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Abstract

The field of artificial intelligence (AI) has garnered increasing attention in the realms of public
health and conservation due to its potential to characterize complex dynamics and facilitate difficult
decision-making. My research focuses on developing AI solutions, utilizing machine learning and
optimization techniques, to provide actionable decisions for deployment and create positive social
impact. This endeavor necessitates the integration of new algorithmic and learning paradigms, com-
bining machine learning techniques to extract knowledge from data and optimization techniques
to leverage domain knowledge and scale up to larger problem sizes. In this thesis, I present method-
ological and theoretical contributions in the integration of optimization into machine learning
problems, including supervised learning, online learning, and multi-agent systems, with the aim of
improving learning performance and scalability by harnessing the knowledge encoded in optimiza-
tion tasks. Notably, this thesis introduces the first decision-focused learning to integrate sequential
problems into the learning pipeline to provide feedback from decision-making processes and signif-
icantly reduce computation costs, thus enabling applications in large-scale public health problems.
The proposed algorithm has been successfully applied in a field study and deployment in a maternal
and child health program, marking the first successful implementation of decision-focused learning
in the real world. Currently, the proposed algorithm is used by over 100,000 beneficiaries in India to
enhance engagement with health information and translate algorithmic contributions into tangible
social impact.
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1
Introduction

We are confronted with numerous global challenges, particularly in the areas of public health and

environmental sustainability, which disproportionately affect the most vulnerable populations.

For instance, maternal health and maternal mortality during pregnancy239,62, recognized as one

of the United Nations’ sustainability goals in health, poses a significant threat to under-resourced

communities in the United States157,139,67 and the Global South266,239,7. Similarly, illegal poach-

ing and illegal wildlife trade have had severe consequences on wildlife population and biodiver-
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sity364,343,28,16,314. As the poaching and smuggling crisis continues to devastate populations of

endangered animals, the implementation of protections for these species becomes of utmost im-

portance83,220,74,63.

In order to address the magnitude of large-scale societal challenges, scientists have invested a sig-

nificant amount of effort in finding actionable solutions to act on the problems of interest. For

instance, in the field of maternal health, interventions such as iron and folic acid supplements have

been shown to reduce the risk of premature birth277,8 and the likelihood of having a child with

spina bifida138,104,22. In the realm of conservation, patrolling efforts in national parks serve as a

deterrent against poaching and smuggling activities99,221,336,253. All of these works showcase the

power of intervention and public policy on public health and conservation.

The aforementioned success in customized intervention and public policy motivates scientists

to study how to scale up the impact using AI. We have seen how AI has been used in various indus-

trial and societal applications to suggest actionable decisions and maximize desired performance.

For example, AI has been used in digital marketing to decide how to allocate limited advertisement

resources to maximize revenue under constraints and uncertainty188,86,61. AI has also been used

in urban planning and smart cities to optimize traffic design and urban development decisions un-

der resource constraints and regulations352,344,76. These AI applications leverage machine learning

to quantify uncertainty and characterize knowledge based on available data, and formulate opti-

mization and decision-making processes based on domain experts’ knowledge to suggest actionable

decisions.

However, in public health and environmental sustainability, collecting data is expensive and

time-consuming, leading to the issue of limited data in machine learning that is difficult to learn a

meaningful model and extract useful knowledge. Furthermore, decision making in public health

and environmental sustainability can be entangled by constraints and multiple self-interested agents

involved, posing an additional question on how to properly formulate optimization problems to
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find optimal decisions using knowledge learned frommachine learning. The combined challenges

of limited data, complex decision-making processes, and the involvement of multiple agents hinder

the integration of AI components for designing data-driven decision-making solutions in public

health and environmental sustainability. Therefore, the main research question of this thesis is:

How to design AI solutions using machine learning and optimization in public

health and environmental sustainability?

In my thesis, I delve into the study of machine learning algorithms to quantify uncertainty and

knowledge based on limited data using machine learning and design scalable algorithms to translate

knowledge obtained from data into actionable decisions using optimization. I aim to design effec-

tive machine learning and optimization algorithms to address the challenges posed by uncertainty

and resource constraints in tackling large-scale societal issues. As shown in Figure 1.1, The public

health and environmental sustainability problems studied in this thesis include:

• Maternal health: I study improving access and engagement to maternal health information

through learning mothers’ engagement behavior and allocating limited health workers to

provide further assistance. My algorithm on integrating machine learning and optimization

led to a real-world deployment to the mobile maternal health program in India used by more

than 100,000 mothers with a 30%more improvement on the engagement to health informa-

tion.

• Wildlife conservation: I study predicting poaching risk of different locations in national

parks based on terrain features and historical poaching data to determine how to assign lim-

ited park rangers and patrol resources with patrol route recommendations. I also study col-

laboration between park rangers and patrol posts by designing mechanism to incentivize

collaboration without communication.
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(a)Maternal and child health using
AI to predict engagement to health
information and schedule health
workers to provide assistance. Photo
taken by Kai Wang during the field
trip in Mumbai, India.

(b)Wildlife conservation using AI
to predict poaching risk in national
parks and optimize patrol routes to
maximize patrol performance. Photo
taken by Lily Xu during her field trip
in Cambodia.
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(c) Epidemiology using AI to forecast
adherence and disease transmission
parameters in agent‐based modeling
and compartment models, and
solving optimization to recommend
intervention strategies.

Figure 1.1: I study maternal health, wildlife conservation, and epidemiology by designing machine learning and optimiza‐
tion solutions in the data‐to‐deployment pipeline.

• Epidemiology and tuberculosis adherence: I study the problem of learning adherence

behavior to tuberculosis medication based on historical data and scheduling health workers

to call or physically visit patients to encourage adherence.

1.1 Problem Statement

To holistically answer the research question in public health and environmental sustainability, as

illustrated in Figure 1.2, I study the data-to-deployment pipeline to develop data-driven decision-

making AI solutions. The pipeline involves several key steps. Firstly, data relevant to the targeted

problem is utilized to train machine learning algorithms, enabling the construction of an accurate

model to characterize the problem of interest. Secondly, leveraging the constructed model and con-

sidering limited intervention resources, the resource allocation problem is formulated as an opti-

mization challenge, aimed at optimizing the intervention performance and decision quality. Finally,

in collaboration with domain experts and organizations, the suggested intervention decision is thor-

oughly examined and, upon validation, deployed in the field with multiple parties involved to create
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Figure 1.2: The data‐to‐deployment pipeline that is commonly used in AI, data science, and societal challenges.

social impact.

This data-to-deployment pipeline is widely applicable across various industrial and societal do-

mains. For example, it can be employed in maternal health programs to analyze historical data on

mothers’ engagement behavior and determine appropriate interventions211,10,174. It can also be uti-

lized in wildlife conservation programs to predict and allocate patrol resources for areas at risk of

illegal poaching activities349,253. In epidemiology modeling, the pipeline can be used to fit disease

models with parameters and optimize intervention design153,118. Additionally, it can aid in solving

routing problems by fitting traffic predictive models and finding optimal routes317,229, as well as

in designing advertisement and recommendation systems that learn user preferences and provide

suitable recommendations275,261.

1.2 Challenges

Designing algorithms and individual components for the data-to-deployment pipeline poses a num-

ber of technical challenges. I summarize a list of topics studied in this thesis below:

• Learning in the presence of optimization: In the realm of public health and environmen-

tal conservation, machine learning and optimization play vital roles in transforming data

into actionable decisions for implementation. However, traditional supervised learning

techniques primarily rely on comparing predictions with ground truth labels to define ac-

curacy metrics or loss functions. In contrast, optimization and decision-making processes
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prioritize the quality of proposed decisions than accuracy metrics. This discrepancy in ob-

jectives between machine learning and optimization introduces a potential gap in the data-

to-deployment pipeline. This objective mismatch issue is pervasive in various AI and data

science challenges that involve the joint utilization of machine learning and optimization to

convert data into actionable decisions.

• Data exploration and exploitation: In addition to machine learning and optimization,

there is often an opportunity to collect new data during the deployment of new decisions.

This access to fresh data enables exploration of decisions and features that may not be ade-

quately represented in the training data. However, it is also essential to strike a balance be-

tween exploration and exploitation, as we strive to ensure that the selected decisions result in

good overall performance, rather than being purely exploratory. This tradeoff between explo-

ration and exploitation arises in the data-to-decision pipeline, involving various optimization

and decision-making processes. Our objective is to comprehensively understand how to de-

sign online learning algorithms that effectively incorporate both the machine learning and

optimization components.

• Optimization in multi-agent systems: In real-world societal challenges, decision-making

processes frequently entail the involvement of multiple self-interested agents. It is crucial

to thoroughly investigate the interactions among these agents and the optimization prob-

lems that arise in multi-agent systems. In particular, the development of scalable solutions to

effectively address optimization challenges in multi-agent systems is a key area of focus.

The main objective of this thesis is to comprehensively investigate the impact of optimization

on various components within the data-to-decision pipeline, and to develop scalable algorithms

that seamlessly integrate optimization with machine learning and data collection processes. While

individual artificial intelligence components in the data-to-deployment pipeline have been thor-
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Figure 1.3: I collaborated with ARMMAN to deploy my decision‐focused learning algorithm that integrates machine learn‐
ing and optimization to the mobile health program with ARMMAN, and the algorithm is used by more than 100,000
people in India with a 30% more improvement in health information engagement. During the field study, I visited the
ARMMAN office (left) and the region where ARMMAN operates the maternal mobile health program to serve under‐
resourced communities in Mumbai, India (middle). I followed the health workers to physically visit the families enrolled
in the health program (right). The health workers talked to mothers and provided preventive care information and assis‐
tance to increase access to health information and reduce maternal and child mortality/morbidity.

oughly researched in diverse applications, the holistic integration of these components has received

relatively less attention. By incorporating optimization into machine learning, data collection, and

multi-agent systems, domain-specific solutions can be designed to effectively handle diverse con-

straints and knowledge in different application domains, such as public health and environmental

sustainability. This thesis addresses the potential challenges and essential components involved in

creating data-driven decision-making solutions for deployment in these fields. From a technical

standpoint, the integration of optimization poses new challenges in effectively and efficiently blend-

ing optimization techniques with machine learning, data collection, and multi-agent systems. This

thesis establishes the algorithmic foundations for machine learning and other AI techniques in the

presence of various optimization problems and decision-making processes. As a whole, this thesis

summarizes the pivotal role of optimization in the data-to-deployment pipeline and showcases its

applications in public health and environmental sustainability.
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1.3 Thesis Outline

This thesis is divided into three parts, which corresponds to three different gaps in the data-to-

deployment pipeline in Figure 1.4.

• Part I (learning in the presence of optimization) studies the integration of machine learn-

ing and optimization problems to produce actionable and quality-aware solutions in public

health and wildlife conservation.

• Part II (optimization in online learning) studies using optimization to design online learn-

ing algorithms to simultaneously collect data and ensure better theoretical guarantees in

public health challenges.

• Part III (optimization in multi-agent systems) studies decision making in multi-agent

systems via Stackelberg games to design scalable and approximate solutions for wildlife con-

servation.

The chapters in this thesis are based on materials in the publications321,323,320,324,327,311,322,325,319,326.

Each chapter includes a related work section to summarize the prior work on the related topics. Fig-

ure 1.4 and below summarize the contributions of chapters covered in each part.

1.3.1 Part I: Learning in the Face of Optimization

Effective data-driven decision making requires alignment of machine learning and optimization in

the data-to-decision pipeline, but unfortunately most use cases consider the two steps separately.

For example, in my collaboration on the maternal health challenge with an Indian non-government

organization ARMMAN, we first predict the behavior of expecting and newmothers from histor-

ical data, and then optimize limited number of service calls from ARMMAN’s call center to boost

engagement with their health information program. However, machine learning and optimization
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Figure 1.4: The figure summarizes the gaps in the data‐to‐deployment pipeline. Part I discusses the objective mismatch
gap between machine learning and optimization. Part II discusses the challenge of using optimization to design data
collection algorithms to improve online learning performance. Part III discusses the scalability challenges of optimization
in multi‐agent systems and how to design scalable approximate algorithms.

operate separately, and their objectives are often misaligned: machine learning seeks to maximize

predictive accuracy, while optimization seeks to optimize decision quality. Improved predictive ac-

curacy does not necessarily result in better decision quality, producing a mismatch, as we truly care

about producing the best decisions possible. My research focuses on fixing this misalignment of

objectives by integrating machine learning and optimization problems via decision-focused learning

(DFL) as shown in Figure 1.5. Specifically, (i)Chapter 2 andChapter 3 generalize decision-focused

learning to sequential decision problems, followed by a field study result summarized inChapter 4,

and (ii)Chapter 5 andChapter 6 highlight and alleviate the scalability issue in decision-focused

learning.

Decision-focused learning in sequential decision problems

Many public health problems involve sequential decision making to maximize long-term perfor-

mance. However, the existing decision-focused learning algorithms only work for non-sequential

optimization problems with explicit optimality conditions.

Chapter 2 delves into the implicit optimality conditions in sequential decision problems, treat-

ing them as implicit fixed-point equations. This leads to a novel technique for differentiating through
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Figure 1.5: Decision‐focused learning uses the decision quality of the optimization problem to train the machine learn‐
ing model.

optimal solutions of sequential decision problems using the implicit function theorem and the pol-

icy gradient theorem from reinforcement learning literature, establishing the differentiability of

sequential problems and decision-focused learning in such scenarios.

Chapter 3 focuses on restless multi-armed bandits (RMABs), a specific category of sequential

decision problems used to model the effect of sequential treatments in public health. Integrating

RMABs into the learning tasks for decision-focused learning in public health is challenging due

to the inherent computational complexity of solving RMABs optimally. However, this chapter

resolves this computational issue by using an approximate index-based solution that can be solved

in polynomial time. Furthermore, this chapter demonstrates the differentiability of the index-based

solution, successfully enabling decision-focused learning in RMAB problems.

Field study in maternal and child health

Chapter 4 covers the real-world field study result of decision-focused learning in the maternal and

child health challenge formulated as a restless multi-armed bandit problem. I have collaborated

with ARMMAN to study the maternal health challenge and boost engagement with their mobile

health information program by optimizing service calls. We conducted a field study to compare the
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proposed decision-focused learning algorithm with other non-decision-focused learning algorithms

on a cohort of 9000 beneficiaries registered between April 2022 to June 2022. Our decision-focused

learning algorithm significantly outperforms the non-decision-focused learning algorithm. This

result has led to the first real-world deployment of decision-focused learning with ARMMAN; with

estimated 100,000 beneficiaries in under-resourced communities benefiting from using decision-

focused learning in boosting engagement with ARMMAN’s health program.

Scalability of decision-focused learning

Decision-focused learning was previously proposed to train predictive models that maximize deci-

sion quality in downstream optimization tasks. However, integrating optimization into the learning

process requires repeatedly solving and backpropagating through the optimization problem at every

gradient step, which can quickly become computationally intractable as the problem size grows even

in the non-sequential setting.

Chapter 5 proposes subsampling decision variables of optimization problems to reduce the di-

mensionality of the optimization problem in decision-focused learning, with an approximation

guarantee on gradient estimate.

Chapter 6 presents a method that uses a lower-dimensional surrogate problem constructed from

the original problem with a closed-form expression to reduce the dimensionality and the optimiza-

tion cost.

All of these methods effectively reduce the computation cost of decision-focused learning, en-

abling real-world applications by achieving cubic reduction in computation overhead.
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1.3.2 Part II: Optimization in Online Learning

Data collection plays a crucial role in the performance of wildlife conservation and public health ef-

forts. In my research, I investigate various types of multi-armed bandit (MAB) problems, where the

learner repeatedly queries to learn and optimize the rewards from interactions. Specifically, I focus

on stochastic MABs and restless MABs, which are motivated by the domains of wildlife conserva-

tion and public health, respectively.

Chapter 7 investigates a stochastic MAB problem with a fixed budget, where multiple arms are

pulled to receive feedback at each time step. Unlike standard combinatorial MABs, in this scenario,

we observe additive feedback from each arm, which contributes to the final reward metric. For exam-

ple, in wildlife conservation, we observe rewards from each patrol location, or in public health, we

observe the tuberculosis treatment effect in individual districts of a large state. I demonstrate that

the additive decomposed feedback helps reduce uncertainty in Gaussian process regression and en-

ables faster convergence. This leads to the development of an online algorithm called decomposed-

GP-UCB for stochastic MAB problems with continuous pulling actions.

Chapter 8 studies restless multi-armed bandits (RMABs) as an extension of MABs to under-

stand the impact of sequential decisions in public health. I propose an online algorithm that lever-

ages the temporal dependency in RMABs to learn the unknown transition dynamics, such as treat-

ment effects and long-term health impacts. The algorithm yields a frequentist regret bound of

O(
√
T logT), which generalizes the state-of-the-art Bayesian regret bound to a broader range of

RMAB problems.

Chapter 9 extends the concept of decomposed feedback inMAB problems to non-additive de-

composed feedback in online combinatorial optimization problems. I propose an online algorithm

that uses a predictive model to achieve a sublinear regret guarantee in online combinatorial opti-

mization problems. The result highlights the benefits of utilizing decomposed feedback in online
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combinatorial optimization, a generalized version of MAB problems, to improve regret bounds.

1.3.3 Part III: Optimization inMulti-agent Systems

Real-world challenges often involve multiple roles with different interests and require sequential

decision making. For instance, in wildlife conservation, patrollers in national parks must choose a

patrol strategy to protect endangered wildlife, while poachers respond to the patrol plan to launch

attacks on animals. Part III focuses on using Stackelberg games to understand sequential decision

making in multi-agent systems and design scalable algorithms for efficient computation of near-

optimal equilibria.

Chapter 10 studies Stackelberg games with multiple followers, each having their own interests.

I propose a technique to differentiate through the equilibrium reached by multiple followers, esti-

mating the gradient of the leader’s payoff obtained from the equilibrium. This method results in the

first gradient-based algorithm for solving Stackelberg games with multiple followers, which outper-

forms the standard bilevel formulation for solving Stackelberg games.

Chapter 11 focuses on Stackelberg games with different response models for the followers, and

develops algorithms for defending against attackers with varying behaviors. I propose equilibrium

refinement algorithms for Stackelberg games with arbitrary resource constraints, which identifies

robust solutions against potential uncertainty in the response behavior of followers. This algorithm

can be applied to applications such as scheduling security resources to protect vulnerable targets.
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2
Decision-focused Learning in Sequential

Decision Problems

2.1 Introduction

Predict-then-optimize91,33 is a framework for solving optimization problems with unknown parame-

ters. Given such a problem, we first train a predictive model to predict the missing parameters from
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problem features. Our objective is to maximize the resulting decision quality when the optimization

problem is subsequently solved with the predicted parameters274,237. Recent work on the decision-

focused learning approach80,338 embeds the optimization problem12,3,32 into the training pipeline

and trains the predictive model end-to-end to optimize the final decision quality. Compared with

a more traditional “two-stage” approach which maximizes the predictive accuracy of the model

(rather than the final decision quality), the decision-focused learning approach can achieve a higher

solution quality and generalize better to unseen tasks.

This paper studies the predict-then-optimize framework in sequential decision problems, for-

mulated as Markov decision processes (MDPs), with unknown parameters. In particular, at train-

ing time, we are given trajectories and environment features from “trainingMDPs.” Our goal is to

learn a predictive model which maps from environment features to missing parameters based on

these trajectories that generalizes to unseen test MDPs that have features, but not trajectories. The

resulting “predicted” training and test MDPs are solved using deep reinforcement learning (RL) al-

gorithms, yielding policies that are then evaluated by offline off-policy evaluation (OPE) as shown

in Figure 2.1. This fully offline setting is motivated by real-world applications such as wildlife con-

servation and tuberculosis treatment where no simulator is available. However, such domains offer

past ranger patrol trajectories and environmental features of individual locations from conservation

parks for generalization to other unpatrolled areas. These settings differ from those considered in

transfer-RL234,299,187,276 and meta-RL318,82,100,363,330 because we generalize across different MDPs

by explicitly predicting the mapping function from features to missing MDPs parameters, while

transfer/meta RL achieve generalization by learning hidden representation of different MDPs im-

plicitly with trajectories.

The main contribution of this paper is to extend the decision-focused learning approach to

MDPs with unknown parameters, embedding the MDP problems in the predictive model train-

ing pipeline. To perform this embedding, we study two common types of optimality conditions in
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MDPs: a Bellman-based approach where mean-squared Bellman error is minimized, and a policy

gradient-based approach where the expected cumulative reward is maximized. We convert these opti-

mality conditions into their corresponding Karush–Kuhn–Tucker (KKT) conditions, where we can

backpropagate through the embedding by differentiating through the KKT conditions. However,

existing techniques from decision-focused learning and differentiating through KKT conditions do

not directly apply as the size of the KKT conditions of sequential decision problems grow linearly

in the number of states and actions, which are often combinatorial or continuous and thus become

intractable.

We identify and resolve two computational challenges in applying decision-focused learning to

MDPs, that come up in both optimality conditions: (i) the large state and action spaces involved in

the optimization reformulation make differentiating through the optimality conditions intractable

and (ii) the high-dimensional policy space in MDPs, as parameterized by a neural network, makes

differentiating through a policy expensive. To resolve the first challenge, we propose to sample an

estimate of the first-order and second-order derivatives to approximate the optimality and KKT

conditions. We prove such a sampling approach is unbiased for both types of optimality condi-

tions. Thus, we can differentiate through the approximate KKT conditions formed by sample-based

derivatives. Nonetheless, the second challenge still applies—the sampled KKT conditions are expen-

sive to differentiate through due to the dimensionality of the policy space when model-free deep RL

methods are used. Therefore, we propose to use a low-rank approximation to further approximate

the sample-based second-order derivatives. This low-rank approximation reduces both the computa-

tion cost and the memory usage of differentiating through KKT conditions.

We empirically test our decision-focused algorithms on three settings: a grid world with un-

known rewards, and snare-finding and Tuberculosis treatment problems where transition probabili-

ties are unknown. Decision-focused learning achieves better OPE performance in unseen test MDPs

than two-stage approach, and our low-rank approximations significantly scale-up decision-focused
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learning.

2.2 RelatedWork

Differentiable optimization Amos et al.11 propose using a quadratic program as a differ-

entiable layer and embedding it into deep learning pipeline, and Agrawal et al.3 extend their work to

convex programs. Decision-focused learning80,338 focuses on the predict-then-optimize91,33 frame-

work by embedding an optimization layer into training pipeline, where the optimization layers can

be convex80, linear338,206, and non-convex247,324. Unfortunately, these techniques are of limited

utility for sequential decision problems because their formulations grow linearly in the number of

states and actions and thus differentiating through them quickly becomes infeasible. Amos et al.12

avoid this issue by studying model-predictive control but limited to quadratic-form actions, reduc-

ing the dimensionality. Karkus et al.165 differentiate through an algorithm by unrolling and relaxing

all the strict operators by soft operators. Futoma et al.111 deal with large optimality conditions by

differentiating through the last step of the value-iteration algorithm only. Instead, our approach

does not rely on anyMDP solver structure. We combine sampling and a low-rank approximation to

form an unbiased estimate of the optimality conditions to differentiate through, and show that the

approach of Futoma et al.111 is included in ours as a special case.

Predict-then-optimize and offline reinforcement learning The idea of planning

under a predictedMDP arises in model-based RL as certainty equivalence183. It has been extended

to offline settings167,355, who learn a pessimistic MDP before solving for the policy. Our setting

differs because of the presence of features and train-test split—our test MDPs are completely fresh

without any trajectories. Our setting also resembles meta RL (e.g.,318,82,100,363,330) and transfer RL

(e.g.,234,299,187,276.) Meta RL focuses on training a “meta policy” for a distribution of tasks (MDPs),

leveraging trajectories for each. Transfer RL works by extracting transferable knowledge from source
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Figure 2.1: We consider learning a predictive model to map from features to unknown MDP parameters and obtaining
a policy by solving the predicted MDP with RL. Two‐stage learning learns the predictive model by minimizing a predic‐
tive loss function, whereas decision‐focused learning is trained end‐to‐end to maximize the final off‐policy evaluation
performance.

MDPs to target MDPs using trajectories. In contrast to these two paradigms, ours explicitly trains a

predictive model (which maps problem features to missing MDP parameters) to generalize knowl-

edge learned from the training set to the testing set using problem features, not trajectories.

2.3 Problem Statement

In this paper, we consider learning a predictive model to infer the missing parameters in a sequen-

tial decision-making task (formulated as MDPs) using the predict-then-optimize framework. Each

MDP is defined by a tuple (S, sss0,A,T,R)with an initial state sss0, a possibly infinite state space S

and possibly infinite action spaceA. We assume some parameters are missing in eachMDP, which

could be any portion of the transition function T and the reward functionR. We denote the miss-

ing parameters vector by θ∗. Additionally, we assume there are problem features x associated with

eachMDP, where (θ∗, x) is correlated and drawn from the same unknown, but fixed, distribution*.

We are given a set of training MDPs and a set of test MDPs, each with missing parameters θ∗ and

*Examples of the missing parameters θ∗ include the poaching risk of different locations in wildlife conser-
vation and the transition probability of patients’ healthiness in healthcare problems, where the corresponding
problem features are terrain features of different locations and the characteristics of different patients that are
correlated to the missing parameters, respectively. These correlated features allow us to predict the missing
parameters even if we do not have any trajectories of the MDP.

19



features x. Each trainingMDP is accompanied by a set of trajectories T performed by a behavior

policy πbeh, consisting of a sequence of states, actions and rewards. In the test MDPs, trajectories

from the behavior policy are hidden at test time. These testing MDPs are considered fresh instances

that we have to generate a policy without using any trajectories. Thus, at training time, we learn a

predictive modelmw to map from features to missing parameters; at test time, we apply the same

model to make predictions and plan accordingly without using trajectories.

Formally, our goal is to learn a predictive modelmw to predict the missing parameters θ = mw(x).

The predicted parameters are used to solve the test MDPs, yielding the policy π∗(mw(x)). Lastly,

we use an offline evaluation metric to measure the performance of the new policy. The evaluation

metric is known as offline off-policy evaluation (OPE)257,303 and counterfactual inference in sequen-

tial experiments85,68 to evaluate the treatment effect of a new policy. The framework of the entire

process is illustrated in Figure 2.1.

Offline off-policy evaluation We evaluate a policy π in a fully offline setting with trajecto-

ries T = {τi}, τi = (si1, ai1, ri1, · · · , sih, aih, rih) generated from theMDP using behavior policy

πbeh. We use an OPEmetric used by Futoma et al.111 —we evaluate a policy π and trajectories T as:

EvalT (π) := VCWPDIS(π)− λESS√
ESS(π)

(2.1)

whereVCWPDIS(π) :=
h∑

t=1
γt

∑
i
ritρit(π)∑

i
ρit(π)

and ESS(π) :=
h∑

t=1

(
∑
i
ρit)

2∑
i
ρ2it

, and ρit(π) is the ratio of the

proposed policy and the behavior policy likelihoods up to time t: ρit(π) :=
t∏

t′=1

π(ait′ |sit′ )
πbeh(ait′ |sit′ )

.
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Optimization formulation Given a set of training features and trajectoriesDtrain denoted by

{(xi, Ti)}i∈Itrain , our goal is to learn a predictive modelmw to optimize the training performance:

max
w

E
(x,T )∈Dtrain

[EvalT (π∗(mw(x)))] (2.2)

The testing performance is evaluated on the unseen test setDtest = {(xi, Ti)}i∈Itest with trajectories

hidden from training, and only used for evaluation: E
(x,T )∈Dtest

[EvalT (π∗(mw(x)))].

2.4 Two-stage Learning

To learn the predictive modelmw from trajectories, the standard approach is to minimize an ex-

pected predictive loss, which is defined by comparing the prediction θ = mw(x)with the trajectories

T :

min
w

E
(x,T )∼Dtrain

L(θ, T ) where L(θ, T ) = E
τ∼T

ℓθ(τ), θ = mw(x) (2.3)

For example, when the rewards are missing, the loss could be the squared error between the pre-

dicted rewards and the actual rewards we see in the trajectories for each individual step. When the

transition probabilities are missing, the loss could be defined as the negative log-likelihood of seeing

the trajectories in the training set.

In the first stage, to train the predictive model, we run gradient descent to minimize the loss

function defined in Equation (2.3) and make prediction on the model parameter θ = mw(x) of

each problem. In the second stage, we solve eachMDP problem with the predicted parameter θ us-

ing an RL algorithm to generate the optimal policy π∗(θ). However, predictive loss and the final

evaluation metric are commonly misaligned especially in deep learning problems with imbalanced

data142,185,155,51. This motivates us to learn the predictive model end-to-end and therefore avoid the
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misalignment.

2.5 Decision-focused Learning in Sequential Decision Problems

In this section, we present our main contribution, decision-focused learning in sequential decision

problems, as illustrated in Figure 2.1. Decision-focused learning integrates anMDP problem into

the training pipeline to directly optimize the final performance. Instead of relying on a predictive

loss to train the predictive modelmw, we can directly optimize the objective in Equation (2.2) by

running end-to-end gradient descent to update the predictive modelmw:

d Eval(π∗)
dw

=
d Eval(π∗)

dπ∗
dπ∗

dθ
dθ
dw

(2.4)

We assume the policy π∗(θ) is either stochastic and smooth with respect to the change in the param-

eter θ, which is common in settings with continuous state or action spaces, or that an appropriate

regularization term127,128 is used to improve the smoothness of the policy. More discussions about

the smoothness can be found in Appendix A.2.1.

This gradient computation requires us to back-propagate from the final evaluation through

the MDP layer to the predictive modelmw that we want to update. The major challenge in Equa-

tion (2.4) is to compute dπ∗
dθ , which involves differentiating through anMDP layer solved by an RL

algorithm. In the following section, we first discuss two different optimality conditions in MDPs,

which are later used to convert into KKT conditions and differentiate through to compute dπ∗
dθ . We

then discuss two computational challenges associated with the derivative computation.

2.5.1 Optimality Conditions inMDPs

When the predicted model parameter θ = mw(x) is given, the MDP can be solved by any RL algo-

rithm to get an optimal policy π∗. Here we discuss two common optimality conditions in MDPs,
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differing by the use of policy gradient or Bellman equation:

Definition 1 (Policy gradient-based optimality condition). Defining Jθ(π) to be the expected cumula-

tive reward under policy π, the optimality condition of the optimal policy π∗ is:

π∗ = argmax
π

Jθ(π) where Jθ(π) := E
τ∼π,θ

Gθ(τ) (2.5)

where Gθ(τ) is the discounted value of trajectory τ given parameter θ, and the expectation is taken over

the trajectories following the optimal policy and transition probability (as part of θ).

Definition 2 (Bellman-based optimality condition). Defining Jθ(π) to be the mean-squared Bellman

error† under policy π, the optimality condition of the optimal policy π∗ (valuation function) is:

π∗ = argmin
π

Jθ(π) where Jθ(π) := E
τ∼π,θ

1
2
δ2θ(τ, π) (2.6)

where δθ(τ, π) =
∑

(s,a,s′)∈τ
Qπ(s, a) − Rθ(s, a) − γ E

a′∼π
Qπ(s′, a′) is the total Bellman error of a tra-

jectory τ, and each individual term δθ(τ, π) can depend on the parameter θ because the Bellman error

depends on the immediate reward Rθ, which can be a part of theMDP parameter θ. The expectation

in Equation (2.6) is taken over all the trajectories generated from policy π and transition probability

(as part of θ).

2.5.2 Backpropagating ThroughOptimality and KKTConditions

To compute the derivative of the optimal policy π∗(θ) in anMDP with respect to the MDP param-

eter θ, we differentiate through the KKT conditions of the corresponding optimality conditions:

†We use the same notation J to denote both the expected cumulative reward and the expected Bellman
error to simplify the later analysis of decision-focused learning.
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Definition 3 (KKTConditions). Given objective Jθ(π) in anMDP problem, since the policy parame-

ters are unconstrained, the necessary KKT conditions can be written as: ∇πJθ(π∗) = 0.

In particular, computing the total derivative of KKT conditions gives:

0 =
d
dθ
∇πJθ(π∗) =

∂

∂θ
∇πJθ(π∗) +

∂

∂π
∇πJθ(π∗)

dπ∗

dθ
= ∇2

θπJθ(π
∗) +∇2

πJθ(π∗)
dπ∗

dθ

=⇒ dπ∗

dθ
= −(∇2

πJθ(π∗))−1∇2
θπJθ(π

∗) (2.7)

We can use Equation (2.7) to replace the term dπ∗
dθ in Equation (2.4) to compute the full gradient to

back-propagate from the final evaluation to the predictive model parameterized by w:

d Eval(π∗)
dw

= −d Eval(π∗)
dπ∗

(∇2
πJθ(π∗))−1∇2

θπJθ(π
∗)

dθ
dw

(2.8)

2.5.3 Computational Challenges in Backward Pass

Unfortunately, although we can write down and differentiate through the KKT conditions ana-

lytically, we cannot explicitly compute the second-order derivatives∇2
πJθ(π∗) and∇2

θπJθ(π
∗) in

Equation (2.8) due to the following two challenges:

Large state and action spaces involved in optimality conditions The objectives

Jθ(π∗) in Definition 1 and Definition 2 involve an expectation over all possible trajectories, which

is essentially an integral and is intractable when either the state or action space is continuous. This

prevents us from explicitly verifying optimality and writing down the two derivatives∇2
πJθ(π∗) and

∇2
θπJθ(π

∗).

High-dimensional policy space parameterized by neural networks InMDPs solved

by model-free deep RL algorithms, the policy space π ∈ Π is often parameterized by a neural
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network, which has a significantly larger number of variables than standard optimization prob-

lems. This large dimensionality makes the second-order derivative∇2
πJθ(π∗) ∈ Rdim(π)×dim(π)

intractable to compute, store, or invert.

2.6 Sampling Unbiased Derivative Estimates

In both policy gradient–based and Bellman–based optimality conditions, the objective is implicitly

given by an expectation over all possible trajectories, which could be infinitely large when either

state or action space is continuous. This same issue arises when expressing such anMDP as a linear

program— there are infinitely many constraints, making it intractable to differentiate through.

Inspired by the policy gradient theorem, although we cannot compute the exact gradient of the

objective, we can sample a set of trajectories τ = {s1, a1, r1, . . . , sh, ah, rh} from policy π and model

parameter θwith finite time horizon h. Denoting pθ(τ, π) to be the likelihood of seeing trajectory τ,

we can compute an unbiased derivative estimate for both optimality conditions:

Theorem 1 (Policy gradient-based unbiased derivative estimate). We follow the notation of Defini-

tion 1 and defineΦθ(τ, π) =
h∑

i=1

h∑
j=i

γjRθ(sj, aj) log π(ai|si). We have:

∇πJθ(π) = E
τ∼π,θ

[∇πΦθ(τ, π)] =⇒
∇2

πJθ(π) = E
τ∼π,θ

[
∇πΦθ · ∇π log p⊤θ +∇2

πΦθ

]
∇2

θπJθ(π) = E
τ∼π,θ

[
∇πΦθ · ∇θ log p⊤θ +∇2

θπΦθ

] (2.9)

Theorem 2 (Bellman-based unbiased derivative estimate). We follow the notation in Definition 2 to

define Jθ(π) = 1
2 E
τ∼π,θ

[
δ2θ(τ, π)

]
. We have:

∇πJθ(π) = E
τ∼π,θ

[
δ∇πδ+

1
2
δ2∇π log pθ

]
=⇒ ∇2

πJθ(π) = E
τ∼π,θ

[
∇πδ∇πδ⊤ + O(δ)

]
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∇2
θπJθ(π) = E

τ∼π,θ

[
∇πδ∇θδ⊤ +

(
∇πδ∇θ log p⊤θ +∇π log pθ∇θδ⊤ +∇2

θπδ
)
δ+ O(δ2)

]
(2.10)

For the latter, we apply the fact that at the near-optimal policy, the Bellman error is close to 0 and

thus each individual component δ(τ, π) is small to simplify the analysis. Refer to the appendix for

the full derivations of Equations (2.9) and (2.10).

Equations (2.9) and (2.10) provide a sampling approach to compute the second-order derivatives,

avoiding computing an expectation over the large trajectory space. We can use the optimal policy de-

rived in the forward pass and the predicted parameters θ to run multiple simulations to collect a set

of trajectories. These trajectories from predicted parameters can be used to compute each individual

derivative in Equations (2.9) and (2.10).

2.7 ResolvingHigh-dimensional Derivatives by Low-rank Approximation

Section 2.6 provides sampling approaches to compute an unbiased estimate of second-order deriva-

tives. However, since the dimensionality of the policy space dim(π) is often large, we cannot ex-

plicitly expand and invert∇2
πJθ(π∗) to compute∇2

πJθ(π∗)−1∇2
θπJθ(π

∗), which is an inevitable step

toward computing the full gradient of decision-focused learning in Equation (2.8). In this section,

we discuss various ways to approximate∇2
πJθ(π∗) and how we use low-rank approximation and

Woodbury matrix identity340 to efficiently invert the sampled Hessian without expanding the ma-

trices. Let n := dim(π) and k � n to be the number of trajectories we sample to compute the

derivatives.

2.7.1 Full Hessian Computation

In Equations (2.9) and (2.10), we can apply auto-differentiation tools to compute all individual

derivatives in the expectation. However, this works only when the dimensionality of the policy space
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π ∈ Π is small because the full expressions in Equations (2.9) and (2.10) involve computing second-

order derivatives , e.g.,∇2
πΦθ in Equation (2.10), which is still challenging to compute and store

when the matrix size n × n is large. The computation cost isO(n2k) + O(nω) dominated by com-

puting all the Hessian matrices and the matrix inversion with 2 ≤ ω ≤ 2.373 the complexity order

of matrix inversion.

2.7.2 ApproximatingHessian by Constant IdentityMatrix

One naive way to approximate the Hessian∇2
πJθ(π∗) is to simply use a constant identity matrix cI.

We choose c < 0 for the policy gradient–based optimality in Definition 1 because the optimization

problem is a maximization problem and thus is locally concave at the optimal solution, whose Hes-

sian is negative semi-definite. Similarly, we choose c > 0 for the Bellman–based optimality in Defi-

nition 2. This approach is fast, easily invertible. Moreover, in the Bellman version, Equation (2.8) is

equivalent to the idea of differentiating through the final gradient of Bellman error as proposed by

Futoma et al.111‡. However, this approach ignores the information provided by the Hessian term,

which can often lead to instability as we later show in the experiments. In this case, the computation

complexity is dominated by computing∇2
θπJθ(π

∗), which requiresO(nk).

2.7.3 Low-rankHessian Approximation and Application ofWoodburyMatrix

Identity

A compromise between the full Hessian and using a constant matrix is approximating the second-

order derivative terms in Equations (2.9) and (2.10) by constant identity matrices, while comput-

ing the first-order derivative terms with auto-differentiation. Specifically, given a set of k sampled

‡The gradient of Bellman error can be written as∇πJθ(π∗)where the policy π is the parameters of the
value function approximator and J is defined as the expected Bellman error. The derivative of the final gradi-
ent can be written as∇w(∇πJθ(π∗)) = ∇2

θπJθ(π∗)
dθ
dw by chain rule, which matches the last three terms in

Equation 2.8 when the Hessian is approximated by an identity matrix.
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trajectories {τ1, τ2, · · · , τk}, Equations (2.9) and (2.10) can be written and approximated in the

following form:

∇2
πJθ(π) ≈

1
k

k∑
i=1

(
uiv⊤i +Hi

)
≈ 1

k

k∑
i=1

(
uiv⊤i + cI

)
= UV⊤ + cI (2.11)

whereU = [u1, u2, · · · , uk]/
√
k ∈ Rn×k,V = [v1, v2, · · · , vk]/

√
k ∈ Rn×k and ui, vi ∈ Rn

correspond to the first-order derivatives in Equations (2.9) and (2.10), andHi corresponds to the

remaining terms that involve second-order derivatives. We use a constant identity matrix to approxi-

mateHi, while explicitly computing the remaining parts to increase accuracy.

However, we still cannot explicitly expandUV⊤ ∈ Rn×n since the dimensionality is too large.

Therefore, we apply Woodbury matrix identity340 to invert Equation (2.11):

(∇2
πJθ(π))−1 ≈ (UV⊤ + cI)−1 =

1
c
I− 1

c
U(cI− V⊤U)−1V⊤ (2.12)

whereV⊤U ∈ Rk×k can be efficiently computed with much smaller k � n. When we compute

the full gradient for decision-focused learning in Equation (2.8), we can then apply matrix-vector

multiplication without expanding the full high-dimensional matrix, which results in a computation

cost ofO(nk+ kω) that is much smaller than the full computation costO(n2k+ nω).

The full algorithm for decision-focused learning inMDPs is illustrated in Algorithm 1§.

2.8 ExampleMDP Problems withMissing Parameters

Gridworldwith unknown cliffs We consider a Gridworld environment with a set of train-

ing and test MDPs. EachMDP is a 5× 5 grid with a start state located at the bottom left corner and

§The implementation of Algorithm 1 can be found in https://github.com/guaguakai/
decision-focused-RL

28

https://github.com/guaguakai/decision-focused-RL
https://github.com/guaguakai/decision-focused-RL


Algorithm 1:Decision-focused Learning for MDP Problems withMissing Parame-
ters

1 Parameter: Training setDtrain = {(xi, Ti)}i∈Itrain , learning rate α, regularization
λ = 0.1

2 Initialization: Initialize predictive modelmw : X → Θ parameterized by w
3 for epoch∈ {1, 2, . . . }, each training instance (x, T ) ∈ Dtrain do
4 Forward: Make prediction θ = mw(x). Compute two-stage lossL(θ, T ). Run

model-free RL to get an optimal policy π∗(θ) onMDP problem using
parameter θ.

5 Backward: Sample a set of trajectories under θ, π∗ to compute
∇2

πJθ(π∗),∇2
θπJθ(π∗)

6 Gradient step: Set Δw = d EvalT (π∗)
dw − λ dL(θ,T )

dw by Equation (2.8) with
predictive lossL as regularization. Run gradient ascent to update model:
w← w+ αΔw

7 Return: Predictive modelmw.

a safe state with reward drawn fromN (5, 1) located at the top right corner. Each intermediate state

has a reward associated with it, where most of them give the agent a reward drawn fromN (0, 1) but

20% of the them are cliffs and giveN (−10, 1) penalty to the agent. The agent has no prior infor-

mation about the reward of each grid cell (i.e., the reward functions of the MDPs are unknown),

but has a feature vector per grid cell correlated to the reward, and a set of historical trajectories from

the trainingMDPs. The agent learns a predictive model to map from the features of a grid cell to

its missing reward information, and the resulting MDP is used to plan. Since the state and action

spaces are both finite, we use tabular value-iteration295 to solve the MDPs.

Partially observable snare-finding problems with missing transition function

We consider a set of synthetic conservation parks, each with 20 sites, that are vulnerable to poaching

activities. Each site in a conservation park starts from a safe state and has an unknown associated

probability that a poacher places a snare at each time step. Motivated by349, we assume a ranger

who can visit one site per time step and observes whether a snare is present. If a snare is present, the
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ranger removes it and receives reward 1. Otherwise, the ranger receives reward of−1. The snare can

stay in the site if the ranger does not remove it, which makes the snare-finding problem a sequential

problem rather than a multi-armed bandit problem. As the ranger receives no information about

the sites that they do not visit, the MDP belief state is the ranger’s belief about whether a snare

is present. The ranger uses the features of each site and historical trajectories to learn a predictive

model of the missing transition probability of a snare being placed. Since the belief state is contin-

uous and the action space is discrete, given a predictive model of the missing transition probability,

the agent uses double deep Q-learning (DDQN)309 to solve the predictedMDPs.

Partially observable patient treatment problems with missing transition prob-

ability We consider a version of the Tuberculosis Adherence Problem explored in210. Given

that the treatment for tuberculosis requires patients to take medications for an extended period

of time, one way to improve patient adherence is Directly Observed Therapy, in which a health-

care worker routinely checks in on the patient to ensure that they are taking their medications. In

our problem, we consider 5 synthetic patients who have to take medication for 30 days. Each day, a

healthcare worker chooses one patient to intervene on. They observe whether that patient is adher-

ing or not, and improve the patient’s likelihood of adhering on that day, where we use the number

of adherent patients as the reward to the healthcare worker. Whether a patient actually adheres or

not is determined by a transition matrix that is randomly drawn from a fixed distribution inspired

by170. The aim of the prediction stage is to use the features associated with each patient, e.g., patient

characteristics, to predict the missing transition matrices. The aim of the RL stage is then to create

an intervention strategy for the healthcare worker such that the sum of patient adherence over the

30-day period is maximised. Due to partial observability, we convert the problem to its continuous

belief state equivalence and solve it using DDQN.

Please refer to Appendix A.3 for more details about problem setup in all three domains.
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Table 2.1: OPE performances of different methods on the test MDPs averaged over 30 independent runs. Decision‐
focused learning methods consistently outperform two‐stage approach, with some exception using identity matrix
based Hessian approximation which may lead to high gradient variance.

Gridworld Snare Tuberculosis

Trajectories Random Near-optimal Random Near-optimal Random Near-optimal

TS −12.0± 1.3 4.2± 0.8 0.8± 0.3 3.7± 0.3 35.8± 1.5 38.7± 1.6
PG-Id −11.7± 1.2 5.7± 0.8 −0.1± 0.3 3.6± 0.3 38.4± 1.5 40.7± 1.7
Bellman-Id −9.6± 1.4 4.6± 0.7 0.7± 0.4 3.6± 0.3 39.1± 1.7 40.8± 1.7
PG-W −11.2± 1.2 5.5± 0.8 1.2± 0.4 4.8± 0.3 38.4± 1.5 40.8± 1.7
Bellman-W −11.3± 1.4 4.8± 0.8 1.5± 0.4 4.3± 0.3 38.6± 1.6 41.1± 1.7

2.9 Experimental Results andDiscussion

In our experiments, we compare two-stage learning (TS) with different versions of decision-focused

learning (DF) using two different optimality conditions, policy gradient (PG) and Bellman equation-

based (Bellman), and two different Hessian approximations (Identity,Woodbury) defined in Sec-

tion 2.7. Computing the fullHessian (as in Section 2.7.1) is computationally intractable. Across

all three examples, we use 7 trainingMDPs, 1 validationMDP, and 2 test MDPs, each with 100

trajectories. The predictive model is trained on the trainingMDP trajectories for 100 epochs. Perfor-

mance is evaluated under the Off-Policy Evaluation (OPE) metric of Equation (2.1) with respect to

the withheld test trajectories. In the following, we will discuss howDF variants work compared with

TS methods, and explore why some methods are better. We use two different trajectories, random

and near-optimal, in the trainingMDP to model different imbalanced information given to train

the predictive model. The results are shown in Table 2.1.

Decision-focused learningwith theWoodbury matrix identity outperforms

two-stage learning Table 2.1 summarizes the average OPE performance on the test MDPs.

We can see that in all of the three problem settings, the best performances are all achieved by decision-

focused learning. However, when Hessian approximation is not sufficiently accurate, decision-
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focused learning can sometimes perform even worse than two-stage (e.g., PG-Id and Bellman-Id in

the snare problem). In contrast, decision-focused methods using a more accurate low-rank approx-

imation andWoodbury matrix identity (i.e., PG-W and Bellman-W), as discussed in Section 2.7.3,

dominate two-stage performance in the test MDPs across all settings.

Low predictive loss does not imply a winning policy In Figures 2.2(a), 2.3(a), we plot

the predictive loss curve in the trainingMDPs over different training epochs of Gridworld and snare

problems. In particular, two-stage approach is trained to minimize such loss, but fails to win in Ta-

ble 2.1. Indeed, low predictive loss on the trainingMDPs does not always imply a high off-policy

evaluation on the trainingMDPs in Figure 2.2(b) due to the misalignment of predictive accuracy

and decision quality, which is consistent with other studies in mismatch of predictive loss and evalu-

ation metric142,185,155,51.

Comparison between differentHessian approximations In Table 2.1, we notice that

more inaccurate Hessian approximation (identity) does not always lead to poorer performance. We

hypothesize that this is due to the non-convex off-policy evaluation objective that we are optimiz-

ing, where higher variance might sometimes help escape local optimummore easily. The identity

approximation is more unstable across different tasks and different trajectories given. In Table 2.1,

the performance of Bellman-Identity and PG-Identity sometimes lead to wins over two stage and

sometimes losses.

