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Abstract

Health-promoting interventions such as gatekeeper training
for suicide prevention or HIV prevention interventions have
proven very successful in practice. Given the scarcity of the
intervention resources in such applications, the goal is to
leverage the social network structure to strategically select the
individuals to train so that they can protect others or spread
health information throughout the network. Indeed, the place-
ment of an individual in a network impacts one’s chances of
receiving benefits from these interventions. Hence, there has
been an increasing interest in the study of fairness in such
problems. However, there is no clear understanding on the
implications and consequences of such fairness notions or the
way they can impact different sub-populations. In this work,
we initiate the study of such consequences, highlight the un-
desirable properties of the existing notions of fairness and dis-
cuss future directions for improvements.

1 Introduction

Several health-promoting initiatives including interventions
for prevention of suicide, HIV and substance abuse, propose
to leverage social network structure [9, 15, 16] to strategi-
cally target individuals for interventions. In each of these ap-
plications, the goal is to select a small set of individuals who
can act as peer-leaders to detect warning signs beforehand
and respond appropriately (suicide prevention), or dissemi-
nate relevant information (HIV, substance abuse). Given this
setting, influence maximization framework can be used to
find such a set of individuals [15].

When implementing the aforementioned interventions in
the real world, it is important to ensure that there is no dis-
crimination based on protected attributes (e.g., race, ethnic-
ity, gender, disability). Recent research has also emphasized
the importance of fairness for interventions in socially sen-
sitive settings, see e.g., [11, 15]. Several approaches have
been proposed to achieve fairness in various contexts includ-
ing classification [17], resource allocation [2, 4, 7], influence
maximization, and graph covering [1, 13, 15]. However,
there is little to no prior work on understanding the implica-
tions and consequences of each of the fairness notions pro-
posed, or the way they can affect different sub-populations
particularly in the context of influence maximization.
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In this work, we study the implications of several well-
known notions of fairness (e.g., maximin fairness, demo-
graphic parity, and diversity constraints) in the context of
influence maximization problems. Specifically, we study the
vulnerabilities of the aforementioned notions and formalize
why they are not readily applicable to influence maximiza-
tion. To this end, we outline two properties that capture the
undesirable consequences of these notions — population sep-
aration, and levelling down, and prove the aforementioned
popular notions of fairness exhibit these properties in the
context of influence maximization. We then propose future
directions for addressing these challenges.

2 Framework

We consider the problem influence maximization problem in
social networks [1]. We model a social network as a directed
graph G = (N, €) in which V is the set of all vertices (indi-
viduals) and & is the set of all edges (social ties). A directed
edge from n to v exists, i.e., (n,v) € &, if vertex n identi-
fies v as a “friend” or “social contact”. We define the set of
neighbors of n based on its outgoing edges.

In the influence maximization problem, a decision maker,
e.g., social worker who conducts the intervention, chooses
a set S of at most k vertices to activate. For example, in
the HIV prevention, a limited set of individuals are chosen
as peer-leaders to receive health-related information via a
training. These individuals will then influence their peers by
spreading the information through the social network. We
employ the well-studied Independent Cascade Model [10]
of influence spread. According to this model, a newly ac-
tivated vertex independently activates each of its neighbors
with a fixed probability p € (0, 1]. This probability is typ-
ically assumed to be the same for all the edges. We fur-
ther assume that influence unfolds over 7' > 1 time steps.
At time T°, the amount of influence is evaluated as the to-
tal number of vertices that are activated (have received the
information). We use Z(S) to denote the expected number
of activated vertices with seed set S C N after T' time
steps. This time-constrained influence maximization was in-
troduced by Chen, Lu, and Zhang [3]. We adopt this model
as in most applications of interest the spread of influence
is time-critical [13]. In addition, this model agrees with the
observation that the spread of influence in social networks
slows down [8].

Formally, we define the influence maximization problem



as follows:
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This is a general model that encompasses as a special case
the classic influence maximization problem (7" = |N|) and
the graph covering problem (T' = 1, p = 1).

Fairness Considerations When maximizing Z, (near) op-
timal interventions end up mirroring the differences in de-
gree of connectedness of different groups and can result in
discriminatory outcomes [13]. However, it is important to
ensure that there is no discrimination based on protected at-
tributes. For example, in the HIV prevention domain one
needs to ensure that racial minorities or individuals with
LGBTQ identity are not disproportionately excluded. Dis-
crimination with respect to protected attributes and socially
salient groups has recently been studied in the context of
(robust) covering problems [13] and for the (stochastic) in-
fluence maximization [1, 15].

