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ABSTRACT

The maternal mortality rate in India is appalling, largely fueled by lack of access to preventive care information,
especially in low resource households. We partner with non-profit, ARMMAN, that aims to use mobile health

technologies to improve the maternal and child health outcomes.

To assisst ARMMAN and such non-profits, we develop a Restless Multi-Armed Bandit (RMAB) based solution
to help improve accessibility of critical health information, via increased engagement of beneficiaries with their
program. We address fundamental research challenges that crop up along the way and present technical advances
in RMABs and Planning Algorithms for Limited-Resource Allocation. Transcending the boundaries of typical
laboratory research, we also deploy our models in the field, and present results from a first-of-its-kind pilot test

employing and evaluating RMABs in a real-world public health application.

1. INTRODUCTION

The maternal mortality rate in India is appalling with
1 woman dying in childbirth every 20 minutes. More
disturbingly, most of these deaths are preventable, if
only the expectant mothers have timely access to crit-
ical live-saving health information. ARMMAN;, an In-
dian NGO is focused on reducing maternal and child
mortality rates in underserved and underprivileged
communities. Quoting Dr. Aparna Hedge, founder of
ARMMAN, “Pregnancy is not a disease. Childhood Figure 1: Picture credits: ARMMAN

is not an ailment. Dying due to a natural life event is

unacceptable”. Having impacted lives of 26 million women so far, ARMMAN serves new and expectant mothers



by leveraging the penetration of cellphone technology in India to provide timely and free, automated voice calls
or text messages conveying critical health information to these mothers. Studies have shown that when mothers

listen to these automated messages, it significantly improves the health outcomes.

However, one recurrent issue such ARMMAN faces is that many women tend to drop out over a period of time
or do not listen to the voice messages completely, missing out on the critical information and leading to negative
health consequences. To alleviate this issue, health workers at ARMMAN may provide service calls to pregnant
women, encouraging them to listen to the health information. However, while serving millions of mothers, the
limited health worker staff at ARMMAN can only reach out to a very small fraction of these enrolled mothers
each week. This makes it critical to utilize the limited health worker resources optimally, and to try and target

those beneficiaries likely to benefit the most from these service calls.

Viewed algorithmically, the key challenge is to optimize the allocation of limited resources. The objective is
to maximize the health messages listened to by the beneficiary cohort. With limited resources, the key question

is to identify which k out of N (where k < N) mothers to select each week for service calls.

Our work is the first to cast this problem as a Restless Multi-Armed Bandit (RMAB), popularly studied in the
operations research literature. The RMAB solution approach however, doesn’t work straight out-of-the-box and
needs several fundamental research advances to tackle the unique challenges faced by such non-profits. To this
end, we develop new methods to make the RMAB techniques computationally inexpensive and scalable, making
them accessible to such non-profits. We also build methodology to handle real-world considerations such as
risk-aware planning and dynamically changing beneficiary cohorts. We further innovate new clustering methods
to infer necessary RMAB parameters that underpin the RMAB solution approaches, but are unknown in the
real-world. Without stopping at merely these technical innovations in the laboratory, we also conducted field
visits (Figure ?77), interacting with the actual beneficiaries and the healthworkers at ARMMAN to understand
and identify where innovation would benefit the beneficiaries the most. We are also the first to run a large-
scale field trial deploying our RMAB solution, in a real-world public health application, in partnership with
ARMMAN. We present results from the field experiment which show that our algorithm cuts engagement drops

among beneficiaries by 30% in comparison to the current standard of care.

2. OPERATIONS RESEARCH TECHNIQUES AND CONTRIBUTIONS

The central Operations Research question we try to address in our work, is to decide how to allocate the limited
health worker resources — specifically, how to identify the subset of beneficiaries to deliver service calls to, each

week — so as to maximize the overall benefits of the service calls to the beneficiary cohort. Here we present an
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Figure 2: Pictures from field visit in Mumbai, in July 2022. (a),(b): Site of the field visit (¢) During a house
visit to a beneficiary for interview accompanied by an ARMMAN health worker (called “Sakhi”, translating to
“female friend” in Hindji).

overview of the challenges encountered on the way and our key innovative contributions aimed at tackling these

challenges.

Restless Multi-Armed Bandits: Restless Multi-Armed Bandits (RMAB) is a popular framework that has
seen significant theoretical investigation in the past for handling resource allocation problems, in a myriad of
domains such as communication systems [1], UAV routing [2], sensor and machine maintenance [3] and so on.

We are the first to cast the health-worker challenge of engagement monitoring and internvention planning as an

RMAB problem [4].

Planning the optimal allocation policy in RMABs has been shown to be PSPACE hard in general [5]. Pre-
viously available solution techniques are computationally too expensive needing hours to run on a computing
cluster, rendering it inaccessible to resource strapped non-profits who may not have access to such computation
machinery. Towards allowing RMABs to be utilized by such non-profits, we study a special subclass of RMABs
that captures our problem setting, that we call “Collapsing Bandits”, and design a fast algorithm that exploits
the special structure of the application. We show that our algorithm achieves a 3-order-of-magnitude speedup,
while maintaining similar performance quality. This enables applying the RMAB planning techniques in the
context of ARMMAN, in determining beneficiaries to deliver interventions to, without needing access to power-
ful computational resources. Details of the algorithmic idea, theoretical and empirical results are described in

Section 3.



Streaming Bandits: The beneficiary cohort served by ARMMAN changes dynamically — there is an incoming
stream of new beneficiaries joining the program and an outgoing stream of existing enrolled beneficiaries that
leave the system. The stay of beneficiaries in the program is thus naturally finite, spanning only a very limited
number of weeks. Unfortunately, existing RMAB solutions assume the beneficiary cohort to begin and end the
program sychronously and assume an intermediate stay of an infinite duration. We show that performance of
such algorithms degrades when the stay of beneficiaries gets shorter, even when they all start synchronously.
The performance only dwindles further if the beneficiaries join asynchronously. Approaches that do account for

the finite stay are computationally expensive, and can’t scale well to problems of ARMMAN’s size.