Comparison between policy gradient and Bellman-based decision-focused learn-

ing We observe that the Bellman-based decision-focused approach consistently outperforms the

policy gradient-based approach when the trajectories are random, while the policy gradient-based

decision-focused approach mostly achieves better performance when near-optimal trajectories are

present. We hypothesize that this is due to the different objectives considered by different optimality
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Figure 2.2: Learning curves of Gridworld problem with near‐optimal trajectories. Two‐stage minimizes the predictive
loss in Figure 2.2(a), but this does not lead to good training performance in Figure 2.2(b). Figure 2.3(c) shows the back‐
propagation runtime per gradient step per instance of three Hessian approximations, which becomes intractable when
trained for multiple instances and multiple epochs.
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Figure 2.3: Learning curves of snare finding problems with random trajectories. Two‐stage achieves both low predictive
loss in Figure 2.3(a) and high training OPE in Figure 2.3(b), but the test performance is poor in Table 2.1. Figure 2.3(c)
plots the backpropagation runtime per gradient step per instance.

conditions. The Bellman error aims to accurately cover all the value functions, which works better

on random trajectories; the policy gradient aims to maximize the expected cumulative reward along

the optimal policy only, which works better with near-optimal trajectories that have better coverage

in the optimal regions.

Computation cost Lastly, Figures 2.2(c) and 2.3(c) show the backpropagation runtime of the

policy-gradient based optimality condition per gradient step per training instance across different

Hessian approximations and different problem sizes in the gridworld and snare finding problems.

To train the model, we run 100 epochs for every MDP in the training set, which immediately makes

the full Hessian computation intractable as it would take more than a day to complete.
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Analytically, let n be the dimensionality of the policy space and k� n be the number of sampled

trajectories used to approximate the derivatives. As shown in Section 2.7, the computation cost of

full HessianO(n2 + nω) is quadratic in n and strictly dominates all the others. In contrast, the

costs of the identity matrix approximationO(nk) and theWoodbury approximationO(nk + kω)

are both linear in n. TheWoodbury method offers an option to get a more accurate Hessian at low

additional cost.

2.10 Conclusion

This paper considers learning a predictive model to address the missing parameters in sequential

decision problems. We successfully extend decision-focused learning from optimization problems

toMDP problems solved by deep reinforcement learning algorithms, where we apply sampling

and low-rank approximation to Hessian matrix computation to address the associated computa-

tional challenges. All our results suggest that decision-focused learning can outperform two-stage

approach by directly optimizing the final evaluation metric. The idea of considering sequential de-

cision problems as differentiable layers also suggests a different way to solve online reinforcement

learning problems, which we reserve as a future direction.
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3
Decision-Focused Learning in Restless

Multi-Armed Bandits

3.1 Introduction

Restless multi-armed bandits (RMABs)334,300 are composed of a set of heterogeneous arms and a

planner who can pull multiple arms under budget constraint at each time step to collect rewards.
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Different from the classic stochastic multi-armed bandits121,54, the state of each arm in an RMAB

can change even when the arm is not pulled, where each arm follows a Markovian process to transi-

tion between different states with transition probabilities dependent on arms and the pulling deci-

sion. Rewards are associated with different arm states, where the planner’s goal is to plan a sequen-

tial pulling policy to maximize the total reward received from all arms. RMABs are commonly used

to model sequential scheduling problems where limited resources must be strategically assigned to

different tasks sequentially to maximize performance. Examples include machine maintenance122,

cognitive radio sensing problem31, and healthcare211.

In this paper, we study offline RMAB problems with unknown transition dynamics but with

given arm features. The goal is to learn a mapping from arm features to transition dynamics, which

can be used to infer the dynamics of unseen RMAB problems to plan accordingly. Prior works211,294

often learn the transition dynamics from the historical pulling data bymaximizing the predictive ac-

curacy. However, RMAB performance is evaluated by its solution quality derived from the predicted

transition dynamics, which leads to a mismatch in the training objective and the evaluation objec-

tive. Previously, decision-focused learning338 has been proposed to directly optimize the solution

quality rather than predictive accuracy, by integrating the one-shot optimization problem80,247 or

sequential problems321,111 as a differentiable layer in the training pipeline. Unfortunately, while

decision-focused learning can successfully optimize the evaluation objective, it is computation-

ally extremely expensive due to the presence of the optimization problems in the training process.

Specifically, for RMAB problems, the computation cost of decision-focused learning arises from

the complexity of the sequential problems formulated as Markov decision processes (MDPs), which

limits the applicability to RMAB problems due to the PSPACE hardness of finding the optimal

solution244.

Our main contribution is a novel and scalable approach for decision-focused learning in RMAB

problems usingWhittle index policy, a commonly used approximate solution in RMABs. Our
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three key contributions are (i) we establish the differentiability of Whittle index policy to sup-

port decision-focused learning to directly optimize the RMAB solution quality; (ii) we show that

our approach of differentiating throughWhittle index policy improves the scalability of decision-

focused learning in RMAB; (iii) we apply our algorithm to an anonymized maternal and child

health RMAB dataset previously collected by ARMMAN20 to evaluate the performance of our

algorithm in simulation.

We establish the differentiability of Whittle index by showing that Whittle index can be expressed

as a solution to a full-rank linear system reduced from Bellman equations with transition dynamics

as entries, which allows us to compute the derivative of Whittle index with respect to transition dy-

namics. On the other hand, to execute Whittle index policy, the standard selection process of choos-

ing arms with top-kWhittle indices to pull is non-differentiable. We relax this non-differentiable

process by using a differentiable soft top-k selection to establish differentiability. Our differen-

tiable Whittle index policy enables decision-focused learning in RMAB problems to backpropagate

from final policy performance to the predictive model. We significantly improve the scalability of

decision-focused learning, where the computation cost of our algorithmO(NMω+1) scales linearly

in the number of armsN and polynomially in the number of statesMwith ω ≈ 2.373, while previ-

ous work scales exponentiallyO(MωN). This significant reduction in computation cost is crucial for

extending decision-focused learning to RMAB problems with large number of arms.

In our experiments, we apply decision-focused learning to RMAB problems to optimize im-

portance sampling-based evaluation on synthetic datasets as well as an anonymized RMAB dataset

about a maternal and child health program previously collected by20 – these datasets are the basis

of comparing different methods in simulation. We compare decision-focused learning with the two-

stage method that trains to minimize the predictive loss. The two-stage method achieves the best

predictive loss but significantly degraded solution quality. In contrast, decision-focused learning

reaches a slightly worse predictive loss but with a much better importance sampling-based solution
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quality evaluation and the improvement generalizes to the simulation-based evaluation that is built

from the data. Lastly, the scalability improvement is the crux of applying decision-focused learning

to real-world RMAB problems: our algorithm can run decision-focused learning on the maternal

and child health dataset with hundreds of arms, whereas state of the art is a 100-fold slower even

with 20 arms and grows exponentially worse.

3.2 RelatedWork

Restless multi-armed bandits with given transition dynamics This line of research

primarily focuses on solving RMAB problems to get a sequential policy. The complexity of solving

RMAB problems optimally is known to be PSPACE hard244. One approximate solution is pro-

posed byWhittle 337 , where they use Lagrangian relaxation to decompose arms and compute the

associatedWhittle indices to define a policy. Specifically, the indexability condition6,328 guarantees

this Whittle index policy to be asymptotically optimal334. In practice, Whittle index policy usually

provides a near-optimal solution to RMAB problems.

Restless multi-armed bandits with missing transition dynamics When the transi-

tion dynamics are unknown in RMAB problems but an interactive environment is available, prior

works300,203,241,78 consider this as an online learning problem that aims to maximize the expected

reward. However, these approaches become infeasible when interacting with the environment is

expensive, e.g., healthcare problems211. In this work, we consider the offline RMAB problem, and

each arm comes with an arm feature that is correlated to the transition dynamics and can be learned

from the past data.

Decision-focused learning The predict-then-optimize framework91 is composed of a pre-

dictive problem that makes predictions on the parameters of the later optimization problem, and
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an optimization problem that uses the predicted parameters to come up with a solution, where

the overall objective is the solution quality of the proposed solution. Standard two-stage learning

method solves the predictive and optimization problems separately, leading to a mismatch of the

predictive loss and the evaluation metric142,185,155. In contrast, decision-focused learning338,207,89

learns the predictive model to directly optimize the solution quality by integrating the optimiza-

tion problem as a differentiable layer11,3 in the training pipeline. Our offline RMAB problem is a

predict-then-optimize problem, where we first (offline) learn a mapping from arm features to transi-

tion dynamics from the historical data211,294, and the RMAB problem is solved using the predicted

transition dynamics accordingly. Prior work211 is limited to using two-stage learning to solve the

offline RMAB problems. While decision-focused learning in sequential problems were primarily

studied in the context of MDPs321,111 they come with an expensive computation cost that immedi-

ately becomes infeasible in large RMAB problems.

3.3 RestlessMulti-armed Bandit

An instance of the restless multi-armed bandit (RMAB) problem is composed of a set ofN arms,

each is modeled as an independent Markov decision process (MDP). The i-th arm in a RMAB prob-

lem is defined by a tuple (S,A,Ri,Pi). S andA are the identical state and action spaces across all

arms. Ri,Pi : S × A × S → R are the reward and transition functions associated to arm i. We

consider finite state space with |S| = M fully observable states and action setA = {0, 1} corre-

sponding to not pulling or pulling the arm, respectively. For each arm i, the reward is denoted by

Ri(si, ai, s′i) = R(si), i.e., the rewardR(si) only depends on the current state si, whereR : S → R

is a vector of sizeM. Given the state si and action ai, Pi(si, ai) = [Pi(si, ai, s′i)]s′i∈S defines the proba-

bility distribution of transitioning to all possible next states s′i ∈ S .

In a RMAB problem, at each time step t ∈ [T], the learner observes ssst = [st,i]i∈[N] ∈ SN, the
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states of all arms. The learner then chooses action aaat = [at,i]i∈[N] ∈ AN denoting the pulling

actions of all arms, which has to satisfy a budget constraint
∑
i∈[N]

at,i ≤ K, i.e., the learner can

pull at mostK arms at each time step. Once the action is chosen, arms receive action aaat and tran-

sitions under Pwith rewards rrrt = [rt,i]i∈[N] accordingly. We denote a full trajectory by τ =

(sss1, aaa1, rrr1, · · · , sssT, aaaT, rrrT). The total reward is defined by the summation of the discounted reward

across T time steps andN arms, i.e.,
T∑
t=1

γt−1 ∑
i∈[N]

rt,i, where 0 < γ ≤ 1 is the discount factor.

A policy is denoted by π, where π(aaa | sss) is the probability of choosing action aaa given state sss.

Additionally, we define π(ai = 1 | sss) to be the marginal probability of pulling arm i given state

sss, where π(sss) = [π(ai = 1 | sss)]i∈[N] is a vector of arm pulling probabilities. Specifically, we use

π∗ to denote the optimal policy that optimizes the cumulative reward, while πsolver to denote a near-

optimal policy solver.

3.4 Problem Statement

This paper studies the RMAB problem where we do not know the transition probabilities P =

{Pi}i∈[N] in advance. Instead, we are given a set of features xxx = {xi ∈ X}i∈[N], each corresponding

to one arm. The goal is to learn a mappingmw : X → P , parameterized by weights w, to make

predictions on the transition probabilities P = mw(xxx) := {mw(xi)}i∈[N]. The predicted transition

probabilities are later used to solve the RMAB problem to derive a policy π = πsolver(mw(xxx)). The

performance of the modelm is evaluated by the performance of the proposed policy π.

3.4.1 Training and Testing Datasets

To learn the mappingmw, we are given a set of RMAB instances as training examplesDtrain =

{(xxx, T )}, where each instance is composed of a RMAB problem with feature xxx that is correlated

to the unknown transition probabilities P, and a set of realized trajectories T = {τ(j)}j∈J generated
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from a given behavior policy πbeh that determined how to pull arms in the past. The testing setDtest

is defined similarly but hidden at training time.

3.4.2 EvaluationMetrics

Predictive loss To measure the correctness of transition probabilities P = {Pi}i∈[N], we

define the predictive loss as the average negative log-likelihood of seeing the given trajectories T , i.e.,

L(P, T ) := − log Pr(T | P) = − E
τ∼T

∑
t∈[T]

log P(ssst, aaat, ssst+1). Therefore, we can define the

predictive loss of a modelmw on datasetD by:

E
(xxx,T )∼D

L(mw(xxx), T ) (3.1)

Policy evaluation On the other hand, given transition probabilities P, we can solve the

RMAB problem to derive a policy πsolver(P). We can use the historical trajectories T to evaluate

how good the policy performs, denoted by Eval(πsolver(P), T ). Given datasetD, we can evaluate the

predictive modelmw on datasetD by:

E
(xxx,T )∼D

Eval(πsolver(mw(xxx)), T ) (3.2)

Two common types of policy evaluation are importance sampling-based off-policy policy evaluation

and simulation-based evaluation, which will be discussed in Section 3.6.

3.4.3 LearningMethods

Two-stage learning To learn the predictive modelmw, we can minimize Equation 3.1 by

computing gradient dL(mw(xxx),T )
dw to run gradient descent. However, this training objective (Equa-

tion 3.1) differs from the evaluation objective (Equation 3.2), which often leads to suboptimal per-
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Figure 3.1: This flowchart visualizes different methods of learning the predictive model. Two‐stage learning directly
compares the predicted transition probabilities with the given data to define a predictive loss to run gradient descent.
Decision‐focused learning instead goes through a policy solver using Whittle index policy to estimate the final evalua‐
tion and run gradient ascent.

formance.

Decision-focused learning In contrast, we can directly run gradient ascent to maximize

Equation 3.2 by computing the gradient dEval(πsolver(mw(xxx)),T )
dw . However, in order to compute the

gradient, we need to differentiate through the policy solver πsolver and the corresponding optimal

solution. Unfortunately, finding the optimal policy in RMABs is expensive and the policy is high-

dimensional. Both of these challenges prevent us from computing the gradient to achieve decision-

focused learning.

3.5 Decision-focused Learning in RestlessMulti-armed Bandits

In this paper, instead of grappling with the optimal policy, we consider the Whittle index policy337

– the dominant solution paradigm used to solve the RMAB problem. Whittle index policy is easier

to compute and has been shown to perform well in practice. In this section we establish that it is

also possible to backpropagate through theWhittle index policy. This differentiability of Whittle

index policy allows us to run decision-focused learning to directly maximize the performance in the

RMAB problem.
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3.5.1 Whittle Index andWhittle Index Policy

Informally, the Whittle index of an arm captures the added value derived from pulling that arm.

The key idea is to determine the Whittle indices of all arms and to pull the arms with the highest

values of the index.

To evaluate the value of pulling an arm i, we consider the notion of ‘passive subsidy’, which is a

hypothetical exogenous compensation β rewarded for not pulling the arm (i.e. for choosing action

a = 0). Whittle index is defined as the smallest subsidy necessary to make pulling as rewarding as

not pulling, assuming indexability204:

Definition 4 (Whittle index). Given state u ∈ S , we define theWhittle index associated to state u by:

Wi(u) := inf
β
{Qβ

i (u; a = 0) = Qβ
i (u; a = 1)} (3.3)

where the value functions are defined by the following Bellman equations, augmented with subsidy β

for action a = 0.

Vβ
i (s) = max

a
Qβ
i (s; a) (3.4)

Qβ
i (s; a) = β111a=0 + R(s) + γ

∑
s′

θi(s, a, s′)V
β
i (s

′) (3.5)

Given theWhittle indices of all arms and all statesW = [Wi(u)]i∈[N],u∈S , the Whittle index

policy is denoted by πwhittle : SN −→ [0, 1]N, which takes the states of all arms as input to compute

their Whittle indices and output the probabilities of pulling arms. This policy repeats for every time

step to pull arms based on the index values.
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3.5.2 Decision-focused Learning UsingWhittle Index Policy

Instead of using the optimal policy π∗ to run decision-focused learning with expensive computation

cost, we use Whittle index policy πwhittle to determine how to pull arms as an approximate solution.

In this case, in order to run decision-focused learning, we need to compute the derivative of the

evaluation metric by chain rule:

dEval(πwhittle, T )
dw

=
dEval(πwhittle, T )

dπwhittle
dπwhittle

dW
dW
dP

dP
dw

(3.6)

whereW is the Whittle indices of all states under the predicted transition probabilities P. The pol-

icy πwhittle is the Whittle index policy induced byW. The flowchart is illustrated in Figure 3.1.

The term dEval(πwhittle,T )
dπwhittle can be computed via policy gradient theorem296, and the term dP

dw can

be computed using auto-differentiation. However, there are still two challenges remaining: (i) how

to differentiate throughWhittle index policy to get dπwhittle
dW (ii) how to differentiate throughWhittle

index computation to derive dW
dP .

3.5.3 Differentiability ofWhittle Index Policy

A common choice of Whittle index policy is defined by:

Definition 5 (Strict Whittle index policy).

πstrictW (sss) = 111top-k([Wi(si)]i∈[N]) ∈ {0, 1}
N (3.7)

which selects arms with the top-kWhittle indices to pull.

However, the strict top-k operation in the strict Whittle index policy is non-differentiable, which

prevents us from computing a meaningful estimate of dπwhittle
dW in Equation 3.6. We circumvent this
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Figure 3.2: We establish the differentiability of Whittle index policy using a soft top‐k selection to construct a soft Whit‐
tle index policy, and the differentiability of Whittle index by expressing Whittle index as a solution to a linear system in
Equation 3.11.

issue by relaxing the top-k selection to a soft-top-k selection346, which can be expressed as an opti-

mal transport problem with regularization, making it differentiable. We apply soft-top-k to define a

new differentiable soft Whittle index policy:

Definition 6 (Soft Whittle index policy).

πsoftW (sss) = soft-top-k([Wj(si)]i∈[N]) ∈ [0, 1]N (3.8)

Using the soft Whittle index policy, the policy becomes differentiable and we can compute

dπwhittle
dW .

3.5.4 Differentiability ofWhittle Index

The second challenge is the differentiability of Whittle index. Whittle indices are often computed

using value iteration and binary search258,210 or mixed integer linear program. However, these oper-

ations are not differentiable and we cannot compute the derivative dW
dP in Equation 3.6 directly.

Main idea After computing the Whittle indices and the value functions of each arm i, the key

idea is to construct linear equations that link theWhittle index with the transition matrix Pi. Specif-

ically, we achieve this by resolving themax operator in Equation 3.4 of Definition 4 by determining

the optimal actions a from the pre-computed value functions. Plugging back in Equation 3.5 and
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manipulating as shown below yields linear equations in the Whittle indexWi(u) and transition ma-

trix Pi, which can be expressed as a full-rank linear system in Pi, with the Whittle index as a solution.

This makes the Whittle index differentiable in Pi.

Selecting Bellman equation Let u and arm i be the target state and target arm to compute

the Whittle index. Assume we have precomputed theWhittle index β = Wi(u) for state u and the

corresponding value functions [Vβ
i (s)]s∈S for all states under the same passive subsidy β = Wi(u).

Equation 3.5 can be combined with Equation 3.4 to get:

Vβ
i (s) ≥


β+ R(s) + γ

∑
s′∈S

θi(s, a = 0, s′)Vβ
i (s′)

R(s) + γ
∑
s′∈S

θi(s, a = 1, s′)Vβ
i (s′)

(3.9)

wherem = Wi(u).

For each s ∈ S, at least one of the equalities in Equation 3.9 holds because one of the actions

must be optimal and match the state value functionVβ
i (s). We can identify which equality holds by

simply plugging in values of precomputed value functions [Vβ
i (s)]s∈S . Furthermore, for the target

state u, both equalities must hold because by the definition of Whittle index, the passive subsidy

β = Wi(u)makes both actions equally optimal, i.e. in Equation 3.3,Vβ
i (u) = Qβ

i (u, a = 0) =

Qβ
i (u, a = 1) for β = Wi(u).

Thus Equation 3.9 can be written in matrix form:

VVVβ
i

VVVβ
i

 ≥
111M γPPPi(S, a = 0,S)

000M γPPPi(S, a = 1,S)


 β

VVVβ
i

+

RRR(S)
RRR(S)

 (3.10)

whereVVVβ
i := [Vβ

i (s)]s∈S ,RRR(S) = [R(s)]s∈S , and PPPi(S, a,S) := [Pi(s, a, s′)]s,s′∈S ∈ RM×M.

By the aforementioned discussion, we know that there are at leastM + 1 equalities in Equa-
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tion 3.10 while there are also onlyM+ 1 variables (m ∈ R andVVVβ
i ∈ RM). Therefore, we rearrange

Equation 3.10 and pick only the rows where equalities hold to get:

A

111M γPPPi(S, a = 0,S)− IM

000M γPPPi(S, a = 1,S)− IM


 β

VVVβ
i

 = A

−RRR(S)
−RRR(S)

 (3.11)

where we use a binary matrix A ∈ {0, 1}(M+1)×2M with a single 1 per row to extract the equality.

For example, we can set Aij = 1 if the j-th row in Equation 3.10 corresponds to the equality in

Equation 3.9 with the i-th state in the state space S for i ∈ [M], and the last row A(M+1),j = 1 to

mark the additional equality matched by theWhittle index definition (see Appendix B.8 for more

details). Matrix A picksM+ 1 equalities out from Equation 3.10 to form Equation 3.11.

Equation 3.11 is a full-rank linear system with β = Wi(u) as a solution. This expressesWi(u) as

an implicit function of PPP, allowing for computation of dWi(u)
dPPP via autodifferentiation, thus achiev-

ing differentiability of the Whittle index. We repeat this process for every arm i ∈ [N] and every

state u. Figure 3.2 summarizes the differentiable Whittle index policy and the algorithm is shown in

Algorithm 2.

3.5.5 Computation Cost and Backpropagation

It is well studied that Whittle index policy can be computed more efficiently than solving the RMAB

problem as a large MDP problem. Here, we show that the use of Whittle index policy also demon-

strates a large speed up in terms of backpropagating the gradient in decision-focused learning.

In order to use Equation 3.11 to compute the gradient of Whittle indices, we need to invert the

left-hand-side of Equation 3.11 with dimensionalityM+ 1, which takesO(Mω)where ω ≈ 2.3739

is the best knownmatrix inversion constant. Therefore, the overall computation of allN arms and

M states isO(NMω+1) per gradient step.
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In contrast, the standard decision-focused learning differentiates through the optimal policy

using the full Bellman equation withO(MN) variables, where inverting the large Bellman equation

requiresO(MωN) cost per gradient step. Thus, our algorithm significantly reduces the computation

cost to a linear dependency on the number of armsN. This significantly improves the scalability of

decision-focused learning.

3.5.6 Extension to Partially Observable RMAB

For partially observable RMAB problem, we focus on a subclass of RMAB problem known as col-

lapsing bandits210. In collapsing bandits, belief states219 are used to represent the posterior belief of

the unobservable states. Specifically, for each arm i, we use bi ∈ B = Δ(S) ⊂ [0, 1]M to denote

the posterior belief of an arm, where each entry bi(si) denotes the probability that the true state is

si ∈ S . When arm i is pulled, the current true state si ∼ bi is revealed and drawn from the poste-

rior belief with expected reward b⊤i R, where we can define the transition probability on the belief

states. This process reduces partially observable states to fully observable belief states with in total

MT states since the maximal horizon is T. Therefore, we can use the same technique to differentiate

throughWhittle indices of partially observable states.

3.6 Policy EvaluationMetrics

In this paper, we use two different variants of evaluation metric: importance sampling-based evalua-

tion296 and simulation-based (model-based) evaluation.

Importance sampling-based Evaluation We adopt Consistent Weighted Per-Decision

Importance Sampling (CWPDIS)304 as our importance sampling-based evaluation. Given target

policy π and a trajectory τ = {s1, a1, r1, · · · , sT, aT, rT} executed by the behavior policy πbeh, the
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Algorithm 2:Decision-focused Learning in RMAB
1 Input: training setDtrain, learning rate r, modelmw
2 for epoch= 1, 2, · · · and (x, T ) ∈ Dtrain do
3 Predict P = mw(x) and computeWhittle indicesW(P).
4 Let πwhittle = πsoft

W and compute Eval(πwhittle, T ).
5 Update w = w+ rdEval(π

whittle,T )
dπwhittle

dπwhittle
dW

dW
dP

dP
dw , where

dW
dP is computed from

Equation 3.11.
6 Return: predictive modelmw

importance sampling weight is defined by ρti =
t∏

t′=1

π(at′,i|st′ )
πbeh(at′,i|st′ )

. We evaluate the policy π by:

EvalIS(π, T ) =
∑

t∈[T],i∈[N]

γt−1Eτ∼T
[
rt,iρti(τ)

]
Eτ∼T

[
ρti(τ)

] (3.12)

Importance sampling-based evaluations are often unbiased but with a larger variance due to the

unstable importance sampling weights. CWPDIS normalizes the importance sampling weights to

achieve a consistent estimate.

Simulation-based Evaluation An alternative way is to use the given trajectories to construct

an empirical transition probability P̄ to build a simulator and evaluate the target policy π. The vari-

ance of simulation-based evaluation is small, but it may require additional assumptions on the miss-

ing transition when the empirical transition P̄ is not fully reconstructed.

3.7 Experiments

We compare two-stage learning (TS) with our decision-focused learning (DF-Whittle) that opti-

mizes importance sampling-based evaluation directly. We consider three different evaluation metrics

including predictive loss, importance sampling evaluation, and simulation-based evaluation to eval-
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Figure 3.3: Comparison of predictive loss, importance sampling‐based evaluation, and simulation‐based evaluation
on all synthetic domains and the real ARMMAN dataset. For the evaluation metrics, we plot the improvement against
the no‐action baseline that does not pull any arm. Although two‐stage method achieves the smallest predictive loss,
decision‐focused learning consistently outperforms two‐stage method in both solution quality evaluation metrics across
all domains.

uate all learning methods. We perform experiments on three synthetic datasets including 2-state

fully observable, 5-state fully observable, and 2-state partially observable RMAB problems. We also

perform experiments on a real dataset on maternal and child health problemmodelled as a 2-state

fully observable RMAB problem with real features and historical trajectories. For each dataset, we

use 70%, 10%, 20% of the RMAB problems as the training, validation, and testing sets, respectively.

All experiments are averaged over 50 independent runs.
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Synthetic datasets We consider RMAB problems composed ofN = 100 arms,M states,

budgetK = 20, and time horizon T = 10 with a discount rate of γ = 0.99. The reward function is

given byR = [ i−1
M−1 ]i∈[M], while the transition probabilities are generated uniformly at random but

with a constraint that pulling the arm (a = 1) is strictly better than not pulling the arm (a = 0) to

ensure the benefit of pulling. To generate the arm features, we feed the transition probability of each

arm to a randomly initialized neural network to generate fixed-length correlated features with size 16

per arm. The historical trajectories T with |T | = 10 are produced by running a random behavior

policy πbeh. The goal is to predict transition probabilities from the arm features and the training

trajectories.

Real dataset TheMaternal and Child Healthcare Mobile Health program operated by AR-

MMAN 20 aims to improve dissemination of health information to pregnant women and mothers

with an aim to reduce maternal, neonatal and child mortality and morbidity. ARMMAN serves ex-

pectant/newmothers in disadvantaged communities withmedian daily family income of $3.22 per

daywhich is seen to be below the world bank poverty line342. The program is composed of multiple

enrolled beneficiaries and a planner who schedules service calls to improve the overall engagement of

beneficiaries; engagement is measured in terms of total number of automated voice (health related)

messages that the beneficiary engaged with. More precisely, this problem is modelled as aM = 2-

state fully observable RMAB problem where each beneficiary’s behavior is governed by anMDP

with two states - Engaging and Non-Engaging state; engagement is determined by whether the bene-

ficiary listens to an automated voice message (average length 115 seconds) for more than 30 seconds.

The planner’s task is to recommend a subset of beneficiaries every week to receive service calls from

health workers to further improve their engagement behavior. We do not know the transition dy-

namics, but we are given beneficiaries’ socio-demographic features to predict transition dynamics.

We use a subset of data from the large-scale anonymized quality improvement study performed
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Figure 3.4: Performance improvement of decision‐focused v.s. two‐stage method with varying number of trajectories.

by ARMMAN for T = 7 weeks, obtained fromMate et al. 211 , with beneficiary consent. In the

study, a cohort of beneficiaries received Round-Robin policy, scheduling service calls in a fixed or-

der, with a single trajectory |T | = 1 per beneficiary that documents the calling decisions and the

engagement behavior in the past. We randomly split the cohort into 8 training groups, 1 validation

group, and 3 testing groups each withN = 639 beneficiaries andK = 18 budget formulated as an

RMAB problem. The demographic features of beneficiaries are used to infer the missing transition

dynamics.

Data usage All the datasets are anonymized. The experiments are secondary analysis using

different evaluation metrics with approval from the ARMMAN ethics board. There is no actual

deployment of the proposed algorithm at ARMMAN. For more details about the dataset, consent

of data collection, please refer to Appendix B.2 and B.3.

3.8 Experimental Results

Performance improvement and justification of objective mismatch In Figure 3.3,

we show the performance of random policy, two-stage, and decision-focused learning (DF-Whittle)

on three evaluation metrics - predictive loss, importance sampling-based evaluation and simulation-

based evaluation for all domains. For the evaluation metrics, we plot the improvement against the
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Figure 3.5: We compare the computation cost of our decision‐focused learning with other baselines and the theoretical
complexityO(NMω+1) with varying number of armsN.

no-action baseline that does not pull any arms throughout the entire RMAB problem. We observe

that two-stage learning consistently converges to a smaller predictive loss, while DF-Whittle outper-

forms two-stage on all solution quality evaluation metrics significantly (p-value< 0.05) by allevi-

ating the objective mismatch issue. This result also provides evidence of aforementioned objective

mismatch, where the advantage of two-stage in the predictive loss does not translate to solution

quality.

Significance in maternal and child care domain In the ARMMAN data in Figure 3.3,

we assume limited resources that we can only select 18 out of 638 beneficiaries to make service call

per week. Both random and two-stage method lead to around 15 more (IS-based evaluation) lis-

tening to automated voice messages among all beneficiaries throughout the 7-week program by

18 × 7 = 126 service calls, when compared to not scheduling any service call; this low improve-

ment also reflects the hardness of maximizing the effectiveness of service calls. In contrast, decision-

focused learning achieves an increase of beneficiaries listening to 50 more voice messages overall;

DF-whittle achieves a much higher increase by strategically assigning the limited service calls using

the right objective in the learning method. The improvement is statistically significant (p-value<

0.05).
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In the testing set, we examine the difference between those selected for service call in two-stage

and DF-Whittle. We observe that there are some interesting differences. For example, DF-Whittle

chooses to do service calls to expectant mothers earlier in gestational age (22% vs 37%), and to a

lower proportion of those who have already given birth (2.8% vs 13%) compared to two-stage. In

terms of the income level, there is no statistic significance between two-stage and DFL (p-value =

0.20 see Appendix B.2). In particular, 94% of the mothers selected by both methods are below the

poverty line342.

Impact of Limited Data Figure 3.4 shows the improvement between decision-focused learn-

ing and two-stage method with varying number of trajectories given to evaluate the impact of lim-

ited data. We notice that a larger improvement between decision-focused and two-stage learning is

observed when fewer trajectories are available. We hypothesize that less samples implies larger predic-

tive error and more discrepancy between the loss metric and the evaluation metric.

Computation cost comparison Figure 3.5(a), compares the computation cost per gradient

step of our Whittle index-based decision-focused learning and other baselines in decision-focused

learning321,111 by changingN (the number of arms) inM = 2-state RMAB problem. The other

baselines fail to run withN = 30 arms and do not scale to larger problems like maternal and child

care with more than 600 people enrolled, while our approach is 100x faster than the baselines as

shown in Figure 3.5(a) and with a linear dependency on the number of armsN.

In Figure 3.5(b), we compare the empirical computation cost of our algorithm with the theoreti-

cal computation complexityO(NMω+1) inN arms andM states RMAB problems. The empirical

computation cost matches with the linear trend inN. Our computation cost significantly improves

the computation costO(MωN) of previous work as discussed in Section 3.5.5.
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3.9 Conclusion

This paper presents the first decision-focused learning in RMAB problems that is scalable for large

real-world datasets. We establish the differentiability of Whittle index policy in RMAB by providing

newmethod to differentiate throughWhittle index and using soft-top-k to relax the arm selection

process. Our algorithm significantly improves the performance and scalability of decision-focused

learning, and is scalable to real-world RMAB problem sizes.
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4
Decision-focused Learning inMaternal and

Child Health*

4.1 Introduction

Non-profits often leverage the extensive cell phone coverage to feasibly reach underserved commu-

nities for information dissemination programs. In particular, NGOs working in the mobile health
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Figure 4.1: Beneficiary receiving preventive health information

space can deliver timely and targeted health information via text or voice messages250,166. Unfortu-

nately, such programs suffer from a dwindling engagement over time, with large number of ben-

eficiaries dropping out from the program. NGOs can make use of health workers to personally

reach out to beneficiaries through service calls, encourage their participation and address complaints.

However, health workers’ availability and time are scarce resources; only a limited number of benefi-

ciaries can be given a service call every week. It is thus crucial to optimize which beneficiaries receive

these personal service calls. We pose this as optimization problem of constrained sequential resource

allocation solved using Restless Multi-Armed Bandits (RMAB). Each beneficiary is modelled as an

arm following a Markov Decision Process and the action of whether to place a service call or not re-

sults in state change. TheWhittle index heuristic337 is the dominant approach for solving RMABs.

However, for computingWhittle Indices, transition dynamics of each armmust be known. While

many previous works make the assumption that transition dynamics parameters are already known,

in the real world, these parameters must be inferred. When arm features are correlated with tran-

sition dynamics, historical data on arm pulls is leveraged to learn a mapping from arm features to

transition dynamics211,294. The learnt mapping function is then used to predict the unknown pa-

rameters for new arms and solve the subsequent optimization problem.

*For completion of the decision-focused learning part, this chapter presents the field study result of the
method proposed in Chapter 3. The work was collaborated with and primarily led by Shresth Verma.
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This approach thus falls under the Predict-then-Optimize90,87,89 framework, where an optimiza-

tion problem is to be solved but the parameters defining the optimization problem are unknown.

This is a two-stage approach: The first stage is to learn a predictive model which maps from some en-

vironment features to the parameters. Subsequently, in the second stage, the optimization problem

formulated using the predicted parameters is solved. However, there is a key shortcoming in this

two-stage framework. While the mapping function maximizes for the predictive accuracy of param-

eters, we are interested in the solution quality of the optimization problem parameterized by the

predicted parameters. Decision-Focused Learning (DFL)80,338,207,323 is proposed to address this mis-

match between the training objective and the evaluation objective by embedding the optimization

problem within the training pipeline. However, until now, Decision Focused Learning has only

been studied through simulated experiments.

In this paper, we present the first work showcasing the real-world impact of DFL for RMABs

through a large scale field study. For conducting the field study, we collaborate with ARMMAN,

an NGO in India working in mobile health space for maternal and child health awareness (Figure

4.1). In prior works, a RMABmodel using the previously mentioned two-stage learning approach

has been used for optimizing live service call scheduling in the field211. We compare this two-stage

approach with a DFL approach in optimizing service calls. Engagement is a key metric that captures

beneficiaries’ participation in the mobile program. Our results show that allocating health worker

resources using a DFL policy reduces drop in engagement by 31% as compared to the no-service call

baseline. On the other hand, the benefit from TS policy is not statistically significant. We also show

that live service calls made by health care workers using DFL policy have higher effectiveness than TS

policy resulting in better short-term as well as long-term outcomes in listenership behaviour.

Furthermore, we perform detailed post-hoc analysis of the real-world study and back the observa-

tions using simulated experiments to explain howDFL is making decisions and why those decisions

result in a better performance. Our novel contributions are as follows:
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• We show results from the first large-scale field study of Decision Focused Learning being

applied to maternal and child health domain.

• We show that by optimizing for decision quality rather than predictive accuracy, DFL results

in statistically significant improvement in final decision quality measured through engage-

ment metric in the mobile health program.

• We provide an interpretation of howDFL strategically learns to distinguish between arms

that benefit most from interventions, resulting in improved parameter predictions compared

to the TS model.

Our positive results thus pave the way for future works applying Decision Focused Learning

in real world agent-modelling tasks as well as optimization problems with unknown underlying

problem parameters. We shall release the code for experiments upon acceptance.

4.2 RelatedWork

The optimization problem of constrained sequential resource allocation can be solved using Rest-

less Multi-Armed Bandits (RMAB). RMABs have been used in real world applications such as

anti-poaching patrol planning258, healthcare interventions211,210, and machine repair and main-

tenance123. The complexity of optimally solving RMAB problems is known to be PSPACE hard244.

Whittle Index approach337 is an approximate solution to RMAB problem which is aymptotically

optimal under the indexability condition 334,6,328. However, for computing the Whittle Index, tran-

sitions dynamics must be known. Under unknown system dynamics,211,294 leverage the predict-

then-optimize framework for learning a predictive model of transition dynamics from features using

historical data.

The predict-then-optimization91 framework (or two-stage learning) solves for an optimization

problem with unknown parameters by learning a predictive model of parameters from environ-
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ment features and subsequently solving the optimization problem. However, this two-stage process

separates out the prediction and optimization problems, thereby causing a mismatch between the

predictive loss that is minimized and the evaluation metric that is desired to be maximized142,185,155.

Decision Focused Learning338,207,89, solves this problem by embedding optimization problem as

a differentiable layer in a deep learning pipeline. Most previous DFL80,247,89,207 approaches solve

one-shot optimization problems such as stochastic programming and security games in an end-to-

end manner. Recently,321,111 propose an extension of Decision Focused Learning for sequential

decision making problems. Decision Focused Learning has been applied in directly optimizing game

utilities in Network Security Games320 and Stackelberg Security Games248.323 further extend the

Decision Focused learning methodology for Restless Multi Armed Bandit problems for general-

ized N-state MDP as well as a belief state MDP to optimze for decision quality. However, none of

these works, either in the single shot setting or the sequential decision making settings, have ever

been tested in the real world in the field; and hence were unable to thoroughly analyze comparative

advantages of decision focused learning over baseline approaches with real world data.

4.3 Mobile Health Adherence

4.3.1 Mobile Health Program

ARMMAN is a non-governmental organization in India focused on reducing maternal and neona-

tal mortality among underpriviledged communities. The NGO operates a mobile health service

that disseminates preventive health information to expectant or new mothers (beneficiaries) on a

weekly basis via automated voice messages. A large fraction (∼ 90%) of mothers in the program are

below theWorld Bank international poverty line342 and the program has so far served over a million

mothers. However, despite the success of the program, beneficiaries’ engagement with the voice calls

dwindles over time with 22% of beneficiaries dropping out of the program within just 3 months
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of enrolment. Live Service calls made by health workers can encourage beneficiaires’ participation.

However, the health workers’ availability is limited and thus, only a fixed number of live service calls

can be made every week. This constraint necessitates a smart scheduling strategy of which beneficia-

ries to reach out every week to best utilize health workers’ efforts.

4.3.2 RestlessMulti-Armed Bandits

We consider the Restless Multi-Armed Bandit model with N independent arms each characterized

by a 2-actionMarkov Decision Process (MDP) Figure 4.2. EachMDP is defined using the tuple

{S,A,R,P}where S refers to the state space,A is the action space, which in our case is discrete

and binary,A ∈ {0, 1}. R is the reward function such thatR : S ×A×S 7→ R. P is the transition

function, such thatP(s, a, s′), (s, s′) ∈ S, a ∈ A represents the probability of transitioning from

state s to s′ under action a. The policy function π : S 7→ A is defined as the mapping from states to

action.

Figure 4.2: The beneficiary transitions from a current state s to a next state s′ under action α, with probability
P(s, α, s′).

In our problem setup, we consider a 2-state 2-actionMDP problem. Based on our discussions
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with the NGO, states are defined using the engagement metric. If a beneficiary listens to at least 1

call for more than 30 seconds in a week, they are said to be in Engaging state (s = 1). Otherwise, the

beneficiary is in Non-Engaging state (s = 0). The timestep of the MDP is chosen to be a period of

1 week. The actions correspond to whether to deliver (active) or not deliver (passive) live service call

to a beneficiary. Additionally, the NGO can only deliverK live service calls in a week. The reward

function at any given timestep is defined to be same as the current stateR(s, a) = s. The planner’s

goal is then to maximize expected long term reward (engagement). Starting from a state s0, this is

defined using the value functionV as :

V(s0) = Est+1∼P

[ ∞∑
t=0

γtR(st, π(st), st+1|π, s0)

]
(4.1)

where γ is the discount factor for rewards.

TheWhittle Index for every arm is defined using the ‘passive subsidy’. The passive subsidy is the

additional reward accrued by an arm when the passive action is chosen. The whittle index is then

defined as the passive subsidy such that expected future value is identical for both the passive and

active actions. Formally, the whittle indexWIi for an arm i in state s can be defined as:

Wi(s) = inf
m
{Vm

i (s; a = 0) = Vm
i (s; a = 1)} (4.2)

whereVm
i is subsidized value function under passive subsidym.

Intuitively, the Whittle index measures the value of pulling an arm conditioned on the observed

state. Therefore, at every timestep, theWhittle Index Policy ranks all arms by their current state

whittle index. The top-K arms with the highest whittle indices are chosen for active action to maxi-

mize the total pulling performance.
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4.3.3 Missing Transition Probabilities in RMAB

Most works using RMABs make the assumption that MDP parameters are known beforehand.

However, in practice, we may not have access to beneficiaries’ transition probabilities to define

the RMABmodel. In our problem, the mobile health program receives new sets of beneficiaries

without information about their transition behavior. This prevents us from applying techniques in

RMAB to properly schedule service calls.

Learning challenge The solution we adopt here is to learn a mapping from the beneficiaries’

demographic features and prior interaction with the program to forecast the transition probabilities.

Similar to Predict-then-Optimize framework90 we learn a predictive model and then determine the

live service call schedule using the RMABmodel.

Dataset We use the historical beneficiaries’ listenership behaviour between January 2022 to

May 2022 as the training dataset. Specifically, we have access to state trajectories of 19944 (N) ben-

eficiaries over a period of 5 weeks (T), along with the action chosen for every beneficiary at every

timestep. Note that passive actions make up majority of the historical data with only 3% of transi-

tions happening under an active action. In addition to the trajectories, we have socio-demographic

features for every beneficiary obtained at registration time. These features cover information such

as age, gestational age, income, education, parity, gravidity, language of automated call, and registra-

tion channel.

4.4 Comparison of LearningMethods

In this section, we summarize the Two-Stage and the Decision-Focused learning approaches for ob-

taining the transition probability parameters of beneficiaries. Crucially, the TS approach maximizes
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for the predictive accuracy while the DFL approaches maximizes the decision objective.

4.4.1 Two-stage Learning

In211, TS model is shown to cut∼ 28% engagement drops as compared to a Round-Robin baseline.

In our work, we consider outperforming the TS baseline to show applicability of DFLmodel. Thus

we follow similar setup of the TS model as described in211. A mapping function f is learnt that pre-

dicts the Transition Probabilities given the socio-demographic features xi for the ith arm. Predicted

Transition Probabilities for arm Pi can then be obtained as Pi = f(xi), i ∈ [N]. Since our problem

domain consists of two states and two actions, we have to predict four transition probabilities. We

model the mapping function as a neural network fw parameterized by the weights w. fw is designed

using two fully connected layers followed by four outputs and finally logistic function is applied to

obtain probabilities. fw is learnt by minimizing the negative log-liklihood of observed trajectories T

under the predicted transition probabilities fw(x). The loss functionL is thus given by

L(fw(x), T ) = E
i∈[N]
−log(T i|fw(xi)) (4.3)

The weights w of the neural network fw are optimized by backpropogating the gradient dL(fw(x),T )
dw .

4.4.2 Decision-focused Learning

We replicate the Decision Focused learning pipeline from323 where instead of optimizing for predic-

tive accuracy, the final decision outcome is optimized. Off-Policy Policy Evaluation (OPE) is used

to quantify the decision outcome. It measures the reward obtained from a learnt policy given the

past trajectories from a different policy. The DFL architecture uses the same predictive model fw

as TS, described in the previous section. However, once Transition Probabilities are predicted as

P = fw(x), we compute Whittle Indices using a differentiable functionW. The whittle indices
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WI = W(P) parameterize a differentiable policy which we denote as πWI. Finally, the differen-

tiable evaluation objective is formulated using OPE of learnt policy under the observed trajectories

T which is represented asOPE(πWI, T ). The weights of the predictive model are learnt by maxi-

mizing the final objective and backpropogating through the complete pipeline. The gradient is thus

given by d OPE(πWI,T )
dw .

In Decision Focused Learning, we calculate this gradient by using the chain rule:

d OPE(πWI, T )
dw

=
d OPE(πWI, T )

dπWI
dπWI

dWI
dWI
dP

dP
dw

(4.4)

We refer the reader to the appendix for more details on DFL pipeline.

4.5 Field Study

We collaborated with the NGO on the maternal and child health problem and conducted a service

quality improvement field study to compare the performance of different learning approaches. All

experiments reported in this paper are approved by an ethics review board at the NGO.

Hypothesis and research question: The main goal in this paper is to understand the per-

formance of decision-focused learning in real-world problems. Decision-focused learning has shown

better performance in many applications but only in simulation. There is no deployment or real-

world evidences of whether decision-focused learning actually outperforms other learning methods

in practice.

Control methods In earlier work211, the two-stage approach was shown to outperform a

benchmark of Round Robin Policy. The work also provides statistical significance results, illus-

trating the superiority of two-stage RMAB policy over non-AI baseline. Therefore outperforming
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the two-stage approach is important to show the utility of decision-focused learning. In our field

study, we compare the following live service call scheduling strategies: (1) Current Standard of care

(CSOC), where no live service calls are delivered to the beneficiaries, (ii) Two-stage (TS) approach

where beneficiaries are chosen for live service calls according to theWhittle Index Policy learnt us-

ing Two-Stage learning, and (iii) Decision-Focused Learning (DFL) approach where beneficiaries

are chosen for live service calls according to theWhittle Index Policy learnt using Decision Focused

learning. We use the performance of the CSOC group to anchor the performance of other AI-based

methods. The performance of the CSOC group also measures the baseline engagement rate that the

mobile health program receives without any intervention. Therefore, we focus on the improvement

of AI-based methods against the CSOCmethod.

Eligibility criterion and randomization We consider the group of beneficiaries regis-

tered between the months of April 2022 to June 2022. Further, we filter out beneficiaries who have

not listened to even a single automated voice call in the time period of 30 days before the study be-

gins. This filtering is done to remove beneficiaries from the cohort who have long term connectivity

issues such as phone number out of service or misentry of phone number at enrolment. Lastly, we

randomly sample 9000 beneficiaries out of these eligible candidates to form our study cohort. We

split these set of beneficiaries into three groups of 3000 beneficiares each - (i) CSOC group, (ii) TS

group, and (iii) DFL group. We make sure that the distribution of socio-demographic features and

start-state are the same across the three groups.

Experiment design Beneficiaries become eligible for live service calls 2 months post their en-

rolment into the program. Within the TS and DFL groups, we chooseK = 300 beneficiaries for

live service call every week based on NGO’s constraints. These live service calls are sent out weekly

for a period of 6 weeks. We continue to monitor the cohort for 4 more weeks even after the study
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ends to measure the sustained effect of live service calls. It should be noted that, automated voice

messages are sent to all groups throughout this period and only the delivery of live service calls by

health workers changes across the three groups.

4.6 Experiment Results

In this section, we showcase the results from the field study. We also define multiple evaluation met-

rics and demonstrate how the different policies fare against each other.
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Figure 4.3: Weekly Cumulative Engagement Drop Prevented for the DFL and TS groups. Live service calls are only
delivered for the first 6 weeks, after which, all three groups are only passively observed. The DFL group prevents more
Cumulative Engagement Drops as compared to the TS group

4.6.1 Weekly and Cumulative Engagement

We first present the results from our study using the Engagement Metrics proposed byMate et al. 211.