Mathematically, each vertex (individual) n € A is char-
acterized by a set of attributes (protected characteristics)
such as race or gender, for which fair treatment is important.
Based on these protected characteristics, one can partition
N into C' > 2 disjoint groups A, ¢ € C := {1,...,C},
such that M7 U - -- U N = M. We use Z.(S) to denote the
expected number of influenced vertices in group c under the
seed set S and we define each group’s utility as the influ-
ence normalized by the size of the group under seed set S.
Precisely, for any S, we can define the utility vector u(S) €
0,1]€ as w(S) := (Z1(S)/|Nil, - - ., Zc(S) /INc|) , where
the cth component u. indicates the utility of group c. Fur-
thermore, we use U to denote the set of all possible utilities
that the groups can achieve simultaneously for a fixed budget
kie., U(k) := Usj<x u(S). When clear from the context,

we drop the dependence on S and k for convenience.
As a result, we can write Problem (1) equivalently as

max Z INVeue : w el )

ceC

We use U°P' to denote the set of optimal solutions of Prob-
lem (2) and we refer to u € U°" as an optimal utility.

Problem (2) does not have any fairness considerations. A
common approach to incorporate fairness is to impose con-
straints on the utility vectors u. We use F to collect the fair-
ness constraints and we define the problem

max ZV\/’C\UC: weld, ueF. 3)

ceC

We use U™ to denote the set of optimal solutions to Prob-
lem (3) and we refer to u € U™ as an optimal fair utility.
We note that depending on the fairness notion, the set F' can
be precisely defined. In the following section, we discuss
several notions of fairness with their corresponding sets F.

3 Notions of Fairness

We now study fairness in the influence maximization prob-
lem. We start by reviewing three notions of fairness. Hence-
forth, we will refer to the group with the minimum (resp.
maximum) utility as the worst-off (resp. best-off) group.

Maximin Fairness Maximin fairness is a generalization
of Rawlsian theory of justice [14], according to which the
minimum utility that the groups obtain should be maxi-
mized. Following the approach in [15], we can define the set
F by requiring a minimum level of utility for every group.

Definition 1 (Maximin Fairness [15]). The constraint set F
for maximin fairness (MMF) is defined as

F={ue0,1]°: u.>W VYece(C},

where W :=sup{v e Ry |FJu € U : u. > v Ve € C}is
the maximum value for which Problem (3) remains feasible.

Demographic Parity Demographic parity requires that
independently of their group membership, the utility of each
group be the same. This notion formalizes the legal doc-
trine of disparate impact [17]. A generalization of this no-
tion has been introduced by Hardt et al. [6] in the classi-
fication context as equality of opportunity. Their definition
caters for the case that some individuals are better suited
for an intervention. We note that in the applications of inter-
est, every individual/group is equally qualified to receive the
benefit from the intervention, e.g., everyone should be pro-
tected by a gatekeeper or should receive health-promoting
information. In effect, in our resource allocation setting de-
mographic parity and equality of opportunity are equivalent.

Definition 2 (Demographic Parity). Let 6 € [0,1). Then the
constraint set F for demographic parity (DP) is defined as

f:{ue[(),l]c:uc/fucgts Vc,c'GC}.

In Definition 2, ¢ is a parameter that determines the strict-
ness in fairness where smaller § values impose more strict
fairness constraints. We note that for 4 > 1 the constraints
F in Definition 2 hold trivially, thus, we require § € [0, 1).

MMF and DP do not depend on the structure of the net-
work G. Recently, Tsang et al. [15] proposed a notion of
fairness called diversity constraint that explicitly takes the
network structure into account.

Diversity Constraints Diversity constraints require that
no group be better-off (obtain a higher utility) with an alloca-
tion of resources proportional to their size and re-allocating
them internally. Diversity constraints are defined as follows.

Definition 3 (Diversity Constraints [15]). Let k. =
Uf‘./\/'CVN] and Z/{c(/{) = U\S|§k,8§]\fc U(S) Ve € C be
the set of utility vectors when the seed vertices are chosen
from group c. The utility of each group must be at least
U = MaXyey, (k) We VC € C to satisfy the diversity con-
straints (DC). Formally, the set F for DC is defined as

F={ue0,1] u. >u, YeeC}.