Recognizing that the available accurate solutions do not scale well and that the scalable solutions ride on
unrealistic assumptions leading to poor performance in practice, we focus on planning interventions for a dynam-
ically changing beneficiary cohort. We propose ‘Streaming Bandits’ [6] to accommodate incoming and outgoing
streams of bandit arms (beneficiaries), while also accounting for the finite stay of the beneficiaries. Specifically,
we propose an interpolation technique and show that interpolating between the cheaply available solutions for
the infinite- and small-horizon problems is nearly as effective as solving the finite horizon problem exactly. In
context of ARMMAN;, this speeds up the planning algorithm by 2-orders-of-magnitude, without sacrificing on

performance, even when planning interventions for a dynamically changing cohort. More details are in Section 4

Real-world deployment challenges: Although RMABs have seen significant theoretical investigation in the
literature, none of these have been tested in the field or have seen real-world deployment in context of public
health. Existing works either assume knowledge of intermediate RMAB transition parameters underpinning the
planning algorithms or rely on being able to learn those easily online. For new and expectant mothers however,
both assumptions are untrue, as these parameters are unknown in the real-world and learning those online is
stymied by the beneficiaries’ short stay in the program. This poses a new fundamental challenge to overcome to

be able to deploy RMABs in the real-world for improving maternal healthcare.

In Section 5 we present novel clustering methods [7] that leverage abundant historical data on previously

enrolled beneficiaries to infer these parameters for new, unseen beneficiaries that join the program.

Field Trial and Evaluation: Transcending previous RMAB studies and theoretical investigations, we take
the RMAB model into the field, in a first-of-its-kind large scale field trial in partnership with ARMMAN. This
study, spanning a period of 7 weeks, involves 23,0003 real-world beneficiaries enrolled with ARMMAN. The
results from the field trial show that our RMAB algorithm achieves a statistically significant improvement in

the engagement behavior of the beneficiaries and manages to cut engagement drops among mothers by 30% in



comparison to the current standard of care. Detailed analysis is presented in Section 6, followed by additional

discussions on lessons learnt through this study, and conclusions in Sections 7 and Section 8 respectively.

3. COLLAPSING BANDITS

We adopt the solution framework of Restless Multi-Arm Bandits (RMABs), focusing on a special subclass, that we
call “Collapsing Bandits”, capturing the health worker planning problem we consider. In the Collapsing Bandits
framework, the planner must act on k& out of N binary-state processes each round. The planner fully observes
the state of the processes on which she acts, then all processes undergo an action-dependent Markovian state
transition; the state of the process may be unobserved in the general case, until it is acted upon again, resulting
in uncertainty. The planner’s goal is to maximize the number of processes that are in some “good” state over
the course of T rounds. This class of problems is natural in the context of non-profits such as ARMMAN, that
grapple with such monitoring and intervention planning tasks. For instance, the health workers at ARMMAN
must choose a subset of beneficiaries to deliver service calls each week, with the goal of maximizing the number

of beneficiaries who engage with the information program.

Solving an RMAB is PSPACE-hard in general [5]. The predominant solution techniques to RMAB problems,
is a heuristic known as the Whittle index policy, that computes a ‘Whittle index’ for each arm, that is designed
to capture the value of acting upon that arm. The policy then chooses the top k arms with the largest indices
for delivery of action. The Whittle index policy generally performs well empirically, and has been shown to be
asymptotically optimal under a technical condition called ‘indexability’. The existence of such an index policy

also hinges upon satisfying the indexability condition.

In summary, using the Whittle index policy requires two key components: (i) a fast method for computing the
index and (ii) proving that the problem satisfies indexability. Without (i) the approach can be prohibitively slow,
and without (ii) asymptotic performance guarantees are sacrificed and in fact, such an index may not exist in the
first place. Neither (i) nor (ii) are known for RMABs in general or for Collapsing Bandits, in particular. In the
following subsections, we prove nice theoretical properties on Collapsing Bandits, which help prove indexability.
Next we leverage these theoretical properties to build a fast algorithm that unlocks a 3-order-of-magnitude

speedup over existing methods and finally present empirical results.

3.1 Indexability in Collapsing Bandits

Indexability guarantees the existence and asymptotic optimality of the Whittle index approach porposed by
Whittle in [8]. Intuitively, the Whittle index captures the value of acting on an arm in a particular state

by finding the minimum subsidy m the agent would accept to not act, where the subsidy is some exogenous



Figure 3: Belief-state MDP under the policy of always being passive. There is one chain for each observation
w € {0,1} with the head marked black. Belief states deterministically transition down the chains.

“donation” of reward. Indexability, requires that for all states, the optimal action at the state cannot switch

from passive to active as m increases.

To address the potential partial observability of states in the collapsing bandit framework, we adopt the belief
state representation in our analysis. This presentation is central to our indexability results as well as the fast

computation algorithm.

3.1.1 Belief State MDP representation

In limited observability settings, belief-state MDPs have organized chain-like structures, which we will exploit.
In particular, the only information that affects our belief of an arm being in state 1 is the number of days since
that arm was last pulled and the state w observed at that time. Therefore, we can arrange these belief states
into two “chains” of length T, each for an observation w. A sketch of the belief state chains under the passive
action is shown in Fig. 3. Let b,,(u) denote the belief state, which in context of maternal health,is the probability
that the engagement state is 1 at the current time step, if the beneficiary was observed to be in state w € {0,1}
when it was acted upon, u times teps ago. Note that b, (u) is also the expected reward associated with that

belief state, and let B be the set of all belief states.

3.1.2 Indexability Theorem

DEFINITION 3.1 (INDEXABILITY). Let IT¥, be the set of policies that mazimize a given reward criterion under
subsidy m. An arm is indexable if B*(m) = {b : Vr € I m(b) = 0} monotonically increases from O to the

entire state space as m increases from —oo to co. An RMAB is indexable if every arm is indexable.

We identify the following special type of MDP policy, central to our analysis, that helps prove indexability

and also yields a fast index computation algorithm.

DEFINITION 3.2 (THRESHOLD POLICIES). A policy is a forward (reverse) threshold policy if there exists a

threshold by, such that w(b) =0 (w(b) =1) if b > by, and w(b) =1 (w(b) = 0) otherwise.