Engagement at time t for the ith beneficiary, represented by Ei(t), is defined as 1 if the beneficiary lis-

tens to at least one automated call in a week for more than 30 seconds and 0 otherwise. Since the

engagement of beneficiaries dwindles over time, we can measure the drop in engagement relative to
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the engagement at start. The engagement drop and the cumulative engagement drop are defined as

Eidrop(t) := Ei(0)− Ei(t); Eicumu_drop(t) :=
ζ=t∑
ζ=0

Eidrop(ζ) . (4.5)

The cumulative engagement drop prevented over the CSOC group is simply the difference in cu-

mulative engagement drop of the policy and the CSOC group. Figure 4.3 shows the cumulative en-

gagement drops prevented over CSOC group for DFL and TS policies. We see that DFL prevented

more drops across all weeks and by the end of study, DFL group has 560more engagement drops

prevented over the CSOC group as compared to TS group which only prevents 181 engagement

drops. Given a total of 1765 cumulative engagement drops in the CSOC group, DFL group has

31% fewer cumulative engagement drops as compared to CSOC group while TS only results in 10%

reduction in cumulative engagement drops.

4.6.2 Statistical Significance

We also establish statistical significance † of DFL’s benefit using regression analysis18. We fit a lin-

ear regression model to predict the output variable Eicumu_drop by giving beneficiary features xi as an

input vector of length J along with and an indicator variable Ti denoting whether a beneficiary be-

longs to DFL (Ti = 1) or CSOC (Ti = 0) group. The regression model can thus be represented as

Yi = k+ βTi +

J∑
j=1

γjxi,j + εi (4.6)

where β is the regression coefficient of the indicator variable Ti measuring the effect of treatment, γj

is the regression coefficient of the j-th input feature, k is the constant term of regression and εi is the

error. Yi is the target variable that is fitted using the regression model and is same as Eicumu_drop. The

†See Appendix for erratum
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regression coefficient for T is found to be 0.19 with p-value of 0.024. On the other hand, similar

comparison between TS (Ti = 1) vs CSOC (Ti = 0) yields a regression coefficient of 0.06 for T

with p-value of 0.48. Thus, belonging to the DFL group resulted in significantly positive impact on

cumulative engagement drops while for TS, no such statistical significance could be established.

Table 4.1: Statistical significance for service call impact tested using a linear regression model

DFL vs CSOC TS vs CSOC
% reduction in cumula-
tive engagement drops

31% 10%

p-value 0.024 0.48
Coefficient β 0.19 0.06

4.6.3 Performance on ListenershipMetrics

While the whittle index policy maximimizes the reward, which is defined using the engagement

metric, we also measure if the policy improved other metrics characterizing listenership. Thus, we

define metrics quantifying listenership behaviour of a beneficiary within a time window of 14 days

before and after receiving a service call.

Definitions

1. Mean Duration: The mean duration of calls listened to within the time window.

2. No. of Engagements: The numbers of calls engaged with (30+ seconds listened) within the

time window.

3. Engagements to Scheduled (E/S) Ratio: The ratio of numbers of calls engaged with to num-

bers of calls scheduled within the time window.

Results We calculate the change in these metrics between the time window before and after a

live service call. Table 4.2 reports the mean change in these metrics across the three experimental
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groups. We observe that across all the metrics,DFL group has a significantly higher change in

listenership behaviour through live service calls as compared to the TS group. For instance, we

can interpret the value of 17.054 inMean Duration metric for DFL as active actions in DFL group

resulting in beneficiaries listening to on average 17 seconds more of an automated call. This is in

contrast to TS group, where live service calls only resulted in beneficiaries listening to 6 seconds

more of an automated call. Note that the average duration of an automated message is 60 seconds.

Thus a 17 seconds improvement in listenership corresponds to an average 28% increase in message

content listened to among those treated with live service calls. Using t-test for comparison of means,

we find that for each of the proposed metrics, mean change is statistically higher for DFL group as

compared to TS group with p-value< 0.05.

Table 4.2: Performance of the DFL and TS policies across multiple listenership metrics. DFL policy shows a higher
change in listenership behaviour from a service call as compared to the TS policy.

Policy Change in Mean Duration Change in No. of Engagements Change in E/S
DFL 17.054 0.094 0.20
TS 6.764 0.009 0.07

Table 4.3: Multiple Error and Rank metrics evaluated for DFL and TS policies. While TS group shows a lower overall
error in predicting transition probabilities, DFL group has lower predictive error in Top‐K arms and a higher rank correla‐
tion with the optimal ranking.

Rank Metrics Transition Probability Error Metrics
Policy Precision @ K Spearman’s Correlation MAE All MAE Top-K Mean NLL All Mean NLL Top-K
DFL 0.41 0.30 0.31 0.35 0.79 0.62
TS 0.22 0.179 0.25 0.37 0.42 0.69

4.7 Understanding Decision-focused Learning

4.7.1 Learnings fromRealWorld Experiment

The Decision Focused Learning method consists of an end-to-end pipeline starting from features to

predicted Transition Probabilities to computed whittle index and finally the decision of whether a
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beneficiary is in top-K list chosen for live service call. In this section, we interpret the DFL’s strategy

in contrast with the Two-Stage policy by performing post-hoc analysis across all these steps.

As a first step for this analysis, we compute the ground truth transition probabilities using the

observed trajectories of beneficiaries during the time period of field study. Once Ground Truth

Transition Probabilities are estimated, we subsequently compute the Ground TruthWhittle Index

and Ground Truth top-K ranks.

Top-K Rank Lists We consider the ordered list of beneficiaries according to predicted whittle

index in the Two-Stage and DFL experiment groups. Additionally, True Top-K rank list is also com-

puted using the ground truth whittle index. To measure the agreement between the two lists, we use

the following metrics:

1. Precision @ K: This metric counts the proportion of relevant beneficiaries in the top-K po-

sitions of the policy rank list and is widely used in classification356,255 and ranking prob-

lems298. The precision @ K in our problem is given by:

Precision @ K =
|Policy Top-K list ∩ True Top-K list|

K

2. Spearman’s Rank Correlation: This metric calculates the rank correlation between the Pre-

dictedWhittle Index and Ground TruthWhittle Index of Policy’s Top-K ranked beneficia-

ries.

In Table 4.3, we show the different rank metrics for the two comparison groups. In all the weeks,

we find that the DFL group has a higher agreement with the True Top-K ranks as compared to

the Two-Stage experiment group.
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Whittle Indices For beneficiaries belonging to each of the experimental group, we have the

corresponding computedWhittle Index from predicted Transition Probabilities. We call it the

PredictedWhittle Index (note that these values are not directly predicted by the Neural Network

models). Figure 4.4 shows the distribution of PredictedWhittle Index for DFL and TS experiment

groups in Blue. We also mark the beneficiaries who are chosen for Active action within each experi-

mental group in orange.
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Figure 4.4: Predicted Whittle index distribution and beneficiaries intervened for TS and DFL groups across all weeks.
The DFL group has a bimodal distribution of predicted whittle index as compared to unimodal distribution in the TS
group. Note that the right peak in DFL is not fully covered due to beneficiaries changing states over the course of study.

A striking observation is thatwithin the DFL group, the whittle indices have a bimodal dis-

tribution as opposed to a unimodal distribution for Two-Stage group. This suggests that in

DFL, the model is trying to learn a decision boundary between the beneficiaries to deliver active and

passive action. This contrasts with the Two-Stage model where objective is solely to learn accurate

transition probabilities.

Predicted Transition Probabilities Given the ground truth and predicted transition

probabilities for both DFL and TS policies, we compute for the whole population (i) the Mean Neg-

ative Log Likelihood (NLL) of observed trajectories under predicted transition probabilities and (ii)

the prediction error using Mean Absolute Error (MAE). In Table 4.3, we show that DFL has both

higher MAE and higher Mean NLL as compared to TS. Thus DFLmodel is poorer in predicting

72



the transition probabilities. However, if we compute these metrics for just the true top-K beneficia-

ries (MAE Top-K andMean NLL Top-K), we find that DFL has lower MAE as well as Mean NLL

than TS. This suggests that theDFL focuses on correctly predicting the transition probabilities

for beneficiaries who will actually be picked, in contrast to the TS, which optimizes for pre-

dictive performance for the whole population. It must be noted, that the predictive performance

of TS is impacted due to limited historical data around active actions (limited service calls made by

the NGO).

4.7.2 Short-term and Long-term Impact of Live Service Calls

In Figure 4.5, we plot mean reward accrued by beneficiaries in the next step after an active action for

both Two-Stage and DFL group. This quantifies the short term impact of a live service call. In both

the NE and E state, we observe that DFL leads to higher reward.
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Figure 4.5: Mean reward accrued by beneficiaries in short term (1‐step lookahead reward) and long term (4‐steps and
6‐steps lookahead rewards) after given an active action, DFL group has higher reward in both the short‐term and the
long term as compared to the TS group.

While short-term impact is only applicable for one timestep ahead, the Whittle Index policy opti-

mizes for long-term rewards. In Figure 4.5, we also plot the reward obtained in 4 weeks and 6 weeks

73



following the live service call. We show this for both TS and DFL group. Again, we see that DFL’s

live service calls are more effective than TS policy even in the long term.

4.7.3 Who Benefits fromDFL

In order to determine which beneficiaries benefited the most from the DFL policy, we first obtain

the ratio of calls engaged with over total scheduled calls (E/S) for every beneficiary over the whole

duration of study. Subsequently, we rank the beneficiaries based on the E/S ratio and compute av-

erage E/S ratio for different percentiles. We calculate these numbers for all three policies. In Figure

4.6, we plot the lift in E/S ratio over CSOC for different percentiles. While DFL shows a positive

lift in listenership over CSOC across all percentiles, the maximum lift is achieved in the lowest per-

centiles. This shows that those with low listenership are the ones benefiting most from the DFL

policy.
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Figure 4.6: Lift in E/S ratio over CSOC for different percentiles. The highest lift in E/S ratio is in the lowest percentile
suggesting that beneficiaries with poor listenership of automated voice messages benefited the most from live service
calls.
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4.7.4 Learnings from Simulated Experiments

In this section, we conduct simulated experiments to improve our understanding of the DFLmodel

and verify the observations made from the real world experiment. Specifically, we consider an

RMAB system with 100 arms simulating beneficiaries enrolled in the NGO’s program. TheMDP

parameters of each arm are randomly initialized. Additionally, we obtain a feature vector corre-

sponding to every arm such that the features are correlated with the MDP parameters. Lastly, we

simulated multiple trajectories for the whole system and store that as offline dataset for our experi-

ments. All experimental results are reported by averaging over five seed values.

The Effect of Training Data Size While Decision Focused Learning optimizes for the deci-

sion objective, a TS model that perfectly predicts the optimization problem parameters should also

achieve the optimal decision objective. However, in the real world, predictive models do make er-

rors. These errors can be dependent on the quantity of training data that is available to the learning

model.

We thus formulate the hypothesis that the gain fromDFLmodel should be higher in limited data

scenario. As size of training data grows, DFL and TS should converge to similar decision objective.

To test this hypothesis, we run a simulated experiment with varying number of trajectories per arm.

Figure 4.8(a) shows lift in Off-Policy Policy Evaluation fromDFL over TS with increasing training

data size. We observe that the highest lift is with smallest training data size and as we increase avail-

ability of training data, lift diminishes.

Shift inWhittle Index Distribution over Training Epochs As DFL learns to opti-

mize the decision objective directly, we hypothesise that it should learn a model which effectively

separates the top ranked and bottom ranked whittle index arms. On the other hand, since TS opti-

mizes for predictive accuracy, it has no incentive to learn an optimal ranking of the arms by whittle
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Figure 4.7: Predicted whittle index distribution for optimal top and bottom arms, across the training epochs. DFL policy
learns whittle indices such that the true top ranked and bottom ranked arms are segregated. TS policy fails to learn
whittle indices following this strategy.

index. To verify this hypothesis, we plot the predicted whittle index distributions of true top-K and

bottom-K arms. In Figure 4.7, we visualize how these distributions change over the training epochs,

giving a glimpse into the learning process of the two models. We observe that both the TS and DFL

model start with no prior information of the true top-K and bottom-K arms. However, over the

training epochs, DFL learns whittle indices such that it separate the two groups. The Two-Stage

model fails to learn such segregation in predicted whittle index distribution.

The Effect of Budget-K The budget constraint in the RMAB problem defines the number

of arms chosen for active action every week. In a two-stage model, the learning step outputs the

transition probabilities irrespective of the budget value K. However, in Decision Focused Learning,

the mapping model which outputs the transition probabilities maximizes for the decision objective

that relies on the value of K. To simulate the effect of mismatch in K, we train DFLmodel with

changing K at train time (K_train), while keeping the K fixed at the time of evaluation (K_eval).

Specifically, we note the OPE at evaluation time withK = 20 for different training scenarios with

K ∈ [2, 4, 10, 16, 20, 30, 40, 60, 80] as shown in Figure 4.8(b). We observe that the performance

at evaluation time only drops slightly (by upto 6%) in both the cases of train time budget being
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greater or lesser than the evaluation time budget. The sensitivity of the DFL’s performance to the

value ofK_train supports the hypothesis that DFL learns a decision boundary optimized for the

exact number of beneficiaries chosen for active action. Further, keepingK_eval = K_train can help

maximize the performance of DFL.
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(a) Improvement in evaluation OPE of DFL over TS with
changing number of trajectories per arm.
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(b) Percentage drop in evaluation OPE with budget as 20
(K_eval) relative to maximum Eval OPE, across changing
budget at train time (K_train).

Figure 4.8: Off‐policy policy evaluation (OPE) of decision‐focused learning and two‐stage learning with varying number
of trajectories and budget at train time.

4.8 Conclusion

Several applications at AAMAS first require learning a predictive model of agents’ parameters and

then optimizing based on result of such learning. This paper presents key results on importance

of Decision Focused Learning to such applications. We conduct the first large-scale field study of

Decision Focused learning through an RMAB problem in maternal and child health domain. We

conclude that learning the MDP parameters of the RMAB problem through Decision Focused

Learning results in higher participation of beneficiaries in the program (Figure 4.3). DFL’s strate-

gic selection of actions also results in more effective live service calls as demonstrated in Table 4.2.

From the analysis showcased in previous sections, we attribute the success of DFL to the following:

(i) The predicted whittle index distribution fromDFL policy is bimodal in contrast to a unimodal
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distribution in TS (see Figure 4.4) indicating that DFLmodel learns a decision boundary to highly

rank beneficiaries that would benefit significantly more from receiving the service call than the rest

of the population. (ii) DFL is more aligned with the optimal policy as shown by a higher rank cor-

relation with the True Top-K Beneficiaries as compared to TS (Table 4.3). (iii) While TS results in a

lower predictive error for the population as a whole, DFL by optimizing for decision quality results

in improved transition probability prediction for the top-K beneficiaries (Table 4.3).

4.9 Ethics and data usage

Acknowledging the responsibility associated with real-world AI systems for undeserved communi-

ties, we have closely coordinated with interdisciplinary team of ARMMAN’s field staff, social work

researchers, public health researchers and ethical experts through all major steps of model iteration,

development and experimentation. Particularly, prior to all experiments, approval was obtained

from ethics review board at both ARMMAN and Google.

Consent andData Usage

The consent for participating in the program is received from beneficiaries. All the data collected

through the program is owned by the NGO and only the NGO is allowed to share data. This dataset

will never be used by Google for any commercial purposes. We only use anonymized data and no

personally identifiable information (PII) is made available to the AI models. The data exchange

and use was thus regulated through clearly defined exchange protocols including anonymization,

read-access only to researchers, restricted use of the data for research purposes only, and approval by

ARMMAN’s ethics review committee.
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Universal Accessibility of Health Information

Our service call scheduling model focuses on improving quality of service calls and does not alter,

for any beneficiary, the accessibility of health information. All participants will receive the same

weekly health information by automated message regardless of whether they are scheduled to receive

service calls or not. The service call program does not withhold any information from the partici-

pants nor conduct any experimentation on the health information. The health information is al-

ways available to all participants, and participants can always request service calls via a free missed

call service.
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5
Decision-focused Learning in Network

Intervention

5.1 Introduction

Many real-world security problems present the challenge of how to allocate limited resources to

large number of important targets, including infrastructure112, transportation systems240, urban
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crime357, and web security308. Stackelberg security games (SSGs) are frequently used to study the

interaction between defender and attacker and optimally allocate the security resources accordingly.

Network security games (NSGs)332,101,272, a natural extension of SSGs, describe a strategic adversar-

ial interaction between an attacker and a defender on a graph. The attacker’s goal is to take a path

from a starting location to a target without being caught by the defender. The defender declares (i.e.,

attacker surveils) a mixed strategy of how she will deploy her security resources to the edges of the

network. NSGs are relevant in many real-world settings such as wildlife conservation95,213, infras-

tructure protection147, and nuclear material smuggling243,225.

One key challenge in applying NSGs in the real world is learning an adversary’s behavior from

historical data. Past works21,227,1 in security games have shown that constructing bounded rational-

ity adversary models from data greatly improves performance of deployed models because attackers

often behave quite differently from how rational models would suggest. A particular motivation for

this paper is wildlife smuggling98,267,361, a natural NSG domain where large amounts of historical

attack data is available in the form of past seizures.

Almost all previous work on security games approaches the problem of adversary modeling by

first building a full adversary model that aims to predict the adversary behavior as accurately as pos-

sible2,75,95,236. In early work, the judgments of human experts were used to estimate the adversary’s

preferences297. Later, in domains where historical attack data was available, machine learning was

used to construct models instead (starting from Letchford et al.190). In NSGs, building an adversary

model to maximize accuracy has several key limitations. First, the model is selected without any con-

sideration of the impact of errors downstream. Prediction errors on paths that are frequently taken

by the adversary have a large impact on defender utility, but are weighted the same as errors on paths

that are rarely taken. Secondly, standard adversary models require human feature engineering to

apply to NSGs due to a great variety of paths from the attacker’s starting location to each potential

target105,350,125,126. Once the adversary model is determined, the following defender utility maxi-
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mization problem can be solved by any optimization techniques, including bilevel optimization213,

branch and cut102, and double oracle147.

Our approach represents a fundamental shift: we take an end-to-end, game-focused approach,

focusing on learning a model that yields a high defender utility. More specifically, we take the down-

stream defender utility maximizatoin problem into account while learning the adversary model. To

that end, we use a graph convolutional neural network architecture to learn the adversary’s behavior,

which allows us to overcome both of the issues of prior work. First, assuming we can differentiate

through the defender’s optimization problem, we can train the entire model end-to-end because the

predictive model is differentiable, i.e., to take the optimization problem into account while training.

Second, the graph convolutional network automatically extracts features from the graph, meaning

that hand engineering is not necessary. Nevertheless, several challenges must be overcome to imple-

ment this approach: principally, poor scalability of naive end-to-end training and non-convexity of

the game-focused objective.

A summary of our contributions is as follows: first, we construct a graph convolution-based adver-

sary model for NSGs. This model is fully differentiable, does not require manual selection of path

features, and transmits target value information over the network. Second, we develop a random-

ized block update scheme for differentiating through optimization problems, whose computation

time is usually more than quadratic in terms of the number of variables due to the computation

of Hessian matrix and matrix inversion. Such computational issue is especially influential for op-

timization problems with a huge number of variables, which is commonly seen in NSGs as every

edge corresponds to one individual decision variable. In these cases, randomized block update can

largely reduce the time complexity. We further provide an approximation guarantee relative to the

complete derivatives, and we show empirically that our approach greatly improves scalability. We

also show that through judicious use of the standard predictive loss as regularization, we can escape

local minima in the end-to-end loss function.
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5.2 RelatedWork

There is a rich literature on learning adversary behavior models in Stackelberg security games (SSGs)

(starting from Letchford et al.190), but learning in NSGs has received much less attention. While

SSGs generalize NSGs, the scalability concerns are quite different because reducing NSGs to SSGs

may create exponentially many targets—one for each path to the target in the NSG. Thus, applying

standard attacker bounded rationality models, such as quantal response (QR)214,222 and subjective

utility quantal response (SUQR)236 is nontrivial. Yang et al.350 and Ford et al.105 reduced NSGs to

SSGs by considering each individual path as an attacker pure strategy. Their approach scales poorly,

creating exponentially many paths in many networks. It also relies on hand-crafting path features

that capture adversary behavior well. Other authors have developed models that use Markovian

dynamics to model the attacker. Gutfraind et al.125 and Abbasi et al.2 assume the attacker does not

receive any information beyond the neighboring nodes—attackers do not make any decisions that

are more long term than a single timestep. Gutfraind et al.126 takes the opposite approach: attackers

follow a path that minimizes some cost (such as the risk of being caught) with randomness in the

individual decisions. This adds some global information, but requires the model designer to specify

the choice of cost function in advance.

Past work in adversary modeling in SSGs has viewed the problem of constructing an adversary

model and solving the defender’s optimization as completely separate problems and does not con-

sider the impact of errors in the defender model on the quality of the optimization outcome, with a

few exceptions. Sinha et al.285 and Haghtalab et al.129 relate the predictive accuracy of the learned

model to the defender’s expected utility. In the case of Haghtalab et al., this view motivates the use

of a non-standard loss function to achieve better utility. However, even these papers take a funda-

mentally two-stage approach: the model is trained independently of any information about the

game itself, such as the defender’s utilities. Perrault et al.248 takes a game-focused approach to SSGs,
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but the issues that arise in NSGs are different and require a greater focus on scalability.

A major challenge in our work is differentiating through the nonconvex defender optimization

problem. Recent work has developed general approaches for differentiating convex problems4. Per-

rault et al.248 present an approach for a limited class of nonconvex problems. Our setting is chal-

lenging in two ways. First, we have a decision variable for each edge in the network and these ap-

proaches scale poorly (more than quadratically) in the number of variables. Second, our setting is

more severely nonconvex than that of Perrault et al.

5.3 Background

Stackelberg Security Games A Stackelberg security game (SSG)354,297 is a two-player se-

quential game. The defender aims to protect a set of targets Twith limited budget bwhich can only

protect up to b targets. Each target t ∈ T is associated with a defender penaltyUd(t) ≤ 0 and an

attacker rewardUa(t) ≥ 0 when the target is successfully attacked. For simplicity, we assume there

is no reward and penalty when the attacker is caught or fails to reach the target. Once the defender

commits to her mixed strategy, the attacker can conduct surveillance to observe the defender’s mixed

strategy and choose one target to attack accordingly. We denote the defender’s mixed strategy by

z ∈ R|T|, where 0 ≤ zt ≤ 1 denotes the marginal probability that target t is protected. The budget

constraint can be written as 1⊤z ≤ b. On the attacker side, we use θ(z, x) to represent the attacker’s

behavior, where θt(z, x) (or θt if there is no ambiguity) is the probability of attacking target t, and x

is the available features revealed to both the defender and the attacker, e.g., the attacker payoff value

Ua(t) ∀t ∈ T can be considered as a feature. Notice that θ is a function of the defender strategy z

and the feature x, which implies that the attacker can be reactive to the defender strategy and select
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the target based on the underlying feature. We can write the defender’s utility function as:

DefU(z; θ) =
∑
t∈T

θt(z, x)Ud(t)(1− zt). (5.1)

This includes the case where the attacker is fully rational, where θt(z, x) = 1 if t = argmax
t′∈T

(1 −

zt′)Ua(t′) else 0.

Bounded Rationality in SSGs Quantal response (QR)214 models the attacker’s behavior

by setting the probability that each target is attacked to be proportional to the exponential of its

payoff scaled by a constant. Subjective utility quantal response (SUQR)236, which fits data better

than QR in practice, sets the probability proportional to the exponential of a subjective utility or an

attractiveness function of the attacker:

θt(z, x) ∝ exp(−ωzt + Φ(t, x)), (5.2)

where ω > 0 is a constant representing the attacker’s risk aversion and Φ(t, x) denotes the subjective

utility of target t given feature x.

Network Security Games Network security games (NSGs)101,232 are SSGs played on a graph

structure. Given an undirected (or directed) graphG = (V,E), the defender allocates a limited

number of checkpoints along edges in E, while the attacker tries to find a path from a source to a

target without being caught. We divide the set of all verticesV into targets T = {t1, t2, ..., t|T|}

and non-targets S = {s1, s2, ..., s|S|} (or potential sources). At each time, the attacker appears in

one potential source s ∈ S drawn from a given prior distribution π ∈ R|S|. From the defender’s

perspective, the defender strategy ze ∀e ∈ E is the marginal probability of covering edge e. Similarly,

the defender has a limited number of resources b to protect the targets.
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We use α = {v1, v2, ..., v|α|} to denote a path which starts from a source v1 ∈ S and ends with

a target v|α| ∈ T. We useA to denote the set of all possible paths from any source to any target,

which could be exponentially many or infinitely many when the graph contains any cycle. Similar to

SSGs, letUd(t) be the defender’s payoff when the target t is attacked successfully andUd
caught be the

defender’s payoff when the attacker is caught. LetUd = {Ud(t1), ...,Ud(t|T|),Ud
caught} ∈ R|T|+1

denote the defender’s payoff vector. In addition, we assume each node v ∈ V has a node feature

vector xv ∈ RD consisting of characteristics of node v, e.g., the attacker payoff of the current node

Ua(v) if v ∈ T. We use x ∈ R|V|×D to denote all the node features in graphG.

Bounded Rationality in NSGs In this paper, we assume the attacker to be boundedly ratio-

nal, where the attacker’s behavior is characterized by a function θ(z, x), where θα(z, x) represents the

probability of choosing path α under coverage z and feature x. Given the coverage z, we can com-

pute the defender expected utility:

DefU(z; θ) =
∑
α∈A

θα(z, x)Ud(α)
∏
e∈α

(1− ze), (5.3)

whereUd(α) = Ud(t) is the defender utility when the attacker successfully passes through α to

attack its target t.

The difference between Equation 5.1 and 5.3 is that there are multiple layers of protection along

the path α. Therefore the probability of successfully attacking a target is the product of all the suc-

cess probabilities of crossing each edge e in the path. The defender’s optimization problem is gen-

erally hard. For example, if the function θ(z, x) is given by full rationality restricted to only polyno-

mial many pathsA, the defender optimization problem is NP-hard147. Furthermore, the set of all

possible pathsA could be exponentially large or infinitely many when there is any cycle.
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Figure 5.1: The convolutional layers of GCNs can propagate and aggregate information in a non‐linear fashion. In NSGs,
such message passing ability corresponds to the attacker’s ability of conducting surveillance to neighbor nodes.

Graph Convolutional Networks There has been much recent attention paid to graph

convolutional networks (GCNs)223,172,130. Given a graph, the convolutional layers in GCNs can

transmit information through message passing, which allows information to propagate to distant

nodes and be aggregated in a non-linear fashion. GCNs are much more expressive than hand-crafted

features. In this paper, we apply GCNs, parameterized by w, to map each node v ∈ V and the en-

tire node features xwith graph structure to a scalar Φ(v, x;w), which represents the extent that the

attacker is “pulled” toward that node. The message passing in GCNs is similar to the information

gathering conducted by the adversary, where a rough understanding of faraway targets is available to

the adversary.

5.4 AdversaryModel

Our attacker model is Markovian—the probability of using a path α can be decomposed into the

product of transition probabilities:

θα(z, x) =
∏
e∈α

θe(z, x). (5.4)
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Motivated by the SUQRmodel, we propose a local SUQRmodel, which assumes the probability

that the attacker moves from u to v using edge e = (u, v) is proportional to exp(−ωzu→v − ηyv +

Φ(v, x;w)) ∀v ∈ Nout(u). Φ(v, x;w) represents the subjective utility or attractiveness of node v

parameterized by w, which can be learned by GCN. The variable yv, with a weight η ≥ 0, represents

the downstream future risk or coverage perceived by the attacker at node v. In other words, the

attacker tends to move toward the target with higher attractiveness Φ(v, x;w), but avoids using

the edge e = (u, v) ∈ Ewith higher coverage zu→v and avoids moving towards nodes vwith higher

future risk yv.

Given a defender coverage strategy, there are many heuristic ways to obtain a measure of future

risk. For example, we can follow the above Markovian behavior without the effect of the future risk,

where the probability of being caught can be analytically computed efficiently. Another heuristic is

the shortest distance to any target, as suggested by Gutfraind et al.126. The only restriction put on

the choice of the future risk is differentiability.

We can compute the transition probability from u to any v ∈ Nout(u) as:

θu→v(z, x;w) =
exp(−ωzu→v − ηyv + Φ(v, x;w))∑

v′∈Nout(u)
exp(−ωzu→v′ − ηyv′ + Φ(v′, x;w)

. (5.5)

Unlike previous boundedly rational models350,105, we do not need to enumerate all the feasible

paths, which could be exponentially large. Unlike the nonreactive Markovian model125, our model

is reactive to the defender’s strategy. Unlike Gutfraind et al.126, we are not limited to noisily follow-

ing a shortest path.

In local SUQR, the path structure is automatically encoded in the reactive Markovian behavior.

Since the edge coverage effect is involved in the transition probability, the probability of taking a

path is also exponentially proportional to the total coverage along the path, which is also included

in other bounded rational models350,105. The flexibility and the generalizability of the attractiveness
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function allow us to apply any graph learning algorithms to extract the adversary behavior. Com-

pared to previous hyperparameters tuning models, our model is more expressive and can adapt to a

broader range of adversary behavior.

5.5 Problem Statement

For each instance, a directed graphG = (V,E)with node features x is presented to both the de-

fender and the attacker. The attacker has a hidden rationality function θ∗, which is a function of

node features x and the defender coverage z. The defender first chooses a coverage {ze}e∈E under the

budget constraint 1⊤z ≤ b. The attacker observes z and then behaves based on his own rationality

function θ∗. We assume that the defender has access to historical play between the defender and the

attacker, which can be used to form an estimate of the adversary behavior. The goal of the defender

is to maximize the received expected reward.

5.6 Two-stage Learning forNetwork Security Games

The main comparison of the remainder of the paper is between our GCN-based adversary model

implemented as two-stage vs. our game-focused methods. Thus, we briefly describe the two-stage

approach that we consider.

PredictiveModel A two-stage approach fits the GCN-based attractiveness function Φ(v, x)

for all v ∈ V to minimize the difference between predicted behavior θ given by Equation 5.5 and

the corresponding true attacker behavior θ∗. Given the attacker behavior θ∗ and a prediction θ, we

can define the loss by either matrix norm or the KL-divergence of the path distribution inferred by

two behaviors under previous coverage z and features x. These losses are generally infeasible to com-

pute since there are infinite many possible paths. In practice, however, we often have paths sampled
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from the true behavior θ∗ we can use to approximately compute the KL-divergence between two

behaviors. Given the choice of loss functionL, we can train a model θ by minimizing the average

loss:

E(z,x,θ∗)∈DL(θ∗, θ; z, x) (5.6)

PrescriptiveModel Given a graphG, node features x, and predicted attacker behavior q, the

defender’s goal is to choose an optimal coverage z∗ satisfied the budget constraint to maximize her

own objective value.

When the defender strategy z is chosen, the attacker follows his ownMarkovian behavior θ(z, x).

But due to the allocated coverage, the attacker will be caught with probability ze when he passes

through edge e. This can be cast as an absorbingMarkov chain, where the probability of crossing an

edge e is θe(z, x)(1 − ze), and the rest of the probability the attacker will be caught and turned into

a dummy caught state vcaught. We also assume that once the attacker reaches either any terminal or

caught state vcaught, the attacker cannot go back to any other states, i.e., these are absorbing states.

Therefore, given a coverage z, we can model the attacker’s behavior as an absorbingMarkov chain.

We can analytically compute the corresponding defender utility. To align with the standard mini-

mization formulation, we denote the negative defender utility by f(z, θ). For ease of notation, we

omit the presence of node features. The optimization problem is given by:

min
z

f(z, θ) (5.7)

s.t. 1⊤z ≤ b, 0 ≤ ze ≤ 1 ∀e ∈ E

Unfortunately, the function f is neither convex nor submodular when the attacker is reactive. The

standard approach is to apply constrained black-box optimization solvers to solve the problem, e.g.,
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Sequential Least SQuares Programming (SLSQP)177,44.

5.7 Naive Game-Focused Learning forNetwork Security Games
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Figure 5.2: Two‐stage method trains the behavior model by minimizing the predictive loss, while the game‐focused
method trains the behavior model by optimizing the final decision quality.

In general, a good predictive model does not necessarily imply a high defender utility in the sec-

ond stage. Sometimes a slightly inaccurate prediction might lead to a better final decision. This hap-

pens frequently especially when the predictive model cannot perfectly represent the ground truth.

For example, in our case, the model relies on the Markovian assumption and SUQR assumption in

Equation 5.5, which might not be able to fully recover the underlying attacker behavior.

Game-focused learning, instead, can directly optimize the final solution quality by back-propagating

from the final solution quality all-the-way back to the predictive model. Game-focused learning

has been proven to be able to outperform a standard two-stage learning approach248, finding a
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shortcut to better final solution quality. However, the major issue of back-propagation is the non-

differentiable optimization layer in the prescriptive state. Amos et al.11 provides a method to differ-

entiate through the optimization layer when the optimization program is convex; Perrault et al.248

instead used quadratic function as a surrogate to deal with the case when the optimization program

is non-convex.

More specifically, the idea of tackling non-convex function in Perrault et al.248 is to approximate

the non-convex function by a quadratic function around a local minimum zopt using Taylor expan-

sion, which can be written as:

f(z, θ) ≈ f(zopt, θ) + (Δz)T
∂f
∂z

+
1
2
(Δz)T

∂2f
∂z2

(Δz) (5.8)

where Δz = z − zopt. They use this approximate quadratic program (QP) as a surrogate of the non-

convex optimization problem, where the optimal solution z∗ of QPmatches the local optimum zopt

computed before. This allows us to differentiate through a QP and compute the gradient of optimal

solution z∗ with respect to the linear coefficient p = ∂f
∂z |z=zopt .

df(z∗, θ∗)
dw

=
df(z∗, θ∗)

dz∗
dz∗

dp
dp
dw

(5.9)

where p =
∂f
∂z |z=zopt is a function of θwith

dp
dw =

dp
dθ

dθ
dΦ

dΦ
dw can be decomposed and computed.

Equation 5.9 gives us the gradient of the final solution quality with respect to the model parameter

w, which allows us to directly run stochastic gradient descent end-to-end. We apply this approach to

our domain. The algorithm is sketched in Algorithm 3 and Figure 5.2(b).

Issues of Game-focused Learning Although game-focused learning ideally can achieve

better final performance compared to two-stage learning, in this section, we point out two main

issues that arise when this game-focused learning is applied to NSGs: scalability and non-convexity.
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Algorithm 3:Naive Game-focused Learning248

1 Input: Training dataD, initialized GCN(·, ·;w) : V× x→ R
2 while until converge do
3 for (G, θ∗, x) ∈D do
4 Compute prediction θ in Eq. 5.5 by Φ = GCN(V, ξ;w)
5 Find optimum zopt of Optimization 5.7
6 Q =

∂2f(z,θ)
∂z2 |z=zopt , p = ∂f(z,θ)

∂z |z=zopt − Qz∗

7 Re-solve QP: z∗ = argmin
z feasible

1
2z

⊤Qz+ z⊤p

8 Update w by gradient df(z∗,θ∗)
dz∗

dz∗
dp

dp
dw

9 Return: trained model GCN(·, ·;w)

• Scalability: In the forward and backward paths of solving QP (Equation 5.8), we need to solve

and be able to back-propagate through the QP, which involves the computation of matrix inverse.

Taking matrix inverse grows between quadratic and cubically as the size of the decision variable z

grows. Moreover, in order to compute the Taylor expansion 5.8, we need to compute the Hessian
∂2f
∂z2 explicitly, which is usually the major bottleneck of the computation cost when the target func-

tion f is complex.

•Non-convexity: In the non-convex setting, the objective function f(z, θ) can be non-convex in

both z and θ. The gradient-based approaches rely on updating model parameters w and thus θ to

improve the solution quality. However, since the f is non-convex in θ, it could create non-convex

searching space for gradient-based approaches, which could easily get stuck in local optimum or

saddle points. Two-stage methods escape this problem because their loss functionL(θ, θ∗) in Equa-

tion 5.6 is convex, which gradient-based approaches can more easily handle.
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Algorithm 4: Block Game-focused Learning
1 Input: Training dataD, initialized GCN(·, ·;w) : V× x→ R, block size k
2 while until converge do
3 for (G, θ∗, x) ∈D do
4 Compute prediction θ in Eq. 5.5 by Φ = GCN(V, ξ;w)
5 Find optimal solution zopt of Optimization 5.7
6 Sample C ⊂ {1, 2, ..., |E|}with |C| = k
7 QCC =

∂2f(z,θ)
∂z2C
|z=zopt , pC =

∂f(z,θ)
∂zC
|z=zopt − QCCz∗C

8 Re-solve quadratic program: z∗C = argmin
zC feasible

1
2z

⊤
CQCCzC + z⊤C pC

9 Update w by gradient df(z∗,θ∗)
dz∗C

dz∗C
dpC

dpC
dw

10 Return: trained model GCN(·, ·;w)

5.8 ImprovingNaive Game-focused Learning

In this section, we provide a scalable randomized block update approach to resolve the scalability

issue, which also suggests a block game-focused algorithm as a scalable version of game-focused

learning approach. To resolve the non-convexity issue, we apply the intermediate loss as a regular-

ization, which helps game-focused methods escape local minimums. We further provide theoretical

guarantees to link the randomized block update to the naive game-focused learning approach.

5.8.1 Block Game-focused Learning

Instead of using the entire Taylor expansion (Equation 5.8) to approximate the objective function

locally, we can use a partial Taylor expansion with respect to a subset of variables to approximate it:

f(z, θ) ≈ f(z∗, θ) + (ΔzC)T
∂f
∂zC

+
1
2
(ΔzC)T

∂2f
∂z2C

(ΔzC), (5.10)
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where C ⊂ {1, 2, ..., |E|} is a subset of indices and zC is the corresponding truncation over indices C

of the entire variables z. Equation 5.10 is equivalent to freezing the variables outside of C and apply-

ing Taylor expansion to the rest of them. In this formulation, we only need to compute the Hessian

with respect to zC. When the size of C is significantly smaller than the original variable size |E|, it

can save the computational time of Hessian quadratically. Furthermore, while back-propagating

through the KKT conditions, the QP formulation of Equation 5.10 results in a smaller size of

quadratic term, which can reduce the computation of matrix inverse. The block-wise chain rule

can be written as:

df(z∗, θ∗)
dw

≈ df(z∗, θ∗)
dz∗C

dz∗C
dpC

dpC
dw

(5.11)

where p =
∂f
∂zC |z=zopt ,

dpC
dw =

dpC
dθ

dθ
dΦ

dΦ
dw . When the block size is smaller, the approximation can be

more inaccurate. But we will show in the later section that the block gradient is an approximation to

the entire gradient.

All the above reasons suggest a randomized block update algorithm, which is described in Al-

gorithm 4*. The algorithm randomly samples a block of variables to compute Hessian and back-

propagate accordingly. In comparison, Algorithm 3 requires to compute the entire Hessian matrix

Q =
∂2f(z,θ)
∂z2 |z=zopt , which is usually very expensive. Instead, Algorithm 4 only requires the compu-

tation of a block HessianQCC =
∂2f(z,θ)
∂z2C
|z=zopt , which can save at least quadratic amount of Hes-

sian computation depending on the block size. It can also reduce the running time of the following

quadratic program due to reducing the number of variables.

*The implementation of Algorithm 3 and Algorithm 4 can be found in https://github.com/
guaguakai/scalable-game-focused-learning
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5.8.2 Block Selection

In Algorithm 4, the idea of block game-focused learning is to restrict the focus to a subset of vari-

ables and to update accordingly. The choice of the sampled block could affect the convergence rate.

Here we propose three block selection approaches: i) random approach selects block uniformly at

random; ii) coverage-based approach randomly selects indices with probability proportional to z∗,

which guarantees that there is space for the variables in the block to reallocate coverage; iii) deriva-

tive-based approach selects indices with probability proportional to the magnitude of the derivatives
df(z∗,θ)
dz∗i

, which is the weight put on the chain rule.

5.8.3 Regularization

Another issue associated with the naive game-focused learning method is the non-convex objec-

tive function, where gradient-based approaches can encounter issues of local optimums and saddle

points. Instead, the two-stage approach optimizes the intermediate loss, which is generally convex in

the prediction space. Therefore, we propose to add a weighted two-stage loss as a regularization to

smoothify the final objective value. As the training epochs increase, the weight put on the two-stage

loss drops exponentially with a decay rate 0.95, pulling the learning back to game-focused methods.

This regularization technique helps resolve the non-convexity issue of naive game-focused method,

which can achieve better performance afterward.

5.8.4 Approximation Guarantees

In this section, we will show that both Algorithm 3 and 4 have 0 gradient when the prediction per-

fectly matches to the ground truth, showing that both algorithms are stable at the global optimum.

Later on, we will show that Algorithm 4 is an approximate version of Algorithm 3. This shows that

our block game-focused approach can not only achieve scalability due to the reduction in Hessian
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and QP computation, but it is also aligned with the standard naive game-focused approach with

theoretical guarantees.

Theorem 3. When the intermediate prediction matches the ground truth, i.e., θ(·, ·;w∗) = θ∗, we

have df(z∗,θ∗)
dw |w=w∗ = 0 for both Algorithm 3 and Algorithm 4 with any block C.

This theorem implies that if the predictive model is rich enough and able to reach the ground

truth, then the gradient computed in both algorithms is equal to 0 at the ground truth. So if we can

avoid getting stuck by local optimum, then both algorithms will be able to learn the ground truth.

This is also true for the two-stage learning when the loss is defined as any convex norms.

Theorem 4. The quadratic programs in Algorithm 3 and Algorithm 4 share the same primal solu-

tions on the block C. They also share the same dual solution on the non-degenerate constraints contain-

ing at least one variable in the block.

When restricting to variables inside the block, there are some degenerate constraints containing

only variables outside of the block, which are always satisfied in the block QP. Thus, there is no re-

striction put on the dual variable corresponding to these degenerative constraints, which we have no

control on them. But in this theorem, we prove that the dual solution to the other valid constraints

will match to the dual solution given by the QP in Algorithm 3.

Theorem 5. Given the primal solution z∗ and the dual solution λ∗ of the quadratic program in Al-

gorithm 3 with linear constraints G, h,A, b, the Hessian Q =
∂2f
∂z , linear coefficient p =

∂f
∂z , and

the sampled indices C ⊂ {1, 2, ..., |E|}, the gradient dz∗C
dpC ∈ R|C|×|C| computed in Algorithm 4 is an

approximation to the block component of the gradient dz∗
dp ∈ R|E|×|E| computed in Algorithm 3. More

specifically,

∥∥∥∥(dz∗

dp

)
CC
−

dz∗C
dpC

∥∥∥∥ ≤ Δ + ΔC

μmin(Q)
max(λ∗, 1)

∥∥K−1
CC
∥∥∥∥∥∥(dz∗

dp

)
CC

∥∥∥∥ (5.12)
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where Δ =
∥∥G⊤G+ A⊤A

∥∥ ,ΔC =
∥∥∥Q⊤

CCQCC

∥∥∥, and μmin(Q) is the smallest eigenvalue of positive

definite matrix Q. KCC is the KTTmatrix given by the quadratic program in Algorithm 4.

The Δ in the numerator is a constant that only depends on the constraint matrices. The other

term ΔC depends on the choice of block C, which measures the magnitude of the off-diagonal ele-

ments of the Hessian matrixQ. This is usually a small term when the HessianQ is diagonally dom-

inant. Another interesting finding is that this bound depends on the convexity of the HessianQ.

When the Hessian is more convex, then the smallest eigenvalue ofQ is also larger, giving a stronger

bound in Theorem 5. The last termK−1
CC measures the stability of the KKTmatrixKCC. We can get

a good bound if the KKTmatrixKCC is far from singular. Greif et al.124 provides various bounds

on the eigenvalues of the KKTmatrix. However, in general, poor constraints can still lead to a KKT

matrix close to singular. It also indicates that a good choice of C can imply a more stable KKTma-

trix, leading to a better estimate in Theorem 5.

Theorem 5 also implies an alternative explanation to Algorithm 4, where the gradient in Algo-

rithm 4 is an approximation to the partial gradient with indices C in Algorithm 3:

df(z∗, θ∗)
dz∗C

(
dz∗

dp

)
CC

dpC
dw
≈ df(z∗, θ∗)

dz∗C

dz∗C
dpC

dpC
dw

(5.13)

which implies that Algorithm 4 can be thought as an approximate block-wise gradient descent of

Algorithm 3, which relates to the literature of block coordinate gradient descent305,246.

5.9 Experiments

In this section, we compare two-stage (TS), naive game-focused (naive-GF) mentioned in Section 5.7,

block game-focused (block-GF), and regularized block game-focused (reg-block-GF)methods on syn-

thetic data to show that our block game-focused and regularized block game-focused methods can

achieve better performance especially in larger instances. These two methods are also able to scale up
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to large instances, where the naive game-focused method cannot. Lastly, we study the convergence

and scalability of the block game-focused and regularized block game-focused methods with differ-

ent block sizes and block sampling methods. This allows us to choose the right block size to balance

between solution quality and scalability.

5.9.1 Synthetic Data Generation

Graph and features:

we first randomly generate a graphGwith various node sizes, 5 random sources with uniform ini-

tial distribution π, and 5 random targets with defender penaltiesUd(t) for all t ∈ T drawn from

[−10,−5] uniformly at random. We focus on stochastic block model137 and geometric graphs333,

which can respectively model community structures and physical road networks†. For each node in

the graph, we draw an attractiveness value, depending on the shortest distance to the targets plus a

uniform noise, as the attacker’s unbiased preference. We also randomly generate the past coverage z

subject to budget constraints. To generate the node features x, we feed the private attractiveness val-

ues to a randomly initialized GCN, where the GCNwill output a fixed size vector per node as our

node features x. A different level of Gaussian noise was added to the features to model the noise in

the real-world scenario.

Attacker behavior:

we choose ω = 4 as the risk aversion parameter suggested by Perrault et al.248 and Abbasi et al.1,

and set η = 0 to ignore the future risk factor for the sake of simplicity. For each instance with given

attractiveness and the defender coverage, we simulate 100 attacks by initializing the attacker at one
†For stochastic block model, we separate nodes into communities with 10 nodes in each community,

then connect nodes within the same community with probability 0.4 and nodes not in the same community
with probability 0.1. For geometric graph, we randomly places nodes in a unit square and connects nodes
with distance smaller than 0.2.
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of the sources and following the localized SUQR behavior described in Section 5.4 until the attacker

reaches to one of the targets. These sampled paths Λ are used to reconstruct a Markovian behavior:

θ∗u→v(z, x) :=
|{e=(u,v),e∈α,α∈Λ}|

|{e=(u,w),e∈α,α∈Λ,w∈N(u)}|
301, which is then used as our ground truth to evaluate the

solution quality‡. Each instance is composed of the graphG, past coverage z, node features x, the

attacker behavior θ∗, and the sampled paths Λ (only used in two-stage method).

Training, validating, and testing:

we generate 50 instances (G, θ∗, z∗, x) as our entire dataset, which are randomly separated into train-

ing, validating, testing set with size 35, 5, 10. The model is trained on the training set for 100 epochs,

where the best model is chosen from the 100 epochs with the highest score in the validation set. In

the following experiments, to achieve statistical significance, for every method and different setup,

we ran 50 independent trials and recorded the average results on the testing set.

5.9.2 Solution Quality

In this section, we compare the solution quality of all methods on stochastic block models and geo-

metric graphs. We generate a set of random graphs with features as described in Section 5.9.1, where

Gaussian noise with std. of 0.2 is added to the features to model noisy real-world data. We set b = 2.

As our goal is efficient approaches for adversary models in large-scale NSGs, the focus of this paper

is then on experimenting with many different settings (graph sizes and types), techniques (different

variations of game-focused learning), noise, and other variables in building an adversary model. In

addition, since we care more about howmuch defender utility that various learning approaches can

‡The reason of using sampled paths instead of the actual generated attractiveness values as our ground
truth is to align with the real-world data, where it is almost impossible to have access to the underlying at-
tacker preference or Markovian behavior; instead, we generally have access to the paths or edges where illegal
activities have been found, which can be used as sampled paths or edges and used to reconstruct the Marko-
vian behavior as we did here.
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improve, we focus on the counterfactual regret, which is defined as the gap between the defender util-

ity of our solution and the true optimumwhen the ground truth is given in advance. Smaller regret

implies that the solution is closer to the actual optimum.