4 Fairness Criteria

We now discuss implications of incorporating the notions
of fairness introduced in section 3. One concern may be
that imposing fairness can increase the utility gap between
groups, where for any utility vector v € U, utility gap is
defined as Av := max, ¢ cc(v. — V). This situation is un-
desirable as it causes a greater separation in the utilities of
the groups. Fish et al. [5] studied a similar notion as rich get
richer but their definition is restricted to only two groups.



0000
o0 0000
0 00000
o0 0000

0000

Figure 1: Companion figure to Proposition 1 for the case
of p = 1. The network consists of three groups: red, blue
and green. The edges are undirected so the influence can
spread both ways. For arbitrary p, the number of isolated
green vertices should scale to [21/p].

Definition 4 (Population Separation). A fairness notion ex-
hibits population separation if there exists a graph G, time
horizon T, budget k and propagation probability p such that

Ju € U, w € U™ Au < Aw.

Remark 1. The population separation is particularly unde-
sirable when not only do the best-off and worst-off groups
not change in the fair solution, but also utility gap widens.

Our next definition is motivated by the desire that fairness
should not result in degradation of the utilities of the groups.
This idea appears as levelling down objection in political
philosophy [12]. We introduce two variants of this property.

Definition 5 (Weak Levelling Down). A fairness notion ex-
hibits weak levelling down if there exists a graph G, time
horizon T, budget k and propagation probability p such that

Ju € U, w e U™ w, < u,. Ve e Cand Few, < u..

Definition 5 is related to the Pareto optimality axiom stud-
ied by Bertsimas, Farias, and Trichakis [2] which ensures
that imposing fairness does not result in wastage of utilities.
In a stronger notion, all utilities simultaneously degrade.

Definition 6 (Strong Levelling Down). A fairness notion ex-
hibits strong levelling down if there exists a graph G, time
horizon T, budget k and propagation probability p such that

Ju € U, w e U™ w, < u, Ve eC.

Proposition 1. For C > 2, MMF exhibits the population
separation property.

Proof. First, we note that if C' = 2, MMF does not exhibit
the population separation property. This is because the util-
ity of any of the worst-off groups in the optimal solution
does not decrease after enforcing fairness. In this case, from
population separation, it follows that the utility of the best-
off group should increase after enforcing fairness which is
not possible as the total influence of the optimal fair so-
lution cannot be strictly higher than the total influence for
the optimal solution. For C' > 2, we prove the statement
via the example in Figure 1 which depicts a network with
three groups: blue, green and red. We fix £ = 1 and require
T > 1and p > 3/4. The graph corresponds to the case
where p = 1 but the example will hold for arbitrary p by
setting the number of isolated green vertices to be [21/p].
The optimal solution of Problem (2) targets the center of the
bigger star component. Thus, the utilities of blue, green and
red will be (1 + 4p)/11, 4p/11 and 0, respectively. This re-
sults in utility gap equal to (1 +4p)/11. By imposing MMF,
the optimal fair solution selects the center of the smaller star
component and the optimal fair utilities of blue, green and

Figure 2: Companion figure to Proposition 3 of a graph with
two groups: N red vertices and N/3 blue vertices for N = 9.
We choose & = 3 and arbitrary p and T > 1. All edges are
undirected, meaning that influence can spread both ways.

red will be 6p/11, p/11 and 1/(1 + [21/p]) respectlvely
and we observe a utility gap 6p/11 — 1/( 1+ [21/p]
6p/11 — 1/22 > (14 4p)/11, where we used p > 3/4 i 1n
the last inequality.

Proposition 2. For all 6 € [0, 1), DP does not exhibit popu-
lation separation.

Proof. We prove by contradiction. We consider the prob-
lem instances that Ju & U°P Au > § (otherwise
there is no need to impose DP constraints as all the opti-
mal solutions satisfy DP constraints). Suppose after impos-
ing fairness constraints we observe population separation,
ie, Jw e U . Au < Aw. According to the definition of
DP, it follows that Aw < §. It must also hold that Au < 6.
This, however, contradicts the assumption that Aw > §. B

Proposition 3. DC exhibits population separation.