THEOREM 3.3.  If for each arm and any subsidy m € R, there exists an optimal policy that is a forward or



reverse threshold policy, the Collapsing Bandit is indexable under discounted and average reward criteria.
Proof. (Sketch)

Using linearity of the value function in subsidy m for any fixed policy, we first argue that when forward
(reverse) threshold policies are optimal, proving indexability reduces to showing that the threshold monotonically
decreases (increases) with m. Unfortunately, establishing such a monotonic relationship between the threshold
and m is a well-known challenging task in the literature that often involves problem-specific reasoning [1]. Our
proof features a sophisticated induction argument exploiting the finite size of B and relies on tools from real

analysis for limit arguments. 0O

All formal details of the complete proof can be found in [4]. We remark that Thm. 3.3 generalizes the result
in the seminal work by [1] who proved the indexability for only a special class of collapsing bandits. To bolster
our proof, we also identify conditions on the transition matrix P of the beneficiaries, under which the optimal

policy is of forward or reverse threshold type.

3.1.3 Optimality of Threshold Policies

Let P denote the MDP transition function of a beneficiary, where P, denotes the probability of transitioning
from state s to s’ when action a is taken. We theoretically identify conditions on P, which determine whether

the optimal policy for the beneficiary is of forward or reverse threshold type.

THEOREM 3.4. Consider a belief-state MDP corresponding to an arm in a Collapsing Bandit. For any subsidy

m, there is a forward threshold policy that is optimal under the condition:

(PP — P51+ B(Py — Pyy))(1 = B) > Py — Py (1)

Proof. (Sketch) Forward threshold optimality requires that if the optimal action at a belief b is passive, then
it must be so for all & > b. This can be established by requiring that the derivative of the passive action value
function is greater than the derivative of the active action value function w.r.t. b. The main challenge is to distill
this requirement down to measurable quantities so the final condition can be easily verified. We accomplish this
by leveraging properties of belief state update and using induction to derive both upper and lower bounds on

the difference in value functions of the beneficiaries in different belief states. O

Intuitively, the condition requires that the intervention effect on beneficiaries in the “non-engaging” state



must be large, making Py, — P, small.

THEOREM 3.5. Consider a belief-state MDP corresponding to an arm in a Collapsing Bandit. For any subsidy

m, there is a reverse threshold policy that is optimal under the condition:

PP — Fa)

(PLy - PR (1+ =

)< Po - P (2)

Intuitively, the condition requires small intervention effect on processes in the “non-engaging” state, the opposite
of the forward threshold optimal requirement. Note that both Thm. 3.4 and Thm. 3.5 also serve as conditions

for the average reward case as 5 — 1 (a proof based on Dutta’s Theorem [9] is given in [4]).

3.2 Fast Algorithm

Although the Whittle index is known to be challenging to compute in general [8], we are able to design an

algorithm that computes the Whittle index efficiently, using the knowledge of optimality of threshold policies.

The main algorithmic idea we use is the Markov chain structure that arises from imposing a forward threshold
policy on an MDP. A forward threshold policy can be defined by a tuple of the first belief state in each chain
that is less than or equal to some belief threshold by, € [0, 1]. In the two-observation setting we consider, this is
a tuple (thh,Xf”l)7 where X% € 1,...,T is the index of the first belief state in each chain where it is optimal
to act (i.e., the belief is less than or equal to by, ). We now drop the superscript by, for ease of exposition. See
Fig. 4a for a visualization of the transitions induced by such an example policy. For a forward threshold policy

(X0, X1), the occupancy frequencies induced for each state b, (u) are:

a ifw=0u< Xy
FED (b)) =48 ifw=1u<X (3)

0 otherwise

(X1bo(Xo)) - X1bo(Xo) 1 bo(Xo)
‘= (1—151()(01) +XU> = (1—151()(01) +XU> 1 —Obl(g(l) )

These equations are derived from standard Markov chain theory. These occupancy frequencies do not depend on
the subsidy. Let JE0X0 be the average reward of policy (Xg, X;1) under subsidy m. We decompose the average

reward into the contribution of the state reward and the subsidy

JGK0X0) =N " p XX (b) (1 — f0X) (by (X)) — FXO) (X)) (5)
beB



Figure 4: (a) Visualization of forward threshold policy (Xo = 4,X; = 3). Black nodes are the head of each chain
and grey nodes are the thresholds.

Recall that for any belief state b, (u), the Whittle index is the smallest m for which the active and passive actions
are both optimal. Given forward threshold optimality, this translates to two corresponding threshold policies
being equally optimal. We show that such policies must have adjacent belief states as thresholds. Note that for
a belief state by(X() the only adjacent threshold policies with active and passive as optimal actions at bg(Xj)
are (Xo, X1) and (Xo+1, X7) respectively. Thus the subsidy which makes these two policies equal in value must

X0, X Xo+1,X
Jr(no 1) :Jr(n 0+1,X1

necessarily be the Whittle Index for by(Xo), which we obtain by solving: ) for m. We use

this idea to construct the following fast Whittle index algorithm.

Sequential index computation algorithm Alg. 1 precomputes the Whittle index of every belief state
for each process, having time complexity O(|S|?T'N). Then, the per-round complexity to retrieve the top k
indices is O(N min{k,log(N)}). This gives a great improvement over the more general method given by Qian et
al. [10] ( state-of-the-art) which has per-round complexity of ~ O(Nlog(%)(|S|T)2+ﬁ), where log(2) is due to a
bifurcation method for approximating the Whittle index to within error e on each arm and (|S|T)2*1s is due to

the best-known complexity of solving a linear program with |S|T variables.

Alg. 1 is optimized for settings in which the Whittle index can be precomputed. However, for online learning

settings, we also give an alternative method that computes the Whittle index on-demand, in a closed form.