In Figure 5.3(a) and 5.3(b), we can see that our regularized block game-focused method outper-

forms two-stage method (note that all of the improvements in the average regret reported by the

reg-block-GF method over the two-stage method are statistically significant with p < 0.05). When

the instance gets larger, the difference between two approaches also gets larger, showcasing the limit

of the standard two-stage behavior learning approach. In Figure 5.4(a) and 5.4(b), we compare

the solution quality of different game-focused methods. Due to the computational issue, the naive

game-focused method can only scale up to graphs with 40 nodes. The block game-focused method

can scale up to larger instances but it sacrifices some solution quality compared to the naive game-

focused approach. Finally, the regularized block game-focused method can achieve both scalability

and solution quality by using the block update and regularization term.

5.9.3 The Impact of Noise

Figure 5.5(a) and 5.5(b) compare the performances under different level of noise, where a noise

with std. of r is added to the normalized features. We can see that the more noise implies larger re-

gret and poorer performance. But we can also notice that the gap between regularized block game-

focused method and the two-stage method gets larger when more noise is introduced. This is proba-

bly due to the mismatch between the low intermediate loss and the good final solution quality when

the feature is noisy. This also explains why regularized block game-focused method can outperform

two-stage in Figure 5.3 when the features are noisy.
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Figure 5.3: Solution quality comparison between two‐stage and regularized block game‐focused method. The difference
in solution quality gets larger when the graph size increases.
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Figure 5.4: Solution quality comparison between game‐focused methods. Randomized block update can improve scala‐
bility while the regularization can improve the solution quality.

5.9.4 Scalability

Figure 5.6(a) and 5.6(b) show the scalability of all game-focused methods. We limit the training

time to be up to 48 hours. Any programs last more than that were cut and the corresponding results

were recorded. Naive game-focused method can only handle graphs with up to 40 nodes and it

scales extremely poorly. Our proposed methods, block game-focused and regularized block game-

focused with a block size#nodes/2, can scale to much larger instances.
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Figure 5.5: The figures show the effect of noise to all the methods, where regularized block game‐focused method is
more resilient to noise in the features.
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Figure 5.6: Naive game‐focused method can only scale up to 40 nodes. Instead, block game‐focused and regularized
block game‐focused can solve larger instances with 80 nodes.

5.9.5 Block Size Selection

To study the effect of block size, we select various block sizes proportional to the total number of

variables and run the block game-focused learning and regularized block game-focused methods to

compare the convergence. In Figure 5.7(a), we can see that for the block-game-focused method, the

convergence and the final performance are better when the block size is larger. Figure 5.7(b) shows

the convergence of regularized block game-focused method with different block sizes. In this case, a

larger block size still helps, but the difference is relatively tiny.

Figure 5.7(c) shows the running time of the forward (lines 4-5) and backward path (lines 6-9
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Figure 5.7: Figure (a) and (b) show the convergence rate of different block sizes. Figure (c) shows the running time of
backward path for different block sizes, which grows significantly more than linear. Figure (d) shows the effect of differ‐
ent block sampling methods. All methods converge with slightly different speed, where coverage‐based sampling is the
best and it is also what we use in other experiments.

in Algorithm 4) for the block game-focused method with various block sizes, where forward path

solves prescriptive stage with black-box optimization and the backward path requires computing

the Hessian and solving the quadratic program to back-propagate. In practice, we would like to

select a block size such that the running time of forward and backward paths are of the same order

to balance between the convergence and scalability, which explains the reason that we eventually

choose block size= #nodes/2 for all other experiments. Lastly, Figure 5.7(d) compares different

block selections mentioned in Section 5.8.2, where convergence speed differs but mostly lead to the

same point. Coverage-based selection converges the most quickly, and thus we use it throughout the

other experiments.
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5.10 Conclusions

In this paper, we introduce a fundamentally different behavior learning approach, game-focused

learning, to network security games, placing the downstream defender utility maximization prob-

lem into the loop of behavior learning. We propose a novel local SUQRmodel as our adversary

model, where GCNs can be applied to automatically handle the information propagation in the

graph. We further identify two existing issues of game-focused learning method: scalability and non-

convexity, which are addressed by our block game-focused and by regularizing respectively. Block

game-focused method can largely reduce the computational cost while maintaining the focus on the

final solution quality as naive game-focused learning does. We also provide theoretical guarantees on

the block game-focused method. In the experimental section, we run extensive experiments to ver-

ify the reduction on the training time and show an improvement in terms of solution quality. The

block game-focused method reduces the training time, but sacrifices a little solution quality, while

regularized block game-focused can achieve both speed and performance.
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6
Automatically Learning Surrogates for

Decision-focused Learning

6.1 Introduction

Uncertainty is a common feature of many real-world decision-making problems because critical

data may not be available when a decision must be made. Here is a set of representative examples:
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recommender systems with missing user-item ratings144, portfolio optimization where future per-

formance is uncertain208, and strategic decision-making in the face of an adversary with uncertain

objectives164. Often, the decision-maker has access to features that provide information about the

values of interest. In these settings, a predict-then-optimize90 approach naturally arises, where we

learn a model that maps from the features to a value for each parameter and optimize using this

point estimate360. In principle, any predictive modeling approach and any optimization approach

can be applied, but using a generic loss function to train the model may result in poor decision

performance. For example, a typical ratings prediction approach in recommendation systemmay

equally weight errors across different items, but in the recommendation task, misclassifying a trendy

item can result in more revenue loss than misclassifying an ordinary item. We may instead want to

train our model using a “task-based” or “decision-focused” loss, approximating the decision quality

induced by the predictive model, which can be done by embedding the optimization problem as a

layer in the training pipeline. This end-to-end approach improves performance on a variety of tasks

42,338,80.

Unfortunately, this end-to-end approach suffers from poor scalability because the optimization

problemmust be solved and differentiated through on every training iteration. Furthermore, the

output of the optimization layer may not be smooth, sometimes leading to instabilities in training

and consequently poor solution quality. We address these shortcomings that arise in the end-to-

end approach due to the presence of a complex optimization layer by replacing it with a simpler

surrogate problem. The surrogate problem is learned from the data by automatically finding a repa-

rameterization of the feasible space in terms of meta-variables, each of which is a linear combination

of the original decision variables. The new surrogate problem is generally cheaper to solve due to

the smaller number of meta-variables, but it can be lossy—the optimal solution to the surrogate

problemmay not match the optimal solution to the original. Since we can differentiate through the

surrogate layer, we can optimize the choice of surrogate together with predictive model training to
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minimize this loss. The dimensionality reduction offered by a compact surrogate simultaneously

reduces training times, helps avoid overfitting, and sometimes smooths away bad local minima in the

training landscape.

In short, we make several contributions. First, we propose a linear reparameterization scheme for

general optimization layers. Second, we provide theoretical analysis of this framework along several

dimensions: (i) we show that desirable properties of the optimization problem (convexity, submod-

ularity) are retained under reparameterization; (ii) we precisely characterize the tractability of the

end-to-end loss function induced by the reparameterized layer, showing that it satisfies a form of

coordinate-wise quasiconvexity; and (iii) we provide sample complexity bounds for learning a model

which minimizes this loss. Finally, we demonstrate empirically on a set of three diverse domains

that our approach offers significant advantages in both training time and decision quality compared

previous approaches to embedding optimization in learning.

6.2 Relatedwork

Surrogate models106,260,186 are a classic technique in optimization, particularly for black-box prob-

lems. Previous work has explored linear reparameterizations to map between low and high fidelity

models of a physical system36,265,14 (e.g., for aerospace design problems). However, both the mo-

tivation and underlying techniques differ crucially from our work: previous work has focused on

designing surrogates by hand in a domain-specific sense, while we leverage differentiation through

the optimization problem to automatically produce a surrogate that maximizes overall decision qual-

ity.

Our work is closest to the recent literature on differentiable optimization. Amos et al.11 and

Agrawal et al.3 introduced differentiable quadratic programming and convex programming layers,

respectively, by differentiating through the KKT conditions of the optimization problem. Donti et
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al.80 andWilder et al.338 apply this technique to achieve end-to-end learning in convex and discrete

combinatorial programming, respectively. Perrault et al.249 applied the technique to game theory

with a non-convex problem, where a sampling approach was proposed byWang et al.320 to improve

the scalability of the backward pass. All the above methods share scalability and non-smoothness

issues: each training iteration requires solving the entire optimization problem and differentiating

through the resulting KKT conditions, which requiresO(n3) time in the number of decision vari-

ables and may create a non-smooth objective. Our surrogate approach aims to rectify both of these

issues.

6.3 Problem Statement

We consider an optimization problem of the form: min
z feasible

f(z, θtrue). The objective function de-

pends on a parameter θtrue ∈ Θ. If θtrue were known, we assume that we could solve the optimiza-

tion problem using standard methods. We consider the case that parameter θtrue is unknown and

must be inferred from the given available features x. We assume that x and θtrue are correlated and

drawn from a joint distributionD, and our data consists of samples fromD. Our task is to select the

optimal decision z∗(x), function of the available feature, to optimize the expected objective value:

min
z∗ feasible

E(x,θtrue)∼D[f (z∗(x), θtrue)] (6.1)

In this paper, we focus on a predict-then-optimize90,87 framework, which proceeds by learning a

modelmw(·), mapping from the features x to the missing parameter θtrue. When feature x is given,

we first infer θ = mw(x) and then solve the resulting optimization problem to get the optimal

solution z∗:

min
z

f(z, θ), s.t. h(z) ≤ 0, Az = b (6.2)
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This reduces the decision-making problem with unknown parameters to a predictive modeling

problem: how to learn a modelmw(·) that leads to the best performance.

A standard approach to solve the predict-then-optimize problem is two-stage learning, which

trains the predictive model without knowledge of the decision-making task (Figure 6.1). The pre-

dictive model minimizes the mismatch between the predicted parameters and the ground truth:

E(x,θtrue)∈D ℓ(mw(x), θtrue), with any loss metric ℓ. Such a two-stage approach is efficient in terms

of training the model, but it may lead to poor performance when a standard loss function is used.

Performance can be improved if the loss function is carefully chosen to suit the task88, but doing so

is challenging for an arbitrary optimization problem.

Gradient-based end-to-end learning approaches in domains with optimization layers involved,

e.g., decision-focused learning338,80, directly minimize Equation 6.1 as the training objective, which

requires back-propagating through the optimization layer in Equation 6.2. This end-to-end ap-

proach is able to achieve better solution quality compared to two-stage learning, in principle. How-

ever, because the decision-focused approach has to repeatedly solve the optimization program and

back-propagate through it, scalability becomes a serious issue. Additionally, the complex optimiza-

tion layer can also jeopardize the smoothness of objective value, which is detrimental for training

parameters of a neural network-based predictive model with gradient-based methods.

6.4 Surrogate Learning

The main idea of the surrogate approach is to replace Equation 6.2 with a carefully selected surro-

gate problem. To simplify Equation 6.2, we can linearly reparameterize z = Py, where y ∈ Rm with

m� n and P ∈ Rn×m,

min
y

gP(y, θ) := f(Py, θ) s.t. h(Py) ≤ 0, APy = b (6.3)
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Figure 6.1: Two‐stage learning back‐propagates from the loss to the model, ignoring the latter effect of the optimization
layer.
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Figure 6.2: End‐to‐end decision‐focused learning back‐propagates from the solution quality through the optimization
layer to the model we aim to learn.

Since this reparameterization preserves all the equality and inequality constraints in Equation 6.2,

we can easily transform a feasible low-dimensional solution y∗ back to a feasible high-dimensional so-

lution with z∗ = Py∗. The low-dimensional surrogate is generally easier to solve, but lossy, because

we restrict the feasible region to a hyperplane spanned by P. If we were to use a random reparameter-

ization, the solution we recover from the surrogate problem could be far from the actual optimum

in the original optimization problem, which could significantly degrade the solution quality.

This is why we need to learn the surrogate and its reparameterization matrix. Because we can

differentiate through the surrogate optimization layer, we can estimate the impact of the reparam-

eterization matrix on the final solution quality. This allows us to run gradient descent to learn the

reparameterization matrix P. The process is shown in Figure 6.3. Notice that the surrogate problem

also takes the prediction θ of the predictive model as input. This implies that we can jointly learn the

predictive model and the reparameterization matrix by solely solving the cheaper surrogate problem.

Differentiable optimization In order to differentiate through the optimization layer as

shown in Figure 6.2, we can compute the derivative of the solution quality, evaluated on the optimal

solution z∗ and true parameter θtrue, with respect to the model’s weights w by applying the chain
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Figure 6.3: Surrogate decision‐focused learning reparameterizes Equation 6.2 by z = Py to get a surrogate model in
Equation 6.3. Then, forward and backward passes go through the surrogate model with a lower dimensional input y to
compute the optimal solution and train the model.

rule:

df(z∗, θtrue)
dw

=
df(z∗, θtrue)

dz∗
dz∗

dθ
dθ
dw

where dz∗
dθ can be obtained by differentiating through KKT conditions of the optimization problem.

Similarly, in Figure 6.3, we can apply the same technique to obtain the derivatives with respect to

the weights w and reparameterization matrix P:

df(z∗, θtrue)
dw

=
df(z∗, θtrue)

dz∗
dz∗

dy∗
dy∗

dθ
dθ
dw

,
df(z∗, θtrue)

dP
=

df(z∗, θtrue)
dz∗

dz∗

dy∗
dy∗

dP

where y∗ is the optimal solution of the surrogate problem, z∗ = Py∗, and dy∗
dw ,

dy∗
dP can be computed

by differentiating through the KKT conditions of the surrogate optimization problem.

6.5 Analysis of Linear Reparameterization

The following sections address three major theoretical aspects: (i) complexity of solving the surro-

gate problem, (ii) learning the reparameterization, and (iii) learning the predictive model.
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6.5.1 Convexity andDR-Submodularity of the Reparameterized Problem

In this section, we assume the predictive model and the linear reparameterization are fixed. We prove

below that convexity and continuous diminishing-return (DR) submodularity46 of the original

function f is preserved after applying the reparameterization. This implies that the new surrogate

problem can be efficiently solved by gradient descent or by Frank-Wolfe47,145,108 with an approxima-

tion guarantee.

Proposition 1. If f is convex, then gP(y, θ) := f(Py, θ) is convex.

Proposition 2. If f is DR-submodular and P ≥ 0, then gP(y, θ) := f(Py, θ) is DR-submodular.

6.5.2 Convexity of Reparameterization Learning

In this section, we assume the predictive modelm is fixed. We want to analyze the convergence of

learning the surrogate and its linear reparameterization P. Let us denote the optimal value of the

optimization problem in the form of Equation 6.3 to be OPT(θ,P) := min
y feasible

gP(y, θ) ∈ R. It

would be ideal if OPT(θ,P) is convex in P so that gradient descent would be guaranteed to recover

the optimal reparameterization. Unfortunately, this is not true in general, despite the fact that we

use a linear reparameterization: OPT(θ,P) is not even globally quasiconvex in P.

Proposition 3. OPT(θ,P) := min
y feasible

gP(y, θ) is not globally quasiconvex in P.

Fortunately, we can guarantee the partial quasiconvexity of OPT(θ,P) in the following theorem:

Theorem 6. If f(·, θ) is quasiconvex, then OPT(θ,P) := min
y feasible

gP(y, θ) is quasiconvex in Pi, the i-th

column of matrix P, for any 1 ≤ i ≤ m, where P = [P1,P2, . . . ,Pm].
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This indicates that the problem of optimizing each meta-variable given the values of the others

is tractable, providing at least some reason to think that the training landscape for the reparame-

terization is amenable to gradient descent. This theoretical motivation is complemented by our

experiments, which show successful training with standard first-order methods.

6.5.3 Sample Complexity of Learning PredictiveModel in Surrogate Prob-

lem

In this section, we fix the linear reparameterization and analyze the sample complexity of learning

the predictive model to achieve small decision-focused loss in the objective value. We analyze a spe-

cial case where our objective function f is a linear function and the feasible region S is compact, con-

vex, and polyhedron. Given the hypothesis class of our modelm ∈ H, we can use results from

Balghiti et al.87 to bound the Rademacher complexity and the generalization bound of the solution

quality obtained from the surrogate problem. For any hypothesis class with a finite Natarajan di-

mension, the surrogate problem preserves the linearity of the objective function. Thus learning in

the linear surrogate problem also preserves the convergence of the generalization bound, and thus the

convergence of the solution quality. In the case of a linear hypothesis classH = Hlin, we can derive a

closed-form bound. The Rademacher complexity depends on the dimensionality of the surrogate

problem and the diameter of the feasible region, which can be shrunk by using a low-dimensional

surrogate:

Theorem 7. LetHlin be the hypothesis class of all linear function mappings from x ∈ X ⊂ Rp to

θ ∈ Θ ∈ Rn, and let P ∈ Rn×m be a linear reparameterization used to construct the surrogate. The

expected Rademacher complexity over t i.i.d. random samples drawn fromD can be bounded by:

Radt(Hlin) ≤ 2mC
√

2p log(2mt ‖P+‖ ρ2(S))
t

+ O(
1
t
) (6.4)

114



where C := supθ(maxzf(z, θ) − minzf(z, θ)) is the gap between the optimal solution quality and the

worst solution quality, ρ2(S) is the diameter of the set S, and P+ is the pseudoinverse.

Equation 6.4 gives a bound on the Rademacher complexity, an upper bound on the generaliza-

tion error with t samples given. Although a lower dimensional surrogate leads to less representa-

tional power (i.e., lower decision quality), it also leads to better generalizability. This implies that

we have to choose an appropriate reparameterization size to balance representational power and

generalizability.

6.6 Experiments

We conduct experiments on three different domains where decision-focused learning has been ap-

plied: (i) adversarial behavior learning in network security games with a non-convex objective320, (ii)

movie recommendation with a submodular objective338, and (iii) portfolio optimization problem

with a convex quadratic objective97. Throughout all the experiments, we compare the performance

and the scalability of the surrogate learning (surrogate), two-stage (TS), and decision-focused (DF)

learning approaches. Performance is measured in terms of regret, which is defined as the difference

between the achieved solution quality and the solution quality if the unobserved parameters θ∗ were

observed directly—smaller is better. To compare scalability, we show the training time per epoch

and inference time. The inference time corresponds to the time required to compute a decision for

all instances in the testing set after training is finished. A short inference time may have intrinsic

value, e.g., allowing the application to be run in edge computing settings. All methods are trained us-

ing gradient descent with optimizer Adam171 with learning rate 0.01 and repeated over 30 indepen-

dent runs to get the average. Each model is trained for at most 100 epochs with early stopping256

criteria when 3 consecutive non-improving epochs occur on the validation set. The reparameteriza-
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tion size is set to be 10% of the problem size throughout all three examples*.

6.6.1 Adversarial Behavior Learning and Interdiction Games

Given a network structureG = (V,E), a NSG (network security game) 332,101,272 models the in-

teraction between the defender, who places checkpoints on a limited number of edges in the graph,

and an attacker who attempts to travel from a source to any of a set of target nodes in order to max-

imize the expected reward. The NSG is an extension of Stackelberg security games284,163, meaning

that the defender commits to a mixed strategy first, after which the attacker chooses the path (having

observed the defender’s mixed strategy but not the sampled pure strategy). In practice, the attacker

is not perfectly rational. Instead, the defender can attempt to predict the attacker’s boundedly ratio-

nal choice of path by using the known features of the nodes en route (e.g., accessibility or safety of

hops) together with previous examples of paths chosen by the attacker.

Once the parameters θ of the attacker behavioral model are given, finding the optimal defender’s

strategy reduces to an optimization problemmax f(z, θ)where ze is the probability of covering edge

e ∈ E and f gives the defender’s expected utility for playing mixed strategy zwhen the attacker’s

response is determined by θ. The defender must also satisfy the budget constraint
∑
e∈E

ze ≤ kwhere

k = 3 is the total defender resources. We use a GCN (graph convolutional network)223,172,130 to

represent the predictive model of the attacker. We assume the attacker follows reactive Markovian

behavior320,126, meaning that the attacker follows a random walk through the graph, where the

probability of transitioning across a given edge (u, v) is a function of the defender’s strategy z and

an unknown parameter θv representing the ”attractiveness” of node v. The walk stops when the

attacker either is intercepted by crossing an edge covered by the defender or reaches a target. The

defender’s utility is−u(t) if the attacker reaches target t and 0 otherwise, and f takes an expectation

*The implementation of this chapter can be found in the following link: https://github.com/
guaguakai/surrogate-optimization-learning
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over both the random placement of the defender’s checkpoints (determined by z) and the attacker’s

random walk (determined by z and θ). Our goal is to learn a GCNwhich takes node features as

input and outputs the attractiveness over nodes θ.

Experimental setup: We generate random geometric graphs of varying sizes with radius 0.2 in

a unit square. We select 5 nodes uniformly at random as targets with payoffs u(t) ∼ Unif(5, 10) and

5 nodes as sources where the attacker chooses uniformly at random from. The ground truth attrac-

tiveness value θv of node v ∈ V is proportional to the proximity to the closest target plus a random

perturbation sampled as Unif(−1, 1)which models idiosyncrasies in the attacker’s preferences. The

node features x are generated as x = GCN(θ) + 0.2N (0, 1), where GCN is a randomly initial-

ized GCNwith four convolutional layers and three fully connected layers. This generates random

features with correlations between xv (the features of node v) and both θv and the features of nearby

nodes. Such correlation is expected for real networks where neighboring locations are likely to be

similar. The defender’s predictive model (distinct from the generative model) uses two convolu-

tional and two fully connected layers, modeling a scenario where the true generative process is more

complex than the learned model. We generate 35 random (x, θ) pairs for the training set, 5 for valida-

tion, and 10 for testing. Since decision-focused (DF) learning fails to scale up to larger instances, we

additionally compare to a block-variable sampling approach specialized to NSG320 (block), which

can speed up the backward pass by back-propagating through randomly sampled variables.

6.6.2 Movie Recommendation and Broadcasting Problem

In this domain, a broadcasting company chooses kmovies out of a set of n available to acquire and

show to their customers C. k reflects a budget constraint. Each user watches their favorite Tmovies,

with a linear valuation for the movies they watch. This is a variant of the classic facility location

problem; similar domains have been used to benchmark submodular optimization algorithms193,81.
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In our case, the additional complication is that the user’s preferences are unknown. Instead, the

company uses user’s past behavior to predict θij ∈ [0, 1], the preference score of user j for movie i.

The company would like to maximize the overall satisfaction of users without exceeding the bud-

get constraint k = 10. The variable z = {zi}i∈{1,2,...,n} represents the decision of whether to

acquire movie i or not. Once the preferences θij are given, the company wants to maximize the objec-

tive function:

f(z) :=
∑
j∈C

user j’s satisfaction =
∑
j∈C

max
sj∈{0,1}n
s.t.

∑
i sij=T

∑
i∈{1,2,...,n}

zisijθij (6.5)

where sj denotes the user j’s selection over movies.

Experimental setup: We use neural collaborative filtering135 to learn the user preferences.

Commonly used in recommendation systems, the idea is to learn an embedding for each movie

and user. The ratings are computed by feeding the concatenated user’s and movie’s embeddings

to a neural network with fully connected layers. We use MovieLens131 as our dataset. TheMovie-

Lens dataset includes 25M ratings over 62,000 movies by 162,000 users. We first randomly select n

movies as our broadcasting candidates. We additionally select 200 movies and use the users’ ratings

on the movies as the users’ features. Then we split the users into disjoint groups of size 100 and each

group serves as an instance of broadcasting task, where we want to choose k = 10 from the n can-

didate movies to recommend to the group members. Each user chooses T = 3 movies. 70% of the

user groups are used for training, 10% for validation, and 20% for testing.
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Figure 6.4: Experimental results in network security games with a non‐convex optimization problem.
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Figure 6.5: Experimental results in movie recommendation with a submodular objective. Surrogate achieves much better
performance by smoothing the training landscape.
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Figure 6.6: Experimental results in portfolio optimization with a convex optimization problem. Surrogate performs
comparably, but achieves a 7‐fold speedup in training and inference.
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6.6.3 StockMarket Portfolio Optimization

Portfolio optimization can be treated as an optimization problem with missing parameters254,

where the return and the covariance between stocks in the next time step are not known in advance.

We learn a model that takes features for each security and outputs the predicted future return. We

adopt the classic Markowitz208,217 problem setup, where investors are risk-averse and wish to maxi-

mize a weighted sum of the immediate net profit and the risk penalty. The investor chooses a vector

z ≥ 0 with
∑

zi = 1, where zi represents the fraction of money invested in security i. The investor

aims to maximize the penalized immediate return f(z) := p⊤z − λz⊤Qz, where p is the immediate

net return of all securities andQ ∈ Rn×n is a positive semidefinite matrix representing the covari-

ance between the returns of different securities. A high covariance implies two securities are highly

correlated and thus it is more risky to invest in both. We set the risk aversion constant to be λ = 2.

Experimental setup: We use historical daily price and volume data from 2004 to 2017 down-

loaded from the Quandl WIKI dataset259. We evaluate on the SP500, a collection of the 505 largest

companies representing the American market. Our goal is to generate daily portfolios of stocks from

a given set of candidates. Ground truth returns are computed from the time series of prices, while

the ground truth covariance of two securities at a given time step is set to be the cosine similarity

of their returns in the next 10 time steps. We take the previous prices and rolling averages at a given

time step as features to predict the returns for the next time step. We learn the immediate return p

via a neural network with two fully connected layers with 100 nodes each. To predict the covariance

matrixQ, we learn an 32-dimensional embedding for each security, and the predicted covariance be-

tween two securities is the cosine similarity of their embeddings. We chronologically split the dataset

into training, validation, and test sets with 70%, 10%, and 20% of the data respectively.
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(a) A NSG instance with 50 nodes, 2 targets (orange stars), and 3 sources (purple triangles).

(b) 100 candidate movies shown as circles with their average ratings and standard deviations as two axes.

Figure 6.7: These plots visualize how the surrogate captures the underlying problem structure. Both domains use a
reparameterization with 3 meta‐variables, each shown in red, blue, and green. The color indicates the most significant
meta‐variable governing the edge or circle, while the color intensity and size represent the weights put on it. The left
figure in both domains shows the initial reparameterization, while the right figure shows the reparameterization after 20
epochs of training.
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6.7 Discussion of Experimental Results

Performance: Figures 6.4(a), 6.5(a), and 6.6(a) compare the regret of our surrogate approach

to the other approaches. In the non-convex (Figure 6.4(a)) and submodular (Figure 6.5(a)) settings,

we see a larger improvement in solution quality relative to decision-focused learning. This is due to

the huge number of local minima and plateaus in these two settings where two-stage and decision-

focused approaches can get stuck. For example, when an incorrect prediction is given in the movie

recommendation domain, some recommended movies could have no users watching them, resulting

in a sparse gradient due to non-smoothness induced by themax in the objective function. The

surrogate approach can instead spread the sparse gradient by binding variables with meta-variables,

alleviating gradient sparsity. We see relatively less performance improvement (compared to decision-

focused) when the optimization problem is strongly convex and hence smoother (Figure 6.6(a)),

though the surrogate approach still achieves similar performance to the decision-focused approach.

Scalability: When the objective function is non-convex (Figure 6.4(b), 6.4(c)), our surrogate

approach yields substantially faster training than standard decision-focused learning approaches (DF

and block). The boost is due to the dimensionality reduction of the surrogate optimization prob-

lem, which can lead to speedups in solving the surrogate problem and back-propagating through

the KKT conditions. While the two-stage approach avoids solving the optimization problem in the

training phase (trading off solution quality), at test time, it still has to solve the expensive optimiza-

tion problem, resulting a similarly expensive inference runtime in Figure 6.4(c).

When the objective function is submodular (Figure 6.5(b), 6.5(c)), the blackbox optimization

solver313 we use in all experiments converges very quickly for the decision-focused method, result-

ing in training times comparable to our surrogate approach. However, Figure 6.5(a) shows that the

decision-focused approach converges to a solution with very poor quality, indicating that rapid con-
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vergence may be a symptom of the uninformative local minima that the decision-focused method

becomes trapped in.

Lastly, when the optimization problem is a quadratic program (Figure 6.6(b), 6.6(c)), solving the

optimization problem can take cubic time, resulting in around a cubic speedup from the dimension-

ality reduction offered by our surrogate. Consequently, we see 7-fold faster training and inference

times.

Visualization: We visualize the reparameterization for the NSG and movie recommendation

domains in Figure 6.7. The initial reparameterization is shown in Figure 6.7(a) and 6.7(b). Initially,

the weights put on the meta-variables are randomly chosen and no significant problem structure—

no edge or circle colors—can be seen. After 20 epochs of training, in Figure 6.7(a), the surrogate

starts putting emphasis on some important cuts between the sources and the targets, and in Fig-

ure 6.7(b), the surrogate is focused on distinguishing between different top-rated movies with some

variance in opinions to specialize the recommendation task. Interestingly, in Figure 6.7(b), the

surrogate puts less weight on movies with high average rating but low standard deviation because

these movies are very likely undersampled and we do not have enough people watching them in our

training data. Overall, adaptively adjusting the surrogate model allows us to extract the underlying

structure of the optimization problem using few meta-variables. These visualizations also help us

understand how focuses are shifted between different decision variables.

6.8 Conclusion

In this paper, we focus on the shortcomings of scalability and solution quality that arise in end-to-

end decision-focused learning due to the introduction of the differentiable optimization layer. We

address these two shortcomings by learning a compact surrogate, with a learnable linear reparame-

terization matrix, to substitute for the expensive optimization layer. This surrogate can be jointly
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trained with the predictive model by back-propagating through the surrogate layer. Theoretically,

we analyze the complexity of the induced surrogate problem and the complexity of learning the sur-

rogate and the predictive model. Empirically, we show this surrogate learning approach leads to im-

provement in scalability and solution quality in three domains: a non-convex adversarial modeling

problem, a submodular recommendation problem, and a convex portfolio optimization problem.
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Part II

Optimization in Online Learning
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7
Improving GP-UCB Algorithm by

Harnessing Decomposed Feedback

7.1 Introduction

Many challenging sequential decision making problems involve interventions in complex physical

or social systems, where the system dynamics must be learned over time. For instance, a challenge
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commonly faced by policymakers is to control disease outbreaks316, but the true process by which

disease spreads in the population is not known in advance. We study such problems from the per-

spective of online learning, where a decision maker aims to optimize an unknown expensive objec-

tive function53. At each step, the decision maker commits to an action and receives the objective

value for that action. For instance, a policymaker may implement a disease control policy273,226

for a given time period and observe the number of subsequent infections. This information allows

the decision maker to update their knowledge of the unknown function. The goal is to obtain low

cumulative regret, which measures the difference in objective value between the actions that were

taken and the true (unknown) optimum.

This problem has been well-studied in optimization and machine learning. When a parametric

form is not available for the objective (as is often the case with complex systems that are difficult to

model analytically), a common approach uses a Gaussian process (GP) as a nonparametric prior over

smooth functions. This Bayesian approach allows the decision maker to form a posterior distribu-

tion over the unknown function’s values. Consequently, the GP-UCB algorithm, which iteratively

selects the point with the highest upper confidence bound according to the posterior, achieves a

no-regret guarantee292.

While GP-UCB and similar techniques73,331 have seen a great deal of interest in the purely black-

box setting, many physical or social systems naturally admit an intermediate level of feedback. This

is because the system is composed of multiple interacting components, each of which can be mea-

sured individually. For instance, disease spread in a population is a product of the interactions be-

tween individuals in different demographic groups or locations341, and policymakers often have

access to estimates of the prevalence of infected individuals within each subgroup79,339. The true

objective (total infections) is the sum of infections across the subgroups. Similarly, climate systems

involve the interactions of many different variables (heat, wind, humidity, etc.) which can be sensed

individually then combined in a nonlinear fashion to produce outputs of interest (e.g., an individ-
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ual’s risk of heat stroke)293. Prior work has studied the benefits of using additive models161. How-

ever, they only examine the special case where the target function decomposes into a sum of lower-

dimensional functions. Motivated by applications such as flu prevention, we consider the more

general setting where the subcomponents are full-dimensional and may be composed nonlinearly to

produce the target. This general perspective is necessary to capture common policy settings which

may involve intermediate observables from simulation or domain knowledge.

However, to our knowledge, no prior work studies the challenge of integrating such decomposed

feedback in online decision making. Our first contribution is to remedy this gap by proposing a

decomposed GP-UCB algorithm (D-GPUCB). D-GPUCB uses a separate GP to model each indi-

vidual measurable quantity and then combines the estimates to produce a posterior over the final

objective. Our second contribution is a theoretical no-regret guarantee for D-GPUCB, ensuring

that its decisions are asymptotically optimal. Third, we prove that the posterior variance at each step

must be less than the posterior variance of directly using a GP to model the final objective. This for-

mally demonstrates that more detailed modeling reduces predictive uncertainty. Finally, we conduct

experiments in two domains using real-world data: flu prevention and heat sensing. In each case,

D-GPUCB achieves substantially lower cumulative regret than previous approaches.

7.2 Preliminaries

7.2.1 Noisy Black-box Optimization

Given an unknown black-box function f : X → RwhereX ⊂ Rn, a learner is able to select

an input xxx ∈ X and access the function to see the outcome f(xxx) – this encompasses one evalua-

tion. Gaussian process regression264 is a non-parametric method to learn the target function using

Bayesian methods156,288. It assumes that the target function is an outcome of a Gaussian process

with given kernel k(xxx, xxx′) (covariance function). Gaussian process regression is commonly used and
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only requires an assumption on the function smoothness. Moreover, Gaussian process regression

can handle observation error. It allows the observation at point xxxt to be noisy: yt = f(xxxt) + εt,

where εt ∼ N(0, σ2I).

7.2.2 Decomposition

In this paper, we consider a modification to the Gaussian process regression process. Suppose we

have some prior knowledge of the unknown reward function f(xxx) such that we can write the un-

known function as a combination of known and unknown subfunctions:

Definition 7 (Linear Decomposition).

f(xxx) =
J∑

j=1
gj(xxx)fj(xxx) (7.1)

where fj, gj : Rn → R.

Here gj(xxx) are known, deterministic functions, but fj(xxx) are unknown functions that generate

noisy observations. For example, in the flu prevention case, the total infected population can be

written as the summation of the infected population at each age79. Given treatment policy xxx, we can

use fj(xxx) to represent the unknown infected population at age group jwith its known, deterministic

weighted function gj(xxx) = 1. Therefore, the total infected population f(xxx) can be simply expressed

as
J∑

j=1
fj(xxx).

Interestingly, any deterministic linear composition of outcomes of Gaussian processes is still an

outcome of Gaussian process. That means if all of the fj are generated from Gaussian processes, then

the entire function f can also be written as an outcome of another Gaussian process.

Next, we generalize this definition to the non-linear case, which we call a general decomposition:
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Definition 8 (General Decomposition).

f(xxx) = g(f1(xxx), f2(xxx), ..., fJ(xxx)) (7.2)

The function g can be any deterministic function (e.g. polynomial, neural network). Unfortu-

nately, a non-linear composition of Gaussian processes may not be a Gaussian process, so we cannot

guarantee function f to be an outcome of a Gaussian process. We will cover the result of linear de-

composition first and then generalize it to the cases with general decomposition.

7.2.3 Gaussian Process Regression

Although Gaussian process regression does not require rigid parametric assumptions, a certain de-

gree of smoothness is still needed to ensure its guarantee of no-regret. We can model f as a sample

from a GP: a collection of random variables, one for each xxx ∈ X . A GP(μ(xxx), k(xxx, xxx′)) is specified

by its mean function μ(x) = E[f(xxx)] and covariance function k(xxx, xxx′) = E[(f(xxx) − μ(xxx))(f(xxx′) −

μ(xxx′))]. For GPs not conditioned on any prior, we assume that μ(xxx) ≡ 0. We further assume

bounded variance k(xxx, xxx) ≤ 1. This covariance function encodes the smoothness condition of

the target function f drawn from the GP.

For a noisy sample yyyT = [y1, ..., yT]⊤ at points AT = {xxxt}t∈[T], yt = f(xxxt) + εt ∀t ∈ [T]with

εt ∼ N(0, σ2(xxxt))Gaussian noise with variance σ2(xxxt), the posterior over f is still a Gaussian process

with posterior mean μT(xxx), covariance kT(xxx, xxx
′) and variance σ2T(xxx):

μT(xxx) = kkkT(xxx)⊤KKK−1
T kkkT(xxx′), (7.3)

kT(xxx, xxx′) = k(xxx, xxx′)− kkkT(xxx)⊤KKK−1
T kkk(xxx′), (7.4)

σ2T(xxx) = kT(xxx, xxx′) (7.5)
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where kkkT(xxx) = [k(xxx1, xxx), ..., k(xxxT, xxx)]⊤, andKKKT is the positive definite kernel matrix [k(xxx, xxx′)]xxx,xxx′∈AT+

diag([σ2(xxxt)]t∈[T]).

Algorithm 5:GPRegression
1 Input: kernel k(xxx, xxx′), noise function σ(xxx), and previous samples {(xxxt, yt)}t∈[T]
2 Return: kT(xxx, xxx′), μT(xxx), σ

2
T(xxx)

7.2.4 Bandit Problemwith Decomposed Feedback

Considering the output value of the target function as the learner’s reward (penalty), the goal is to

learn the unknown underlying function fwhile optimizing the cumulative reward. This is usually

known as an online learning or multi-arm bandit problem24. In this paper, given the knowledge of

deterministic decomposition function g (Definition 7 or Definition 8), in each round t, the learner

chooses an input xxxt ∈ X and observes the value of each unknown decomposed function fj per-

turbed by a noise: yj,t = fj(xxxt) + εj,t, εj,t ∼ N(0, σ2j ) ∀j ∈ [J]. At the same time, the learner

receives the composed reward from this input xxxt, which is yt = g(y1,t, y2,t, ..., yJ,t) = f(xxxt) + εt

where εt is an aggregated noise. The goal is to maximize the sum of noise-free rewards
T∑
t=1

f(xxxt),

which is equivalent to minimizing the cumulative regretRT =
T∑
t=1

rt =
T∑
t=1

f(xxx∗) − f(xxxt), where

xxx∗ = argmaxxxx∈X f(xxx) and individual regret rt = f(xxx∗)− f(xxxt).

This decomposed feedback is related to the semi-bandit setting, where a decision is chosen from

a combinatorial set and feedback is received about individual elements of the decision233,233. Our

work is similar in that we consider an intermediate feedback model which gives the decision maker

access to decomposed feedback about the underlying function. However, in our setting a single

point is chosen from a continuous set, rather than multiple items from a discrete one. Additional

feedback is received about components of the objective function, not the items chosen. Hence, the

technical challenges are quite different.
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7.3 Problem Statement and Background

Using the flu prevention as an example, a policymaker will implement a yearly disease control policy

and observe the number of subsequent infections. A policy is an input xxxt ∈ Rn, where each entry

xt,i denotes the extent to vaccinate the infected people in age group i. For example, if the govern-

ment spends more effort xt,i in group i, then the people in this group will be more likely to get a flu

shot.

Given the decomposition assumption and samples (previous policies) at points xxxt ∀t ∈ [T], in-

cluding all the function values f(xxxt) (total infected population) and decomposed function values

fj(xxxt) (infected population in group j), the learner attempts to learn the function fwhile simulta-

neously minimizing regret. Therefore, we have two main challenges: (i) how best to approximate

the reward function using the decomposed feedback and decomposition (non-parametric approx-

imation), and (ii) how to use this estimation to most effectively reduce the average regret (bandit

problem).

7.3.1 Regression: Non-parametric Approximation

Our first aim is to fully utilize the decomposed problem structure to get a better approximation of

f(x). The goal is to learn the underlying disease pattern faster by using the decomposed problem

structure. Given the linear decomposition assumption that f(xxx) =
J∑

j=1
gj(xxx)fj(xxx) and noisy samples

at points {xxxt}t∈[T], the learner can observe the outcome of each decomposed function fj(xxxt) at each

sample point xxxt ∀t ∈ [T]. Our goal is to provide a Bayesian update to the unknown function which

fully utilizes the learner’s knowledge of the decomposition.
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7.3.2 Bandit Problem: Minimizing Regret

In the flu example, each annual flu-awareness campaign is constrained by a budget, and we assume

policymaker does not know the underlying disease spread pattern. At the beginning of each year,

the policymaker chooses a new campaign policy based on the previous years’ results and observes the

outcome of this new policy. The goal is to minimize the cumulative regret (all additional infections

in prior years) while learning the underlying unknown function (disease pattern).

We will show how a decomposed GP regression, with a GP-UCB algorithm, can be used to ad-

dress these challenges.

7.4 Decomposed Gaussian Process Regression
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Figure 7.1: Illustration of decomposed GP regression (Algorithm 6) and comparison with GP regression (Algorithm 5).
Decomposed GP regression shows a smaller average variance (0.878 v.s. 0.943) and a closer estimation to f.
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First, we propose a decomposed GP regression (Algorithm 6). The idea behind decomposed

GP regression is as follows: given the linear decomposition assumption (Definition 7), run Gaus-

sian process regression for each fj(xxx) individually, and get the aggregated approximation by f(xxx) =
J∑

j=1
gj(xxx)fj(xxx) (illustrated in Figure 7.1).

Assuming we have T previous samples with input xxx1, xxx2, ..., xxxT and the noisy outcome of each

individual function yyyj,t = fj(xxxt) + εj,t ∀j ∈ [J], t ∈ [T], where εj,t ∼ N(0, σ2j ), the outcome of

the target function f(x) can be computed as yt =
J∑

j=1
gj(xxxt)yj,t. Further assume the function fj(xxx) is

an outcome ofGP(0, kj) ∀j. Therefore the entire function f is also an outcome ofGP(0, k)where

k(xxx, xxx′) =
J∑

j=1
gj(xxx)kj(xxx, xxx′)gj(xxx′).

We are going to compare two ways to approximate the function f(xxx) using existing samples. (i)

Directly use Algorithm 5 with the composed kernel k(xxx, xxx′) and noisy samples {(xxxt, yt)}t∈[T] – the

typical GP regression process. (ii) For each j ∈ [J], first run Algorithm 5 with kernel kj(xxx, xxx′) and

noisy samples {(xxxt, yj,t)}t∈[T]. Then compose the outcomes with the deterministic weighted func-

tion gj(xxx) to get f(xxx). This is shown in Algorithm 6.

Algorithm 6:Decomposed GP Regression
1 Input: kernel functions kj(xxx, xxx′) to each fj(xxx) and previous samples

(xxxt, yj,t) ∀j ∈ [J], t ∈ [T]
2 for j = 1, 2..., J do
3 Let μj,T(xxx), kj,T(xxx, xxx

′), σ2j,T(xxx) be the output of GP regression with kj(xxx, xxx′) and
(xxxt, yj,t).

4 Return: kT(xxx, xxx′) =
J∑

j=1
g2j (xxx)kj,T(xxx, xxx′)g2j (xxx′), μT(xxx) =

J∑
j=1

gj(xxx)μj,T(xxx),

σ2T(xxx) = kT(xxx, xxx)

In order to analytically compare Gaussian process regression (Algorithm 5) and decomposed

Gaussian process regression (Algorithm 6), we are going to compute the variance (uncertainty) re-

turned by both algorithms. We will show that the latter variance is smaller than the former. Proofs
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are in the Appendix for brevity.

Proposition 4. The variance returned by Algorithm 5 is

σ2T,entire(xxx) = k(xxx, xxx)−
∑
i,j

zzz⊤i (
∑
l

DDDlKKKl,TDDDl)
−1zzzj (7.6)

where DDDj = diag([gj(xxx1), ..., gj(xxxT)]) and zzzi = DDDikkkj,T(xxx)gj(xxx) ∈ RT.

Proposition 5. The variance returned by Algorithm 6 is

σ2T,decomp(xxx) = k(xxx, xxx)−
∑
l

zzz⊤l (DDDlKKKl,TDDDl)
−1zzzl (7.7)

In order that our approach has lower variance, we first recall the matrix-fractional function and

its convex property.

Lemma 1. Matrix-fractional function h(XXX, yyy) = yyy⊤XXX−1yyy is defined and also convex on domf =

{(XXX, yyy) ∈ ST
+ × RT}.

Nowwe are ready to compare the variance provided by Proposition 4 and Proposition 5.

Theorem 8. The variance provided by decomposed Gaussian process regression (Algorithm 6) is less

than or equal to the variance provided by Gaussian process regression (Algorithm 5), which implies the

uncertainty by using decomposed Gaussian process regression is smaller.

Proof sketch. In order to compare the variance given by Proposition 4 and Proposition 5, we calcu-

late the difference of Equation 7.6 and Equation 7.7. Their difference can be rearranged as a Jensen

inequality with the form of Matrix-fractional function (Lemma 1), which turns out to be convex.

By Jensen inequality, their difference is non-negative, which implies the variance given by decom-

posed GP regression is no greater than the variance given by GP regression.
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Theorem 8 implies that decomposed GP regression provides a posterior with smaller variance,

which could be considered the uncertainty of the approximation. In fact, the posterior belief after

the GP regression is still a Gaussian process, which implies the underlying target function is char-

acterized by a joint Gaussian distribution, where a smaller variance directly implies a more concen-

trated Gaussian distribution, leading to less uncertainty and smaller root-mean-squared error. Intu-

itively, this is due to Algorithm 6 adopts the decomposition knowledge but Algorithm 5 does not.

This contribution for handling decomposition in the GP regression context is very general and can

be applied to many problems. We will show some applications of this idea in the following sections,

focusing first on how a linear and generalized decompositions can be used to augment the GP-UCB

algorithm for multi-armed bandit problems.

7.5 Decomposed GP-UCB Algorithm

The goal of a traditional bandit problem is to optimize the objective function f(xxx) by minimizing

the regret. However, in our bandit problem with decomposed feedback, the learner is able to access

samples of individual functions fj(xxx). We first consider a linear decomposition f(xxx) =
J∑

j=1
gj(xxx)fj(xxx).

Srinivas et al. proposed the GP-UCB algorithm for classic bandit problems and proved that it

is a no-regret algorithm that can efficiently achieve the global optimal objective value. A natural

question arises: can we apply our decomposed GP regression (Algorithm 6) and also achieve the

no-regret property? This leads to our second contribution: the decomposed GP-UCB algorithm,

which uses decomposed GP regression when decomposed feedback is accessible. This algorithm can

incorporate the decomposed feedback (the outcomes of decomposed function fj), achieve a better

approximation at each iteration while maintaining the no-regret property, and converge to a globally

optimal value.

Theorem 9. Let δ ∈ (0, 1) and βt = 2 log(|X |t2π2/6δ). Running decomposed GP-UCB (Algorithm
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Algorithm 7:Decomposed GP-UCB
1 Input: Input spaceX ; GP priors μj,0, σj,0, kj ∀j ∈ [J]
2 for t = 1,2,... do
3 Compute all mean μj,t−1 and variance σ

2
j,t−1∀j

4 μt−1(xxx) =
J∑

j=1
gj(xxx)μj,t−1(xxx)

5 σ2t−1(xxx) =
J∑

j=1
g2j (xxx)σ2j,t−1

6 Choose xxxt = argmaxxxx∈X μt−1(xxx) +
√
βtσt−1(xxx)

7 Sample yj,t = fj(xxxt) ∀j ∈ [J]
8 Perform Bayesian update to obtain μj,t, σj,t ∀j ∈ [J]

7) for a composed sample f(xxx) =
∑
j=1

gj(xxx)fj(xxx) with bounded variance kj(xxx, xxx) ≤ 1 and each fj ∼

GP(0, kj(xxx, xxx′)), we obtain a regret bound ofO(
√
T log |X |

∑J
j=1 B2j γj,T) with high probability,

where Bj = max
xxx∈X
|gj(xxx)|. Precisely,

Pr
{
RT ≤

√√√√C1TβT
J∑

j=1
B2j γj,T ∀T ≥ 1

}
≥ 1− δ (7.8)

where C1 = 8/ log(1+ σ−2) with noise variance σ2.

We present Algorithm 7, which replaces the Gaussian process regression in GP-UCB with our

decomposed Gaussian process regression (Algorithm 6). According to Theorem 8, our algorithm

takes advantage of decomposed feedback and provides a more accurate and less uncertain approxi-

mation at each iteration. We also provide a regret bound in Theorem 9, which guarantees no-regret

property to Algorithm 7.