Proof. Consider the graph G as in Figure 2 consisting of
two groups blue and red with size N/3 and N, respectively.
Suppose k£ = 3 and p and 7" > 1 are arbitrary. Without
DC, an optimal solution places one seed vertex at the cen-
ter of the red group and allocates the remaining 2 vertices to
the blue group. Thus, the utility of the red and blue groups
will be equal to (1 + (V — 1)p) /N and 6/N. Since there is
no edge between the red and blue groups, DC (See Defini-
tion 3) reduces to how to optimally choose one seed vertex
from blue and the remaining two from the red group. After
imposing DC, the utility of the red and blue groups will be
equal to (2 + (N — 2)p)/N and 3/N. Therefore, the utility
gap between the two groups increases. |

Proposition 2 indicates that DP exhibits behavior opposite
to MMF or DC in terms of population separation. A natural
question is that whether imposing both sets of constraints
can enhance MMF or DC. Similar to the proof of Proposi-
tion 2, one can prove that MMF/DC combined with DP does
not exhibit population separation. Next, we investigate the
strong levelling down property, where we show MMF and
DC do not exhibit strong levelling down, whereas DP suf-
fers from the strong (and hence the weak) levelling down.

Proposition 4. Consider a general fairness notion as a set
of constraints F = {u € [0,1] : u. > v, Vc € C} where
ve Ve € C are arbitrary lower-bound values. The considered
fairness notion does not exhibit strong levelling down.

Proof. Suppose the contrary holds, meaning that Ju €
UM w e U . w, < u. Ve € C We consider two
cases. First, assume 3¢ € C : u, < v.. By w, > v, it
must be that u. < w, which is a contradiction. Second,
Ve € C : u. > v.. This, however, contradicts the optimal-
ity of w as there exists a solution that satisfies the fairness
constraints and has a strictly better objective value. |



Corollary 1. MMF and DC do not exhibit the strong level-
ling down property.

Figure 3: Companion figure to Proposition 5 where we
choose max(3p/(p — 6),(p — 2p*)/(6 — p?)) < N, d <

p < min(v/6,0.5), k = 2 and T' > 1. The network consists
of two groups red and blue, each of size N. All edges ex-
cept the two shown by arrows are undirected meaning that
influence can spread both ways.

Proposition 5. For all § € [0, 1), DP exhibits the strong lev-
elling down property.

Proof. Consider a graph G as shown in Figure 3 consist-
ing of two groups, blue and red, each of size N. We choose
an arbitrary d, to reflect the arbitrary strictness of a decision
maker. Let § < p < min(v/4,0.5), k=2and T > 1 and N
be large enough, i.e., max(3p/(p—9), (p—2p?)/ (6 —p?)) <
N. Without DP constraints, an optimal solution chooses the
center of the star and one of the blue vertices. The utility of
red and blue will be (1 + (N — 1)p) /N and (1 + 2p)/N,
respectively. In this case, the utility gap exceeds J. By im-
posing DP, an optimal solution is to choose one vertex from
the periphery of the red group and one vertex from the iso-
lated blue vertices. The utilities of red and blue will be
(1+p+p*(N —2)) /N and 1/N, respectively. Given the
range of N, the utility gap is less than ¢ yet the utility is
strictly smaller than the case without DP constraints. |

These results raise the question of whether combining dif-
ferent notions of fairness can help avoid the pitfalls of each
definition. This, however, is not possible. For instance, con-
sider combining MMF and DP. Using the same example as
in the proof of Proposition 5, we observe that the choice of
seed vertices after imposing DP is in fact optimal if MMF
constraints are added (W = 1/N), proving that DP com-
bined with MMF still suffers from levelling down. Similar
issues are observed for the other combinations of the fairness
notions. We leave the details out for space considerations.

5 Discussion

In this work, we studied the implications of popular notions
of fairness in the context of influence maximization prob-
lems. Our research demonstrates that these notions when
applied in the context of influence maximization result in
undesirable consequences such as a) population separation,
where the utility gap between the best-off and worst-off
groups increases, and b) levelling down which corresponds
to the sub-optimal allocation of resources, which in turn re-
sults in degradation of the utilities of certain groups (which
could have been avoided). While such undesirable conse-
quences might not occur in a classification setting, our re-
search shows that they pose challenges in influence maxi-
mization problems. One of the reasons for this difference in
behavior is the fact that popular notions of fairness do not ac-
count for graph structure. Therefore, it is important to come

up with novel notions of fairness which incorporate metrics
pertaining to the graph structure. This opens up interesting
directions for future work.
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