Algorithm 1: Sequential index computation algorithm

Initialize counters to heads of the chains: X7 =1, Xg =1
while X1 < T or Xo <T do

Compute my := m such that JT(,LXO’Xl) = J7(,LX°’X1+1)
Compute mg := m such that J§XoXn) _ j(Xo+1.X0)

Set ¢ = arg min{mo, m1} and W(X;) = min{mg, m;}
Increment X;
end




3.3 Empirical Results

We evaluate our algorithm on several domains using both real and synthetic data distributions. We test the
following algorithms: Threshold Whittle is the algorithm developed in this paper. [10], a slow, but precise
general method for computing the Whittle index, is the state-of-the-art that we improve upon. Random selects
k process to act on at random each round. Myopic acts on the k processes that maximize the expected reward
at the immediate next time step. Formally, at time t, this policy picks the k processes with the largest values
of Ab, = (by1]la =1) — (byg1la = 0). Oracle fully observes all states and uses [10] to calculate Whittle indices.
We measure performance in terms of intervention benefit, where 0% corresponds to the reward of a policy that

is always passive and 100% corresponds to Oracle. All results are averaged over 50 independent trials.
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Figure 5: (a),(b): Threshold Whittle is several orders of magnitude faster than Qian et al. and scales to thousands
of patients without sacrificing performance on realistic data. (c) Intervention benefit of Threshold Whittle is far
larger than naive baselines and nearly as large as Oracle.

Real Data Experiments We test on real data obtained for a tuberculosis medication adherence monitoring

task, analogous to the beneficiary engagement monitoring challenge we face. This tuberculosis data set contains

10



daily adherence information recorded for each real tuberculosis patient in the system, as obtained from [11]. The
“good” and “bad” states of the arm (here, patient) correspond to “Adhering” and “Not Adhering” to medication,
respectively. State transition probabilities are estimated from the data. Reward is measured as the undiscounted
sum of patients (arms) in the adherent state over all rounds, where each trial lasts 7' = 180 days (matching the
length of first-line TB treatment) with N patients and a budget of k calls per day. Recall that this setup is
analogous to the problem setting of ARMMAN, where the reward is measured as the sum of beneficiaries across
the cohort in the engaging state, and the goal is to maximize this sum, while selecting some k beneficiaries for

intervention out of a cohort of strength N, over a period of T' timesteps.

In Fig. 5a, we plot the runtime in seconds vs the number of patients N. Fig. 5b compares the intervention
benefit for N = 100, 200, 300, 500 patients and k = 10% of N. In the N = 200 case, the runtimes of a single trial
of Qian et al. and Threshold Whittle index policy are 3708 seconds and 3 seconds, respectively, while attaining
near-identical intervention benefit. Our algorithm is thus 3 orders of magnitude faster than the previous state

of the art without sacrificing performance.

We next test Threshold Whittle as the resource level k is varied. Fig. 5¢ shows the performance in the
k=5%N, k=10%N and k = 15%N regimes (N = 200). Threshold Whittle outperforms Myopic and Random

by a large margin in these low resource settings.

4. HANDLING DYNAMICALLY CHANGING BENEFICIARY COHORT

The mathematical underpinnings of the RMAB framework developed for intervention planning, assume a setting
involving an infinite time horizon (i.e., they assume the ARMMAN information programs to run forever) and,
moreover, the results are limited to settings where no new beneficiaries (or bandit arms) arrive midway during
the program. While this initial setup yields useful algorithms and reveals valuable technical insights, the static
cohorts assumption can prove to be restrictive in deploying RMABs for use by ARMMAN. To counter this issue,
we propose a new, general class of RMABs, which we call streaming restless multi-armed bandits, or S-SRMAB. In
an S-RMARB instance, the arms of the bandit are allowed to arrive asynchronously, that is, the planner observes
an incoming and outgoing stream of bandit arms. The classic RMAB (both with infinite and finite horizon) is
a special case of the SSRMAB where all arms appear (leave) at the same time. Additionally, each arm of an
S-RMAB is allowed to have its own transition probabilities, capturing the potentially heterogeneous nature of

beneficiary cohorts.

We develop new theory and algorithms to extend the benefits of our fast index computation algorithm to

the streaming case, which we present in this section as follows. We first crystallize the additional challenge to

11



address in the Streaming bandits setup. We then show that the indexability condition still holds true, even for
dynamically changing cohorts in S-RMAB. Next, we identify a key phenomenon responsible for making planning
in S-RMAB challenging and finally propose a fast algorithm that counters this, yielding a policy that is both,
inexpensive to run and displays near-optimal performance. Finally we show with empirical evaluation on real

data demonstrating the utility of our approach in planning service call interventions better for ARMMAN.

4.1 Problem Formulation

The streaming restless multi-armed bandit (S-RMAB) problem is a general class of RMAB problem where a
stream of arms arrive over time (both for finite and infinite-horizon problems). Similar to RMAB, at each time

step, the decision maker is allowed to take active actions on at most k of the available N arms.

Contrary to previous approaches that typically consider arms to all arrive at the beginning of time and stay
forever, in this setup, we consider streaming multi-armed bandits—a setting in which arms are allowed to arrive
asynchronously and have finite lifetimes. We denote the number of arms arriving and leaving the system at a
time step ¢ € [T] by X (t) and Y (¢), respectively. Each arm 4 arriving at time ¢, is associated with a fixed lifetime
L; (for example, L; can be used to represent the duration of stay of beneficiaries in the ARMMAN program,
which is known to the planner). The arm consequently leaves the system at time ¢ + L;. Thus, instead of
assuming a finite set of NV arms throughout the entire time horizon, we assume that the number of arms at any
time ¢ is denoted by the natural number N(t), and can be computed as N () = St (X (s) — Y (s)). Thus, the
goal of the planner is to decide, at each time step ¢, which k arms to pull (out of the N(¢) > k arms, relabeled

as [N(t)] each timestep for ease of representation), in order to maximize her total reward,

R=>Y"" Y ni). (6)

te[T) i€[N(t)]

4.2 Indexability in Streaming Bandits

We extend the conditions for indexability that established previously for static cohorts and infinite horizon,
to the finite horizon setting of Streaming bandits. To show indexability, we first show in Theorem 4.1, that
S-RMABSs can be reduced to a standard RMAB with augmented belief states. We build on this result and prove
another useful Lemma, both of which combined can be used to show that indexability holds for this augmented

RMAB instance, and ultimately for SSRMABs (Theorem 4.3).