According to the linear decomposition and the additive and multiplicative properties of ker-

nels, the entire underlying function is still an outcome of GP with a composed kernel k(xxx, xxx′) =
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J∑
j=1

gj(xxx)kj(xxx, xxx′)gj(xxx′), which implies that GP-UCB algorithm can achieve a similar regret bound by

normalizing the kernel k(xxx, xxx′) ≤
J∑

j=1
B2j = B2. The regret bound of GP-UCB can be given by:

Pr{RT ≤
√

C1TβTB2γentire,T ∀T ≥ 1} ≥ 1− δ (7.9)

where γenitre,T is the upper bound on the information gain I(yT; fT) of the composed kernel k(xxx, xxx′).

But due to Theorem 8, D-GPUCB can achieve a lower variance and more accurate approxima-

tion at each iteration, leading to a smaller regret in the bandit setting, which will be shown to empiri-

cally perform better in the experiments.

7.5.1 No-Regret Property and Benefits of D-GPUCB

Previously, in order to guarantee a sublinear regret bound to GP-UCB, we require an analytical,

sublinear bound γentire,T on the information gain.292 provided several elegant upper bounds on the

information gain of various kernels. However, in practice, it is hard to give an upper bound to a

composed kernel k(xxx, xxx′) and apply the regret bound (Inequality 7.9) provided by GP-UCB in the

decomposed context.

Instead, D-GPUCB and the following generalized D-GPUCB provide a clearer expression to the

regret bound, where their bounds (Theorem 9, 10) only relate to upper bounds γj,T of the infor-

mation gain of each kernel kj(xxx, xxx′). This resolves the problem of computing an upper bound of a

composed kernel. We can use the various sublinear upper bounds of different kernels, which have

been widely studied in prior literature292.
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7.5.2 Generalized Decomposed GP-UCB Algorithm

We now consider the general decomposition (Definition 8): f(xxx) = g(f1(xxx), f2(xxx), ..., fJ(xxx)). To

achieve the no-regret property, we further require the function g to have bounded partial derivatives

|∇jg(xxx)| ≤ Bj ∀j ∈ [J]. This corresponds to the linear decomposition case, where |∇jg| = |gj(xxx)| ≤

Bj.

Since, a non-linear composition of Gaussian processes is no longer a Gaussian process, the stan-

dard GP-UCB algorithm does not have any guarantees for this setting. However, we show that our

approach, which leverages the special structure of the problem, still enjoys a no-regret guarantee:

Algorithm 8:Generalized Decomposed GP-UCB
1 Input: Input spaceX ; GP priors μj,0, σj,0, kj ∀j ∈ [J]
2 for t = 1,2,... do
3 Compute the aggregated mean and variance bound:
4 μt−1(xxx) = g(μ1,t−1(xxx), ..., μJ,t−1(xxx))

5 σ2t−1(xxx) = J
J∑

j=1
B2
j σ2j,t−1(xxx)

6 Choose xxxt = argmaxxxx∈X μt−1(xxx) +
√
βtσt−1(xxx)

7 Sample yj,t = fj(xxxt) ∀j ∈ [J]
8 Perform Bayesian update to obtain μj,t, σj,t ∀j ∈ [J]

Theorem 10. By running generalized decomposed GP-UCB with βt = 2 log(|X |Jt2π2/6δ) for a

composed sample f(xxx) = g(f1(xxx), ..., fJ(xxx)) of GPs with bounded variance kj(xxx, xxx) ≤ 1 and each

fj ∼ GP(0, kj(xxx, xxx′)). we obtain a regret bound ofO(
√

T log |X |
∑J

j=1 B2j γj,T) with high probability,

where Bj = max
xxx∈X
|∇jg(xxx)|. Precisely,

Pr
{
RT ≤

√√√√C1TβT
J∑

j=1
B2j γj,T ∀T ≥ 1

}
≥ 1− δ (7.10)
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where C1 = 8/ log(1+ σ−2) with noise variance σ2.

The intuition is that so long as each individual function is drawn from a Gaussian process, we

can still perform Gaussian process regression on each function individually to get an estimate of

each decomposed component. Based on these estimates, we compute the corresponding estimate to

the final objective value by combining the decomposed components with the function g. Since the

gradient of function g is bounded, we can propagate the uncertainty of each individual approxima-

tion to the final objective function, which allows us to get a bound on the total uncertainty. Con-

sequently, we can prove a high-probability bound between our algorithm’s posterior distribution

and the target function, which enables us to bound the cumulative regret by a similar technique as

Theorem 9.

The major difference for general decomposition is that the usual GP-UCB algorithm no longer

works here. The underlying unknown function may not be an outcome of Gaussian process. There-

fore the GP-UCB algorithm does not have any guarantees for either convergence or the no-regret

property. In contrast, D-GPUCB algorithm still works in this general case if the learner is able to

attain the decomposed feedback.

Our result greatly enlarges the feasible functional space where GP-UCB can be applied. We have

shown that the generalized D-GPUCB preserves the no-regret property even when the underly-

ing function is a composition of Gaussian processes. Given the knowledge of decomposition and

decomposed feedback, based on Theorem 10, the functional space that generalized D-GPUCB al-

gorithm can guarantee no-regret is closed under arbitrary bounded-gradient function composition.

This leads to a very general functional space, showcasing the contribution of our algorithm.
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7.5.3 Continuous Sample Space

All the above theorems are for discrete sample spacesX . However, most real-world scenarios have a

continuous space. Srinivas et al. used the discretization technique to reduce the compact and convex

continuous sample space to a discrete case by using a larger exploration constant:

βt = 2 log(2t2π2/(3δ)) + 2d log(t2dbr
√
log(4da/δ))

while assuming Pr{supxxx∈X |∂f/∂xxxi| > L} ≤ ae−(L/b)2 . (In the general decomposition case,

βt = 2 log(2Jt2π2/(3δ)) + 2d log(t2dbr
√
log(4da/δ))). All of our proofs directly follow using the

same technique. Therefore the no-regret property and regret bound also hold in continuous sample

spaces.

7.6 Experiments

In this section, we run several experiments to compare decomposed Gaussian process regression

(Algorithm 6), D-GPUCB (Algorithm 7), and generalized D-GPUCB (Algorithm 8). We also test

on both discrete sample space and continuous sample space. All of our examples show a promising

convergence rate and also improvement against the GP-UCB algorithm, again demonstrating that

more detailed modeling reduces the predictive uncertainty.

7.6.1 Decomposed Gaussian Process Regression

For the decomposed Gaussian process regression, we compare the average standard deviation (un-

certainty) provided by GP regression (Algorithm 5) and decomposed GP regression (Algorithm 6)

over varying number of samples and number of decomposed functions. We use the following three

common types of stationary kernel264:
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• The Square Exponential kernel is k(xxx, xxx′) = exp(−(2l2)−1 ‖xxx− xxx′‖2), l is a length-scale

hyper parameter.

• TheMatérn kernel is given by k(xxx, xxx′) = (21−ν/Γ(ν))rνBν(r), r = (
√
2ν/l) ‖xxx− xxx′‖, where

ν controls the smoothness of sample functions and Bν is a modified Bessel function.

• The Rational Quadratic kernel is k(xxx, xxx′) = (1 + ‖xxx− xxx′‖2 /(2αl2))−α. It can be seen as a

scale mixture of square exponential kernels with different length-scales.

For each kernel category, we first draw J kernels with random hyper-parameters. We then generate

a random sample function fj from each corresponding kernel kj as the target function, combined

with the simplest linear decomposition (Definition 7) with gj(xxx) ≡ 1∀j. For each setting and each

T ≤ 50, we randomly draw T samples as the previous samples and perform both GP regression

and decomposed GP regression. We record the average improvement in terms of root-mean-squared

error (RMSE) against the underlying target function over 100 independent runs for each setting.

We also run experiments on flu domain with square exponential kernel based on real data and SIR

model79, which is illustrated in Figure 7.2(d).

Empirically, our method reduces the RMSE in the model’s predictions by 10-15% compared

to standard GP regression (without decomposed feedback). This trend holds across kernels, and

includes both synthetic data and the flu domain (which uses a real dataset). Such an improvement

in predictive accuracy is significant in many real-world domains. For instance, CDC-reported 95%

confidence intervals for vaccination-averted flu illnesses for 2015 range from 3.5M-7M and averted

medical visits from 1.7M-3.5M. Reducing average error by 10% corresponds to estimates which are

tighter by hundreds of thousands of patients, a significant amount in policy terms. These results

confirm our theoretical analysis in showing that incorporating decomposed feedback results in more

accurate estimation of the unknown function.
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(c) Rational quadratic kernel
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Figure 7.2: Average improvement (with trend line) using decomposed GP regression and GP regression, in RMSE
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7.6.2 Comparison between GP-UCB andD-GPUCB
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Figure 7.3: Comparison of cumulative regret: D‐GPUCB, GP‐UCB, and various heuristics on synthetic (a, b) and real data
(c, d)

We nowmove the online setting, to test whether greater predictive accuracy results in improved

decision making. We compare our D-GPUCB algorithm and generalized D-GPUCB with GP-UCB,

as well as common heuristics such as Expected Improvement (EI)218 andMost Probable Improve-

ment (MPI)184. For all the experiments, we run 30 trials on all algorithms to find the average regret.

Synthetic Data (Linear Decompositionwith Discrete Sample Space):

For synthetic data, we randomly draw J = 10 square exponential kernels with different hyper-

parameters and then sample random functions from these kernels to compose the entire target func-

tion. The sample noise is set to be 10−4. The sample spaceX = [0, 1] is uniformly discretized into
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Figure 7.4: Comparison of average regret: D‐GPUCB, GP‐UCB, and various heuristics on synthetic (a, b) and real data (c,
d)

1000 points. We follow the recommendation in292 to scale down βt by a factor 5 for both GP-UCB

and D-GPUCB algorithm. We run each algorithm for 100 iterations with δ = 0.05 for 30 trials

(different kernels and target functions each trial), where the cumulative regrets are shown in Figure

7.3(a), 7.3(b), and average regret in Figure 7.4(a), 7.4(b).

Flu Prevention (Linear Decompositionwith Continuous Sample Space):

We consider a flu age-stratified SIRmodel79 as our target function. The population is stratified into

several age groups: young (0-19), adult (20-49), middle aged (50-64), senior (65-69), elder (70+).

The SIRmodel allows the contact matrix and susceptibility of each age group to vary. Our input

here is the vaccination rate xxx ∈ [0, 1]5 with respect to each age group. Given a vaccination rate xxx, the
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SIRmodel returns the average sick days per person f(xxx)within one year. The model can also return

the contribution to the average sick days from each age group j, which we denote as fj(xxx). Therefore

we have f(xxx) =
5∑
j=1

fj(xxx), a linear decomposition. The goal is to find the optimal vaccination policy

which minimizes the average sick days subject to budget constraints. Since we do not know the

covariance kernel functions in advance, we randomly draw 1000 samples and fit a mixture of square

exponential kernel andMatérn kernel by tuning the hyper-parameters. We run all algorithms and

compare their cumulative regret in Figure 7.3(c) and average regret in Figure 7.4(c).

Perceived Temperature (General Decompositionwith Discrete Sample Space):

The perceived temperature is a combination of actual temperature, humidity, and wind speed.

When the actual temperature is high, higher humidity reduces the body’s ability to cool itself, re-

sulting a higher perceived temperature; when the actual temperature is low, the air motion acceler-

ates the rate of heat transfer from a human body to the surrounding atmosphere, leading to a lower

perceived temperature. All of these are nonlinear function compositions. We use the weather data

collected from 2906 sensors in United States provided by OpenWeatherMap. Given an input loca-

tion xxx ∈ X , we can access to the actual temperature f1(xxx), humidity f2(xxx), and wind speed f3(xxx).

In each test, we randomly draw one third of the entire data to learn the covariance kernel functions.

Then we run generalized D-GPUCB and all the other algorithms on the remaining sensors to find

the location with highest perceived temperature. The result is averaged over 30 different tests and is

also shown in Figure 7.3(d) and Figure 7.4(d).

Discussion:

In the bandit setting with decomposed feedback, Figure 7.3 shows a 10% − 20% improvement in

cumulative regret for both synthetic (Figure 7.3(a), 7.3(b)) and real data (Figure 7.3(c), 7.3(d)). As
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in the regression setting, such improvements are highly significant in policy terms; a 10% reduction

in sickness due to flu corresponds to hundreds of thousands of infections averted per year. The

benefit to incorporating decomposed feedback is particularly large in the general decomposition

case (Figure 7.3(d)), where a single GP is a poor fit to the nonlinearly composed function. Figure 7.4

shows the average regret of each algorithm (as opposed to the cumulative regret). Our algorithm’s

average regret tends to zero. This allows us to empirically confirm the no-regret guarantee for D-

GPUCB in both the linear and general decomposition settings. As with the cumulative regret, D-

GPUCB uniformly outperforms the baselines.

7.7 Conclusions

We propose algorithms for nonparametric regression and online learning which exploit the decom-

posed feedback common in real world sequential decision problems. In the regression setting, we

prove that incorporating decomposed feedback improves predictive accuracy (Theorem 8). In the

online learning setting, we introduce the D-GPUCB algorithms (Algorithm 7 and Algorithm 8)

and prove corresponding no-regret guarantees. We conduct experiments in both real and synthetic

domains to investigate the performance of decomposed GP regression, D-GPUCB, and general-

ized D-GPUCB. All show significant improvement against GP-UCB and other methods that do

not consider decomposed feedback, demonstrating the benefit that decision makers can realize by

exploiting such information.
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8
Online Learning for Restless Bandits*

8.1 Introduction

Restless multi-armed bandits (RMABs)337 generalize multi-armed bandits by introducing states

for each arm. RMABs are commonly used to model sequential scheduling problems with limited

resources such as in clinical health312, online advertising216, and energy-efficient scheduling50. As

*This work is a joint work with Lily Xu with equal contributions.
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with stochastic combinatorial bandits66, the RMAB learner must repeatedly pullK out ofN arms

at each timestep. Unlike stochastic bandits, the reward distribution of each arm in an RMAB de-

pends on that arm’s state, which transitions based on aMarkov decision process (MDP) depending

on whether the arm is pulled. These problems are called “restless” as arms may change state regard-

less of whether they are pulled. The reward at each timestep is the sum of rewards across all arms,

including arms not acted upon.

Even when the transition dynamics are given, planning an optimal policy for RMABs is PSPACE-

hard244 due to the state-dependent reward and combinatorial action space. To compute an approx-

imate planning solution to RMABs, theWhittle index policy337 defines a “Whittle index” for each

arm as an estimate of the future value if acted upon, then acts on the arms with theK largest indices.

TheWhittle index policy is shown to be asymptotically optimal334 and is commonly adopted as a

scalable solution to RMAB problems140,160.

However, in many real-world applications of RMABs, transition dynamics are often unknown in

advance. The learner must strategically query arms to learn the underlying transition probabilities

while simultaneously achieving high reward. Accordingly, in this paper we focus on the challenge of

online learning in RMABs with unknown transitions. We focus on theWhittle index policy due to

its scalability and consider a fixed-length episodic RMAB setting.

Main contributions We presentUCWhittle, an upper confidence bound (UCB) algorithm

that uses the Whittle index policy to achieve the first sublinear frequentist regret guarantee for

RMABs. Our algorithmmaintains confidence bounds for every transition probability across all

arms based on prior observations. Using these bounds, we define a bilinear program to solve for op-

timistic transition probabilities — the transition probabilities that yield the highest future reward.

These optimistic transition probabilities enable us to compute an optimisticWhittle index for each

arm to inform aWhittle index policy. Our UCWhittle algorithm leverages the structure of RMABs
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and theWhittle index solution to decompose the policy across individual arms, greatly reducing the

computational cost of finding an optimistic solution compared to other UCB-based solutions25,148.

Theoretically, we analyze the frequentist regret of UCWhittle. The frequentist regret is the worst-

case regret incurred from unknown transition dynamics; in contrast, the Bayesian regret is the regret

averaged over all possible transitions from a prior distribution. In this paper, we define regret in

terms of the relaxed Lagrangian of the RMAB— to make the objective tractable —which upper

bounds the primal RMAB problem. We show that UCWhittle achieves sublinear frequentist regret

O(H
√
T logT)where T is the number of episodes of interaction with the RMAB instance andH

is a sufficiently large per-episode time horizon. Our result extends the analysis of Bayesian regret in

RMABs159 to frequentist regret by removing the need to assume a prior distribution. Finally, we

evaluate UCWhittle against other online RMAB approaches on real maternal and child healthcare

data211 and two synthetic settings, showing that UCWhittle achieves lower frequentist regret empir-

ically as well.

8.2 RelatedWork

Offline planning for RMABs When the transition dynamics are given, an RMAB is an

optimization problem in a sequential setting. Computing the optimal policy in RMABs is PSPACE-

hard244 due to the state-dependent reward distribution and combinatorial action space. TheWhit-

tle index policy337 approximately solves the planning problem by estimating the value of each arm

state. The indexability condition6,328 guarantees asymptotic optimality334 of the Whittle index

policy with an infinite time horizon. Nakhleh et al. 231 use deep reinforcement learning to estimate

Whittle indices for episodic finite-horizon RMABs, which requires the environment to be differen-

tiable and transitions known.
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Online learning for RMABs When the transition dynamics are unknown, an RMAB be-

comes an online learning problem in which the learner must simultaneously learn the transition

probabilities (exploration) and execute high-reward actions (exploitation), with the objective of min-

imizing regret with respect to a chosen benchmark. Dai et al. 78 achieve a regret bound ofO(logT)

benchmarked against an optimal policy from a finite number of potential policies. Xiong et al. 347

use a Lagrangian relaxation and index-based algorithm, but require access to an offline simulator

to generate samples for any given state–action pair. Tekin & Liu 300 define a weaker benchmark of

the best single-action policy— the optimal policy that continues to play the same arm— and use a

UCB-based algorithm to achieveO(logT) frequentist regret.

Recent works introduce oracle-based policies for the non-combinatorial setting in which the

learner pulls a single arm in each round, receiving bandit feedback and observing only the state of

the pulled arm. Jung & Tewari 159 use a Thompson sampling–based algorithm which achieves a

Bayesian regret boundO(
√
T logT) under a given prior distribution. Wang et al. 329 use separate ex-

ploration and exploitation phases to achieve frequentist regretO(T2/3). These works assume some

policy oracle is given, thus benchmark regret with the policy given by the oracle with knowledge of

the true transitions. In contrast to the meta-algorithms they propose, we design an optimal approach

custom-tailored to one specific oracle — based on theWhittle index policy — which enables us to achieve

a tighter frequentist regret bound of O(H
√
T logT)with a constant horizonH.

Online reinforcement learning RMABs are a special case of Markov decision processes

(MDPs) with combinatorial state and action spaces. Q-learning algorithms are popular for solving

large MDPs and have been applied to standard binary-action RMABs27,110,48 and extended to the

multi-action setting169. However, these works do not provide regret guarantees. Significant work

has explored online learning for stochastic multi-armed bandits233,143,107,30,348, but these do not

allow arms to change state.
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Some papers study online reinforcement learning by using the optimal policy as the benchmark

to bound regret in MDPs25,148 and RMABs242. These works use UCB-based algorithms (UCRL

and UCRL2) to obtain a regret ofO(
√
T logT). However, evaluating regret with respect to the op-

timal policy requires computing the optimal solution to the RMAB problem, which is intractable

due to the combinatorial space and action spaces. To overcome this difficulty, we restrict the bench-

mark for computing regret to the class of Whittle index threshold policies, and leverage the weak

decomposability of the Whittle index threshold policy to establish a new regret bound.

Frequentist versus Bayesian regret The regret definition that we consider is frequentist

regret, measuring worst-case regret under unknown transition probabilities. The other regret notion

is Bayesian regret: the expected regret over a prior distribution over possible transition functions.

Bayesian regret, such as from Thompson sampling–based methods, relies on a prior and does not

provide worst-case guarantees159,158.

8.3 Restless Bandits andWhittle Index Policy

An instance of a restless multi-armed bandit problem is composed of a set ofN arms. Each arm i ∈

[N] is modeled as an independent Markov decision process (MDP) defined by a tuple (S,A,R,Pi).

The state space S , action spaceA, and reward functionR : S × A → R are shared across arms; the

transition probability Pi : S ×A× S → [0, 1]may be unique per arm i.

We denote the state of the RMAB instance at timestep h ∈ N by sssh ∈ SN, where sh,i denotes the

state of arm i ∈ [N]. We assume the state is fully observable. The initial state is given by sss1 = sssinit ∈

SN. The action (a set of “arm pulls”) at time h is denoted by a binary vector aaah ∈ AN = {0, 1}N

and is constrained by budgetK such that
∑
i∈[N]

ah,i ≤ K.

After taking action ah,i on arm i, the state sh,i transitions to the next state sh+1,i with transition

probability Pi(sh,i, ah,i, sh+1,i) ∈ [0, 1]. We denote the set of all transition probabilities by PPP =
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[Pi]i∈[N]. The learner receives rewardR(sh,i, ah,i) from each arm i (including those not acted upon)

at every timestep h; we assume the reward functionR is known.

The learner’s actions are described by a deterministic policy π : SN → AN which maps a given

state sss ∈ SN to an action aaa ∈ AN. The learner’s goal is to optimize the total discounted reward,

with discount factor γ ∈ (0, 1):

max
π

E
(sss,aaa)∼(PPP,π)

∑
h∈N

γh−1
∑
i∈[N]

R(sh,i, ah,i)

s.t.
∑
i∈[N]

(π(sss))i ≤ K ∀sss ∈ SN (8.1)

where sss ∼ PPP indicates sh,i ∼ Pi(· | sh−1,i, πi(sssh−1)) and aaa ∼ π indicates ai ∼ πi(sss).

8.3.1 Lagrangian Relaxation

Equation 8.1 is intractable to evaluate over all possible policies, thus a poor candidate objective for

evaluating online learning performance. Instead, we relax the constraints to use the Lagrangian as

the evaluation metric:

UPPP,λ
π (sss1) := E

(sss,aaa)∼(PPP,π)

∑
h∈N

γh−1

(∑
i∈[N]

R(sh,i, ah,i)− λ
(∑

i∈[N]

(π(sssh))i − K
))

(8.2)

which also considers actions that exceed the budget constraint, subject to a given penalty λ. The

optimal value of Equation 8.2, which we denoteUPPP,λ
⋆ , is always an upper bound to Equation 8.1.

Therefore, we solve Equation 8.2 for candidate penalty values λ and find the infimum λ⋆ = argminλ U
PPP,λ
⋆

afterward.
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8.3.2 Whittle Index and Threshold Policy

Relaxing the budget constraint enables us to decompose the combinatorial policy into a set ofN

independent policies for each arm. The decoupled policy yields π(sss) = [πi(sssi)]i∈[N], where each

arm policy πi : S → A specifies the action for arm i at state si. The value function is then:

VPi,λ
πi (s1,i) := E

(s1,i,a1,i,s2,i,a2,i,...)∼(Pi,πi)

∑
h∈N

γh−1

(
R(sh,i, ah,i)− λ

(
πi(sh,i)− K

))
. (8.3)

Equation 8.3 can be interpreted as adding a penalty λ to the pulling action a = 1, which moti-

vates the definition of Whittle index337 as the smallest penalty for an arm such that pulling that arm

is as good as not pulling it:

Definition 9. Given transition probabilities Pi and state si, theWhittle indexWi of arm i is defined

as:

Wi(Pi, si) = inf
mi
{mi : Qmi(si, 0) = Qmi(si, 1)} (8.4)

where the Q-function Qmi(si, ai) and value-function Vmi(si) are the solutions to the Bellman equation

with penalty mi for pulling action ai = 1:

Qmi(s, a) = −mia+ R(s, a) + γ
∑
s′∈S

Pi(s, a, s′)Vmi(s′)

Vmi(s) = max
a∈A

Qmi(s, a) .

When theWhittle indexWi(Pi, si) for an arm is higher than the chosen global penalty λ— that

is,mi > λ— the optimal policy for Equation 8.3 is to pull that arm, i.e., πi(si) = 1. We denote the

Whittle indices of all arms and all states byW(PPP) = [Wi(Pi, si)]i∈[N],si∈S ∈ RN×|S|.
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Definition 10 (Whittle index threshold policy). Given a chosen global penalty λ and theWhittle

indicesW(PPP) computed from transitions PPP, the threshold policy is defined by:

πW(PPP),λ(sss) = [1Wi(Pi,si)≥λ]i∈[N] ∈ AN , (8.5)

which pulls all arms withWhittle indices larger than λ.

TheWhittle index threshold policy maximizes the relaxed Lagrangian in Equation 8.2 under

penalty λ, but may violate the budget constraints in Equation 8.1. In practice, we pull only the arms

with the topKWhittle indices to respect the strict budget constraint.

8.4 Problem Statement: Online Learning in RMABs

We consider the online setting where the true transition probabilities PPP⋆ are unknown to the learner.

The learner interacts with an RMAB instance across multiple episodes, and only requires observa-

tions for the firstH timesteps of each episode to estimate transition probabilities.

At the beginning of each episode t ∈ [T], the learner starts the RMAB instance (timestep h = 1)

from sss1 = sssinit and selects a new policy π(t). We consider the following setting:

• Each episode has an infinite horizon with discount factor γ.

• In each episode t, the learner proposes a policy π(t). The learner observes the firstH timesteps†,

but receives the infinite discounted rewardUPPP,λ
π(t)(sss1) to account for the long-term effect of

π(t).

• We assume the MDP associated with each arm is ergodic. That is, starting from the given

initial state, we assumeH is large enough such that afterH timesteps, there is at least ε > 0

probability of reaching any state sss ∈ S .
†In practice, infinite time horizon means a large horizon that is much larger thanH.
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To evaluate the performance of our policy π(t), we compute regret against a full-information

benchmark: the Whittle index threshold policy πW(PPP⋆),λ with knowledge of the true transitions PPP⋆.

This offline benchmark measures the advantage gained from knowing the true transitions PPP⋆.

Definition 11 (Frequentist regret of the Lagrangian objective). Given a penalty λ and the true

transitions PPP⋆, we define the regret of the policy π(t) in episode t relative to the optimal policy π⋆ =

πW(PPP⋆),λ:

Reg(t)λ := UPPP⋆,λ
π⋆ (sss1)− UPPP⋆,λ

π(t) (sss1) ,

Regλ(T) :=
∑
t∈[T]

Reg(t)λ . (8.6)

However, the relaxed Lagrangian in Equation 8.2 with a randomly chosen penalty λmay not be

a good proxy to the primal RMAB problem in Equation 8.1. Therefore, we define the Lagrangian

using the optimal Lagrangian multiplier λ⋆ as the tightest upper bound of Equation 8.1.

Definition 12 (Frequentist regret of the optimal Lagrangian objective). Given PPP⋆, we denote the

optimal penalty by λ⋆ = argminλ U
PPP⋆,λ
π⋆ (sss1). The regret of the optimal Lagrangian objective is

defined by:

Reg(t)λ⋆ := UPPP⋆,λ⋆
π⋆ (sss1)− UPPP⋆,λ⋆

π(t) (sss1) ,

Regλ⋆(T) :=
∑
t∈[T]

Reg(t)λ⋆ . (8.7)

The expected regret is approximated using the regret from the relaxed Lagrangian in Equation 8.2

as defined in Definition 11 and Definition 12.
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8.5 UCWhittle: OptimisticWhittle Index Threshold Policy

A key challenge to UCB-based online learning in RMABs is that the estimated transitions impact

estimates of future reward, so optimistic estimates of transition probabilities do not correspond to

optimistic estimates of reward. We introduce a method, UCWhittle, to compute optimistic Whittle

indices that account for highest future value.

8.5.1 Confidence Bounds of Transition Probabilities

To compute confidence bounds for every unknown transition probability in the RMAB instance,

we maintain countsN(t)
i (s, a, s′) for every state, action, and next state transition observed by episode

t.

Given a chosen small constant δ > 0, we estimate each transition probability Pi(s, a, s′)with the

empirical mean

P̂(t)i (s, a, s′) :=
N(t)

i (s, a, s′)
N(t)

i (s, a)
(8.8)

and confidence radius

d(t)i (s, a) :=

√√√√2|S| log(2|S||A|N t4
δ )

max{1,N(t)
i (s, a)}

(8.9)

whereN(t)
i (s, a) :=

∑
s′∈S

N(t)
i (s, a, s′). With these confidence bounds, the ball BBB of possible values

for transition probabilities PPP is

BBB(t) =
{
PPP |
∥∥∥Pi(s, a, ·)− P̂(t)i (s, a, ·)

∥∥∥
1
≤ d(t)i (s, a) ∀i, s, a

}
.
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8.5.2 Optimistic Transitions andWhittle Indices

To translate confidence bounds in transition probabilities to the actual reward, we define an op-

timization problem (PV) to find for each arm i the optimistic transition probability P†i , the value

within the confidence bound that yields the highest future value from the starting state si:

max
V,Q,Pi∈BBB(t)i

V(si) s.t. V(s) = max
a∈A

Q(s, a) (PV)

Q(s, a) = −λa+ R(s, a) + γ
∑
s′∈S

Pi(s, a, s′)V(s′)

We prove Equation (PV) to be optimal in Section 8.6.

We use the optimistic transition P†i to compute the corresponding optimisticWhittle index

W†
i = W(P†i , si). TheWhittle index threshold policy π†i = πW†

i ,λ
achieves the same value function

derived from the transition P†i , which maximizes Equation (PV). Aggregating all the arms together,

optimistic policy π† with optimistic transitions PPP† maximizes the future value of the current state sss.

8.5.3 UCWhittle Algorithm

After computing optimistic transitions and the corresponding optimistic Whittle indices (Pm), we

execute the optimistic Whittle index threshold policy. The full algorithm is outlined in Algorithm 9,

and implementation details — including novel techniques for speeding up the computation of the

Whittle index— are given in Appendix F.5.1.

8.5.4 Alternative Formulation forWhittle Index Upper Bound

Equation (PV) provides optimistic transition probabilities but requires separately solving for opti-

mistic Whittle indices afterwards. Computing a Whittle index involves binary search, solving value

iteration at every step, so is quite computationally expensive. We thus formulate a heuristic which
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Algorithm 9:UCWhittle
1 Input: N arms, budgetK, episode horizonH.
2 Initialization: countsN(t)

i (s, a, s′) = 0 for all s, a, s′. Randomly initialize
penalty λ(1).

3 for episode t ∈ {1, 2, . . .} do
4 Reset h = 1 and sss = sssinit ; // Reset RMAB instance

5 P†
i = PV(si,N(t)

i , λ(t)) for all i ∈ [N] ; // Compute an optimistic transition
for each arm

6 Wi = ComputeWI(P†
i , si) for all i ∈ [N] ; // Compute Whittle indices

using Def. 9

7 Execute π(t) forH steps by pulling arms with the topKWhittle indices.
8 Observe transitions (sss, aaa, sss′)
9 Update countsN(t)

i , empirical means P̂PP
(t)
, and confidence regions BBB(t)

10 Set λ(t+1) to be theK-th highest Whittle index. ; // Update penalty

solves for the highestWhittle index directly (instead of highest future value) at the current state sh,i:

max
mi,V,Q,Pi,∈BBB(t)i

mi (Pm)

s.t. V(s) = max
a∈A

Q(s, a), Q(s, a = 0) = Q(s, a = 1)

Q(s, a) = −mia+ R(s, a) + γ
∑
s′∈S

Pi(s, a, s′)V(s′)

Solving Equation (Pm) directly yields the maximal Whittle index estimate within the confidence

bound. We thus save computation cost while maintaining a valid upper bound to the optimistic

Whittle index from Equation (PV). The theoretical analysis does not hold for (Pm), but empirically,

we show that this heuristic achieves comparable performance with significantly lower computation.
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8.6 Regret Analysis

We analyze the regret of our UCWhittle algorithm to provide the first frequentist regret analysis

for RMABs. In this section, we use the Lagrangian objective as a proxy to the reward received from

the proposed policy. Section 8.6.1 first assumes an arbitrary penalty λ is given to define the regret

(Definition 11). Section 8.6.2 generalizes by defining the regret of the optimal Lagrangian objective

based on the unknown optimal penalty λ⋆ (Definition 12). Section 8.6.3 provides an update rule for

updating the penalty λ(t) after each episode. Full proofs are given in Appendix F.4.

0 10 20 30 40

4
6
8

(b) WideMargin

UCW-value (PV) UCW-penalty (Pm) ExtremeWhittle WIQL random

0 10 20 30 40
5
10
15

(a) ARMMAN

R
eg
re
t

0 10 20 30 40
5
10
15

(c) ThinMargin

Figure 8.1: Cumulative discounted regret (lower is better) in each episode (x‐axis) incurred by our UCWhittle approaches
compared to baselines across the three domains withN = 8 arms, budget B = 3, episode lengthH = 20, and
T = 40 episodes.

8.6.1 Regret Boundwith Known Penalty

By the Chernoff bound, we know that with high probability the true transition PPP⋆ lies within BBB(t):

Proposition 6. Given δ > 0 and t ≥ 1, we have: Pr
(
PPP⋆ ∈ BBB(t)

)
≥ 1− δ

t4 .

This bound can be used to bound the regret incurred, even when the confidence bound fails. In

the following theorem, we bound the regret in the case where the confidence bound holds and when

the penalty λ is given.
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Theorem 11 (Regret decomposition). Given the penalty λ and PPP⋆ ∈ BBB(t) for all t, we have:

Regλ(T) =
∑
t∈[T]

UPPP⋆,λ
π⋆ (sss1)− UPPP⋆,λ

π(t) (sss1) ≤
∑
t∈[T]

UPPP(t),λ
π(t) (sss1)− UPPP⋆,λ

π(t) (sss1) . (8.10)

Proof. By optimality of Equation (PV) to enable (P(t)i , π(t)i ) = arg max
Pi∈B(t)i ,πi

VPi,λ
πi (s1,i) and the

assumption that the true transition lies within the confidence region P⋆i ∈ B(t)i , we show that:

UPPP⋆,λ
π⋆ (sss1) =

∑
i∈[N]

VP⋆i ,λ
π⋆i

(s1,i) ≤
∑
i∈[N]

VP(t)i ,λ
π(t)i

(s1,i) = UPPP(t),λ
π(t) (sss1) .

Theorem 11 enables us to bound our regret by the difference between two future values under

the same policy π(t).

Definition 13 (Bellman operator). Define the Bellman operator as:

T Pi
πi V(s) = E

a∼πi

[
−λa+ R(s, a) + γ

∑
s′∈S

Pi(s, a, s′)V(s′)

]

Using Theorem 11 and the Bellman operator, we can further decompose the regret as:

Theorem 12 (Per-episode regret decomposition in the fully observable setting). For an arm i, fix

P(t)i , P⋆i , λ, and the initial state s1,i. We have:

VP(t)i ,λ
π(t)i

(s1,i)− VP⋆i ,λ
π(t)i

(s1,i) = E
P⋆i ,π

(t)
i

[ ∞∑
h=1

γh−1
(
T P(t)i

π(t)i
− T P⋆i

π(t)i

)
VP(t)i ,λ
π(t)i

(sh,i)

]
. (8.11)

Theorem 12 further decomposes the regret in Equation 8.10 into individual differences in Bell-

man operators. The next theorem bounds the differences in Bellman operators by differences in

transition probabilities.
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Theorem 13. Assume the penalty term λ(t) = λ is given and the RMAB instance is ε-ergodicity after

H timesteps. Then with probability 1− δ, the cumulative regret in T episodes is:

Regλ(t) ≤ O
(
1
ε
|S||A|

1
2NH

√
T logT

)
. (8.12)

Proof sketch. We focus on bounding the regret when the confidence bounds hold. By Theorem 11

and Theorem 12, we estimate the right-hand side of Equation 8.11 to bound the total regret by the

L1-difference in the transition probability:

∞∑
h=1

γh−1
(
T P(t)i

π(t)i
− T P⋆i

π(t)i

)
VP(t)i

π(t)i
(sh,i) ≤

∞∑
h=1

γh−1
∥∥∥P(t)i (sh,i, ah,i, ·)− P⋆i (sh,i, ah,i, ·)

∥∥∥
1
Vmax.

(8.13)

We bound the regret outside of the horizonH by the ergodic assumption of the MDPs. For the

regret inside the horizonH, we use the confidence radius to bound the L1-norm of transition prob-

ability differences and count the number of observations for each state–action pair to express the

regret as a sequence of random variables, whose sum can be bounded by Lemma 7 to conclude the

proof.

When the penalty term λ is given, Theorem 13 bounds the frequentist regret with a constant

term depending on the ergodicity ε of the underlying true MDPs.

8.6.2 Regret Boundwith UnknownOptimal Penalty

The analysis in Theorem 11 assumes a fixed and given penalty λ. Now, we generalize to regret de-

fined in terms of the optimal but unknown penalty λ⋆ (Definition 12). We show that updating

penalty λ(t) in Algorithm 9 achieves the same regret bound without requiring knowledge of the true

transitions PPP⋆ or optimal penalty λ⋆:
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Theorem 14 (Regret bound with optimal penalty). Assume the penalty λ(t) in Algorithm 9 is up-

dated by a saddle point (λ(t),PPP(t), π(t)) = argminλ maxPPP,π UPPP,λ
π (sss1) subject to constraints in Equa-

tion (PV). The cumulative regret of the optimal Lagrangian objective is bounded with probability

1− δ:

Regλ⋆(t) ≤ O
(
1
ε
|S||A|

1
2NH

√
T logT

)
. (8.14)

Proof sketch. The main challenge of an unknown penalty term λ⋆ is that the optimality of the cho-

sen transition PPP(t) and policy π(t) does not hold in Theorem 11 due to the misalignment of the

penalty λ(t) used in solving Equation (PV) and the penalty λ⋆ used in the regret.

Surprisingly, the optimality of (λ(t),PPP(t), π(t)) = argminλ maxPPP,π UPPP,λ
π (sss1) and λ⋆ = inf

λ
UPPP⋆,λ
π⋆ (sss1)

is sufficient to show Theorem 11 by:

UPPP⋆,λ⋆
π⋆ ≤︸ ︷︷ ︸

λ⋆ minimizesUPPP⋆,λ
π⋆

UPPP⋆,λ(t)
π⋆ ≤ UPPP(t),λ(t)

π(t)︸ ︷︷ ︸
PPP(t), π(t) maximizesUPPP,λ(t)

π

≤ UPPP(t),λ⋆

π(t)︸ ︷︷ ︸
λ(t) minimizesUPPP(t),λ

π(t)

=⇒ Reg(t)λ⋆ = UPPP⋆,λ⋆
π⋆ − UPPP⋆,λ⋆

π(t) ≤ UPPP(t),λ⋆

π(t) − UPPP⋆,λ⋆

π(t) . (8.15)

where we omit the dependency on sss1.

After taking summation over t ∈ [T], Equation 8.15 leads to the same result as Theorem 11

without requiring knowledge of the optimal penalty λ⋆. The rest of the proof follows the same

argument in Theorem 12 and Theorem 13 with the same regret bound.

8.6.3 Penalty Update Rule

Theorem 14 suggests that the penalty term λ(t) should be defined by solving a minimax problem

(λ(t),PPP(t), π(t)) = argminλ maxPPP,π UPPP,λ
π (sss1). However, the bilinear objective ofPV —where
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the transition probability and value function variables are being multiplied together — is difficult

to solve in a minimax problem. A heuristic solution is to solve the maximization problem using the

previous penalty λ(t−1) to determine PPP(t) and π(t) (Equation (PV)). We update λ(t) based on the

current policy, set equal to theKth largest Whittle index pulled at time t to minimize the Lagrangian.

This update rule mimics the minimax update rule required by Theorem 14.
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Figure 8.2: Varying budget ratioK/N, withN = 15 arms, on the ARMMAN domain. Our UCWhittle approaches
perform stronger than baselines, particularly in the challenging low‐budget scenarios.
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Figure 8.3: Changing episode lengthH on the ARMMAN domain. We run each setting for 1,200 total timesteps. UCW‐
penalty performs best with longer horizons. At shorter horizons, UCW‐value converges in fewer timesteps, but more
episodes are necessary: around episode t = 100 with a horizonH = 5 compared to episode t = 16 with horizon
H = 50.

8.7 Experiments

We show that UCWhittle achieves consistently low regret across three domains, including one gen-

erated from real-world data on maternal health. Additional details about the dataset and data usage
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are in Appendix B.3, and details about implementation (including novel techniques to speed up

computation) and experiments are in Appendix F.5.‡

8.7.1 Preliminaries

Domains We consider three binary-action, binary-state settings. Across all domains, the binary

states are good or bad, with reward 1 and 0 respectively. We impose two assumptions: that acting

is always beneficial (more likely to transition to the good state), and that it is always better to start

from the good state (more likely to stay in good state).

ARMMAN is a non-profit based in India that disseminates health information to pregnant

women and mothers to reduce maternal mortality. Twice a week, ARMMAN sends automated

voice messages to enrolled mothers relaying critical preventative health information. To improve

listenership, the organization provides service calls to a subset of mothers; the challenge is selecting

which subset to call to maximize engagement. We use real, anonymized data of the engagement

behavior of 7,656 mothers from a previous RMAB field study211. We construct instances of RMAB

problem with transition probabilities randomly sampled from the real dataset.

WideMargin We randomly generate transition probabilities with high variance, while respect-

ing the constraints specified above.

ThinMargin For a more challenging setting, we consider a synthetic domain with probabili-

ties of transitioning to the good state constrained to the interval [0.2, 0.4] to test the ability of each

approach to discern smaller differences in transition probabilities.

Algorithms We evaluate both variants of UCWhittle (Algorithm 9) introduced in this paper.

UCWhittle-value uses the value-maximizing bilinear program (PV) whileUCWhittle-penalty uses

the penalty-maximizing bilinear program (Pm).

‡Code available at https://github.com/lily-x/online-rmab
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In this paper, we focus on frequentist regret, thus we exclude the Bayesian regret baselines, e.g.,

Thompson sampling159, because their regret bounds are averaged over a prior. We consider the fol-

lowing three regret baselines: ExtremeWhittle is similar to the the approach byWang et al. 328 : esti-

mate Whittle indices from the extreme points of the unknown transition probabilities, using UCBs

of active transition probabilities and lower confidence bounds (LCB) for passive transition prob-

abilities to estimate the gap between the value of acting versus not acting. We then solve a Whittle

index policy using these estimates. WIQL48 uses Q-learning to learn the value function of each arm

at each state by interacting with the RMAB instance. Random takes a random action at each step,

serving as a baseline for expected reward without using any strategic learning algorithm. Lastly, we

evaluate an optimal policy which computes a Whittle index policy with access to the true transition

probabilities.

Experiment setup We evaluate the performance of each algorithm across T episodes of length

H. The per-episode reward is the cumulative discounted reward with discount rate γ = 0.9. We

then compute regret by subtracting the reward earned by each algorithm from the reward of the

optimal policy. Results are averaged over 30 random seeds and smoothed using exponential smooth-

ing with a weight of 0.9. We ensure consistency by enforcing, across all algorithms, identical popula-

tions (transition probabilities for each arm) and initial state for each episode.

8.7.2 Results

The performance results across all three domains are shown in Figure 8.1. Our UCWhittle algo-

rithm using the value-maximizing bilinear program (UCW-value) achieves consistently strong per-

formance and generally converges by 600 timesteps (across varying episode lengths). In Figures 8.2

and 8.3 we evaluate performance while varying the budgetK and episode lengthH, as the regret of

UCWhittle (Theorem 13) has dependency on both the budget as a ratio of total number of arms
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Method Time (s)

UCWhittle-value 1090.92
UCWhittle-penalty 177.57
ExtremeWhittle 109.44
WIQL 3.39
random 1.32

Table 8.1: Average runtime of the different approaches across 500 timesteps withN = 30 arms and budget B = 6

(K/N) and episode lengthH. We see that UCW-value performs comparatively stronger than the

baselines in the challenging low-budget settings, in which each arm pull has greater impact.

Our heuristic approachUCW-penalty— the penalty-maximizing bilinear program we present

in Equation (Pm) — shows strong performance. UCW-penalty performs even better than UCW-

value in some settings, particularly in the ARMMAN domain withN = 15 arms (Figure 8.2).

Notably in Table 8.1 we see this heuristic approach performs dramatically faster than UCW-value—

a 6.1× speedup. Therefore while are able to establish regret guarantees only for UCW-value, we also

propose UCW-penalty as a strong candidate for its strong performance and quick execution.

In Figures 8.2 and 8.3 we see ExtremeWhittle has poor performance particularly in the early

episodes, consistently achieving higher regret than the random policy. Additionally,WIQL is slow

to converge, performing similarly to the random baseline across the time horizons that we consider.

8.8 Conclusion

We propose the first online learning algorithm for RMABs based on theWhittle index policy, using

an upper confidence bound–approach to learn transition dynamics. We formulate a bilinear pro-

gram to compute optimistic Whittle indices from the confidence bounds of transition dynamics,

enabling online learning using an optimistic Whittle index threshold policy. Theoretically, our work

pushes the boundary of existing frequentist regret bounds in RMABs while enabling scalability
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using the Whittle index threshold policy to decompose the solution approach.

168



9
Smoothed Online Combinatorial

Optimization Using Imperfect Predictions*

9.1 Introduction

We consider the smoothed online combinatorial optimization problem, which is an extension of

online convex optimization132,279,362,133 and smoothed online convex optimization197,198. In the
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smoothed online combinatorial optimization problem, an online learner is repeatedly optimizing a

cost function with unknown changing parameter. In every time step, the learner chooses a feasible

decision from a combinatorial feasible region before observing the parameter of the cost function.

After the learner chooses the decision, the learner receives (i) the cost function parameter and the

associated cost (ii) an additional known switching cost function dependent on the chosen decision

and the previous decision. The goal of the learner is to minimize the cumulative cost in T time steps,

including cost produced by the cost function and the switching cost.

Smoothed online combinatorial optimization is commonly seen in applications with online

combinatorial decisions and switching penalty, including ride sharing with combinatorial driver-

customer assignment149, distributed streaming system with bipartite data-to-server assignment117,302,

and A-B testing in advertisement45. All these examples incur a potential switching cost when the de-

cisions are changed, e.g., reassigning drivers or data to different locations or servers is costly, and

changing advertisement campaign requires additional human resources. The challenge of online

combinatorial decision-making and the presence of hidden switching cost motivate the study of

smoothed online combinatorial optimization.

In this paper, we study the smoothed online combinatorial optimization where an imperfect pre-

dictive model is available. We assume that the predictive model can forecast the future cost param-

eters with uncertainties, and the uncertainties can evolve over time. We measure the performance

of online algorithms by dynamic regret, which assumes a dynamic offline benchmark, i.e., the opti-

mal performance when the cost function parameters are given a priori and the sequential decisions

are allowed to change. The same use of predictions and dynamic regret are also studied in reced-

ing horizon control212,60 in smoothed online convex optimization under different assumptions on

the predictions64,29,65,194,195. In our case, the challenges of bounding dynamic regret inherit from

smoothed online convex optimization, while the additional combinatorial structure further compli-

*This work was done during an internship at Adobe Research.
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cates the analysis.

Main Contribution

Our main contribution is an online algorithm that plans ahead using the imperfect predictions

within a dynamic planning window determined based on the predictive uncertainty of the predic-

tive model. We summarize our contributions as follows:

• Given imperfect predictions with uncertainties, we show that planning based on predictions

within a finite time horizon leads to a regret bound that is a function of the total predictive

uncertainty with an additional potential switching cost. This bound quantifies one source

of regret corresponding to the imperfectness of the predictions, while the other source comes

from the additional switching cost (Theorem 15).

• Our regret bound in finite time horizon suggests using a dynamic planning window to op-

timally balance two sources of regret coming from predictive uncertainty and the switching

cost, respectively. Iteratively selecting a dynamic planning window to plan ahead leads to a

regret bound in infinite time horizon (Theorem 16).

• Specifically, when the uncertainties converge to 0 when more data is collected, we show that

the cumulative regret is always sublinear (Theorem 17), which guarantees the no-regretness

of Algorithm 10. We also quantify the dependency of the cumulative regret on the conver-

gence rate of the uncertainty in some special cases (Corollary 1).

