not exploredmuchdue to the previous technique limitations. This thesis formalizes the active

screening and mobile health intervention model as two different sequential network planning prob-

lems. Moreover, my thesis takes the forward step of solving these planning problems by overcoming

the challenges that the previous state of the arts could not handle.

First, my thesis introduces the active screening problem. This problem involves solving a sequential

planning problem with network transitions under state uncertainty. Active screening offers a power-

ful yet expensive means to control disease spread in the public health domain that passive screening

cannot achieve due to its latency of cure. Thus, this model provides a basis for developing a screen-

ing strategy tominimize the spread of recurrent diseases. Furthermore, unlike previous literature that

develop one-shot network optimization problems for non-recurrent diseases, this model is applicable

when one cannot permanently cure the disease or the vaccination is not immediately available. The

proposed model also considers real-world constraints such as uncertain health states and limited in-

tervention resources. Unfortunately, this complicated problem turns out to be NP-hard shown by

my proof. To solve this problem, I propose two novel algorithms, Full- and Fast-REMEDY. Full-

REMEDY considers the effect of future actions and provides high solution quality, whereas Fast-

REMEDY scales linearly in the size of the network. I examined the effectiveness of the REMEDY

algorithm on several real-world datasets which emulate human contact against different baselines. It

shows superior performance on both speed and degree of infectious number reduction in all scenar-

ios. In addition, I also show that REMEDY is robust to errors in estimates of disease parameters and

incomplete information about the contact network.

Second, while REMEDY is effective for slow-spreading diseases like Tuberculosis, its full version is
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not scalable for fast-path diseases that require planning for an immense horizon, while the fast version

does not consider the future effect of the current action. I propose a novel reinforcement learning

(RL) approach based on Deep Q-Networks (DQN) to get the best for both worlds. Applying RL to

the active screening is not a simple task for several reasons. Besides the need for sequential planning

and the uncertainties in the infectiousness states of the population, the combinatorial nature of the

action choice and the sparseness of the reward makes the standard RL approaches hard to converge.

To overcome these challenges, first, I use graph convolutional networks (GCNs) to represent the Q-

function that exploits the node correlations of the underlying contact network. Second, to avoid

solving a combinatorial optimization problem in each period, I decompose the node-set selection as a

sub-sequence of decisions and further design a two-level RL framework that solves the problem in a

hierarchicalway. Finally, to speedup the slowconvergence ofRL,which arises from reward sparseness,

I incorporate ideas from curriculum learning intomy hierarchical RL approach. In evaluatingmyRL

algorithm on several real-world networks, results show that myRL algorithm can scale up to 10 times

the problem size of Full-REMEDY in terms of planning time horizon. Meanwhile, it outperforms

Fast-REMEDY by up to 33% in solution quality.

Lastly, my thesis introduces the mobile health intervention problem, another example of public

health application for sequential network planning problems. Motivated by a broad class of mobile

intervention problems, I propose and study restless multi-armed bandits (RMABs) with network ef-

fects. Unlike the active screening problem andmost previous network problems, the network effect in

this sequential planning problem is on the intervention instead of just state transition. In this model,

arms are partially recharging and connected through a graph so that pulling one arm also improves

the state of neighboring arms, significantly extending the previously studied setting of fully recharg-

ing bandits with no network effects. In mobile interventions, network effects may arise due to regular

population movements (such as commuting between home and work). I show that network effects

in RMABs induce strong reward coupling that is not accounted for by existing solution methods. I
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propose a new solution approach for networked RMABs, exploiting concavity properties that arise

under natural assumptions on the structure of intervention effects. We provide sufficient conditions

for optimality of our method in idealized settings and demonstrate that it empirically outperforms

state-of-the-art baselines in three mobile intervention domains using real-world graphs.

6.2 Future Directions

My thesis has opened up a large avenue for applying sequential network panning problems to various

public health scenarios. In this thesis, I have explored two critical applications with different chal-

lenges. However, other challenges may emerge as we extend the model I propose to align with the

real world. For instance, while this work has addressed the uncertainty of the state transition, there

may be other uncertainties involved in the network sequential planning process pipeline. Theremight

be network structure uncertainty due to missing data. There might be intervention uncertainty due

to the absence of participants or the effectiveness of the interventions. Accounting for these uncer-

tainties may further improve the effectiveness of the decision-making. Furthermore, how to combine

the information we have and adjust our policy as our observations unfold while these uncertainties

present are yet to be considered by the literature.

Additionally, exploiting the network structure will be an essential direction for future work. In

this thesis, I have made very few assumptions about network structure. While this makes the solution

proposedmore general, it could be the case that there is room for improvement bymaking reasonable

assumptions about the network structure. There is also the potential to adapt the solution I proposed

to a larger class of problems by transforming them into a graph, like the matching problem into a bi-

partite graph. Although different challenges might emerge, the insight about future planning and

combinatorial effect uncovered in this work will undoubtedly be helpful when developing the solu-

tions.
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In terms of future work regarding active screening for tuberculosis, one obstacle between imple-

mentation and real-world deployment is the costly screening process. Screening for tuberculosis in-

volves getting people to X-ray machines, which can be time-consuming due to a lack of resources and

limited diagnosis speed. However, other than contact networks, we can use cell phones to further

collect cough sounds and other meta-data. Wadhwani AI, the organization in India I worked closely

with for the active screening project, is developing a cough-based screening tool for tuberculosis. The

goal is to make it usable with a simple cell phone. Combining contact network, cough sound, and

other meta-data could potentially realize rapid screening and represent an excellent test-based for the

active screening algorithm in the future.

As for mobile health scheduling, more efforts are still needed to expand service availability to low

resource communities further. In this thesis, distances from thepotential patients to themobile health

clinic have beenmodeled to be an important factor based on the input of health experts. According to

their data, most of the visited patients are within 25minutes of communication time throughwalking

or driving. However, other factors affect the availability of MHC services to specific populations.

For example, one observation made by our partner health experts from the data is that women are

30 ∼ 35%more likely to use the MHC services than men. We hypothesize that men in low resource

communities usually need to communicate far distances for better work opportunities. Therefore, it

is unlikely to visit theMHCduring regularworking days. Addressing issues like this by accounting for

different visiting times or identifying more potential patients are all interesting areas for future work

of real-world deployment beyond my thesis.
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