Our strategy in proving indexability is as follows. First, we show that the belief state MDP of a Streaming

Bandit arm with deterministic arrival and departure time can be formulated as an augmented belief state MDP

12



of the same instance with infinite horizon. Using this, we prove that, whenever the infinite horizon problem
satisfies threshold optimality for a passive subsidy m, then the augmented belief state MDP for finite horizon
also satisfies threshold optimality. Finally, leaning on the result from previous section proving that indexability
holds whenever threshold optimality is satisfied, we imply that the Streaming Bandits problem is also indexable

whenever threshold optimality on the underlying infinite horizon problem is satisfied.

THEOREM 4.1. The belief state transition model for a 2-state Streaming Bandit arm with deterministic arrival
time T, and departure time Ty can be reduced to a belief state model for the standard restless bandit arm with

Ty + (Ty — T1)? states.

Proof Sketch. We incorporate the arrival and departure of Streaming arms by constructing a new belief model
where each state is represented by a tuple ( behavior, time-step ) where behavior may either take a value

n (0,1) or U (unavailable). Details of the proof are deferred to the supplementary material.

LEMMA 4.2. If a forward (or reverse) threshold policy 7 is optimal for a subsidy m for the belief states MDP of

the infinite horizon problem, then 7 is also optimal for the augmented belief state MDP.

Proof Sketch The proof relies on the key observation that it is never optimal to take the active action on an
arms in the (U,t) state of the augmented belief model. In this state, because the actions have no effect, both
actions are already equally optimal for a passive subsidy of m = 0, which is strictly less than the minimum

passive subsidy required when the arm is in any other state.

THEOREM 4.3. A Streaming Bandits instance is indexable when there exists an optimal policy, for each arm

and every value of m € R, that is forward (or reverse) threshold optimal policy.

Proof. Using Theorem 1 and Lemma 1, it is straightforward to see that an optimal threshold policy for infinite
horizon problem can be translated to a threshold policy for Streaming bandits instance. Moreover, using the
fact that the existence of threshold policies for each subsidy m and each arm ¢ € N is sufficient for indexability

to hold (Theorem 1 of [4]), we show that the Streaming bandit problem is also indexable. O

4.3 Index Decay Phenomenon

Despite having shown indexability, the Whittle Indices computed using Threshold Whittle in the previous section
cannot be used out-of-the-box, as those are computed assuming an infinite stay of beneficiaries in the system.
In reality however, some beneficiaries in the program may have only recently joined, while others may be
nearing completion and about to leave. This differential in the duration of stay remaining, translates to differing

impacts of calling beneficiaries and thus affect the prioritization order. We show that performance of Threshold

13



Whittle algorithm degrades when the lifetime of arms gets shorter, even when all arms start synchronously. The

performance only dwindles further if arms were to arrive asynchronously.

In this section we identify the key phenomenon responsible for this issue, that we call index decay. This effect
manifests as the beneficiaries approach the end of their stay in the program. Simply put, the Whittle index
values are low when the residual lifetime of an arm is 0 or 1. We formalize this observation in Theorem 4.4. We

use this phenomenon as an anchor to develop our algorithm (detailed in the next subsection).

THEOREM 4.4 (INDEX DECAY). Let V) 1.(b) and V,% 1.(b) be the T-step passive and active value functions

for a belief state b with passive subsidy m. Let mp be the value of subsidy m, that satisfies the equation Vfrz,T(b) =

m

Vi r(b) (i.e. mr is the Whittle Index for a residual life time of T'). Assuming indezability holds, we show that:

VT >1: mp >mq>mg=0.
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Figure 6: Whittle Indices for a belief state as computed by different algorithms. Both our algorithms capture
index decay providing good estimates.

4.4 Interpolation Algorithm

The key insight driving the design of our solution is that, by accounting for the index decay phenomenon, we
can bypass the need to solve the costly finite horizon problem. We make use of the fact that we can cheaply
compute index values for arms with residual lifetime 0 and 1, where the index decay phenomenon occurs, and for
infinite horizon bandits. Our proposed solution for computing indices for arbitrary residual lifetime is to use a
suitable functional form to interpolate between those three observations. We propose an interpolation template,
that can be used to obtain two such algorithms, one using a piece-wise linear function and the other using a

logistic function.

We establish in Theorem 4.4 that the Whittle Index for arms with a zero residual lifetime, is always zero.

Similarly, indices for arms with residual lifetime of 1 are simply the myopic indices, computed as:

Ab= (b Pjy +(1—0b) P5y) — (b Pl + (1 —b) Py)).
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Algorithm 2: Interpolation Algorithm Template

1: Pre-compute W (b, P*) Vb € B;, V i € [N], with transition matrix P’ and set of belief states B;.
Input: byyi € [0,1]Y, hnxi € [L]Y, containing the belief values and remaining lifetimes for the N arms.
Initialize Wle to store estimated Whittle Indices.
for each arm 7 in N do
Let b := Ei, h = h; and let P be #’s transition matrix.
Compute the myopic index Ab as:
Ab= (b Pfy + (1—b) Pgy) — (b Py + (1= b) Ff).
Set W;(h, Ab, W) according to one of the interpolation functions (7) or (8).
end for
9: Pull the k arms with the largest values of W.

For the linear interpolation, we assume W(h), our estimated Whittle Index, to be a piece-wise-linear function
of the horizon, h (with two pieces), capped at a maximum value of the Whittle Index for the infinite horizon
problem, corresponding to h = co. We denote Whittle Index for infinite horizon as . Note that W is simply the
‘Threshold Whittle’ index computed using the Collapsing Bandits machinery described in the previous section.
The first piece of the piece-wise-linear W(h) must pass through the origin, given that the Whittle Index is 0
when the residual lifetime is 0. The slope is determined by W(h = 1) which must equal the myopic index, given

by Ab. The second piece is simply the horizontal line y = W that caps the function to its infinite horizon value.

The linear interpolation index value is thus given by

W (h, Ab,W) = min{h Ab, W}. (7)

The linear interpolation algorithm performs well and has very low run time, as we will demonstrate in the
later sections. However, the linear interpolation can be improved by using a logistic interpolation instead. The
logistic interpolation algorithm yields moderately higher rewards in many cases for a small additional compute

time. For the logistic interpolation, we let

O

We now apply the three constraints on the Whittle Index established earlier and solve for the three unknowns
{C1,C5,C3} to arrive at the logistic interpolation model. For the residual lifetimes of 0 and 1, we have that
W (0) = 0 and W (1) = Ab. As the horizon becomes infinity, W (.) must converge to W, giving the final constraint
W(oo) = W. Solving this system yields the solution:

— Ab 1\ 7! _
Cy =2W, 0210g<<c+2) 1>,CBW.
1
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We note that both interpolations start from W =0 for h = 0 and saturate to W = W as h — oo.