• Lastly, we show a lower bound on the total regret for any randomized online algorithm when

predictive uncertainty is present. The order of the lower bound matches to the order of the

upper bound in some special cases, which guarantees the tightness of our online algorithm

and the corresponding regret bounds (Corollary 2).
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Lastly, given predictions and dynamic planning windows, the smoothed online combinatorial

optimization problem reduces to an offline combinatorial problem. We use an iterative algorithm to

find an approximate solution to the offline problem efficiently, which largely reduces the computa-

tion cost compared to solving the large combinatorial problem using mixed-integer linear program.

Empirically, we evaluate our algorithm on the online distributed streaming problemmotivated

from Apache Kafka with synthetic traffic. We compare our algorithm using predictions and dy-

namic planning windows with various baselines. Our algorithm using predictions outperforms

baselines without using predictions. Our experiments show an improvement of choosing the right

dynamic planning windows against algorithms using fixed planning window, which demonstrates

the importance of balancing uncertainty and the switching cost. The use of iterative algorithm also

largely reduces the computation cost while keeping a comparable performance, leading to an effec-

tive scalable online algorithm that can be applied to real-world problems.

9.2 RelatedWork

Online convex optimization Online convex optimization119,132,279,362 assumes the objec-

tive function is convex and no switching cost. In online convex optimization, static regret is most

commonly used, which assumes a static benchmark with full information but the decisions over the

entire time steps have to be static. Various variants of online gradient descents362,133,134,291,103 were

proposed with bounds on the static regret. However, the gradient-based approaches and the regret

bounds do not directly generalize to the combinatorial setting due to the discreteness of the feasible

region.

Smoothed online convex optimizationwith predictions Smoothed online convex

optimization generalizes online convex optimization by assuming a switching cost that defines the

cost of moving from the previous decision to the current one.17 showed that smoothed online con-
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vex optimization can achieve the same static regret bound using the algorithms in online convex

optimization without switching cost. In terms of dynamic regret, receding horizon control212 was

proposed to leverage the predictions of future time step to make decision. Perfect198,197 and im-

perfect64,65,194,195 predictions are used to bound the performance of receding horizon control with

fixed planning window size. Separately, chasing convex bodies278,57,56,109 shares the same challenge

of smoothed online convex optimization but focuses on the competitive ratio.

Nonetheless, the analyses in the convex objectives and feasible regions do not apply to the com-

binatorial setting. The planning window in receding horizon control is also restricted to be fixed

across different time steps.

Online combinatorial optimization and metrical task system Online combinatorial

optimization assumes a discrete feasible region that the learner can choose from before seeing the

cost function. Existing results23,175 focus on bounding dynamic regret in the case of linear objec-

tives without switching cost. On the other hand, metrical task system assumes n discrete states that

the learner can choose after seeing the cost function, and there is a metrical switching cost associated

to every switch. Existing results focus on bounding competitive ratio, where the competitive ratio is

lower bounded by Ω( log n
log log n)

37,38 and upper bounded byO(log2 n)55. In contrast, dynamic regret

is a stronger additive guarantee and is more challenging to analyze.

Our work shows that analyzing dynamic regret in an arbitrary smoothed online combinatorial

optimization problem becomes tractable when an imperfect predictive model is given.

9.3 Problem Statement

An instance of smoothed online combinatorial optimization is composed of a cost function f :

Z × Θ → R≥0 where z ∈ Z denotes all the feasible decisions that can be taken and θ ∈ Θ denotes

all the possible unknown parameters of the cost function, and a metric d : Z × Z → R≥0 that is
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used to measure the distance of different decisions. At each time step t, the learner receives a feature

xt ∈ X that is correlated to the unknown parameters in the future. Based on the given feature xt,

the learner can predict the future parameters and choose a feasible decision zt ∈ Z without seeing

the future parameter θt. The parameter θt is revealed after the decision is executed and the learner

receives an objective cost f(zt, θt)with a switching cost d(zt−1, zt)which measures the movement of

the decisions made by time step t and t− 1. The total cost of an online algorithm ALG up to time T

is the summation of both the objective cost and the switching cost across all time steps:

costT(ALG) =
T∑
t=1

f(zt, θt) + d(zt, zt−1).

Wewant to compare to the offline benchmark OPT in time T that knows all the parameters in

advance, which minimizes the total cost defined below:

costT(OPT) = min
zt∈Z ∀t

T∑
t=1

f(zt, θt) + d(zt, zt−1)

Definition 14. An online algorithmALG has a dynamic regret ρ(T) if we have:

RegT := costT(ALG)− costT(OPT) ≤ ρ(T) ∀T.

The goal of the learner is to design an online algorithm with a small dynamic regret bound ρ(T).

9.3.1 Example: Online Distributed Streaming Systems

One application of smoothed online combinatorial optimization problems is the online load bal-

ancing problem in the distributed streaming system known as Apache Kafka117,302. The system

is composed of k topics of streaming data andm servers as shown in Figure 9.1. At each time step

t, the systemmaintains a bipartite assignment zt between k topics andm servers so that the servers
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Streaming data Server load

Figure 9.1: Apache Kafka maintains a bipartite assignment zt between k topics andm servers to prepare for processing
the streaming data. The streaming traffic θt comes later and gets routed to the corresponding servers. A server imbal‐
ance cost f(zt, θt) and a switching cost d(zt, zt−1) due to assignment change are received.

can process the streaming data in real time. Specifically, each topic must be assigned to exactly one

server. We use zt ∈ Zt ⊆ {0, 1}k×m with zt,i,j = 1 to denote assigning the topic i to server j at

time t. The learner can use the parameters in the priorH time steps as the feature xt that is correlated

to the unknown future parameters. After the assignment is chosen, a new traffic vector θt ∈ Rk

arrives with each entry representing the number of incoming messages associated to the topic. Fig-

ure 9.1 illustrates how the data-to-server assignment works. A commonly used server imbalance cost

is defined as makespan f(zt, θt) =
∥∥z⊤t θt∥∥∞, the largest load across all servers.

Paper structure We first discuss how planning based on predictions works and how to bound

the associated dynamic regret using predictive uncertainty. Second, we discuss two different sources

of regret, predictive uncertainty and the number of planning windows used. We propose to use a

dynamic planning window to balance the tradeoff with a regret bound derived. Third, we propose

an iterative algorithm to solve an offline problem by decoupling the temporal dependency caused by

switching cost. Lastly, an application in distributed streaming system and Apache Kafka is discussed

and used in our experiments.
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(a) The learner has access to the
historical parameters {θs ∈ Rk}s<t.
We plot each entry of the parameter
prior to time t as a time series to
visualize the trend.
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(b) The learner predicts the future
parameters with uncertainty. Each
entry of the parameter corresponds to
a time series prediction problem.
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(c) Given the predictions, we choose
a dynamic planning window such
that the total uncertainty within the
window is of the same order of the
switching cost.
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(d) Given the predictions and the planning window, the planning problem reduces to an offline combinatorial problem.
We can use any combinatorial solver to find a solution to the offline problem. The solution is executed in the planning
window.

Figure 9.2: This flowchart summarizes how predictions are used to derive planning decisions. Fig. 9.2(a) shows the his‐
torical data prior to time t as multiple time series. Fig. 9.2(b) visualizes the predictions and uncertainty intervals learned
from the historical parameters. Fig. 9.2(c) demonstrates how to determine the dynamic planning window. Fig. 9.2(d)
solves an offline problem and executes accordingly.

9.4 Planning Using Predictions

Motivated by the use of predictions in smoothed online convex optimization65,194,19, this section

studies the connection of predictions and predictive uncertainties to the dynamic regret. To con-

duct the regret analysis below, we require the following assumptions to hold:

Assumption 1. The cost function f(z, θ) is Lipschitz in θ ∈ Θ with Lipschitz constant L, i.e., ‖∂f(z,θ)∂θ ‖ ≤

L for all z ∈ Z and θ ∈ Θ.

Assumption 2. The switching cost is upper bounded in the feasible regionZ by B = supz,z′∈Z d(z, z′).

Assumption 1 quantifies the change of the cost function with respect to the parameter. Assump-

tion 2 quantifies the upper bound of switching cost.
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9.4.1 Predictions with Uncertainty

Assumption 3. We assume there is a predictive model that is trained based on the revealed parame-

ters prior to time t. At time t, the predictive model takes the feature xt and produces a sequence of pre-

dicted future parameters {θ(t)s }s∈N,s≥t with uncertainty {ε
(t)
s }s∈N,s≥t, where the distance between the

prediction θ(t)s and the true parameter θs at time s is bounded by ‖θs − θ(t)s ‖ ≤ ε
(t)
s .

We also assume that the predictive uncertainty ε(t)s increases in s due to the difficulty of predicting

further future parameters, while the predictive uncertainty decreases in t due to more training data

available to train the predictive model.

9.4.2 Planning in Fixed TimeHorizon

We first analyze the regret in fixed time horizon when we use the predictions to plan accordingly.

More precisely, at time t, given the previous decision zt−1 at time t−1 and the prediction {θ(t)s }s∈N,s≥t

of the future time steps, the learner selects a planning window S ∈ N to plan for the next S time

steps by solving a minimization problem:

{zs}s∈{t,t+1,··· ,t+S−1} = argmin
zs∈Z ∀s

t+S−1∑
s=t

f(zs, θ(t)s ) + d(zs, zs−1). (9.1)

Solving the above finite time horizon optimization problem suggests a solution {zs}s∈{t,t+1,··· ,t+S−1}

in the next S time steps to execute starting from time t. This process is summarized in Fig. 9.2.

However, since the predictions are not perfect, the suggested solution might not be the true opti-

mal solution when the true cost function parameters are present. To compare with the true offline

optimal solution using the true cost function parameters, we express the offline solution by:

{z′s}s∈{t,t+1,··· ,t+S−1} = argmin
zs∈Zs ∀s

t+S−1∑
s=t

f(zs, θs) + d(zs, zs−1). (9.2)
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Algorithm 10:Dynamic Future Planning
1 Input: Total time steps T. Maximal switching cost B. A predictive model that can

produce predictions {θ(t)t+s}s∈N at time t.
2 Initialization t = 1, # of planning windows I = 0.
3 while t ≤ T do
4 Get predictions {θ(t)s }s∈N,s≥t and predictive uncertainty {ε(t)s }s∈N,s≥t from the

model.
5 Find the largest S s.t. 2L

t+S−1∑
s=t

ε(t)s ≤ B.

6 Solve the optimization problem in Equation (9.1) with starting time t and
planning window S to get {zs}s∈{t,t+1,··· ,t+S−1}.

7 Execute zs and receive θs with cost f(zs, θs) + d(zs, zs−1) at time
s ∈ {t, · · · , t+ S− 1}.

8 Set t = t+ S, I = I+ 1.

The only difference between Equation (9.1) and Equation (9.2) is that Equation (9.2) has full ac-

cess to the future cost parameters, while Equation (9.1) uses the predictions instead. We can define

the difference by the following regret:

Regt+S−1
t (zt−1) =

(t+S−1∑
s=t

f(zs, θs) + d(zs, zs−1)

)
−

(t+S−1∑
s=t

f(z′s, θs) + d(z′s, z′s−1)

)
. (9.3)

We have the following bound on the regret:

Theorem 15. Under Assumption 1, the regret from time step t to t + S − 1 in Equation 9.3 is upper

bounded by: Regt+S−1
t (zt−1) ≤ 2L

t+S−1∑
s=t

ε
(t)
s . where L is the Lipschitz constant in Assumption 1.

Theorem 15 links the dynamic regret with the total predictive uncertainty in finite time horizon.

Notice that the switching cost terms in Equation (9.3) are misaligned. Therefore, the proof requires

not only the Lipschitzness of the objective function f but also the optimality conditions of both the

offline and online planning problems to bound the total cumulative regret.
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9.4.3 Infinite TimeHorizon andDynamic PlanningWindow

In the inifinite time horizon problem, the main idea is to reduce the problem to multiple finite time

horizon problems with different planning window sizes.

Recall that the predictive uncertainty often increases when we try to predict the parameters in the

far future, i.e., ε(t)s is increasing in s. Since the regret in Theorem 15 directly relates to the predictive

uncertainty in the planning window, it suggests keeping the planning window small to reduce the

regret.

On the other hand, Theorem 15 assumes an identical initial decision zt−1 in the online prob-

lem (Equation (9.1)) and offline problem (Equation (9.2)). In the infinite time horizon case, two

algorithms may start from different initial decisions, which may create an additional regret upper

bounded by the maximum switching cost B due to the misalignment of the initial decision. This

observation suggests using larger planning windows to avoid changing between different planning

windows.

Therefore, we propose to balance two sources of regret by choosing the largest planning window

S such that:

2L
t+S−1∑
s=t

ε(t)s ≤ B (9.4)

The choice of the dynamic planning window can ensure that the total excessive predictive uncer-

tainty is upper bounded by cost B, while we also plan as far as possible to reduce the number of

planning windows incurred during switching between different finite time horizons. The algorithm

is described in Algorithm 10.

Theorem 16. Given Lipschitzness L in Assumption 1 and the maximal switching cost B in Assump-

tion 2, in T time steps, Algorithm 10 achieves cumulative regret upper bounded by 2BI, where I is the
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total number of planning windows used in Algorithm 10.

Proof sketch. The regret of our algorithm comes from two parts: (i) regret from the discrepancy of

the initial decision zt−1 and the initial decision of the offline optimal z∗t−1 at time t, the start of every

planning window, and (ii) the incorrect predictions used in the optimization, which is bounded by

Theorem 15.

The regret in part (i) is bounded by d(zt−1, z∗t−1) ≤ B for every planning window because it

would take at most the maximal switching cost B to align different initial decisions before we can

compare. Thus the total regret in part (i) is bounded by BI, where I is the number of planning win-

dows executed in Algorithm 10.

The regret in part (ii) is bounded by Theorem 15 and the choice of the dynamic planning win-

dow in Equation (9.4). We have Regt+S−1
t (z∗t−1) ≤ 2L

t+Si−1∑
s=t

ε
(t)
s ≤ B for the i-th window. We

can take summation over all planning windows to bound the total regret in part (ii) by:
I∑

i=1
B = BI.

where combining two bounds concludes the proof.

Theorem 16 links the excessive dynamic regret to I, the number of planning windows that Al-

gorithm 10 uses. The next step is to bound the number of planning windows I by the total time

steps T. In Theorem 17, we first show that the cumulative regret is always sublinear in Twhen the

predictive uncertainty converges to 0 when more data is collected.

Theorem 17. Under Assumption 1 and 2, if ε(t)t+s−1 = o(1) in t for all s ∈ N, i.e., ε(t)t+s−1 → 0 when

t→∞, then the cumulative regret of Algorithm 10 is sublinear in T.

Proof. When the predictive uncertainty ε(t)s → 0 when t → ∞, the window size St that satisfies

2L
t+Si−1∑
s=t

ε
(t)
s ≤ B at time t converges to∞when t → ∞. This suggests that the number of

windows I required in total number of time steps T is strictly smaller than Θ(T), i.e., I = o(T). By

Theorem 16, the cumulative regret is upper bounded by 2BI = o(T), which is sublinear in T.
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Theorem 17 guarantees that the cumulative regret of Algorithm 10 in Theorem 16 is sublinear

when the uncertainty converges to 0. This establishes the no-regretness of Algorithm 10 in dynamic

regret, which is only known to be possible in the smoothed online convex optimization but not

known in the smoothed online combinatorial optimization.

In some special cases of the predictive uncertainty, we can further provide a more precise bound

on the cumulative regret in the following corollary.

Corollary 1. If the uncertainty satisfies ε(t)t+s−1 = O( satb ), ∀s, t ∈ N with a, b ∈ R≥0, we have:

RegT ≤



O(T1− b
a+1 ) if b < a+ 1

O(logT) if b = a+ 1

O(log logT) if b > a+ 1

.

Corollary 1 is proved by providing a more concrete bound on the number of planning windows

I in Theorem 16. Corollary 1 also quantifies the dependency of the cumulative regret on the conver-

gence rate of predictive uncertainty. When b > 0, the cumulative regret is always sublinear, which

matches our result in Theorem 17.

9.4.4 Lower Bound on The Cumulative Regret

In this section, we provide a lower bound on the expected cumulative regret, showing that no ran-

domized algorithm can achieve an expected cumulative regret lower than a term similar to the upper

bound.

Corollary 2. Given ε(t)t+s−1 = Ω( s
a

tb ) for all t, s ∈ N with 0 ≤ b, there exist instances such that for any
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randomized algorithm, the expected regret is at least:

E[RegT] ≥



Ω(T1−b) if b < 1

Ω(logT) if b = 1

Ω(1) if b > 1

.

The lower bound suggests that there is no online learning algorithm that can achieve a cumula-

tive regret that is smaller than the regret in Corollary 2. Specifically, we can see that the lower bound

matches to the upper bound up to a logarithm factor when a = 0, which guarantees the tightness

of our upper bound in Corollary 1 and Theorem 16 in the case of a = 0.

9.4.5 Extension to Probabilistic Bounds

In this paper, we primarily focus on the deterministic uncertainty bounds of the predictive model.

The same analyses in Section 9.4 also generalize to probabilistic bounds of the predictive model that

hold with high probability, e.g., with probability 1 − δi for each prediction in the i-th planning

window with size Si. This kind of probabilistic bounds is commonly seen in the literature of proba-

bly approximately correct (PAC) learning, where the predictive error bound can be bounded by the

number of training samples used in fitting the underlying hypothesis class. In this case, the regret

analysis in Theorem 15 needs to additionally consider the event when the uncertainty bounds do

not hold, which leads to an additional regret term with orderO(Siδi) in Theorem 15, leading to a

linear term
I∑

i=1
Siδi in Theorem 16.

Fortunately, we can also select a decreasing failure probability δi in the later planning windows

when more samples are collected. As long as we can guarantee that the choice of uncertainty bound

ε
(t)
s and the failure probability δi at time t converge to 0 when more samples are collected, we can

obtain a similar result as Theorem 17 showing the cumulative regret bound is sublinear in T. This
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generalizes our results of deterministic bounds to probabilistic bounds.

9.5 Experiment Setup

In our experiment, we use the distributed streaming system problems with synthetic data to com-

pare our algorithm with other baselines.

Cost function and switching cost In the distributed streaming system, the learner main-

tains a bipartite assignment zzzt ∈ Zt ⊆ {0, 1}k×m between k topics andm servers at time step t to

process the streaming data, where zzzt,i,j = 1 denotes that topic i is assigned to server j at time t to

process the incoming traffic. Once the decision zzzt is chosen at time t, a traffic vector θt ∈ Θ ⊆ Rk is

revealed.

Given traffic θt and the chosen assignment zt, we define the cost function by f(zt, θt) = ‖z⊤t θt‖∞

as the resulting server imbalance cost, which is also known as makespan, i.e., the maximal number of

messages a server needs to process across all servers. Minimizing makespan is a well-studied strongly

NP-complete problem116 with various approximation algorithms136,191. Additionally, we define the

switching cost by d(z, yyy) := 111⊤k |z − yyy|uuu, where |z − yyy| ∈ Rk×m
≥0 represents the number of switches

of each pair of topic and server, and each entry of uuu ∈ Rm denotes the unit switching cost associated

to the corresponding server, which is randomly drawn from a uniform distributionU[0, 2].

Data generation We assume that there are k = 10 topics to be assigned tom = 3 servers. We

generate k time series, where each represents the trend of incoming traffic {θt,i}t∈[T] of topic i ∈ [k]

as the cost function parameter. Each time series is generated by a composition of sine waves, an au-

toregressive process, and a Gaussian process to model the seasonality, trend, and the random process.

We use sine waves with periods of 24 and 2 with amplitudes drawn fromU[1, 2] andU[0.5, 1] to

model the daily and hourly changes. We use an autoregressive process AR(1) that takes the weighted
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(a) Average cumulative regret that in‐
cludes the imbalance cost and switch‐
ing cost.
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(b) Average cumulative imbalance
regret compared to the offline bench‐
mark.
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(c) Average cumulative switching
cost regret compared to the offline
benchmark.

Figure 9.3: We compare the performance of our approaches with various baselines without using predictions. The first
takeaway is that methods using predictions largely outperform the methods without using predictions in Fig. 9.3(a). Sec‐
ondly, choosing the right planning window can achieve a better imbalance cost in Fig. 9.3(b) with a small increase in the
amount of switching cost in Fig. 9.3(c). All the algorithms are compared with an offline benchmark with full information.
The shaded area refers to the region within first standard deviation.

sum of 0.9 of the previous signal and a 0.1 of a white noise to generate the next signal. Lastly, we use

a rational quadratic kernel as the Gaussian process kernel.

Predictive model At time step t, to predict the incoming traffic θs ∈ Θ ⊆ Rk for all s ≥ t,

we collect all the historical data {θs′}s′<t prior to time t and apply Gaussian process regression using

the same rational quadratic kernel on the historical data to generate predictions {θ(t)s }s≥t of the

future time steps. We use the standard deviation learned from Gaussian process regression as the

uncertainty {ε(t)s }s≥t.

Experimental setup For each instance of the load balancing problem, we assume 50 historical

data have been collected a priori to stabilize Gaussian process regression. We run different online

algorithms for another 100 time steps with hidden incoming traffic to measure the performance of

online algorithms. For each setup, we run 10 independent trials with different random seeds to esti-

mate the average performance. All the results are plotted with average value and the corresponding

standard deviation.
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Figure 9.4: Comparison of different methods of solving Equation (9.1) and different planning window sizes.

9.6 Experimental Results

We compare with our algorithm with baselines in the literature of online convex optimization:

• The static approach uses the initial assignment and never adjusts dynamically.

• The Online Gradient Descent (OGD) updates the assignment by running gradient descent

on the cost function received previously and project back to the discrete feasible region.

• The Follow-The-Leader (FTL) aggregates all the cost functions received in the past and finds

the optimal decision that optimizes the historical cost functions with switching cost.

• The Follow-The-Previous (FTP) optimizes the cost function in the last time step.

• The short-term algorithm and the long-term algorithm both use predictions but with deter-

ministic planning window sizes 1 and 10, respectively.

• The dynamic algorithm refers to our algorithm using a dynamic planning window deter-

mined by the predictive uncertainty.
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All the algorithms compare with an offline benchmark with full information. Since the offline

problem is NP-hard to solve, we split the offline problem into chunks of size 5 and solve each of

them optimally using mixed integer program to get the offline performance.

Effect of predictions In Fig. 9.3, we compare the performance of baselines (static, OGD,

FTL, FTP) with approaches using predictions with different planning window sizes (short-term,

long-term, dynamic). We first notice that OGD and FTL perform worse than FTP, which simply

follows the previous cost function to update solution. Due to the smoothness of the cost function

parameters, optimizing over the previous cost function can be a strong baseline.

Secondly, the methods using predictions further improve the solution quality. Using predictions

can help leverage the seasonality and trend information, and leave the uncertainty to the planning

part. On the other hand, the OGD and the FTL algorithms are designed to deal with the case with-

out predictable pattern and switching cost. The different purposes of algorithm design make our

algorithmmore applicable to our problem.

Lastly, in Fig. 9.3(a), we can see that the dynamic algorithm achieves the smallest cumulative re-

gret compared to the short-term algorithm and the long-term algorithm using planning window

with size 1 and 10, respectively. Fig. 9.3(b) and Fig. 9.3(c) further compare different performance

metrics. We can see that our approach of choosing proper planning window can achieve much

smaller server imbalance performance while requiring slightly more switching cost only. Methods

considering less future effect (FTL, FTP, short-term) can be reluctant to switch and underestimate

the benefit of switching, which results in a smaller switching cost but larger imbalance cost. In con-

trast, the long-term algorithm using larger planning window instead can be harmed by the increas-

ing predictive uncertainty, which leads to incorrect planning decision due to the uncertainty. This

result justifies the benefit of predictions and the right planning window to balance between uncer-

tainty and the switching cost.
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Effect of planningwindow size In Fig. 9.4(a), we compare the performance of different

choices of planning window size and different ways of solving the offline problem in Equation (9.1).

First, if we use mixed integer program (MIP), we can see a clear improvement by using a larger plan-

ning window and a slightly degraded performance after window size exceeds 3. This empirical result

matches to our analysis of shorter and longer planning windows, where the dynamic planning win-

dow suggests a planning window with size around 3. We also compare with an iterative algorithm

(Algorithm 16 in Appendix G.6) that is used to approximately solve the NP-hard offline problem

in Equation (9.1). The effect of planning window size is less significant due to the suboptimality

of the iterative algorithm. But we can still see a similar benefit while using an appropriate planning

window size.

Fig. 9.4(b) compares the runtime of solving Equation (9.1) using different approaches and plan-

ning window sizes. Runtime of solving the optimization problem is important because decisions

have to be made in real time. We can see that MIP requires an exponentially increasing runtime be-

cause the combinatorial structure and the linearly increasing number of binary variables when the

window size grows. On the other hand, the iterative algorithm solves the problem approximately

and more efficiently. In short, the MIP algorithm achieves the best performance but with an expen-

sive computation, while the iterative algorithm scales better but with a loss in the solution quality.

9.7 Conclusion

This paper studies the smoothed online combinatorial optimization problem with switching cost.

We show that when predictions with uncertainty are available, we can bound the dynamic regret

by the convergence of the predictive uncertainty, which links the bound on dynamic regret to the

predictability of the incoming cost function parameters. Our analysis suggests using a dynamic plan-

ning window dependent on the sequence of predictive uncertainties. Our dynamic planning win-

187



dow can optimize the regret, where we empirically show in our experiments that using a predictive

model and an appropriate planning window can further improve the performance.
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Part III

Optimization in Multi-agent Systems
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10
End-to-End Gradient Descent for

Stackelberg Games

10.1 Introduction

Stackelberg games are commonly adopted in many real-world applications, including security150,114,

wildlife conservation94, and commercial decisions made by firms228,26,358. Moreover, many real-
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istic settings involve a single leader with multiple self-interested followers such as wildlife conser-

vation efforts with a central coordinator and a team of defenders115,114; resource management in

energy26 with suppliers, aggregators, and end users; or security problems with a central insurer and

a set of vulnerable agents228,154. Solving Stackelberg games with multiple followers is challenging in

general39,70. Previous work often reformulates the followers’ best response as stationary and com-

plementarity constraints in the leader’s optimization280,40,39,70,59, casting the entire Stackelberg

problem as a single optimization problem. This reformulation approach has achieved significant

success in problems with linear or quadratic objectives, assuming a unique equilibrium or a specific

equilibrium concept, e.g., followers’ optimistic or pessimistic choice of equilibrium 141,40,39. The

reformulation approach thoroughly exploits the structure of objectives and equilibrium to conquer

the computation challenge. However, when these conditions are not met, reformulation approach

may get trapped in low-quality solutions.

In this paper, we propose an end-to-end gradient descent approach to solve multi-follower Stack-

elberg games. Specifically, we run gradient descent by back-propagating through a sampled Nash

equilibrium reached by followers to update the leader’s strategy. Our approach overcomes weak-

nesses of reformulation approaches as (i) we decouple the leader’s optimization problem from the

followers’, casting it as a learning problem to be solved by end-to-end gradient descent through the

followers’ equilibrium; and (ii) back-propagating through a sampled Nash equilibrium enables us to

work with arbitrary equilibrium selection procedures and multiple equilibria.

In short, we make several contributions. First, we provide a procedure for differentiating through

a Nash equilibrium assuming uniqueness (later we relax the assumption). Because each follower

must simultaneously best respond to every other follower, the Karush–Kuhn–Tucker (KKT) con-

ditions182 for each follower must be simultaneously satisfied. We can thus differentiate through the

system of KKT conditions and apply the implicit function theorem to obtain the gradient. Second,

we relax the uniqueness assumption and extend our approach to an arbitrary, potentially stochastic,
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equilibrium selection oracle. We first show that given a stochastic equilibrium selection procedure,

using optimistic or pessimistic assumptions to solve Stackelberg games with stochastic equilibria

can yield payoff to the leader that is arbitrarily worse than optimal. To address the issue of multiple

equilibria and stochastic equilibria, we formally characterize stochastic equilibria with a concept we

call equilibrium flow, defined by a partial differential equation. The equilibrium flow ensures the

stochastic gradient computed from the sampled Nash equilibrium is unbiased, allowing us to run

stochastic gradient descent to differentiate through the stochastic equilibrium. We also discuss how

to compute the equilibrium flow either from KKT conditions under certain sufficient conditions

or by solving the partial differential equation. This paper is the first to guarantee that the gradient

computed from an arbitrary stochastic equilibrium sampled frommultiple equilibria is a differen-

tiable, unbiased sample. Third, to address the challenge that the feasibility of the leader’s strategy

may depend on the equilibrium reached by the followers (e.g., when a subsidy paid to the followers

is conditional on their actions as in270,224), we use an augmented Lagrangian method to convert the

constrained optimization problem into an unconstrained one. The Lagrangian method combined

with our unbiased Nash equilibrium gradient estimate enables us to run stochastic gradient descent

to optimize the leader’s payoff while also satisfying the equilibrium-dependent constraints.

We conduct experiments to evaluate our approach in three different multi-follower Stackelberg

games: normal-form games with a leader offering subsidies to followers, Stackelberg security games

with a planner coordinating multiple defenders, and cyber insurance games with an insurer and

multiple customers. Across all three examples, the leader’s strategy space is constrained by a budget

constraint that depends on the equilibrium reached by the followers. Our gradient-based method

provides a significantly higher payoff to the leader evaluated at equilibrium, compared to existing

approaches which fail to optimize the leader’s utility and often produce large constraint violations.

These results, combined with our theoretical contributions, demonstrate the strength of our end-to-

end gradient descent algorithm in solving Stackelberg games with multiple followers.
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10.2 RelatedWork

Stackelberg models with multiple followers Multi-follower Stackelberg problems

have received a lot of attention in domains with a hierarchical leader-follower structure230,358,202,289,286.

For example, mechanism and auction design can be formulated as a Stackelberg game where the

mechanism design is the leader and all the participating agents are the followers120,162,359,345. The

leader can also leverage machine learning, data, and predictions to design strategy to play against the

followers5,35,34 and optimize the leader’s payoff. However, although single-follower normal-form

Stackelberg games can be solved in polynomial time176,49, the problem becomes NP-hard when

multiple followers are present, even when the equilibrium is assumed to be either optimistic or pes-

simistic40,70. Existing approaches40,26 primarily leverage the leader-follower structure in a bilevel

optimization formulation69, which can be solved by reformulating the followers’ best response into

non-convex stationary and complementarity constraints in the leader’s optimization problem287.

Various optimization techniques, including branch-and-bound70 and mixed-integer programs40,

are adopted to solve the reformulated problems. However, these reformulation approaches highly

rely on well-behaved problem structure, which may encounter large mixed integer non-linear pro-

grams when the followers have non-quadratic objectives. Additionally, these approaches mostly

assume uniqueness of equilibrium or a specific equilibrium concept, e.g., optimistic or pessimistic,

which may not be feasible115. Previous work on the stochastic equilibrium drawn frommultiple

equilibria in Stackelberg problems199 mainly focuses on the existence of an optimal solution, while

our work focuses on actually solving the Stackelberg problems to identify the best action for the

leader.

In contrast, our approach solves the Stackelberg problem by differentiating through the equilib-

rium reached by followers to run gradient descent in the leader’s problem. Our approach also ap-

plies to any stochastic equilibrium drawn frommultiple equilibria by establishing the unbiasedness
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of the gradient computed from a sampled equilibrium using a partial differential equation.

Differentiable optimization When there is only a single follower optimizing his utility

function, differentiating through a Nash equilibrium reduces to the framework of differentiable

optimization251,11,3,32. When there are two followers with conflicting objectives (zero-sum), dif-

ferentiating through a Nash equilibrium reduces to a differentiable minimax formulation200,201.

Lastly, when there are multiple followers, Li et al. 192 follow the sensitivity analysis and variational

inequalities (VIs) literature215,306,77,245 to express a unique Nash equilibrium as a fixed-point to the

projection operator in VIs to differentiate through the equilibrium. Li et al. 196 further extend the

same approach to structured hierarchical games. Nonetheless, these approaches rely on the unique-

ness of Nash equilibrium. In contrast, our approach generalizes to multiple equilibria.

10.3 Stackelberg GamesWith a Single Leader andMultiple Followers

In this paper, we consider a Stackelberg game composed of one leader and n followers. The leader

first chooses a strategy π ∈ Π that she announces, then the followers observe the leader’s strategy

and respond accordingly. When the leader’s strategy π is determined, the followers form an n-player

simultaneous game with n followers, where the i-th follower minimizes his own objective function

fi(zi, z−i, π), which depends on his own action zi ∈ Zi, other followers’ actions z−i ∈ Z−i, and

the leader’s strategy π ∈ Π. We assume that each strategy space is characterized by linear constraints:

Zi = {zi | Aizi = bi,Gizi ≤ hi}. We also assume perfect information—all the followers know

other followers’ utility functions and strategy spaces.
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10.3.1 Nash Equilibria

We call zzz∗ = {z∗1 , z∗2, . . . , z∗n} a Nash equilibrium if no follower has an incentive to deviate from

their current strategy, where we assume each followerminimizes* his objective:

∀i : fi(z∗i , z∗−i, π) ≤ fi(zi, z∗−i, π) ∀zi ∈ Zi. (10.1)

As shown in Figure 10.1, when the leader’s strategy π is chosen and passed to an n-player game com-

posed of all followers, we assume the followers converge to a Nash equilibrium zzz∗.

In the first section, we assume there is a unique Nash equilibrium returned by an oracle zzz∗ =

O(π). We later generalize to the case where there are multiple equilibria with a stochastic equilib-

rium selection oracle which randomly outputs an equilibrium zzz ∼ O(π) drawn from a distribution

with probability density function p(·, π) : Z → R≥0.

10.3.2 Leader’s Optimization Problem

When the leader chooses a strategy π and all the followers reach an equilibrium zzz∗, the leader re-

ceives a payoff f(zzz∗, π) and a constraint value g(zzz∗, π). The goal of the Stackelberg leader is to

choose an optimal π to maximize her utility while satisfying the constraint.

Definition 15 (Stackelberg problems with multiple followers and unique Nash equilibrium). The

leader chooses a strategy π to maximize her utility function f subject to constraints g evaluated at the

unique equilibrium zzz∗ induced by an equilibrium oracleO, i.e.,:

max
π

f(zzz∗, π) s.t. zzz∗ = O(π), g(zzz∗, π) ≤ 0. (10.2)

*We use minimization formulation to align with the convention in convex optimization. In our experi-
ments, examples of maximization problems are used, but the same approach applies.
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Figure 10.1: Given leader’s strategy π, followers respond to the leader’s strategy and reach a Nash equilibrium zzz∗. The
leader’s payoff and the constraint depend on both the leader’s strategy π and the equilibrium zzz∗.

This problem is hard because the objective f(zzz∗, π) depends on the Nash equilibrium zzz∗ reached

by the followers. Moreover, notice that the feasibility constraint g(zzz∗, π) also depends on the equi-

librium, which creates a complicated feasible region for the leader’s strategy π.

10.3.3 Gradient Descent Approach

To solve the leader’s optimization problem, we propose to run gradient descent to optimize the

leader’s objective. This requires us to compute the following gradient:

df(zzz∗, π)
dπ

= fπ(zzz∗, π) + fzzz(zzz∗, π) ·
dzzz∗

dπ
. (10.3)

The terms fπ, fzzz above are easy to compute since the payoff function f is explicitly given. The main

challenge is to compute dzzz∗
dπ because it requires estimating how the Nash equilibrium zzz∗ reached by

followers responds to any change in the leader’s strategy π.

10.4 Gradient of Unique Nash Equilibrium

In this section, we assume a unique Nash equilibrium reached by followers. Motivated by the tech-

nique proposed by Amos & Kolter 11, we show how to differentiate through multiple KKT condi-

tions to derive the derivative of a Nash equilibrium.
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10.4.1 Differentiating Through KKTConditions

Given the leader’s strategy π, we express the KKT conditions of follower iwith dual variables λ∗i and

ν∗i by:


∇zifi(z∗i , z∗−i, π) + G⊤

i λ
∗
i + A⊤

i ν∗i = 0

Diag(λ∗i )(Giz∗i − hi) = 0

Aiz∗i = bi.

(10.4)

We want to estimate the impact of π on the resulting Nash equilibrium zzz∗. Supposing the objec-

tive functions fi ∈ C2 are twice-differentiable, we can compute the total derivative of the the KKT

system in Equation 10.4 written in matrix form:


∇2

zizifi ∇2
z−izifi G⊤

i A⊤
i

Diag(λ∗i )Gi 0 Diag(Giz∗i − hi) 0

Ai 0 0 0





dz∗i

dz∗−i

dλ∗i

dν∗i


=


−∇2

πzifidπ − dG⊤
i λ

∗
i − dA⊤

i ν∗i

−Diag(λ∗i )(dGiz∗i − dhi)

dbi − dAiz∗i

 .

Since we assume the constraint matrices are constant, dGi, dhi, dAi, dbi can be ignored. We con-

catenate the linear system for every follower i and move dπ to the denominator:


∇zzzF G⊤ A⊤

Diag(λ∗)G Diag(Gzzz∗ − h) 0

A 0 0




dzzz∗
dπ

dλ∗
dπ

dν∗
dπ

 =


−∇πF

0

0

 (10.5)

where F = [(∇z1f1)⊤, . . . , (∇znfn)⊤]⊤ is a column vector, andG = Diag(G1,G2, . . . ,Gn),A =

Diag(A1,A2, . . . ,An) are the diagonalized placement of a list of matrices. In particular, the KKT
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Figure 10.2: Payoff matrices from Theorem 18 where the leader has 3 strategies. Follower payoffs for each strategy
in (a)–(c) where both followers receive the same payoff; leader payoffs in (d).

matrix on the left-hand side of Equation 10.5 matches the sensitivity analysis of Nash equilibria

using variational inequalities92,77.

Proposition 7. When the Nash equilibrium is unique and the KKTmatrix in Equation 10.5 is

invertible, the implicit function theorem holds and dzzz∗
dπ can be uniquely determined by Equation 10.5.

Proposition 7 ensures the sufficient conditions for applying Equation 10.5 to compute dzzz∗
dπ . Un-

der these sufficient conditions, we can compute Equation 10.3 using Equation 10.5.

10.5 Gradient of Stochastic Equilibrium

In the previous section, we showed how to compute the gradient of a Nash equilibrium when the

equilibrium is unique. However, this can be restrictive because Stackelberg games with multiple

followers often have multiple equilibria that the followers can stochastically reach one. For example,

both selfish routing games in the traffic setting271 and security games with multiple defenders115

can have multiple equilibria that are reached in multiple independent runs.

In this section, we first demonstrate the importance of stochastic equilibrium by showing that

optimizing over optimistic or pessimistic equilibrium could lead to arbitrarily bad leader’s payoff

under the stochastic setting. Second, we generalize our gradient computation to the case with multi-

ple equilibria, allowing the equilibrium oracleO to stochastically return a sample equilibrium from
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a distribution of multiple equilibria. Lastly, we discuss how to compute the gradient of different

types of equilibria and its limitation.

10.5.1 Importance of Stochastic Equilibrium

When the equilibrium oracle is stochastic, our Stackelberg problem becomes a stochastic optimiza-

tion problem:

Definition 16 (Stackelberg problems with multiple followers and stochastic Nash equilibria). The

leader chooses a strategy π to optimize her expected utility and satisfy the constraints in expectation

under a given stochastic equilibrium oracleO:

max
π

E
zzz∗∼O(π)

f(zzz∗, π) s.t. E
zzz∗∼O(π)

g(zzz∗, π) ≤ 0. (10.6)

In particular, we show that if we ignore the stochasticity of equilibria by simply assuming opti-

mistic or pessimistic equilibria, the leader’s expected payoff can be arbitrarily worse than the optimal

one.

Theorem 18. Assuming the followers stochastically reach a Nash equilibrium drawn from a distri-

bution over all equilibria, solving a Stackelberg game under the assumptions of optimistic or pessimistic

equilibrium can give the leader expected payoff that is arbitrarily worse than the optimal one.

Proof. We consider a Stackelberg game with one leader and two followers (row and column player)

with no constraint. The leader can choose 3 different strategies, each corresponding to a payoff ma-

trix in Figure 10.2(a)–10.2(c), where both followers receive the same payoff in the entry when they

choose the corresponding row and column. In each payoff matrix, there are three pure Nash equi-

libria; we assume the followers reach any of them uniformly at random. After the followers reach a

Nash equilibrium, the leader receives the corresponding entry in the payoff matrix in Figure 10.2(d).
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Under the optimistic assumption, the leader would choose strategy 1, expecting followers to

break the tie in favor of the leader, yielding payoff C. Instead, the three followers select a Nash equi-

libria uniformly at random, yielding expected payoff C+0−C
3 = 0. Under the pessimistic assump-

tion, the leader chooses strategy 2, anticipating and receiving an expected payoff of zero. Under the

correct stochastic assumption, she chooses strategy 3 with expected payoff C−ε+C−ε−ε
3 = 2

3C−ε�

0, which can be arbitrarily higher than the optimistic or pessimistic payoff when C→∞.

Theorem 18 justifies why we need to work on stochastic equilibrium when the equilibrium is

drawn stochastically in Definition 16. In the following section, we show how to apply gradient de-

scent to optimize the leader’s payoff by differentiating through followers’ equilibria with a stochas-

tic oracle.

10.5.2 Equilibrium Flow andUnbiased Gradient Estimate

Our goal is to compute the gradient of the objective in Equation 10.6: d
dπ Ezzz∗∼O(π) f(zzz∗, π). How-

ever, since the distribution of the oracleO(π) can also depend on π, we cannot easily exchange the

gradient operator into the expectation.

To address the dependency of the oracleO(π) on π, we use p(zzz, π) to represent the probability

density function of the oracle zzz ∼ O(π) for every π. We want to study how the oracle distribution

changes as the leader’s strategy π changes, which we denote by equilibrium flow as defined by the

following partial differential equation:

Definition 17 (Equilibrium Flow). We call v(zzz, π) the equilibrium flow of the oracleO with proba-

bility density function p(zzz, π) if v(zzz, π) satisfies the following equation:

∂

∂π
p(zzz, π) = −∇zzz · (p(zzz, π)v(zzz, π)). (10.7)
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This differential equation is similar to many differential equations of various conservation laws,

where v(zzz, π) serves as a velocity term to characterize the movement of equilibria. In the following

theorem, we use the equilibrium flow v(zzz, π) to address the dependency ofO(π) on π.

Theorem 19. If v(zzz∗, π) is the equilibrium flow of the stochastic equilibrium oracleO(π), we have:

d
dπ E

zzz∗∼O(π)
f(zzz∗, π) = E

zzz∗∼O(π)
[fπ(zzz∗, π) + fzzz(zzz∗, π) · v(zzz∗, π)] . (10.8)

Proof sketch. To compute the derivative on the left-hand side, we can expand the expectation by:

d
dπ E

zzz∗∼O(π)
f(zzz∗, π) =

d
dπ

∫
f(zzz, π)p(zzz, π)dzzz

=

∫
p(zzz, π)

∂

∂π
f(zzz, π) + f(zzz, π)

∂

∂π
p(zzz, π)dzzz

= E
zzz∗∼O(π)

fπ(zzz∗, π) +
∫

f(zzz, π)
∂

∂π
p(zzz, π)dzzz. (10.9)

We substitute the term ∂
∂πp = −∇zzz · (p · v) by the definition of equilibrium flow, and apply inte-

gration by parts and Stokes’ theorem† to the right-hand side of Equation 10.9 to get Equation 10.8.

More details can be found in the appendix.

Theorem 19 extends the derivative of Nash equilibrium to the case of stochastic equilibrium

randomly drawn frommultiple equilibria. Specifically, Equation 10.9 offers an efficient unbiased

gradient estimate by sampling an equilibrium from the stochastic oracle to compute the right-hand

side of Equation 10.9. Theorem 19 also matches to Equation 10.3, where the role of equilibrium

flow v(zzz∗, π) coincides with the role of dzzz∗
dπ in Equation 10.3.

†The analysis of integration by parts and Stokes’ theorem applies to both Riemann and Lebesgue inte-
gral. Lebesgue integral is needed when the set of equilibria forms a measure-zero set.
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10.5.3 How toDetermine Equilibrium Flow

The only remaining question is how to determine the equilibrium flow. Given the leader’s strategy

π, there are two types of equilibria: (i) isolated equilibria and (ii) non-isolated equilibria. We first

show that the solution to Equation 10.5 matches the equilibrium flow for every equilibrium in

case (i) when the probability of sampling the equilibrium is locally fixed.

Theorem 20. Given the leader’s strategy π and a sampled equilibrium zzz, if (1) the KKTmatrix at

(zzz, π) is invertible and (2) the equilibrium zzz is sampled with a fixed probability locally, the solution to

Equation 10.5 is a homogeneous solution to Equation 10.7 and matches the equilibrium flow v(π, zzz)

locally.

Theorem 20 ensures that when the sampled equilibrium behaves like a unique equilibrium lo-

cally, the solution to Equation 10.5 matches the equilibrium flow of the sampled equilibrium. In

particular, Theorem 20 does not require all equilibria are isolated; it works as long as the sampled

equilibrium satisfies the sufficient conditions. In contrast, the study in multiple equilibria requires

global isolation for the analysis to work. Together with Theorem 19, we can use the solution to

Equation 10.5 as an unbiased equilibrium gradient estimate and run stochastic gradient descent

accordingly.

Lastly, when the sufficient conditions in Theorem 20 are not satisfied, e.g., the KKTmatrix be-

comes singular for any non-isolated equilibrium, the solution to Equation 10.5 does not match the

equilibrium flow v(zzz, π). In this case, to compute the equilibrium flow correctly, we rely on solv-

ing the partial differential equation in Equation 10.7. If the probability density function p(zzz, π) is

explicitly given, we can directly solve Equation 10.7 to derive the equilibrium flow. If the probabil-

ity density function p(zzz, π) is not given, we can use the empirical equilibrium distribution p′(zzz, π)

constructed from the historical equilibrium samples of the oracle instead.
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In practice, we hypothesize that even if the equilibria are not isolated and the corresponding KKT

matrices are singular, solving degenerated version of Equation 10.5 still serves as a good approxima-

tion to the equilibrium flow. Therefore, we still use the solution to Equation 10.5 as an approximate

of the equilibrium flow in the following sections and algorithms.

10.6 Gradient-Based Algorithm and Augmented LagrangianMethod

To solve both the optimization problems in Definition 15 and Definition 16, we implement our

algorithm with (i) stochastic gradient descent with unbiased gradient access, and (ii) augmented

Lagrangian method to handle the equilibrium-dependent constraints. We use the relaxation algo-

rithm307 as our equilibrium oracleO. The relaxation algorithm is a classic equilibrium finding al-

gorithm that iteratively updates agents’ strategies by best responding to other agents’ strategies until

convergence with guarantees179.

Since the leader’s strategy π is constrained by the followers’ response, we adopt an augmented La-

grangian method43 to convert the constrained problem to an unconstrained one with a Lagrangian

objective. We introduce a slack variable sss ≥ 000 to convert inequality constraints into equality con-

straintsEzzz∗∼O(π) g(zzz∗, π) + sss = 000. Thus, the penalized Lagrangian can be written as:

L(π, sss; λ) = − E
zzz∗∼O(π)

f(zzz∗, π) + λ⊤( E
zzz∗∼O(π)

g(zzz∗, π) + sss) +
μ
2

∥∥∥∥∥ E
zzz∗∼O(π)

g(zzz∗, π) + sss

∥∥∥∥∥
2

.

(10.10)

We run gradient descent on the minimization problem of the penalized LagrangianL(π, sss; λ) and

update the Lagrangian multipliers λ every fixed number of iterations, as described in Algorithm 11.

The stochastic Stackelberg problem with multiple followers can be solved by running stochastic

gradient descent with augmented Lagrangian methods, where Theorem 19 ensures the unbiasedness
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Algorithm 11:Augmented LagrangianMethod
1 Initialization: π = πinit, learning rate γ, multipliers λ = λ0, slack variable

sss ≥ 000,K = 100
2 for iteration in {1, 2, . . . } do
3 Define the objective to be LagrangianL(π, sss; λ) defined in Equation 10.10
4 Compute a sampled gradient ofL by sampling zzz∗ ∼ O(π). Compute dzzz∗

dπ by
Equation 10.5

5 Update π = π − γ(∂L
∂π + ∂L

∂zzz∗
dzzz∗
dπ ), sss = max{sss− γ ∂L

∂sss , 000}
6 if iteration is a multiple of K then
7 Update λ = λ − μ(g(zzz∗, π) + sss)

8 Return: leader’s strategy π

of the stochastic gradient estimate under the conditions in Theorem 20.

10.7 Example Applications

We briefly describe three different Stackelberg games with one leader and multiple self-interested

followers. Specifically, normal-form games with risk penalty has a unique Nash equilibrium, while

other examples can have multiple.

10.7.1 Coordination in Normal-FormGames

A normal-form game (NFG) is composed of n follower players each with a payoff matrixUi ∈

Rm1×···×mn for all i ∈ [n], where the i-th player hasmi available pure strategies. The set of all fea-

sible mixed strategies of player i is zi ∈ Zi = {z ∈ [0, 1]mi | 111⊤z = 1}. On the other hand, the

leader can offer non-negative subsidies πi ∈ Rm1×···×mn
≥0 to each player i to reward specific combina-

tions of pure strategies. The subsidy scheme is used to control the payoff matrix and incentivize the

players to change their strategies.

Once the subsidy scheme π is determined, each player i chooses a strategy zi and receives the ex-
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pected payoffUi(zzz) and subsidy πi(zzz), subtracting a penalty termH(zi) =
∑

j zij log zij, the Gibbs

entropy of the chosen strategy zzzi to represent the risk aversion of player i. Since the followers’ ob-

jectives are concave, the risk aversion model yields a unique Nash equilibrium, which is known to

be quantal response equilibrium (QRE)214,200. Lastly, the leader’s payoff is given by the social wel-

fare across all players, which is the summation of the expected payoffs without subsidies:
∑
i∈[n]

Ui(zzz).

The subsidy scheme is subject to a budget constraint B on the total subsidy paid to all players.

10.7.2 Security Games withMultiple Defenders

Stackelberg security games (SSGs) model a defender protecting a set of targets T from being at-

tacked. We consider a scenario with a leader coordinator and n non-cooperative follower defenders

each patrolling a subset Ti ⊆ T of the targets115. Each defender i can determine the patrol effort

spent on protecting the designated targets. We use 0 ≤ zi,t ≤ 1 to denote the effort spent on target

t ∈ Ti and the total effort is upper bounded by bi. Defender i only receives a penaltyUi,t < 0 when

target t ∈ Ti in her protected region is attacked but unprotected by all defenders, and 0 otherwise.

Because the defenders are independent, the patrol strategies zzz can overlap, leading to a multiplica-

tive unprotected probability
∏
i
(1 − zi,t) of target t. Given the unprotected probabilities, attacks

occur under a distribution ppp ∈ R|T|, where the distribution ppp is a function of the unprotected prob-

abilities defined by a quantal response model. To encourage collaboration, the leader coordinator

can selectively provide reimbursement πi,t ≥ 0 to alleviate defender i’s loss when target t is attacked

but unprotected, which encourages the defender to focus on protecting specific regions, reducing

wasted effort on overlapping patrols. The leader’s goal is to protect all targets, where the leader’s

objective is the total return across over all targets
∑
t∈T

Utpt
∏
i
(1 − zi,t). Lastly, the reimbursement

scheme πmust satisfy a budget constraint B on the total paid reimbursement.
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10.7.3 Cyber Insurance GamesWithMultiple Customers

We adopt the cyber insurance model proposed by Naghizadeh et al.228 and Johnson et al.154 to

study how agents in an interconnected cyber security network make decisions, where agents’ deci-

sions jointly affect each other’s risk. There are n agents (followers) facing malicious cyberattacks.

Each agent i can deploy an effort of protection zi ∈ R≥0 to his computer system, where investing

in protection incurs a linear cost cizi. Given the efforts zzz spent by all the agents, the joint protection

of agent i is
n∑
j=1

wijzj with an interconnected effect parameterized by weightsW = {wij}i,j∈[n]. The

probability of being attacked is modeled by σ(−
n∑
j=1

wijzj + Li), where σ is the sigmoid function and

Li refers to the value of agent i.

The Stackelberg leader is an external insurer who can customize insurance plans to influence

agents’ protection decisions. The leader can set an insurance plan π = {Ii, ρi}i∈[n] to agent i, where

ρi is the premium paid by agent i to receive compensation Ii when attacked. Under the insurance

plans and the interconnected effect, agents selfishly determine their effort spent on the protection zzz

to maximize their payoff. On the other hand, the leader’s objective is the total premium subtracting

the compensation paid, while the constraints on the feasible insurance plans are the individual ratio-

nality of each customer, i.e., the compensation and premiummust incentivize agents to purchase

the insurance plan by making the payoff with insurance no worse than the payoff without. These

constraints restrict the premium and compensation offered by the insurer.

10.8 Experiments andDiscussion

We compare our gradient-based Algorithm 11 (gradient) against various baselines in the three set-

tings described above. In each experiment, we execute 30 independent runs (100 runs for SSGs)

under different randomly generated instances. We run Algorithm 11 with learning rate γ = 0.01 for
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Figure 10.3: We plot the solution quality of the Stackelberg problems with multiple followers. In all three domains, our
gradient‐based method achieves significantly higher objective than all other approaches. In NFGs and SSGs, the base‐
lines cannot meaningfully improve upon the default strategy of the leader’s initialization due to the high dimensionality
of the parameter π; in cyber insurance games, SLSQP and reformulation both make some progress but still mostly with
lower utility.
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Figure 10.4: We plot the average budget constraint violation. Our gradient‐based approach maintains low violation
across all settings. SLSQP produces no violation in the first two domains because it fails to provide any meaningful
improvement against the leader’s initialization. Other baselines violate constraints more despite less performance im‐
provement.

5,000 gradient steps and update the Lagrange multipliers everyK = 100 iterations. Our gradient-

based method completes in about an hour across all settings—refer to the appendix for more details.

Baselines We compare against several baselines that can solve the stochastic Stackelberg problem

with multiple followers with equilibrium-dependent objective and constraints. In particular, given

the non-convexity of agents’ objective functions, SSGs and cyber insurance games can have multi-

ple, stochastic equilibria. Our first baseline is the leader’s initial strategy π0, which is a naive all-zero

strategy in all three settings. Blackbox optimization baselines include sequential least squares pro-

gramming (SLSQP)178 and the trust-regionmethod72, where the equilibrium encoded in the opti-

mization problem is treated as a blackbox that needs to be repeatedly queried. Reformulation-based
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algorithm 40,26 is the state-of-the-art method to solve Stackelberg games with multiple followers.

This approach reformulates the followers’ equilibrium conditions into non-linear complementary

constraints as a mathematical program with equilibrium constraints205, then solves the problem

using branch-and-bound and mixed integer non-linear programming (we use a commercial solver,

Knitro238). The reformulation-based approach cannot handle arbitrary stochastic equilibria but

can handle optimistic or pessimistic equilibria. We implement the optimistic version of the refor-

mulation as our baseline, which could potentially suffer from a performance drop as exemplified in

Theorem 18.

10.8.1 Solution Quality

In Figure 10.3(a) and 10.3(b), we plot the leader’s objective (y-axis) versus various budgets for the

paid subsidy (x-axis). Figure 10.3(c), shows the total revenue to the insurer (y-axis) versus the risk

aversion of agents (x-axis). Denoting the number of agents by n and the number of actions per agent

bym, we have n = 3, 5, 10 andm = 10, 50, 1 in NFGs, SSGs, and cyber insurance games, respec-

tively.

Our optimization baselines perform poorly in Figure 10.3(a) and 10.3(b) due to the high dimen-

sionality of the environment parameter π in NFGs (dim(π) = nmn) and SSGs (dim(π) = nm), re-

spectively. In Figure 10.3(c), the dimensionality of cyber insurance games (dim(π) = 2n) is smaller,

where we can see that SLSQP and reformulation-based approaches start making some progress, but

still less than our gradient-based approach. The main reason that blackbox methods do not work is

due to the expensive computation of numerical gradient estimates. On the other hand, reformula-

tion method fails to handle the mixed-integer non-linear programming problem reformulated from

followers’ best response and the constraints within a day.
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10.8.2 Constraint Violation

In Figure 10.4, we provide the average constraint violation across different settings. Blackbox opti-

mization algorithms either become stuck at the initial point due to the inexact numerical gradient

estimate or create large constraint violations due to the complexity of equilibrium-dependent con-

straints. The reformulation approach also creates large constraint violations due to the difficulty

of handling large number of non-convex followers’ constraints under high-dimensional leader’s

strategy. In comparison, our method can handle equilibrium-dependent constraints by using an

augmented Lagrangian method with an ability to tighten the budget constraint violation under

a tolerance as shown. Although Figure 10.4 only plots the budget constraint violation, in our al-

gorithm, we enforce that the equilibrium oracle runs until the equilibrium constraint violation is

within a small tolerance 10−6, whereas other algorithms sometimes fail to satisfy such equilibrium

constraints.

10.9 Conclusion

In this paper, we present a gradient-based approach to solve Stackelberg games with multiple follow-

ers by differentiating through followers’ equilibrium to update the leader’s strategy. Our approach

generalizes to stochastic gradient descent when the equilibrium reached by followers is stochasti-

cally chosen frommultiple equilibria. We establish the unbiasedness of the stochastic gradient by

the equilibrium flow derived from a partial differential equation. To our knowledge, this work is the

first to establish the unbiasedness of gradient computed from stochastic sample of multiple equilib-

ria. Empirically, we implement our gradient-based algorithm on three different examples, where our

method outperforms existing optimization and reformulation baselines.
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11
Equilibrium Refinement in Security Games

with Arbitrary Scheduling Constraints

11.1 Introduction

Stackelberg Security Games (SSG) have been successfuly applied in a variety of domains to optimize

the use of limited security resources against a strategic adversary, with examples such as ARMOR
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for airport security252, IRIS for security of flights146, ports281 and border58,173 patrolling, traffic

enforcement269,268, and transit network310. In SSG, the defender (security agencies) protects targets

using limited security resources, but allocation of resources to targets must obey many scheduling

constraints. For example, some resources may be prohibited from being assigned to certain targets or

may be able to cover several targets at the same time. After conducting surveillance of the defender

strategy, the strategic attacker (terrorists/criminals) may respond with an optimal attack.

The standard solution concept adopted by SSG is the Strong Stackelberg Equilibrium (SSE)189,315.

Significant research in SSG has focused on providing efficient algorithms to compute SSE under var-

ious constraints146,282. Recently, significant research efforts have focused on devising strategies that

perform well even under uncertainty in the adversary behavior. For example,351,236 investigate ad-

versary bounded rationality,151 considers execution uncertainty, and353 focuses on observational

uncertainty. In most of these frameworks, the defender either pays a price or slightly sacrifices her

first priority target to ensure robustness against unpredictability in the adversary’s behavior. How-

ever, equilibrium refinement is an attractive alternative to provide robustness at no cost by choos-

ing, among all SSEs, the one that performs best in all possible events although it has not received as

much attention in the security game literature.

In most real-world applications, security resources must be allocated in the presence of schedul-

ing constraints. This is the case for example of the Federal Air Marshal Service146, cyber security283,235,

network security168,272, and more generally in domains where security resources exhibit protec-

tion externalities113,84. Yet, existing algorithms for equilibrium refinement in security games do not

apply in the presence of such constraints. The presence of scheduling constraints complicates the

problem of equilibrium refinement significantly, since multiple equilibria are the norm for security

games with schedules, and even finding an arbitrary SSE176 is already a challenging task and prevents

the adoption of existing techniques15 in our problem. To the best of our knowledge, the only paper

to investigate the problem of equilibrium refinement under scheduling constraints is93, wherein a
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heuristic algorithm is proposed to conduct equilibrium refinement in the spatio-temporal domain.

While the paper provides a significant step in our research direction, it only addresses a special case

of scheduling constraints. In fact, we are not aware of any algorithm that can cater for arbitrary

scheduling constraints in security games to provide an optimal refined equilibrium.

In this paper, we focus on the equilibrium refinement on Security Problems with ARbitrary

Schedules (SPARS)146 , where we assign each resource to cover one schedule and each schedule can

cover multiple targets. We follow the same dominance criteria mentioned in15 and introduce a coun-

terexample showing that in the presence of scheduling constraints, their method fails to return a

non-dominated equilibrium. We propose a newmethod to analyze the topology of the attacker’s

best response. This analysis provides us with key insights into the structure of multiple equilibria.

Leveraging these insights, we introduce a new iterative (resp. recursive) algorithm that successfully

returns the non-dominated solution of zero-sum (resp. general-sum) SPARS. We show that in the

worst case, our iterative algorithm only necessitatesO(n3) calls to an LP oracle, where n corresponds

to the number of targets and an LP oracle could be either a linear program solver or a column gener-

ation method used to approximate the optimal solution. For the general-sum games, our recursive

algorithm successfully provides the optimal solution withO(n3) oracle calls for each subproblem.

Our experimental results demonstrate significant improvement on the robustness of our com-

puted solution over existing approaches which also serves to showcase the benefit of equilibrium re-

finement on SPARS. Moreover, our computations show the average number of oracle calls isO(n2)

in both zero-sum and general-sum cases, illustrating practical scalability of our approach.

11.2 Security Games with Arbitrary Schedules

In this work, we consider SPARS146. This is a two-player Stackelberg game played between an at-

tacker and a defender. The attacker’s pure strategy space is the set of targets T that could be attacked,
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T = {t1, . . . , tn}. The attacker’s corresponding mixed strategy a = 〈ai〉ni=1 is a vector where ai rep-

resents the probability of attacking ti. To protect targets, the defender has at her disposal a collection

of resources indexed by r ∈ R, where the setR collects all resources. Each resource r can be assigned

to a schedule s ⊆ T that covers multiple targets. Associated with each resource r is the set of all pos-

sible schedules Sr ⊆ P(T) to which it can be assigned. For notational convenience, we assume that

∅ ∈ Sr so that a resource that is assigned to ∅ is effectively unused.

The defender’s pure strategy space J is the set of all joint schedules that assign each resource to

exactly one schedule. Thus,

J = {j ⊆ T : j = ∪r∈Rsr, sr ∈ Sr}

and target t ∈ T is covered by the joint schedule j ∈ J if and only if t ∈ j. For any joint schedule,

a target can be covered by more than one schedule, and a target is considered covered (or protected)

whenever the total number of resources allocated to a schedule that covers the target equals or ex-

ceeds one (1).

Associated with each joint schedule j ∈ J is a vectorPj = 〈Pjt〉 ∈ {0, 1}n, where Pjt indicates

whether target t is covered in joint schedule j, i.e., Pjt = I(t ∈ j). The defender’s mixed strategy

x specifies the probabilities of playing each j ∈ J, where xj ≥ 0,
∑

j∈J xj = 1. Let c = 〈ct〉nt=1

be the vector of coverage probabilities corresponding to x, where ct =
∑

j∈J Pjtxj, is the marginal

probability of covering t and we can write c = P⊤x.

The payoffs of players are decided by the target chosen by the attacker and whether the target is

protected by the defender. The defender’s payoff for an uncovered attack on target t is denoted by

Uu
d(t) and for a covered attackU

c
d(t). Similarly,Uu

a(t) andUc
a(t) are the attacker’s payoffs for the

uncovered and covered cases, respectively. A widely adopted assumption in security games is that

Uc
d(t) > Uu

d(t) andU
u
a(t) > Uc

a(t). In other words, covering an attack is beneficial for the defender,
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while hurts the attacker. Given a strategy profile 〈x,a〉, c = P⊤x, the expected utilities for both

players are denoted as follows:

Ud(c,a)=
∑

t∈T
atUd(c, t),whereUd(c, t)= ctUc

d(t)+(1− ct)Uu
d(t)

Ua(c,a)=
∑

t∈T
atUa(c, t),whereUa(c, t)= ctUc

a(t)+(1− ct)Uu
a(t)

We adopt a Stackelberg model in which the defender acts first and the attacker chooses a strategy

after observing the defender’s mixed strategy. Stackelberg games are common in security domains

where attackers can surveil the defender strategy. The standard solution concept is SSE189,315, in

which the leader selects an optimal mixed strategy based on the assumption that the follower will

choose an optimal response, breaking ties in favor of the leader. There always exists an optimal pure-

strategy response for the attacker, so we restrict our attention to this set in this paper.

11.3 Refinement of Strong Stackelberg Equilibrium in Security Games

Awell-known property of SSE is that all SSEs give the same expected payoff for the leader (de-

fender)52,189. The refinement of SSEs in security games is first discussed in15. They indicate that

multiple equilibria exist frequently (especially when there are resources, scheduling constraints)

and in many of these solutions, a portion of the resources are not efficiently used since they can be

abandoned without affecting the expected utility. We follow the same dominance criteria in15. The

defender assumes there is an infinitesimal probability that the attacker will deviate from his first

choice to his second or other preferable targets due to some unexpected events. But, even when the

attacker is forced to deviate, he still behaves intelligently by choosing the next-best alternative rather

than acting randomly. Therefore, the defender will still need to efficiently arrange the remaining

resources to achieve her highest defender utilities, sequentially, on the secondary targets.

Based on this model, our equilibrium concept can be written as following: Given an SSE 〈x,a〉
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and its coverage vector c, an ordering over targets is defined such that target t(1) is the target that

will be attacked by the unconstrained attacker, and t(i) is the target that will be attacked by the

constrained attacker who cannot attack targets t(1), ..., t(i − 1). Utility vector v = 〈vi〉ni=1 rep-

resents the defender’s utilities where vi is the defender’s utility if target t(i) is attacked, i.e., vi =

ct(i)Uc
d(t(i))+ (1− ct(i))Uu

d(t(i)). They define a dominance relation between SSEs based on the util-

ity vectors (if there is no ambiguity, we will consistently use coverage vector c to refer the defender’s

strategy x).

Definition 18. Given two SSEs 〈c,a〉, 〈c′,a′〉 and their utility vectors v and v′. We say that SSE

〈c,a〉 dominates SSE 〈c′,a′〉 if there exists i such that i) vi > v′i and ii) vj = v′j for all j such that 1 ≤

j < i.

There is an iterative algorithm15 which can find the non-dominated SSE in the security games

without scheduling constraints. In those cases, the multiple SSEs only exist when the best response

target of the attacker is fully covered. In the security games with scheduling constraints, multiple

SSEs are more common which motivates further needs for refinement. Unfortunately, in the pres-

ence of scheduling constraints, the method in15 may return a dominated SSE, as illustrated by the

following example.

Example 1 (Dominated SSEs in zero-sum SPARS games). Consider a zero-sum game with one re-

source R = {r1}, three targets T = {t1, t2, t3}, three schedules S1 = {s1, s2, s3}:

s1 = {t1, t3}, s2 = {t2}, s3 = {t3}

and with the following payoffs: Uc
a(t) = Uc

d(t) = 0 ∀ t ∈ T

Uu
d(t1) = −3,U

u
d(t2) = −3,U

u
d(t3) = −6, Uu

a(t) = −Uu
d(t) ∀t ∈ T
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There are infinite SSE solutions. One possible SSE could be x1 = 〈 13 ,
1
3 ,

1
3〉 with the corresponding cov-

erage vector c1 = 〈 13 ,
1
3 ,

2
3 〉. The unsorted defender’s utility vector is given by d

1 = 〈−2,−2,−2〉 for

targets t1, t2, t3. Accordingly, the sorted utility vector is given by v1 = 〈−2,−2,−2〉. In this case, v1

and d1 are the same because the attacker feels indifferent between all of the targets. Applying the iter-

ative algorithm from15, given the arbitrary SSE x1, first we fix the coverage of one target among those

with the highest attacker expected utility (in this case {t1, t2, t3}). We assume the algorithm chooses

target t1 with c1 = 1
3 fixed and solves it iteratively, which returns the same strategy x1. However, the

strategy x1 is dominated by strategy x2 = 〈23 ,
1
3 , 0〉 with coverage c

2 = 〈23 ,
1
3 ,

2
3 〉 providing a bet-

ter defender’s utility vector d2 = 〈−1,−2,−2〉 and v2 = 〈−2,−2,−1〉 sorted by the attacker’s

preference. Both x1,x2 provide the highest defender’s utility d∗ = −2.

Example 1 shows that a non-dominated solution can perform significantly better than an arbi-

trary chosen SSE. In this case, if the attacker deviates from his best response (target t2, t3) to the

third preferable target (target t1), the defender’s utility will be−2 and−1 for strategies x1 and x2,

respectively, yielding a 50% difference between refined and arbitrary SSE. *

11.4 Zero-sumGames

In this paper, we start with zero-sum games where the attacker is completely opposite to the de-

fender. We define the idea of minimal attack set, prove its uniqueness, and show the SSE with min-

imal attack set is better than all the other SSEs. We also show that the minimal attack set can be

computed by a polynomial number of calls to an oracle that solves linear programs. Accordingly, we

propose an algorithm which iteratively solves the minimal attack set of restricted instance and fixes

*One intuitive heuristic algorithm of refinement, in the presence of constraints, is to eliminate those
inefficient schedules93. E.g., in the context of Example 1, schedule s1 = {t1} is dominated by s3 = {t1, t3}.
However, in the experiment part, we will show that the heuristic method provides only a little improvement
in the zero-sum games and it does not work in the general-sum games.
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the coverage on the minimal attack set. We prove that our algorithm requires at mostO(n3) oracle

calls and returns a non-dominated SSE.

11.4.1 Uniqueness ofMinimal Attack Set of SSE

Definition 19. Given a feasible SSE coverage vector c, theAttack Set Γ(c) := argmaxt∈T Ua(c, t)

is the best response of the attacker.

Definition 20. LetΨ := {T′ ⊆ T | ∃ SSE 〈c,a〉 : Γ(c) = T′} be the set of all possible attack sets of

SSEs.

In zero-sum games, the less optimal choices of the attacker (attack set) imply the less targets that

he can achieve his highest utility. Thus, for the defender, the SSE with a smaller attack set is always

better than the SSE with a larger attack set.

Definition 21. AMinimal Attack Set is a set M ∈ Ψ such that any proper subset V ofM is not an

element ofΨ, i.e., V 6∈ Ψ for all V ⊂M.

Example 2. Consider a zero-sum game with one resource R = {r1}, T = {t1, t2, t3, t4, t5, t6}, and

four schedules S1 = {s1, s2, s3, s4}:

s1 = {t1, t2, t3}, s2 = {t2, t3, t4}, s3 = {t3, t4, t5}, s4 = {t6}

with the following payoffs: Uc
d(t) = 0 ∀ t ∈ T

Uu
d(t1) = −4,U

u
d(t2) = −4,U

u
d(t3) = −12

Uu
d(t4) = −4,U

u
d(t5) = −2,U

u
d(t6) = −4
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There are infinite possible SSE solutions. For example, one possible SSE is x1 = 〈 14 ,
1
4 ,

1
4 ,

1
4〉 with cover-

age c1 = 〈 14 ,
1
2 ,

3
4 ,

1
2 ,

1
4 ,

1
4〉 which gives the defender’s utility vector d

1 = 〈−3,−2,−3,−2,−1.5,−3〉

with d∗=−3. In this case, the best response of the attacker is Γ(c1)= {t1, t3, t6}. The following mixed

strategies also apply.

x2 = 〈 1
2
,
1
6
,
1
12
,
1
4
〉, c2 = 〈 1

2
,
2
3
,
3
4
,
1
4
,
1
12
,
1
4
〉

d2 = 〈−2,−4
3
,−3,−3,−11

6
,−3〉, Γ(c2) = {t3, t4, t6}

x3 = 〈3
8
,
5
24

,
1
6
,
1
4
〉, c3 = 〈3

8
,
7
12
,
3
4
,
3
8
,
1
6
,
1
4
〉

d3 = 〈−2.5,−5
3
,−3,−2.5,−5

3
,−3〉, Γ(c3) = {t3, t6}

x4 = 〈 1
4
, 0,

1
2
,
1
4
〉, c4 = 〈 1

4
,
1
4
,
3
4
,
1
2
,
1
2
,
1
4
〉

d4 = 〈−3,−3,−3,−2,−1,−3〉, Γ(c4) = {t1, t2, t3, t6}

Clearly, all the above strategies are SSE solutions. But the strategy x3 dominates all the others since

the defender’s utility on the third-preferable target of the attacker is−2.5, which is higher than all the

others’ utility−3. Actually, x3 is the non-dominated strategy.

If we explore all of the possible SSEs in Example 2, we will find that the above attack sets are exactly

all the possible attack sets:

Ψ = {{t3, t6}, {t1, t3, t6}, {t3, t4, t6}, {t1, t2, t3, t6}}

Therefore, the only minimal attack set is Γ(c3) = {t3, t6}.

Theorem 21 (Intersection Property in Zero-sumGames). For any two attack sets T1,T2 ∈ Ψ, we

have T1 ∩ T2 6=∅ and T1 ∩ T2∈Ψ.

Proof. Given T1 = Γ(c),T2 = Γ(c′), there are two cases:
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(1) Γ(c) ∩ Γ(c′) 6= ∅. Consider another strategy c∗ = αc + (1 − α)c′ with α ∈ (0, 1). Since

c∗ = αc + (1 − α)c′ = αP⊤x + (1 − α)P⊤x′ = P⊤(αx + (1 − α)x′), c∗ is a feasible coverage

vector of strategy x∗. It is easy to verify that Γ(c∗) = Γ(c) ∩ Γ(c′) as follows:

Ua(c, t)


= v if t ∈ Γ(c)

< v otherwise
Ua(c

′, t)


= v if t ∈ Γ(c′)

< v otherwise

Ua(c
∗, t) = αUa(c, t) + (1− α)Ua(c

′, t)


= v if t ∈ Γ(c) ∩ Γ(c′)

< v otherwise

where v is the expected attacker’s utility. Thus, we obtain an SSE strategy c∗ with a smaller attack set

Γ(c) ∩ Γ(c′).

(2) Γ(c) ∩ Γ(c′) = ∅. Similarly, we consider the feasible strategy c∗ = αc + (1 − α)c′ with

α ∈ (0, 1). It is easy to verify thatUa(c
∗, t) < v for any t ∈ T. In other words,Ud(c

∗, t) > −v

where−v is the highest expected utility of defender in SSE. This contradicts the optimality of SSE.

That means this case will never happen.

Consider the SSE strategy x3 in Example 2. It can be written as the combination of SSE strategies

x1,x2 by x3 = 1
2 · x

1 + 1
2 · x

2. As Theorem 21 states, the attack set Γ(c3) = Γ(c1) ∩ Γ(c2).

Theorem 22. The minimal attack set M exists and is unique. Moreover, for each T′ ∈ Ψ, M ⊆ T′.

Proof. (1) Existence: Clearly,M =
⋂

T′∈Ψ T′ 6= ∅ is a minimal attack set. (2) Uniqueness: If there

are two different minimal attack sets, then by Theorem 21, their intersection will be non-empty and

is a smaller attack set, which is a contradiction.
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In Example 2, the minimal attack set is exactly Γ(c3) = {t3, t6}which is the attack set of the

non-dominated solution x3.

11.4.2 An Iterative Algorithm

In zero-sum games, an SSE with a smaller attack set is better (for the defender) than an SSE with a

larger attack set. This motivates us to find the minimal attack set. Moreover, the minimal attack set

is included in every attack set, which implies that we can fix the common coverage on the minimal

attack set and solve the remaining subproblem. For this aim, we define the restricted SPARS.

Definition 22. Given a SPARS instance g, we denote by gc,T′ the restricted game with respect to cover-

age vector c and T′ ⊂ T. The restricted SPARS instance gc,T′ is the same as SPARS instance g except

the following rules:

(R1) The attacker is forbidden to attack targets in T′.

(R2) The defender’s coverage on t ∈ T′ is fixed to be ct.

(R3) The defender must cover targets t∈T\T′ enough such that the attacker utility on these targets is at

mostmint′∈T′ Ua(c, t′).

The SSE in a restricted game follows the same definition as in the original SPARS. Rule (R1)

guarantees that the attacker will only focus on targets T\T′. Rule (R2) guarantees that solving the

restricted SPARS will not alter the existing coverage on T′ which is already known. Rule (R3) re-

quires the defender to cover targets t ∈ T\T′ enough such that the targets in T\T′ are not more

preferable for the attacker than those in T′. In addition, we define the restricted attack set by

Γ(c′,T′) = argmaxt∈T\T′ Ua(c
′, t), where c′ is a feasible solution to gc,T′ . Note that the restricted

attack set is the attack set for the restricted instance gc,T′ , thus they share the same properties of

attack sets. Accordingly, we can define theminimal restricted attack set for the restricted instance.
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Algorithm 12: Iterative Algorithm for Zero-sumGames
1 Parameter: SPARS instance g, T′ ← ∅, c← 0
2 while |T′| < |T| do
3 c← a restricted SSE strategy in the instance gc,T′

4 M← the minimal restricted attack set of instance gc,T′

5 T′ ← T′ ∪M
6 Return: non-dominated SSE strategy c

Algorithm 12 depicts the procedure of equilibrium refinement in zero-sum games. We compute

an arbitrary SSE strategy, fix the coverage on the minimal restricted attack set (we will discuss how

to find the minimal attack set in Section 11.4.3), and iteratively solve the remaining restricted sub-

problem. The following theorems guarantee the correctness of Algorithm 12.

Proposition 8. Given a restricted SPARS instance gc,T′ , its minimal restricted attack set M, and

an SSE c∗ of gc,T′ , we have the following statement: the strategy c′ is a feasible defender coverage of

gc∗,T′∪M (satisfies Rules (R2), (R3)) if and only if c′ is an SSE of gc∗,T′ , which provides a mapping

between two different restricted instances.

Proof. (⇐) Since both c′ and c∗ are SSE strategies andM is the minimal restricted attack set of

gc,T′ , both c′ and c∗ share the same value on T′ ∪M, which satisfies the Rule (R2) of gc∗,T′∪M.

Since c′ is an SSE of gc,T′ , the attacker’s utility on t ∈ T′ with SSE strategy c′ must be greater

than all the others t 6∈ T′. By the definition of minimal restricted attack setM, the best response

of the attacker, it implies that target t ∈ Mmust have the highest attacker’s utility among T\T′.

Therefore, the attacker utility on t ∈ T′ ∪M is no less than the others’ utilities, which satisfies Rule

(R3) of gc∗,T′∪M.

(⇒)Assume that c′ is a solution of gc∗,T′∪M. By the definition of restricted instance gc∗,T′∪M,

the coverage c′ on targets in T′ ∪ M has been fixed to be the same as c∗, and Rule (R3) forces all

the other targets outside of T′ ∪M to have a smaller attacker’s utility. It implies that the strategy c′
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achieves the highest attacker’s utility on minimal attack setM in the restricted instance gc,T′ , thus

an SSE in the restricted instance gc,T′ .

Theorem 23. The output of Algorithm12 is a non-dominated SSE.

Proof. Denote the sequences of minimal restricted attack sets and updated coverage in Algorithm

12 asM1, ...,Mk and c1, ..., ck, respectively (W.L.O.G letM0 = ∅, c0 = 0). According to Algo-

rithm 12, ci is an SSE,Mi is the minimal attack set of gci−1,M1∪...∪Mi−1 .

By Proposition 8, ∀i ∈ {1, 2, ..., k}we have: given a restricted instance gck−i,M1∪M2∪...∪Mk−i , its

minimal restricted attack setMk−i+1 and its SSE ck−i+1, the strategy c′ is a feasible coverage of the

instance gck−i+1,M1∪M2∪...∪Mk−i∪Mk−i+1 if and only if c′ is an SSE of the instance gck−i+1,M1∪M2∪...∪Mk−i .

According to the above argument, ∀i ∈ {1, 2, ..., k}we have: ck is the non-dominated solu-

tion of gck−i+1,M1∪M2∪...∪Mk−i+1⇔ ck is the non-dominated SSE of gck−i+1,M1∪M2∪...∪Mk−i⇔ ck

is the non-dominated SSE of gck−i,M1∪M2∪...∪Mk−i (since ck−i and ck−i+1 share the same coverage

onM1 ∪M2 ∪ . . . ∪Mk−i)⇔ ck is the non-dominated solution of gck−i,M1∪M2∪...∪Mk−i (non-

dominated solution must be an SSE). When i = 1, ck is the only solution (thus non-dominated) so-

lution of gck,M1∪M2∪...∪Mk (sinceM1∪M2∪. . .∪Mk = T). By induction, ck is the non-dominated

solution of gck−i,M1∪M2∪...∪Mk−i . By letting i = k, the statement is exactly our conclusion: ck is the

non-dominated solution of g.

11.4.3 Computing theMinimal Attack Set

In the previous section, we showed that a non-dominated SSE strategy can be obtained by iteratively

computing SSE strategies of restricted SPARS instances and their corresponding minimal restricted
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attack sets. We now propose a method for finding the unique minimal attack set.

max
c,x

Ud(c, t) (11.1a)

s.t. Ua(c, t) ≥ Ua(c, t′) ∀t′ 6= t (11.1b)

P⊤x = c (11.1c)∑
j∈J

xj = 1. (11.1d)

First, multiple LPs method71 is commonly used to compute an SSE to security games. Each LP

(11.1) corresponds to one target t and maximizes the defender’s expected utility on this target under

the restriction that t is in the best response for the attacker.

Definition 23. Given target t, let Nt be the smallest tight constraint set with Nt := {t′ ∈ T |

∀SSE strategies c with t ∈ Γ(c),Ua(c, t) = Ua(c, t′),Ud(c, t) = Ud(c, t′)}.

Given target t and its LP (11.1), we are interested in which constraints are necessary and always

active for all optimal solutions (SSEs), which is the smallest tight constraint setNt. Our main idea is

to slightly alter the constraint of target t′ in LP (11.1) to

Ua(c, t) ≥ Ua(c, t′) + ε

where ε is a small positive number (e.g., constant times of numerical error). If the modified version

of the linear program still provides the same maximum objective value (up to numerical error), then

the constraint with respect to t′ is not active, which means t′ 6∈ Nt. If it provides a smaller objective

value or the linear program is infeasible, that means the constraint with respect to t′ is always active,

which implies t′ ∈ Nt.

The procedure of Algorithm 13 is to find out the smallest tight constraint setNt under the re-

striction that t is the best response of attacker. EveryNt can be solved by at most nmodified linear
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programs. We will show that the intersection of all the smallest tight constraint sets is exactly the

minimal attack set.

Algorithm 13:Algorithm for FindingMinimal Attack Set
1 Parameter: SPARS instance gc,T′

2 solve an SSE c∗ using the multiple linear programmethod and record the primal,
dual solution of each LP

3 for t ∈ Γ(c∗) do
4 given the dual solution d′ and primal solution c′ of LP (11.1)
5 Nt ← At ← {t′ | d′t′ 6= 0} ∪ {t},Bt ← Γ(c′)\At
6 for t′ ∈ Bt do
7 solve modified LP (11.1) with one more constraintUa(c, t)≥Ua(c, t′)+ε
8 if the objective value changes then
9 Nt ← Nt ∪ {t′}

10 Return: minimal restricted attack set
⋂

t∈Γ(c∗)
Nt, coverage c∗

Proposition 9. Given the dual solution d′ of LP (11.1), the set {t′|d′
t′ 6= 0} is contained in the

smallest tight constraint set Nt.

Proposition 10. Given a primal solution c′ of LP (11.1), every target t 6∈ Γ(c′) is not contained in

the smallest tight constraint set.

Proposition 9 and 10 help eliminate unnecessary enumerations in Algorithm 13. In the average

case, there are only a constant number of targets in Bt (in Algorithm 13) needed to be enumerated

But in the worst case, we still need to run through at most n targets. The following theorems guaran-

tee correctness of Algorithm 13.

Proposition 11. Given target t, Nt =
⋂

T′∈Ψ:t∈T′ T′. Moreover, given arbitrary SSE coverage c′,⋂
t∈Γ(c′)Nt =

⋂
T′∈Ψ T′, which is the minimal attack set M.
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Proof. First, for each SSE solution c, the targets in Γ(c)\{t} are exactly the targets which make the

constraints (11.1b) tight. Thus, the smallest tight constraints are the same as the intersection of at-

tack sets containing t as the best response for the attacker, which impliesNt =
⋂

T′∈Ψ:t∈T′ Γ(c).

Second, since Γ(c′) contains at least one target t in the minimal attack set, the minimal attack setM

must appear in one of the T′ ∈ Ψ, t ∈ T′, which implies
⋂

t∈Γ(c′)Nt =
⋂

t∈Γ(c′)
⋂

T′∈Ψ:t∈T′ Γ(c) =

M =
⋂

T′∈Ψ Γ(c).

Theorem 24. Algorithm 13 correctly returns the minimal restricted attack set of gc,T′ .

We can employ Algorithm 13 in Algorithm 12 to find the minimal attack set. This provides our

iterative algorithm for finding a non-dominated SSE strategy in zero-sum games. In order to find

every smallest constraint setNt, we need to enumerate all target pairs (t, t′). Therefore, the number

of oracle calls of each iteration isO(n2), where oracles are used to solve variants of LP (11.1). There

are at most n iterations, thus the overall runtime isO(n3) oracle calls.

Theorem 25. Algorithm 12 correctly solves the non-dominated SSE in O(n3) oracle calls.

11.5 General-sumGames

In this section, we discuss the refinement of SSEs in general-sum games. The method is similar to

the zero-sum case, but one of the crucial difficulties is that there is no longer a direct relation be-

tween the defender and attacker utilities. Several useful properties of zero-sum games do not hold

either. For example, in the general setting the intersection of two attack sets may not be an attack

set, leading to non-uniqueness of the minimal attack set. This implies a significant growth of time

complexity.
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11.5.1 Non-Uniqueness ofMinimal Attack Set

In Section 11.4, Theorem 21 tells us that in zero-sum games the intersection of two attack sets is still

an attack set. The following example shows that it is not necessarily true in general-sum games.

Example 3. Consider a game with one resource R = {r1}, five targets T = {t1, t2, t3, t4, t5}, and

three schedules S1 = {s1, s2, s3}:

s1 = {t1, t2}, s2 = {t3, t4}, s3 = {t3, t4, t5}

We have the following payoffs:

t1 : Uc
d(t1) = 10,Uu

d(t1) = −10,U
u
a(t1) = 10,Uc

a(t1) = −10

t2 : Uc
d(t2) = 0, Uu

d(t2) = −5, Uu
a(t2) = 5, Uc

a(t2) = −5

t3 : Uc
d(t3) = 6, Uu

d(t3) = −4, Uu
a(t3) = 3, Uc

a(t3) = −7

t4 : Uc
d(t4) = 3, Uu

d(t4) = −2, Uu
a(t4) = 4, Uc

a(t4) = −8.5

t5 : Uc
d(t5) = 4, Uu

d(t5) = −1, Uu
a(t5) = 0, Uc

a(t5) = −5

Since the schedule s2 is completely contained in the schedule s3, the intuition tells us choosing s3 will

always be better than choosing s2. However, this is wrong in this case. In order to show that, we list some

SSE solutions with unsorted attacker utility f , unsorted defender utility d, and defender utility v

sorted in attacking order:

x1 = 〈0.5, 0.1, 0.4〉, f 1 = 〈0, 0,−2,−2.25,−2〉

d1 = 〈0,−2.5, 1, 0.5, 1〉, v1 = 〈0,−2.5, 1, 1, 0.5〉

x2 = 〈0.6, 0, 0.4〉, f2 = 〈−2,−1,−1,−1,−2〉
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Figure 11.1: The attack sets in Example 3

d2 = 〈2,−2, 0, 0, 1〉, v2 = 〈0, 0,−2, 2, 1〉

x3 = 〈0.6, 0.2, 0.2〉, f 3 = 〈−2,−1,−1,−1,−1〉

d3 = 〈2,−2, 0, 0, 0〉, v3 = 〈0, 0, 0,−2, 2〉

Γ(c1) = {t1, t2}, Γ(c2) = {t2, t3, t4}, Γ(c3) = {t2, t3, t4, t5}

It can be verified that these are all the possible attack sets. We have that v3 dominates v2 and v1,

which implies partially using inefficient schedule s2 will result in better performance. Figure 11.1(a)

illustrates all the attack sets in Example 3, which shows that the minimal attack set is not unique in

general-sum games.

11.5.2 Best Attack Set

We introduce the notion of best attack set. Similar to Section 11.4, we iteratively fix the coverage on

the minimal best attack set: those targets the attacker will actually attack, up to breaking ties.

Definition 24. Given an SSE coverage vector c, the Best Attack Set Γb(c) is the set of targets in the

227



best response of the attacker which also achieves the highest defender utility.

In Example 3, as shown in Figure 11.1(b), the best attack sets are respectively Γb(c1) = {t1}, Γb(c2) =

{t3, t4}, Γb(c3) = {t3, t4, t5}.

Definition 25. LetΨb = {T′ ⊆ T | ∃ SSE 〈c,a〉 : T′ = Γb(c)} be the set of all possible best attack

sets of SSEs.

Theorem 26 (Intersection Property in General-sum Games). For any two attack sets Γ(c), Γ(c′) ∈

Ψ (Definition 20), if Γb(c) ∩ Γb(c′) 6= ∅, we have Γ(c) ∩ Γ(c′) ∈ Ψ, Γb(c) ∩ Γb(c′) ∈ Ψb.

Proof. Given two sets Γ(c), Γ(c′) ∈ Ψ, their corresponding SSEs 〈c,a〉 and 〈c′,a′〉with Γb(c) ∩

Γb(c′) 6= ∅, we follow a similar proof idea as in Theorem 21. Consider another strategy c∗ =

αc + (1 − α)c′ with α ∈ (0, 1). c∗ is a feasible coverage vector with strategy x∗ = αx + (1 −

α)x′. Moreover, they share some common targets in their best attack sets and thus the same highest

attacker’s utilities va and the highest defender’s utility vd. It is easy to verify that Γ(c∗) = Γ(c) ∩

Γ(c′), Γb(c∗) = Γb(c) ∩ Γb(c′) as follows:

Ua(c, t)


= va if t ∈ Γ(c)

< va otherwise
Ua(c

′, t)


= va if t ∈ Γ(c′)

< va otherwise

Ua(c
∗, t) = αUa(c, t) + (1− α)Ua(c

′, t)


= va if t ∈ Γ(c) ∩ Γ(c′)

< va otherwise
(11.2)

Ud(c, t)


= vd if t ∈ Γb(c)

< vd if t ∈ Γ(c)\Γb(c)
Ud(c

′, t)


= vd if t ∈ Γb(c′)

< vd if t ∈ Γ(c′)\Γb(c′)

Ud(c
∗, t) = αUd(c, t) + (1− α)Ud(c

′, t)
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⇒ Ud(c
∗, t)


= vd if t ∈ Γb(c) ∩ Γb(c′)

< vd if t ∈ (Γ(c) ∩ Γ(c′))\(Γb(c) ∩ Γb(c′))
(11.3)

Equation (11.2) guarantees the attack set of strategy c∗ is Γ(c) ∩ Γ(c′). Equation (11.3) guar-

antees that among the attack set Γ(c) ∩ Γ(c′), strategy c achieves the highest defender’s utility on

target t if and only if the target t ∈ Γb(c) ∩ Γb(c′)which is non-empty. Thus, the best attack set of

strategy c∗ is Γb(c∗) = Γb(c) ∩ Γb(c′).

Theorem 26 implies that the intersection of attack sets is still an attack set if the intersection of

their best attack sets is non-empty. But if the intersection of their best attack sets is empty, the com-

bining strategy c∗ is no longer an SSE, and thus the intersection of attack sets may not be an attack

set. Based on Theorem 26, we can define the minimal best attack set:

Definition 26. AMinimal Best Attack Set is a best attack set M ∈ Ψb such that any proper subset

V ⊂M is not an element ofΨb, that is V 6∈ Ψb for all V ⊂M ∩ V}.

Proposition 12. Given any SSE strategy c, its attack set Γ(c)must contain one of the minimal best

attack sets.

11.5.3 A Recursive Algorithm

Based on the above theorems and paralleling Algorithm 12, Algorithm 14 iterates through all mini-

mal best attack setsM and finds the non-dominated SSE in each restricted instances gc,T′∪M. After

enumerating all the possible solutions, it returns the best one. The following results guarantee cor-

rectness of Algorithm 14.
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Algorithm 14:RefinedSSE(g)
1 FunctionRefinedRestrictedSSE(g, c,T′)
2 Parameter: restricted SPARS instance gc,T′ , cList← []

3 for each minimal best attack set M of gc,T′ do
4 c∗ ← an SSE of instance gc,T′∪M

5 c′ ←RefinedRestrictedSSE(g, c∗,T′ ∪M)
6 add c′ into cList
7 return non-dominated coverage vector among cList
8 returnRefinedRestrictedSSE(g, c = 0,T′ = ∅)

Proposition 13. AssumeM is a minimal restricted best attack set of gc,T′ and c∗ is an SSE strategy

of gc,T′ containingM in the attack set. Then, strategy c′ is an SSE of gc,T′ containingM if and only if

c′ is a solution of gc∗,T′∪M.

Theorem 27. The output of Algorithm 14 is a non-dominated SSE.

Proofs are similar to those of Proposition 8 and Theorem 23.

11.5.4 ComputingMinimal Best Attack Sets

Similar to Section 11.4, we next propose an efficient method to find all the minimal best attack sets.

Following the notations in Section 11.4.3, it can be shown that in general-sum games, solving the

modified LPs (11.1) with respect to target twill yield the smallest tight constraint setNt. The fol-

lowing proposition gives an alternative expression ofNt (the proof is similar to that of Theorem 11):

Proposition 14. Nt =
⋂

T′∈Ψb:t∈T′ T′

The setNt provides the information between targets: if target t is included in the best attack set

T′, then all the targets inNt must be included in the best attack set T′ too. We can then focus on

those targets which could be in the best attack set.
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Figure 11.2: The minimal best attack sets in the Example 3

Definition 27. Let Q be the set of targets which achieve the best defender utility in some SSE strategies.

The setQ is equivalent to the set of targets t for which LP (11.1) provides the highest defender

utility and that can be derived while solving the n linear programs. We construct a directed graph

G = (V,E) to represent the relations between these targets. LetV = Q be the set of all targets

which could achieve the highest defender’s utility. Let E =
⋃

t∈Q{(t, s)|s ∈ Nt, s ∈ Q, s 6= t}where

(t, s) is the directed edge from t to s.

Example 4 (Continued from Example 3). With the help of Figure 11.1(b), we can visualize the sets

{Nt|t ∈ Q} (Q = {t1, t3, t4, t5}):

Nt1 = {t1, t2},Nt3 = {t3, t4},Nt4 = {t3, t4},Nt5 = {t3, t4, t5}.

We can draw a corresponding graph (Figure 11.2(a)) according to these sets. Figure 11.2(b) depicts all

of the minimal best attack sets. Notice that the definition of edges implies the inclusion relationship:

e = (t, s) ∈ E if and only if t ∈ Q, and any attack set including target t must also include target s.

Proposition 15. Directed relations are transitive in graph G = (V,E), i.e., if (t, u) and (u, v) ∈ E,

then (t, v) ∈ E.
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The transitive rule has an intuitive meaning: if a best attack set is such that if t is included, so

must u; and if u is included, so must v; then if it includes t, it must also include v.

Lemma 2. M is a minimal best attack set if and only if M is a maximal clique without outgoing edge

directed fromM to any other target in Q\M.

Proof. (⇒) ∀t ∈ M, by Theorem 14,Nt =
⋂

T′∈Ψb:t∈T′ T′. Notice that the minimal best attack set

M satisfiesM ∈ Ψb, t ∈M, thusNt ⊆M. Moreover, by Theorem 26,Nt is the intersection of best

attack sets, which implies thatNt is a best attack set. But we haveNt ⊆ M andM is a minimal best

attack set. By the definition of the minimal best attack set, the only possibility isNt = M ∀ t ∈ M,

which implies thatM is a maximal clique without outgoing edges. (⇐) SupposeM is a maximal

clique without any outgoing edge. ThenNt = M ∀ t ∈ M. SinceNt is the intersection of best

attack sets,M = Nt is also a best attack set. Moreover, if a best attack setV includes any vertex

t ∈M,Vmust includeNt = M (sinceNt =
⋂

T′∈Ψb:t∈T′ T′,V satisfiesV ∈ Ψb : t ∈ V). Next, we

derive a contradiction. Suppose there is a proper subsetV ⊂Mwhich is also a best attack set. Then,

there exists t ∈ V ∩M. By the above argument, we haveM = Nt ⊆ V, which contradicts that

V ⊂M. We conclude thatM is a minimal best attack set.