We compare the index values computed by our interpolation algorithms with the exact solution by [10].
Figure 6 shows an illustrative example, plotting the index values as a function of the residual lifetime and shows

that the interpolated values agree well with the exact values.

4.5 Empirical Evaluation

We evaluate the performance and runtime of our proposed algorithms

against several baselines, using both, real as well as synthetic data dis-

—$— Qian et al. —F— Linear
—+— Logistic

tributions. LOGISTIC and LINEAR are our proposed algorithms. Similar

to previous evaluations, our main baselines are: (1) QIAN ET AL. [10],

providing a precise, but slow algorithm which accounts for the residual 9

lifetime by solving the expensive finite-horizon POMDP on each of the ; 1001

N arms and finds the k best arms to pull and (2) Threshold-Whittle g 501

(marked in figures as TW), a much faster algorithm developed in the 0%

previous section, but designed to work for infinitely long residual time () {m=—= o =

1( 2
horizons. We again include the MyYOPIC policy, that plans interven- Patient AOrOriva| Rate 00

tions optimizing for the expected reward of the immediate next time Figure 7: Linear and Logistic interpola-

step. RANDOM is a naive baseline that pulls & arms at random. tion algorithms are nearly 200x faster
than Qian et al.

Performance is again measured as the excess average intervention

benefit over a ‘do-nothing’ policy, measuring the sum of rewards over all arms and all timesteps minus the reward

of a policy that never pulls any arms. Intervention benefit is normalized to set QIAN ET AL. equal to 100% and

100 % (EALG 7ENO intervention

can be obtained for an algorithm ALG as: —Qian o AT _No Tavervention where R is the average reward. All simulation

results are measured and averaged over 50 independent trials and error bars denote the standard errors.
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Figure 8: The interpolation algorithms achieve the speedup without sacrificing on performance, while other fast
algorithms like Threshold Whittle deteriorate significantly for small residual horizons.
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Evaluation on ARMMAN data In Figures 7 and 8, we again consider the finite horizon setting with a
deterministic incoming stream of patients. In Figure 7, we plot the runtimes of our algorithms and that of
QIAN ET AL., as a function of the weekly arrival rate, X of the incoming stream. Figure 8a measures the
intervention benefits of these algorithms for these values of X. The lifetime of each arm, L is fixed to 5 weeks
and the number of resources, k is set to 10% x (XL). Each simulation was run for a total length T such that
XT = 5000, which is the total number of arms involved in the simulation. Runtime is measured as the time
required to simulate L decision timesteps. The runtime of [10] quickly far exceeds that of our algorithms. For
the X = 200 case, a single trial of QIAN ET AL. takes 106.69 seconds to run on an average, while the proposed
Linear and Logistic interpolation algorithms take 0.47 and 0.49 seconds respectively, while attaining virtually
identical intervention benefit. Threshold Whittle, while being similarly fast, assumes an infinite residual horizon,
and consequently suffer a severe degradation in performance for such short residual horizons. Our algorithms

thus manage to achieve a dramatic speed up over existing algorithms, without sacrificing on performance.

In Figure 8b, we consider an S-RMAB setting, in which arms continuously arrive according to a deterministic
schedule, and leave after staying on for a lifetime of L, which we vary on the x-axis. We also study the isolated
effects of small lifetimes and asynchronous arrivals separately as well as performance in settings with stochastic
arrivals. Across the board, we find that the performance of TW degrades as the lifetime becomes shorter and
that this effect only exacerbates with asynchronous arrivals. The performance of our algorithms remains at par

with QIAN ET AL., in all of the above.

5. REAL-WORLD DEPLOYMENT CHALLENGES

Despite the significant algorithmic contributions of existing RMAB literature, these works have remained confined
to their theoretical significance because they assume the transition parameters underpinning the RMAB to be
available as an input. However, these transition parameters of real-world beneficiaries such as pregnant mothers
are not just unknown, but also hard to infer in practice. To address this issue, we use clustering techniques that
exploit historical data Dy,qi, of beneficiaries, to estimate an offline RMAB problem instance relying solely on

the beneficiaries’ static features and state transition data.

Clustering also helps solve the issue of limited samples (time-steps) available per beneficiary. While there
is limited historical service call data (active transition samples) for any single beneficiary, clustering on the
beneficiaries allows us to combine their data to infer transition probabilities for the entire group. Clustering
offers the added advantage of reducing computational cost for resource limited NGOs; because all beneficiaries

within a cluster share identical transition probability values, we can compute their Whittle indices all at once.
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5.1 PPF Clustering

The key motivation here is to group together beneficiaries with similar transition behaviors, irrespective of their
features. To this end, we use k-means clustering on passive transition probabilities (to avoid issues with missing
active data) of beneficiaries in Dyy.qin, and identify cluster centers. We then learn a map ¢ from the feature
vector f to the cluster assignment of the beneficiaries that can be used to infer the cluster assignments of new

beneficiaries at test-time solely from f. We use a random forest model as ¢.

5.2 Evaluation of Clustering Method

In [7], we compare against additional three clustering methods, suitable for our application and find the PPF

clustering method performs the best. We compare against the following alternative clustering methods:

1. Features-only Clustering (FO): This method relies on the correlation between the beneficiary feature
vector f and their corresponding engagement behavior. We employ k-means clustering on the feature vector f of
all beneficiaries in the historic dataset Dy,.q;n, and then derive the representative transition probabilities for each
cluster by pooling all the (s, , s’) tuples of beneficiaries assigned to that cluster. At test time, the features f of
a new, previously unseen beneficiary in D;.s; map the beneficiary to their corresponding cluster and estimated

transition probabilities.

2. Feature + All Probabilities (FAP) In this 2-level hierarchical clustering technique, the first level uses a
rule-based method, using features to divide beneficiaries into a large number of pre-defined buckets, B. Transition
probabilities are then computed by pooling the (s, a, s") samples from all the beneficiaries in each bucket. Finally,
we perform a k-means clustering on the transition probabilities of these B buckets to reduce them to k clusters
(k < B). However, this method suffers from several smaller buckets missing or having very few active transition

samples.

3. Feature + Passive Probabilities (FPP): This method builds on the FAP method, but only considers
the passive action probabilities to preclude the issue of missing active transition samples.
5.2.1 Comparison against Baselines

We use a historical dataset, Dy qin from ARMMAN consisting of 4238 beneficiaries in total, who enrolled into
the program between May-July 2020. We compare the clustering methods empirically, based on the criteria

described below.
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(a) FO clustering (b) FPP clustering (c) FAP clustering (d) PPF clustering

Figure 9: Comparison of passive transition probabilities obtained from different clustering methods with cluster
sizes k = {20,40} with the ground truth transition probabilities. Blue dots represent the true passive transition
probabilities for every beneficiary while red or green dots represent estimated cluster centres.

1. Representation: Cluster centers that are representative of the underlying data distribution better
resemble the ground truth transition probabilities. This is of prime importance to the planner, who must rely
on these values to plan actions. Fig 9 plots the ground truth transition probabilities and the resulting cluster
centers determined using the proposed methods. Visual inspection reveals that the PPF method represents the
ground truth well, as is corroborated by the quantitative metrics of Table 1 that compares the RMSE error

across different clustering methods.

2. Balanced cluster sizes: A low imbalance across cluster sizes is desirable to preclude the possibility
of arriving at few, gigantic clusters which will assign identical whittle indices to a large groups of beneficiaries.
Working with smaller clusters also aggravates the missing data problem in estimation of active transition prob-
abilities. Considering the variance in cluster sizes and RMSE error for the different clustering methods with

k = {20,40} as shown in Table 1, PPF outperforms the other clustering methods and was chosen for the pilot

study.
Clustering Average RMSE Standard Deviation
Method k=20 | k=40 | k=20 | k=40
FO 0.229 0.228 143.30 74.22
FPP 0.223 0.222 596.19 295.01
FAP 0.224 0.223 318.46 218.37
PPF 0.041 0.027 145.59 77.50

Table 1: Average RMSE and cluster size variance over all beneficiaries for different methods. Total Beneficiaries
= 4238, pgo = 211.9, p4p = 105.95 (u = average beneficiaries per cluster)

Next we turn to choosing x, the number of clusters: as k grows, the clusters become sparse in number of
active samples aggravating the missing data problem while a smaller x suffers from a higher RMSE. We found

k = 40 to be the optimal choice for the pilot study.

Finally, we adopt the Whittle solution approach for RMABs to plan actions and pre-compute all of the
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possible 2 x k index values that beneficiaries can take (corresponding to combinations of x possible clusters and
2 states). The indices can then be looked up at all future time steps in constant time, making this an optimal

solution for large scale deployment with limited compute resources.

As we prepared this RMAB system for real-world use, there was as an important observation for social
impact settings: real-world use also required us to carefully handle several domain specific challenges, which were
time consuming. For example, despite careful clustering, a few clusters may still be missing active probability
values, which required employing a data imputation heuristic. Moreover, there were other constraints specific
to ARMMAN, such as a beneficiary should receive only one service call every 1 weeks, which was addressed by

introducing “sleeping states” for beneficiaries who receive a service call.

6. FIELD TRIAL AND REAL-WORLD EVALUATION
6.1 Pilot Study Results

In this first-of-its-kind such effort, we ran a real-world trial in partnership with ARMMAN, implementing our
RMAB algorithm for selecting beneficiaries for service call delivery. We ran a field trial involving 23,003 new and
expectant mothers over a period of 7 weeks. These mothers were uniformly and equally divided into three groups
— (1) RMAB, where serive calls were delivered according to our algorithm (2) Round Robin, where the exact
same number of service calls were delivered to beneficiaries selected according to a set order and (3) Current
Standard of Care (CSOC) exercising ARMMAN’s current mode of operation without service calls. Of the total
~ 7668 beneficiaries per group, an average of 225 women received service calls per week in the RMAB and
Round Robin groups. The ARMMAN staff performing service calls were blind to the experimental groups that
the beneficiaries belonged to. Beneficiaries across all three groups receive the same automated voice messages
regarding pregnancy and post-birth care throughout the program, and no health related information was withheld
from any beneficiary. Because engagement generally dwindles over time, we measured the effectiveness of the

service calls in terms of the number of engagement drops prevented, in comparison to CSOC.

In Figure 10a, real-world numbers from the experiment show that the RMAB algorithm prevents a total
622 instances of missed engagement with the automated health messages at the end of 7 weeks, as compared to
CSOC, which sees a total of 1944 missed engagements. In other words, the RMAB algorithm prevents 32% of
the engagement drops seen by the CSOC group. We also show statistical significance in the improvement in the
engagement behavior offered by the RMAB algorithm. These encouraging results ratify that our algorithms are

not limited to theoretical significance on the whiteboard, but can be translated to actual social impact at scale.
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Figure 10: (a) RMAB prevents a much higher number of engagement drops than the baseline. (b) RMAB
allocates service calls to more non-engaging beneficiaries than the baseline. (c¢) Success rate of RMAB algorithm
is higher in converting non-engaging beneficiaries of week 1 to the engaging state by week 7 upon delivery of
service calls.
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Figure 11: (a) RMAB prevents a much higher number of engagement drops than the baseline. (b) RMAB
allocates service calls to more non-engaging beneficiaries than the baseline. (c¢) Success rate of RMAB algorithm
is higher in converting non-engaging beneficiaries of week 1 to the engaging state by week 7 upon delivery of
service calls.

6.2 Statistical Significance

To investigate the benefit from use of RMAB policy over policies in the RR and CSOC groups, we use regression
analysis [12]. Specifically, we fit a linear regression model to predict number of cumulative engagement drops at
week 7 while controlling for treatment assignment and covariates specified by beneficiary registration features.

The model is given by:

J
Y;=k+ BT+ Y i +e
=1

where for the iy, beneficiary, Y; is the outcome variable defined as number of cumulative engagement drops at
week 7, k is the constant term, (8 is the treatment effect, T; is the treatment indicator variable, x; is a vector
of length J representing the iy, beneficiary’s registration features, v; represents the impact of the ji, feature
on the outcome variable and ¢; is the error term. For evaluating the effect of RMAB service calls as compared

to CSOC group, we fit the regression model only for the subset of beneficiaries assigned to either of these two
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RMAB | RR vs | RMAB
vs CSOC | vs RR
CSOC

32.0% 5.2% 28.3%

% reduction in cu-
mulative engagement

drops
p-value 0.044* 0.740 0.0987
Coefficient -0.0819 -0.0137 | -0.0068

Table 2: Statistical significance for service call policy impact at week 7 is tested using a linear regression model.
We use: *p < 0.05; Tp < 0.1
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Figure 12: Distributions of clusters picked for service calls by RMAB and RR are significantly different. RMAB
is very strategic in picking only a few clusters with a promising probability of success, RR displays no such
selection.

groups. T; is set to 1 for beneficiaries belonging to the RMAB group and 0 for those in CSOC group. We repeat

the same experiment to compare RR vs CSOC group and RMAB vs RR group.

The results are summarized in Table 2. We find that RMAB has a statistically significant treatment effect
in reducing cumulative engagement drop (negative 5,p < 0.05) as compared to CSOC group. However, the
treatment effect is not statistically significant when comparing RR with CSOC group (p = 0.740). Additionally,
comparing RMAB group with RR, we find 8, the RMAB treatment effect, to be significant (p < 0.1). This shows
that RMAB policy has a statistically significant effect on reducing cumulative engagement drop as compared to
both the RR policy and CSOC. RR fails to achieve statistical significance against CSOC. Together these results
illustrate the importance of RMAB’s optimization of service calls, and that without such optimization, service

calls may not yield any benefits.
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6.3 Understanding RMAB Strategy

We analyse RMAB'’s strategic selection of beneficiaries in comparison to RR using Figure 12, where we group
beneficiaries according to their whittle indices, equivalently their (cluster, state). Figure 12 plots the fre-
quency distribution of beneficiaries (shown via corresponding clusters) who were selected by RMAB and RR in
the first two weeks. For example, the top plot in Figure 12a shows that RMAB selected 60 beneficiaries from
cluster 29 (NE state). First, we observe that RMAB was clearly more selective, choosing beneficiaries from
just four (Figure 12a) or seven (Figure 12b) clusters, rather than RR that chose from 20. Further, we assign
each cluster a hue based on their probability of transitioning to engaging state from their current state given a
service call. Figure 12 reveals that RMAB consistently prioritizes clusters with high probability of success (blue
hues) while RR deploys no such selection; its distribution emulates the overall distribution of beneficiaries across

clusters (mixed blue and red hues).

Furthermore, Figure 11a further highlights the situation in week 1, where RMAB spent 100% of its service
calls on beneficiaries in the non-engaging state while RR spent the same on only 64%. Figure 11b shows that
RMAB converts 31.2% of the beneficiaries shown in Figure 11a from non-engaging to engaging state by week 7,
while RR does so for only 13.7%. This further illustrates the need for optimizing service calls for them to be

effective, as done by RMAB.

7. LESSONS LEARNED AND FUTURE VISION

Our work in deploying RMABs for maternal healthcare offered several key lessons on the way, to be adopted
in my future research endeavors for social impact [7]. First, partnerships with NGOs including field-visits and
beneficiary-focused discussion about the challenges faced reveals unique and fundamental research questions to be
addressed before transitioning the technology from the whiteboard to actual impact on the ground. Second, data
and compute limitations faced by non-profits are genuine research challenges preventing them from benefiting
from the existing technology. Finally, in deploying AT methods for social impact, there may be several technical

challenges that don’t need innovative solutions, but are critical barriers to large-scale deployment.

It was very gratifying to hear feedback from Dr. Aparna Hedge, founder of ARMMAN, who says “We have
seen that when women listen to the information, the health outcomes are phenomenal. We are able to reach out
to more and more women each week, bring them back into the fold and save lives because of AI”. A mother of
a 5-year old enrolled with ARMMAN;, vouches “They explained the benefits of listening to the messages. Now
I listen to the calls regularly, it feels like someone from your own family is looking after you. I follow all advice

and take good care of my baby”.
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Figure 13: During an in-person discussion with ARMMAN staff and healthworkers

Encouraged by these results, our vision is to work with ARMMAN and roll out the Al-powered algorithm
to 1 million women. I am also involved in other ongoing efforts exploring ideas such as decision-focused learn-
ing to improve the quality of recommendations or building agent-based simulators to use as a test-bed with

instantaneous turnaround time for evaluation before deploying an algorithm in the real-world.

In addition to my technical work, I am also very enthusiastic and passionate about encouraging research,
focused on social good. I co-organize Pasteur’s Quadrant Seminar Series, a student-run multi-institutional, multi-
country initiative that spotlights Al for social good work and builds a community of practitioners in this space.
I’ve also co-organized the Harvard CRCS Rising Stars workshop and speaker series, highlighting prominent work
in this space. To work in close collaboration with partner organizations, I've also taken up field trips in the past,
visiting ARMMAN at their office in Mumbai and interacting with the health workers, including a recent visit
in July this year. Previously, I've also organized and participated in Al and Tuberculosis workshops in Mumbai

and met with the city TB officers and health workers in my other research.

8. CONCLUSION

Our project is focused on using optimization and planning techniques to tackle public health challenges in low-
resources settings, specifically, those faced by non-profits working towards improving maternal and child health.
The widespread use of cell-phones, particularly in the global south, has enabled non-profits to launch massive

programs delivering key health messages to a broad population of beneficiaries in a cost-effective manner.

We innovate fundamental technical advances in RMABs that enable building a system to assist these non-

profits in optimizing their limited service resources. We present results from a real-world evaluation of our
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system, conducted in partnership with ARMMAN, an India-based NGO. To the best of our knowledge, ours is

the first study to build and demonstrate the effectiveness of such RMAB-based resource optimization in real-

world public health contexts. These encouraging results have led to the transition of our RMAB software to

ARMMAN for real-world deployment. We hope this work paves the way for use of RMABs in many other health

service applications.
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