Although the maximal clique problem is generically NP-hard, fortunately, the transitive law in

Proposition 15 reduces the maximal clique problem to a variant of the tournament problemG =

(V,E)with time complexityO(|V| + |E|) = O(n2). In Algorithm 15, we leverage the transitive

law to propose a random walk method that successfully discovers all the minimal best attack sets in

O(n2).

Theorem 28. Each subproblem in Algorithm 14 correctly returns the non-dominated solution in

O(n3) oracle calls.

Both the worst-case runtime of Algorithm 15 and the computation of all the sets {Nt|t ∈ Q} are

O(n2) oracle calls. Therefore, the worst-case runtime of solving each subproblem in the recursive al-
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Algorithm 15: Find All the Minimal Best Attack Sets
1 Transitive graphG = (V,E),Mlist← [],V′ ← V,E′ ← E
2 whileV′ 6= ∅ do
3 Start random walk inG′ = (V′,E′) and record all the nodes we walked through

until we encounter a duplicate node or we cannot move anymore. Let v be the
last node.

4 Nv ← N(v) ∪ {v}whereN(v) is the neighborhood of v
5 if Nv is a maximal clique without outgoing edges then
6 addNv intoMlist
7 V′ ← nodes inV′ that have not been passed by
8 E′ ← edges in Ewith both endpoints∈ V′

9 returnMlist

gorithm is stillO(n3) oracle calls, same as the zero-sum cases. The number of subproblems depends

on the number of minimal best attack sets. In Example 3, there are two minimal best attack sets:

{t1} and {t3, t4}, so we need to compute the non-dominated solutions for both cases and choose

the best one. The overall runtime depends on the number of subproblems that need to be solved.

Fortunately, while iteratively solving the subproblems, rule (R3) enables us to foresee the defender’s

utilities on the first few targets, thus prune out a large number of subproblems, which reduces the

overall runtime significantly relative to the worst-case (reduce from exponential to polynomial many

oracle calls in practice).

11.6 Experimental Results

We run experiments to evaluate the solution quality and scalability of the refined SSE on SPARS.

All LPs are solved by CPLEX (version 12.7.1) on a machine with an Intel core i5-7200U CPU and

11.6GBmemory. Our experiments use 100 sampled game instances with 2 defender resources, vary-

ing the number of targets, and randomly generated payoffs. In zero-sum cases, payoffsUu
a(t) =

−Uu
d(t),U

c
d(t) =−U

c
a(t) are uniformly distributed in the set {0, 1, . . . , 10}. In general-sum cases,
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Figure 11.3: Performance of equilibrium refinement in zero‐sum Stackelberg security games.

we are motivated by ARMOR252 and adopt the following payoff setting: Uu
a(t) = −Uu

d(t) uni-

formly distributed in the set {0, 1, . . . , 10} (completely opposite on successful attack),Uc
d(t) = 0

(zero reward for successful protect), andUc
a(t) uniformly distributed in {0, 1, . . . , bUu

a(t)/2c}.

Each instance also encompassesO(n) randomly generated scheduling constraints with each sched-

ule covering 2 to 5 targets depending on the number of targets. We employ CPLEX as our oracle to

obtain exact solutions to linear programs. We compare the solution quality of our refined SSE to the
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Figure 11.4: Performance of equilibrium refinement in general‐sum Stackelberg security games.

SSEs given by themultiple LPsmethod71, heuristicmethod93, and greedy iterativemethod15†.

Since the defender utilities on the first preferable target are identical for all SSEs, we display the

residual expected utility for the remaining targets. Suppose the attacker deviates from his target to

the secondary target with probability e. Further assume that the attacker does not attack the first

preferable target, then the attacker will attack the second preferable target with probability 1 − e,

†The heuristicmethod starts from an arbitrary SSE and goes through all of the pure strategies. If there
is a strictly better pure strategy than the pure strategy in the current mixed strategy, then move the weight to
the better one. The greedy iterativemethod adopts the idea of the iterative algorithm15 but without finding
minimal attack sets. It iteratively fixes the coverage of an arbitrary target in the attack set (best attack set).
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third preferable target with e(1 − e) and so on. Given the utility vector v sorted by the attacking

order, the residual value is expressible as
∑

2≤i≤n(1− e)ei−2vi.

Figures 11.3(a), 11.3(b), 11.4(a), 11.4(b) illustrate the residual expected utilities in zero and

general-sum games with n = 10 and 20, respectively. Without spending additional resources, our

refined solution outperforms the other SSE solutions, improving the defender utility by 10 − 40%.

Figures 11.3(c), 11.3(d), 11.4(c), 11.4(d) depict the defender utilities in attacking order. The figures

show that (i) the refined SSE and other SSEs provide the same defender utility on the first preferable

target; (ii)While the heuristic and multiple LPs methods are a lot faster than ours (Figures 11.5(a),

11.5(b)), they perform significantly worse since they do not refine the solution; (iii)The refined SSE

gives a much higher defender utility on the following few targets (second and third preferable) by

sacrificing those less preferable targets, which are even more unlikely to be attacked than the first few

targets.

Figure 11.5(a) (resp. 11.5(b)) compares the runtime (resp. number of oracle calls) of our algo-

rithm relative to other algorithms in zero-sum (ZS) and general-sum (GS) cases. The results show

(i) the runtime of both zero and general-sum cases is of the same order as the runtime of the greedy

iterative algorithm, which requiresO(n2) oracle calls. Thus, the empirical number of oracle calls

is significantly lower than our worst-case estimate ofO(n3). This is due to the fact that in random

settings, the cardinality ofQ (Definition 27) is small (usually under 4), resulting in a small number

of enumerations ofNt, t ∈ Q; (ii)Our algorithm for zero-sum games is almost two times faster than

the greedy iterative algorithm because fixing the minimal attack set can significantly reduce the num-

ber of iterations, which speeds up our algorithm and also boosts solution quality; (iii) Figure 11.5(a)

also shows that the runtime of our optimal algorithm is close to the runtime of the greedy iterative

one. Contrary to the greedy iterative approach, our algorithm guarantees optimality and provides a

significant improvement in defender utility and robustness, see Figures 11.3(c), 11.3(d), 11.4(c), and

11.4(d) at low computational cost, which provides a more robust solution with further spending
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Figure 11.5: Computation cost of equilibrium refinement with varying problem sizes.

only little more runtime.

11.7 Conclusion

In summary, we show that the refinement is critical in Security Problems with ARbitrary Schedule

(SPARS) domain and existing algorithms may lead to suboptimal performance. We provide theoret-

ical analyses by defining minimal attack set and dominance relationship to design algorithms that

computes the non-dominated Strong Stackelberg Equilibrium (SSE) with scalable computation cost

in both zero-sum and general-sum games.
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12
Conclusion

This thesis presents a set of algorithmic, methodological, and theoretical contributions in the data-

to-deployment pipeline to integrate optimization and machine learning problems in public health

and conservation. On the technical level, the thesis presents techniques for integrating knowledge

from optimization and different decision-making processes to strengthen machine learning per-

formance, including supervised learning, online learning, and multi-agent systems in the face of

uncertainty and with limited data.
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Part I discusses the integration of optimization in supervised learning to train machine learn-

ing models in the presence of optimization. Chapter 2 and Chapter 3 study the integration of se-

quential problems as a differentiable layer into machine learning to enable the first decision-focused

learning in sequential problems with approximate solutions to reduce computation costs. These

two works set the foundation for applying decision-focused learning to public health and the de-

ployment to the maternal and child health program as shown in Chapter 4. Lastly, Chapter 5 and

Chapter 6 study the integration of non-sequential optimization into machine learning by proposing

sampling and surrogate algorithms to reduce computation costs.

Part II focuses on using optimization to design online learning algorithms to collect data and

strengthen theoretical guarantees. Chapter 7 studies using optimization to handle additive and in-

dependent feedback in multi-armed bandits with continuous action space. Chapter 8 studies using

optimization to handle additive but weekly dependent feedback in restless multi-armed bandits.

Chapter 9 studies using optimization to leverage non-additive and dependent feedback in online

combinatorial optimization problems. All these three works use optimization to design online algo-

rithms with improved theoretical guarantees and empirical results.

Part III focuses on designing scalable and approximate solutions to solve optimization in multi-

agent systems using Stackelberg games. Chapter 10 extends the idea from decision-focused learning

to multi-agent systems and proposes the first gradient-based algorithm to find the best equilibrium

of Stackelberg games with multiple followers. Chapter 11 proposes efficient algorithms to solve the

equilibrium refinement problem in Stackelberg security games with arbitrary constraints. These

works focus on complexity and the design of scalable algorithms in finding equilibria in multi-agent

systems.

From a practical perspective, this thesis introduces how AI algorithms and theory can be applied

to public health and conservation challenges. On the public health front, the thesis covers mater-

nal health, tuberculosis, and epidemiology using the data-to-deployment pipeline. Specifically, the
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maternal health application includes a real-world field study and deployment to a mobile health

program where the proposed decision-focused learning algorithm is currently used by more than

100,000 people to improve engagement with health information. On the conservation front, the

thesis covers optimizing patrol strategies in wildlife conservation, determining mechanisms to in-

centivize collaboration between multiple patrol teams, and interrupting illegal wildlife trade in

a physical network. These examples demonstrate the use of machine learning, optimization, and

multi-agent systems to design AI solutions in public health and conservation.

From the perspective of using AI to create social impact, the thesis emphasizes the importance

of engaging with stakeholders and organizations that possess a deep understanding of societal chal-

lenges in order to consolidate optimization and decision-making processes to design suitable AI

solutions. On one hand, these optimization formulations provide valuable domain knowledge to en-

hance machine learning approaches. The optimization problems formulated in collaboration with

domain experts reveal the constraints and knowledge pertinent to the societal challenges, which are

critical for effectively characterizing societal issues and quantifying uncertainty, especially in scenar-

ios where data is limited. On the other hand, involving stakeholders in the design of AI solutions

and the data-to-deployment pipeline helps ensure the AI solutions meet the need of the stakehold-

ers to ultimately convert algorithmic contributions to deployment. By incorporating stakeholders’

input, the designed AI solutions can better reflect the constraints and requirements faced in societal

challenges, making themmore suitable for deployment. For instance, the collaborative work with

ARMMAN in Chapter 2 and Chapter 3 to define maternal health decision-making processes was

instrumental in the successful deployment of the solutions, largely benefiting from the involvement

of the organization and domain experts. In summary, the thesis establishes the algorithmic and the-

oretical foundation for integrating optimization obtained from stakeholders into machine learning

to effectively leverage knowledge from decision-making processes in a computationally efficient

manner.
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Future vision

A significant amount of work remains to be done in developing AI solutions for public health and

conservation. Although we have seen the empirical and theoretical success of decision-focused learn-

ing in both simulation and real-world deployment, the computational cost of decision-focused

learning algorithms has become a critical concern. The involvement of optimization problems in

the learning pipeline makes the training process much more expensive and non-smooth, hindering

gradient-based approaches from working efficiently. Additionally, our current understanding of

the differentiability of different optimization and decision-making processes is also limited to con-

tinuous mathematical optimization and sequential decision problems modeled as Markov decision

processes. Many societal challenges involve decision-making processes that are more complex than

our algorithmic frontier, which limits the applicability of decision-focused learning. Therefore, the

scalability and the applicability to other decision-making processes remain challenging for integrat-

ing optimization into machine learning algorithms.

Furthermore, our current understanding of the knowledge embedded in optimization and

decision-making processes remains limited. This limitation significantly impacts the explainability

and robustness of decision-focused learning, which becomes increasingly important as the method-

ology of decision-focused learning matures and gets adopted more frequently. It is unclear whether

integrating optimization into machine learning is the ultimate solution for incorporating knowl-

edge from optimization and decision-making processes. Historically, machine learning algorithms

use regularization terms to indirectly incorporate domain knowledge and insights into machine

learning objectives. In contrast, decision-focused learning algorithms integrate optimization and

decision-making processes into the learning pipeline to directly incorporate domain knowledge to

define machine learning objectives, but in a cost of computation cost and non-smoothness that can

impact learning performance, explainability, and robustness. Further investigation into the connec-
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tion between regularization and the integration of optimization is needed, and consideration of the

truthworhiness is also important in integrating optimization and machine learning.

Lastly, on a broader level, the journey of AI for social impact has only just begun. This thesis

lays the foundation for integrating optimization, machine learning, multi-agent systems, and stake-

holders’ involvement to design AI solutions for deployment. However, there are much more AI

techniques and well-established areas that need to be studied and integrated into the research of

AI for social impact. As interdisciplinary research continues to flourish, we gain a deeper under-

standing of how different AI techniques and domain knowledge intersect and interact. With more

research on AI for social impact and the application of AI in various fields and societal challenges,

AI and computer science gradually define their unique position and responsibility in working with

domain experts, non-governmental organizations, and governments. These efforts will serve as the

nourishment that fosters algorithmic contributions to social impact and propels AI to thrive in our

societies.
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A
Appendix to Chapter 2

A.1 Missing Proofs in Chapter 2

Theorem 1 (Policy gradient-based unbiased derivative estimate). We follow the notation of Defini-

tion 1 and defineΦθ(τ, π) =
h∑

i=1

h∑
j=i

γjRθ(sj, aj) log π(ai|si). We have:

∇πJθ(π) = E
τ∼π,θ

[∇πΦθ(τ, π)] =⇒
∇2

πJθ(π) = E
τ∼π,θ

[
∇πΦθ · ∇π log p⊤θ +∇2

πΦθ

]
∇2

θπJθ(π) = E
τ∼π,θ

[
∇πΦθ · ∇θ log p⊤θ +∇2

θπΦθ

] (2.9)

First part of the proof (policy gradient theorem). The first part of the proof follows the policy gradi-
ent theorem. We begin with definitions.

Let τ = {s1, a1, s2, a2, · · · , sh, ah} be a trajectory sampled according to policy π andMDP
parameter θ. Define τj = {s1, a1, · · · , sj, aj} to be a partial trajectory up to time step j for any j ∈

[h]. DefineGθ(τ) =
h∑
j=1

γjRθ(sj, aj) to be the discounted value of trajectory τ. Let pθ(τ, π) be the

probability of seeing trajectory τ under parameter θ and policy π. GivenMDP parameter θ, we can
compute the expected cumulative reward of policy π by:

Jθ(π) = E
τ∼π,θ

Gθ(τ)
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= E
τ∼π,θ

h∑
j=1

γjRθ(sj, aj)

=

h∑
j=1

E
τ∼pθ(τ,π)

γiRθ(sj, aj) (A.1)

=

h∑
j=1

E
τj∼pθ(τj,π)

γjRθ(sj, aj) (A.2)

=

h∑
j=1

∫
τj

γjRθ(sj, aj)pθ(τj, π)dτj

Equation A.1 to Equation A.2 uses the fact that we only need to sample up to time step j in order to
compute γjRθ(sj, aj). Everything beyond time step j does not affect the expectation up to time step j.
We can compute the policy gradient by:

∇πJθ(π) = ∇π

h∑
j=1

∫
τj

γjRθ(sj, aj)pθ(τj, π)dτj

=
h∑
j=1

∫
τj

γjRθ(sj, aj)∇πpθ(τj, π)dτj (A.3)

=

h∑
j=1

∫
τj

γjRθ(sj, aj)pθ(τj, π)∇π log pθ(τj, π)dτj (A.4)

where Equation A.3 is because only the probability term is dependent on policy π, and Equation A.4
is by∇πpθ = pθ∇π log pθ.

We can nowmerge the integral back to an expectation over trajectory τj by merging the probabil-
ity term pθ and the integral:

∇πJθ(π) =
h∑
j=1

E
τj∼pθ(τj,π)

[
γjRθ(sj, aj)∇π log pθ(τj, π)

]
=

h∑
j=1

E
τ∼pθ(τ,π)

[
γjRθ(sj, aj)∇π log pθ(τj, π)

]

= E
τ∼pθ(τ,π)

 h∑
j=1

γjRθ(sj, aj)∇π log pθ(τj, π)
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= E
τ∼pθ(τ,π)

 h∑
j=1

γjRθ(sj, aj)∇π

 j∑
i=1

log π(ai | si) +
j∑

i=1
log pθ(si, ai, si+1)

 (A.5)

= E
τ∼pθ(τ,π)

 h∑
j=1

γjRθ(sj, aj)
j∑

i=1
∇π log π(ai | si)


= E

τ∼pθ(τ,π)

 h∑
j=1

j∑
i=1

γjRθ(sj, aj)∇π log π(ai | si)


= E

τ∼pθ(τ,π)

 h∑
i=1

h∑
j=i

γjRθ(sj, aj)∇π log π(ai | si)


= E

τ∼pθ(τ,π)
[∇πΦθ(τ, π)] (A.6)

where Equation A.5 is by expanding the probability of seeing trajectory τj when parameter θ and
policy π are used, where the probability decomposes into the first term action probability π(ai | si),
and the second term transition probability pθ(si, ai, si+1), which is independent of policy π and
thus disappears. The last equation in Equation A.6 connects back to the definition of Φ as defined
in the statement of Theorem 1. Φ is easy to compute and easy to differentiate through. We can
therefore sample a set of trajectories {τ} to compute the corresponding Φ and its derivative to get
the unbiased policy gradient estimate.

Second part of the proof (second-order derivatives). Given the policy gradient theorem as we recall in
the above derivation, we have:

∇πJθ(π) = E
τ∼pθ(τ,π)

[∇πΦθ(τ, π)] (A.7)

We can compute the derivative of Equation A.7 by:

∇2
πJθ(π) = ∇π∇πJθ(π)

= ∇π E
τ∼pθ(τ,π)

[∇πΦθ(τ, π)]

= ∇π

∫
τ
∇πΦθ(τ, π)pθ(τ, π)dτ

=

∫
τ

[
∇πΦθ(τ, π)∇πpθ(τ, π)⊤ +∇2

πΦθ(τ, π)pθ(τ, π)
]
dτ (A.8)

=

∫
τ

[
∇πΦθ(τ, π)∇π log pθ(τ, π)⊤ +∇2

πΦθ(τ, π)
]
pθ(τ, π)dτ

= E
τ∼pθ(τ,π)

[
∇πΦθ(τ, π)∇π log pθ(τ, π)⊤ +∇2

πΦθ(τ, π)
]

(A.9)
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where Equation A.8 passes gradient inside the integral and applies chain rule. Equation A.9 provides
an unbiased estimate of the second-order derivative∇2

πJθ(π).
Similarly, we can compute:

∇2
θπJθ(π) = ∇θ∇πJθ(π)

= ∇θ E
τ∼pθ(τ,π)

[∇πΦθ(τ, π)]

= ∇θ

∫
τ
∇πΦθ(τ, π)pθ(τ, π)dτ

=

∫
τ

[
∇πΦθ(τ, π)∇θpθ(τ, π)⊤ +∇2

θπΦθ(τ, π)pθ(τ, π)
]
dτ

=

∫
τ

[
∇πΦθ(τ, π)∇θ log pθ(τ, π)⊤ +∇2

θπΦθ(τ, π)
]
pθ(τ, π)dτ

= E
τ∼pθ(τ,π)

[
∇πΦθ(τ, π)∇θ log pθ(τ, π)⊤ +∇2

θπΦθ(τ, π)
]

(A.10)

Equation A.9 and Equation A.10 both serve as unbiased estimates of the corresponding second-
order derivatives. We can sample a set of trajectories to compute both of them and get an unbiased
estimate of the second-order derivatives. This concludes the proof of Theorem 1.

Theorem 2 (Bellman-based unbiased derivative estimate). We follow the notation in Definition 2 to
define Jθ(π) = 1

2 E
τ∼π,θ

[
δ2θ(τ, π)

]
. We have:

∇πJθ(π) = E
τ∼π,θ

[
δ∇πδ+

1
2
δ2∇π log pθ

]
=⇒ ∇2

πJθ(π) = E
τ∼π,θ

[
∇πδ∇πδ⊤ + O(δ)

]
∇2

θπJθ(π) = E
τ∼π,θ

[
∇πδ∇θδ⊤ +

(
∇πδ∇θ log p⊤θ +∇π log pθ∇θδ⊤ +∇2

θπδ
)
δ+ O(δ2)

]
(2.10)

First part of the proof (first-order derivative). By the definition of Jθ(π) = 1
2 E
τ∼π,θ

[
δ2(τ, π)

]
, we can

compute its first-order derivative by:

∇πJθ(π) = ∇π
1
2 E

τ∼π,θ

[
δ2θ(τ, π)

]
= ∇π

1
2

∫
τ
δ2θ(τ, π)pθ(τ, π)dτ

=

∫
τ

[
pθ(τ, π)δθ(τ, π)∇πδθ(τ, π) +

1
2
δ2θ(τ, π)∇πpθ(τ, π)

]
dτ

=

∫
τ

[
δθ(τ, π)∇πδθ(τ, π) +

1
2
δ2θ(τ, π)∇π log pθ(τ, π)

]
pθ(τ, π)dτ
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= E
τ∼π,θ

[
δθ(τ, π)∇πδθ(τ, π) +

1
2
δ2θ(τ, π)∇π log pθ(τ, π)

]
(A.11)

Second part of the proof (second-order derivative). Given Equation A.11, we can further compute the
second-order derivatives by:

∇2
πJθ(π) = ∇π∇πJθ(π)

= ∇π E
τ∼π,θ

[
δθ(τ, π)∇πδθ(τ, π) +

1
2
δ2θ(τ, π)∇π log pθ(τ, π)

]
= ∇π

∫
τ

[
δθ(τ, π)∇πδθ(τ, π) +

1
2
δ2θ(τ, π)∇π log pθ(τ, π)

]
pθ(τ, π)dτ

=

∫
τ

(
∇πδ∇πδ⊤ + δ∇2

πδ+ δ∇ log pθ∇πδ⊤ +
1
2
δ2∇2 log pθ

)
pθ

+

(
δ∇πδ(τ, π) +

1
2
δ2∇π log pθ

)
pθ∇ log p⊤θ dτ

= E
τ∼π,θ

[
∇πδ∇πδ⊤ + δ∇2

πδ+ δ∇ log pθ∇πδ⊤ + δ∇πδ(τ, π)∇ log p⊤θ + O(δ2)
]

= E
τ∼π,θ

[
∇πδ∇πδ⊤ + O(δ)

]
Similarly, we have:

∇2
θπJθ(π) = ∇θ∇πJθ(π)

= ∇θ E
τ∼π,θ

[
δθ(τ, π)∇πδθ(τ, π) +

1
2
δ2θ(τ, π)∇π log pθ(τ, π)

]
= ∇θ

∫
τ

[
δθ∇πδθ +

1
2
δ2θ∇π log pθ

]
pθdτ

=

∫
τ

(
∇πδ∇θδ⊤ + δ∇2

θπδ+ δ∇π log pθ∇θδ⊤ +
1
2
δ2∇2

θπ log pθ
)
pθ

+

(
δ∇πδ+

1
2
δ2∇π log pθ

)
pθ∇θ log p⊤θ dτ

= E
τ∼π,θ

[
∇πδ∇θδ⊤ + δ∇2

θπδ+ δ∇π log pθ∇θδ⊤ + δ∇πδ∇θ log p⊤θ + O(δ2)
]

= E
τ∼π,θ

[
∇πδ∇θδ⊤ +

(
∇2

θπδ+∇π log pθ∇θδ⊤ +∇πδ∇θ log p⊤θ
)
δ+ O(δ2)

]
(A.12)

which concludes the proof.
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A.2 Additional Discussions of Decision-focused Learning

In this section, we provide additional discussions of applying decision-focused learning toMDPs
problems.

A.2.1 Smoothness of the Optimal Policy Derived FromReinforcement Learn-
ing Solver

In Equation 2.8, we compute the gradient of the final evaluation metric with respect to the predic-
tive model by applying chain rule. This implicitly requires each individual component in the chain
rule to be well-defined. Specifically, the mapping from theMDP parameters to the optimal policy
needs to be smooth so that we can compute a meaningful derivative of the policy with respect to
the MDP parameters. However, this smoothness requirement is only required in the training time
to make the gradient computation available. Once the training is finished, there is no restriction on
the policy and the corresponding solver. This smoothness requirement does not restrict the kind of
problems that we can solve. We just need to find a solver that can give a smooth policy to ensure the
differentiability at training time, e.g., soft actor critic and soft Q learning.

Specifically, the assumption on smooth policy is similar to the idea of soft Q-learning127 and soft
actor-critic128 proposed by Haarnoja et al. Soft Q-learning relaxes the Bellman equation to a soft
Bellman equation to make the policy smoother, while soft actor-critic adds an entropy term as regu-
larization to make the optimal policy smoother. These relaxed policy not only can make the training
smoother as stated in the above papers, but also can allow back-propagation through the optimal
policy to the input MDP parameters in our paper. These benefits are all due to the smoothness of
the optimal policy. Similar issues arise in decision-focused learning in discrete optimization, with
Wilder et al.338 proposing to relaxing the optimal solution by adding a regularization term, which
serves as the same purpose as we relax our optimal policy in the sequential decision problem setting.

A.2.2 Unbiased Second-order Derivative Estimates

As we discuss in Section 2.7, correctly approximating the second-order derivatives is the crux of our
algorithm. Incorrect approximation may lead to incorrect gradient direction, which can further lead
to divergence. Since the second-order derivative formulation as stated in Theorem 1 and Theorem 2
are both unbiased derivative estimate. However, their accuracy depends on howmany samples we
use to approximate the derivatives. In our experiments, we use 100 sampled trajectories to approx-
imate the second-order derivatives across three domains. The number of samples required to get
a sufficiently accurate derivative estimate may depend on the problem size. Larger problems may
require more samples to get a good derivative estimate, but more samples also implies more compu-
tation cost required to run the back-propagation.

In practice, we find that normalization effect of the Hessian term as discussed in Section 2.7 is
very important to reduce the variance caused by the incorrect derivative estimate. Additionally, we
also notice that adding a small additional predictive loss term to run back-propagation can stabilize
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the training process because the predictive loss does not suffer from sampling variance. This is why
we add a weighted predictive loss to the back-propagation in Algorithm 1.

A.2.3 Impact of Optimality in the Forward Pass

In order to differentiate through the KKT conditions, we need the policy π∗ return by the reinforce-
ment learning solver to be optimal in Figure 2.1. However, sub-optimal solution is often reached
by the reinforcement learning solver and the optimality can impact the gradient computed from
differentiating through the KKT conditions.

In this section, we analyze the impact of a sub-optimal policy produced by the reinforcement
learning solver. When the problem is smooth, or more precisely when the function Jθ(π) is smooth
around the optimal policy π∗, we can bound the gradients∇2

πJθ(π′) and∇πJθ(π′) computed in
Equation 2.8 using a sub-optimal policy π′ by the gradients computed using the optimal policy π∗.
Specifically, if the Hessian∇2

πJθ(π∗) is sufficiently far from singular, the difference between two
gradients computed from sub-optimal and optimal policy using Equation 2.8 can be written as:∣∣∣∣d Eval(π′)dπ

(∇2
πJθ(π′))−1∇2

θπJθ(π
′)
dθ
dw
− d Eval(π∗)

dπ
(∇2

πJθ(π∗))−1∇2
θπJθ(π

∗)
dθ
dw

∣∣∣∣
which can be further bounded by applying telescoping sum to decompose the difference into linear
combination of the difference in each individual gradient term. This suggests that when the smooth-
ness condition of the above derivatives is met, we can bound the error incurred by sub-optimal pol-
icy.

A.3 Experimental Setup

In this section, we describe how we randomly generate the MDP problems and the corresponding
missing parameters.

Feature generation Across all three domains, once the missing parameters are generated, we
feed eachMDP parameter into a randomly initialized neural network with two intermediate layers
each with 64 neurons, and an output dimension size 16 to generate a feature vector of size 16 for the
correspondingMDP parameter. For example, in the gridworld example, each grid cell comes with
a missing reward. So the feature corresponding to this grid cell and the missing reward is generated
by feeding the missing reward into a randomly initialized neural network to generate a feature vector
of size 16 for this particular grid cell. We repeat the same process for all the parameters in the MDP
problem, e.g., all the grid cells in the gridworld problem. The randomly initiated neural network
uses ReLU layers as nonlinearity followed by a linear layer in the end. The generated features are
normalized to mean 0 and variance 1, and we add Gaussian noiseN (0, 1) to the features, with a sig-
nal noise ratio is 1 : 3, to model that the original missing parameters may not be perfectly recovered
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from the noisy features. The predictive model we use to map from generated noisy features to the
missing parameters is a single layer neural network with 16 neurons.

Training parameters Across all three examples, we consider the discounted setting where the
discount factor is γ = 0.95. The learning rate is set to be α = 0.01. The number of demonstrated
trajectories is set to be 100 in both the random and near-optimal settings.

Reinforcement learning solvers In order to train the optimal policy, in the gridworld ex-
ample, we use tabular value-iteration algorithm to learn the Q value of each state action pair. In the
snare finding and the TB problems, since the state space is continuous, we apply DDQN262,309 to
train the Q function and the corresponding policy, where we use a neural network with two inter-
mediate layers each with 64 neurons to represent the function approximators of the Q values. There
is one exception in the runtime plot of the snare finding problem in Figure 2.3(c), where the full
Hessian computation is infeasible when a two layer neural network is used. Thus we use an one layer
neural network with 64 neurons only to test the runtime of different Hessian approximations.

A.3.1 Gridworld ExampleWithMissing Rewards

Problem setup We consider a 5 × 5 Gridworld environment with unknown rewards as our
MDP problems with unknown parameters. The bottom left corner is the starting point and the top
right corner is a safe state with a high reward drawn from a normal distributionN (5, 1). The agent
can walk between grid cells by going north, south, east, west, or deciding to stay in the current grid
cells. So the number of available actions is 5, while the number of available states is 5× 5 = 25.

The agent collects reward when the agent steps on each individual grid cell. There is 20% chance
that each intermediate grid cell is a cliff that gives a high penalty drawn from another normal dis-
tributionN (−10, 1). All the other 80% of grid cells give rewards drawn fromN (0, 1). The goal
of the agent is to collect as much reward as possible. We consider a fixed time horizon case with 20
steps, which is sufficient for the agent to go from bottom left to the top right corner.

Training details Within each individual training step for eachMDP problem with missing
parameters, we first predict the rewards using the predictive model, and then solve the resulting
problem using tabular value-iteration. We run in total 10000 iterations to learn the Q values, which
are later used to construct the optimal policy. To relax the optimal policy given by the RL solver, we
relax the Bellman equation used to run value-iteration by relaxing all the argmax and max operators
in the Bellman equation to softmax with temperature 0.1, i.e., we use SOFTMAX(0.1 · Q-values)
to replace all the argmax over Q values. The choice of the tempreratue 0.1 is to make sure that the
optimal policy is smooth enough but the relaxation does not impact the optimal policy too much as
well.
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Random and near-optimal trajectories generation To generate the random trajecto-
ries, we have the agent randomly select actions between all actions. To generate the near-optimal
trajectories, we replace the softmax with temperature 0.1 by softmax with temperature 1 and train
an RL agent using ground truth reward values by 50000 value-iterations to get a near-optimal pol-
icy. We then use the trained near-optimal policy to generate 100 independent trajectories as our
near-optimal demonstrated trajectories.

A.3.2 Snare Finding ProblemWithMissing Transition Probability

Problem setup In the snare finding problem, we consider a set of 20 sites that are vulnerable
to poaching activity. We randomly select 20% of the sites as high-risk locations where the probabil-
ity of having a poacher coming and placing a snare is randomly drawn from a normal distribution
N (0.8, 0.1), while the remaining 80% of low-risk sites with probabilityN (0.1, 0.05) having a
poacher coming to place a snare. These transition probabilities are not known to the ranger, and the
ranger has to rely on features of each individual site to predict the corresponding missing transition
probability.

We assume the maximum number of snare is 1 per location, meaning that if there is a snare and it
has not been removed by the ranger, then the poacher will not place an additional snare there until
the snare is removed. The ranger only observes a snare when it is removed. Thus the MDP problem
with given parameters is partially observable, where the state maintained by the ranger is the belief of
whether a site contains a snare or not, which is a fractional value between 0 and 1 for each site.

The available actions for the ranger are to select a site from 20 sites to visit. If there is a snare in
the location, the ranger successfully removes the snare and gets reward 1 with probability 0.9, and
otherwise the snare remains there with a reward−1. If there is no snare in the visited site, the ranger
gets reward−1. Thus the number of actions to the ranger is 20, while the state space is continuous
since the ranger uses continuous belief as the state.

Training details To solve the optimal policy from the predicted parameters, we run DDQN
with 1000 iterations to collect random experience and 10000 iterations to train the model. We use
a replay buffer to store all the past experience that the agent executed before. To soften the optimal
policy, we also use a relaxed Bellman equation as stated in Section A.3.2. Because the cumulative
reward and the corresponding Q values in this domain is relatively smaller than the Gridworld do-
main, we replace all the argmax and max operators by softmax with a larger temperature 1 to reflect
the relatively smaller reward values.

Random and near-optimal trajectories generation Similar to Section A.3.1, we gen-
erate the random trajectories by having the agent choose action from all available actions uniformly
at random. To generate the near-optimal trajectories, we replace all the softmax with temperature
1 by softmax with temperature 5, and we use the ground truth transition probabilities to train the
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RL agent by DDQN using 50000 iterations to generate a near-optimal policy. The near-optimal
trajectories are then generated by running the trained near-optimal policy for 100 independent runs.

A.3.3 TuberculosisWithMissing Transition Probability

Problem setup There are a total of 5 patients who need to take their medication at each time-
step for 30 time-steps. For each patient, there are 2 states – non-adhering (0), and adhering (1). The
patients are assumed to start from a non-adhering state. Then, in subsequent time-steps, the pa-
tients’ states evolve based on their current state and whether they were intervened on by a healthcare
worker according to a transition matrix.

The raw transition probabilities for different patients are taken from170.* However, these raw
probabilities do not record a patient’s responsiveness to an intervention. To incorporate the effect
of intervening, we sample numbers fromU(0, 0.4), and (a) add them to the probability of adher-
ing when intervened on, and (b) subtract them from the probability of adhering when not. Finally,
we clip the probabilities to the range of [0.05, 0.95] and re-normalize. We use the raw transition
probabilities and the randomly generated intervention effect to model the behavior of our synthetic
patients and generate all the training trajectories accordingly. The entire transition matrix for each
patient is then fed as an input to the feature generation network to generate features for that patient.
In this example, we assume the transition matrices to be missing parameters, and try to learn a pre-
dictive model to recover the transition matrices from the generated features using either two-stage or
various decision-focused learning methods as discussed in the main paper.

Given the synthetic patients, we consider a healthcare worker who has to choose one patient at ev-
ery time-step to intervene on. However, the healthcare worker can only observe the ‘true state’ of a
patient when she intervenes on them. At every other time, she has a ‘belief’ of the patient’s state that
is constructed from the most recent observation and the predicted transition probabilities. There-
fore, the healthcare worker has to learn a policy that maps from these belief states to the action of
whom to intervene on, such that the sum of adherences of all patients is maximised over time. The
healthcare worker gets a reward of 1 for an adhering patient and 0 for a non-adhering one. Like
Problem A.3.2, this problem has a continuous state space (because of the belief states) and discrete
action space.

Training details Same as Section A.3.2.

Random and near-optimal trajectories generation Similar to Section A.3.2, we gen-
erate the random trajectories by having the agent choose action from all available actions uniformly
at random. To generate the near-optimal trajectories, we replace all the softmax with temperature 5
by softmax with temperature 20,† and we use the ground truth transition probabilities to train the

*The raw transition probabilities taken from170 are only used to generate synthetic patients.
†The reason that we use a relatively larger temperature is because the range of the cumulative reward

in TB domain is smaller than the previous two domains. In TB domain, the patients could change from
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Figure A.1: Learning curves of for the TB problem with random trajectories.

RL agent by DDQN using 100, 000 iterations to generate a near-optimal policy. The near-optimal
trajectories are then generated by running the trained near-optimal policy for 100 independent runs.

A.4 Additional Experiment Results

Tuberculosis Adherence The results for this problem can be found in Table 2.1, and the
training curves can be found in Figure A.1. While the standard errors associated with the results
seem very large, this is in large part because of the way in which we report them. To keep it consis-
tent with other problems, we average the absolute OPE scores for each method across multiple prob-
lem instances. However, in the TB case, each problem instance can be very different because the
patients in each of these instances are sampled from the transition probabilities previously studied
in170 that have diverse patient behaviour. As a result, the baseline OPE values vary widely across dif-
ferent problem instances, causing a larger variation in Figure A.1(b) and contributing as the major
source of standard deviation.

Computation cost of Bellman equation-based decision-focused methods We
additionally compare the runtime of the operation of backpropagation per gradient step of Bell-
man equation-based decision-focused learning using different Hessian approximations. This is the
runtime required to compute the gradient in the backward pass. We can see that the runtime of
methods using identity andWoodbury methods are much smaller than the runtime of full Hes-

non-adhering back to adhering even if there is no intervention, while in contrast, a snare placed in a certain
location will not be removed until the ranger visits the place. In other words, the improvement that inter-
vention can introduce is relatively limited compared to the snare finding domain. Thus even though the
cumulative reward in TB domain is larger than the previous two domains, the range is smaller and thus we
need a larger temperature.
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Figure A.2: We compare the backpropagation runtime of decision‐focused learning methods using bellman optimality
with different Hessian approximations. We can see that the runtime of both identity and Woodbury methods largely
outperform the runtime of full Hessian computation, demonstrating the importance of the Hessian approximation. Ad‐
ditionally, the runtime of Woodbury method using low‐rank approximation is similar to the runtime of identity method.
Woodbury method provides a more accurate approximation with a similar runtime.

sian approximation. This matches to our analysis in Section 2.7 and the experimental results in
Figure 2.2(c) and Figure 2.3(c).

Choice of regularizer λ in Algorithm 1 and ablation study We ran an ablation study
by varying the regularization constant λ in Algorithm 1 using the snare-finding problem. The ex-
perimental result is shown in Figure A.3. The role of regularization in Algorithm 1 is to help resolve
the non-convexity issue of the off-policy evaluation (OPE) objective. Decision-focused learning
methods can easily get trapped by various local minima due to the non-convexity of the OPEmet-
ric. Adding a small two-stage loss can improve the convexity of the optimizing objective and thus
help improve the performance as well. We can see that adding small amount of regularization can
usually help improve the overall performance in both cases with random and near-optimal trajecto-
ries. However, adding too much regularization in Algorithm 1 can push decision-focused learning
toward two-stage approach, which can degrade the performance sometimes. The right amount of
regularization is critical to balance between the issue of convexity and the optimizing objective.

A.5 Computing Infrastructure

All experiments except were run on a computing cluster, where each node is configured with 2 Intel
Xeon Cascade Lake CPUs, 184 GB of RAM, and 70 GB of local scratch space. Within each exper-
iment, we did not implement parallelization nor use GPU, so each experiment was purely run on a
single CPU core.
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Figure A.3: Ablation study of different regularization λ in Algorithm 1 on the snare‐finding problem using different
decision‐focused learning methods.
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B
Appendix to Chapter 3

B.1 Hyperparameter Setting and Computation Infrastructure

We run both Decision Focused Learning and Two-Stage Learning for 50 epochs in 2-state and 5-
state synthetic domain problems, 30 epochs in ARMMAN domain and 18 epochs in 2-state par-
tially observable setting. The learning rate r is kept at 0.01 and γ = 0.59 is used in all experiments.
All the experiments are performed on an Intel Xeon CPUwith 64 cores and 128 GBmemory.

Neural Network Structure

The predictive modelmw we use to predict the transition probability is a neural network with an
intermediate layer of size 64 with ReLU activation function, and an output layer of size of the tran-
sition probability followed by a softmax layer to match probability distribution. Dropout layers
are added to avoid overfitting. The same neural network structure is applied to all domains and all
training methods.

In the synthetic datasets, given the generated transition probabilities, we feed the transition prob-
ability of each arm into a randomly initialized neural network with two intermediate layers each
with 64 neurons, and an output dimension size 16 to generate a feature vector of size 16. The ran-
domly initiated neural network uses ReLU layers as nonlinearity followed by a linear layer in the
end.
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B.2 Real ARMMANDataset

The large-scale quality improvement study conducted by ARMMAN 20 contains 7668 beneficiries
in the Round Robin Group. Over a duration of 7 weeks, 20% of the beneficiaries receive at least
one active action (LIVE service call). We randomly split the 7668 beneficiaries into 12 groups while
preserving the proportion of beneficiaries who received at least one active action. There are 43 fea-
tures available for every beneficiary which describe characteristics such as age, income, education
level, call slot preference, language preference, phone ownership etc.

B.2.1 Protected and Sensitive Features

ARMMAN’s mobile voice call program has long been working with socially disadvantaged popula-
tions. ARMMAN does not collect or include constitutionally protected and particularly sensitive
categories such as caste and religion. Despite such categories not being available, in pursuit of ensur-
ing fairness, we worked with public health and field experts to ensure indicators such as education,
and income levels that signify markers of socio-economic marginalization were measured and evalu-
ated for fairness testing.

B.2.2 Feature List

We provide the full list of 43 features used for predicting transition probability:

• Enroll gestation age, age (split into 5 categories), income (8 categories), education level (7
categories), language (5 categories), phone ownership (3 categories), call slot preference (5
categories), enrollment channel (3 categories), stage of pregnancy, days since first call, gravid-
ity, parity, stillbirths, live births

B.2.3 Feature Evaluation

Feature Two-stage Decision-focused learning p-value
age (year) 25.57 24.9 0.06
gestation age (week) 24.28 17.21 0.00

Table B.1: Feature analysis of continuous features. This table summarizes the average feature values of the beneficiaries
selected to schedule service calls by different learning methods. The p‐value of the continuous features is analyzed
using t‐test for difference in mean.

In our simulation, we further analyze the demographic features of participants who are selected
to schedule service calls by either two-stage learning method and decision-focused learning method.
The following tables show the average value of each individual feature over the selected participants
with scheduled service calls under the two-stage or decision-focused learning method. The p-value

286



Feature Two-stage DFL p-value
income (rupee, averaged over multiple categories) 10560.0 11190.0 0.20
education (categorical) 3.32 3.16 0.21
stage of pregnancy 0.13 0.03 0.00
language
language (hindi) 0.53 0.6 0.04
language (marathi) 0.45 0.4 0.08
phone ownership
phone ownership (women) 0.86 0.82 0.04
phone ownership (husband) 0.12 0.16 0.03
phone ownership (family) 0.02 0.02 1.00
enrollment channel
channel type (community) 0.7 0.47 0.00
channel type (hospital) 0.3 0.53 0.00

Table B.2: Feature analysis of categorical features. This table summarizes the average feature values of the beneficiaries
selected to schedule service calls by different learning methods. The p‐value of the categorical values is analyzed using
chi‐square test for different proportions.

of the continuous features is analyzed using t-test for difference in mean; the p-value of the categori-
cal values is analyzed using chi-square test for different proportions.

In Table B.1 and Table B.2, we can see that there is no statistical significance (p-value> 0.05)
between the average feature values of income and education, meaning that there is no obvious dif-
ference in these feature values between the population selected by two different methods. We see
statistical significance in some other features, e.g., gestation age, stage of maternal event, language,
phone ownership, and channel type, which may be further analyzed to understand the benefit of
decision-focused learning, but they do not appear to directly bear upon socio-economic marginaliza-
tion; these features are more related to the health status of the beneficiaries.

B.3 Consent for Data Collection and Analysis

In this section, we provide information about consent related to data collection, analyzing data, data
usage and sharing.

B.3.1 Secondary Analysis and Data Usage

This study falls into the category of secondary analysis of the aforementioned dataset. We use the
previously collected engagement trajectories of different beneficiaries participating in the service
call program to train the predictive model and evaluate the performance. The evaluation of the pro-
posed algorithm is evaluated via different off-policy policy evaluations, including an importance
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sampling-based method and a simulation-based method discussed in Section 3.6. This paper does
not involve deployment of the proposed algorithm or any other baselines to the service call pro-
gram.As noted earlier, the experiments are secondary analysis using different evaluation metrics with
approval from the ARMMAN ethics board.

B.3.2 Consent for Data Collection and Sharing

The consent for collecting data is obtained from each of the participants of the service call program.
The data collection process is carefully explained to the participants to seek their consent before
collecting the data. The data is anonymized before sharing with us to ensure anonymity. Data ex-
change and use was regulated through clearly defined exchange protocols including anonymization,
read-access only to researchers, restricted use of the data for research purposes only, and approval by
ARMMAN’s ethics review committee.

B.3.3 Universal Accessibility of Health Information

To allay further concerns: this simulation study focuses on improving quality of service calls. Even
in the intended future application, all participants will receive the same weekly health information
by automated message regardless of whether they are scheduled to receive service calls or not. The
service call program does not withhold any information from the participants nor conduct any ex-
perimentation on the health information. The health information is always available to all partici-
pants, and participants can always request service calls via a free missed call service. In the intended
future application our algorithmmay only help schedule *additional* service calls to help beneficia-
ries who are likely to drop out of the program.

B.4 Societal Impacts and Limitations

B.4.1 Societal Impacts

The improvement shown in the real dataset directly reflects the number of engagements improved
by our algorithm under different evaluation metrics. On the other hand, because of the use of
demographic features to predict the engagement behavior, we must carefully compare the mod-
els learned by standard two-stage approach and our decision-focused learning to further examine
whether there is any bias or discrimination concern.

Specifically, the data is collected by ARMMAN, an India non-government organization, to help
mothers during their pregnancy. The ARMMAN dataset we use in the paper does not contain in-
formation related to race, religion, caste or other sensitive features; this information is not available
to the machine learning algorithm. Furthermore, examination by ARMMAN staff of the mothers
selected for service calls by our algorithm did not reveal any specific bias related to these features. In
particular, the program run by ARMMAN targets mothers in economically disadvantaged commu-
nities; the majority of the participants (94%) are below the international poverty line determined
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by TheWorld Bank342. To compare the models learned by two-stage and DF-Whittle approach, we
further examine the difference between those mothers who are selected for service call in two-stage
and DF-Whittle, respectively. We observe that there are some interesting differences. For example,
DF-Whittle chooses to do service calls to expectant mothers earlier in gestational age (22% vs 37%),
and to a lower proportion of those who have already given birth (2.8% vs 13%) compared to two-
stage, but in terms of the income level, 94% of the mothers selected by both methods are below the
poverty line. This suggests that our approach is not biased based on income level, especially when
the entire population is coming from economically disadvantaged communities. Our model can
identify other features of mothers who are actually in need of service calls.

B.4.2 Limitations

Impact of limited data and the strength of decision-focused learning As shown
in Section 3.8 and Figure 3.4, we notice a smaller improvement between decision-focused learning
and two-stage approach when there is sufficient data available in the training set. This is because
the data is sufficient enough to train a predictive model with small predictive loss, which implies
that the predicted transition probabilities and the true transition probabilities are also close enough
with similar Whittle indices andWhittle index policy. In this case with sufficient data, there is less
discrepancy between predictive loss and the evaluation metrics, which suggests less improvement
led by fixing the discrepancy using decision-focused learning. Compared to two-stage approach,
decision-focused learning is still more expensive to run. Therefore, when data is sufficient, two-stage
may be sufficient to achieve comparable performance while maintaining a low training cost.

On the other hand, we notice a larger improvement between decision-focused learning and two-
stage approach when data is limited. When data is limited, predictive loss is less representative with a
larger mismatch compared to the evaluation metrics. Therefore, fixing the objective mismatch issue
using decision-focused learning becomes more prominent. Therefore, decision-focused learning
may be adopted in the limited data case to significantly improve the performance.

Computation cost As we have shown in Section 3.5.5, our approach improves the compu-
tation cost of decision-focused learning fromO(MωN) toO(NMω+1), whereN is the number of
arms andM is the number of states. This computation cost is linear in the number of armsN, al-
lowing us to scale up to large real-world deployment of RMAB applications with larger number
of arms involved in the problem. Nonetheless, the extension in terms of the number of statesM
is not cheap. The computation cost still grows between cubic and biquadratic as shown in Fig-
ure B.1. This is particularly significant when working on partially observable RMAB problems,
where the partially observable problems are reduced to fully observable problems with larger num-
ber of states. There is room for improving the computation cost in terms of the number of states to
make decision-focused learning more scalable to real-world applications.
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B.5 Computation Cost Analysis of Decision-focused Learning

We have shown the computation cost of backpropagating throughWhittle indices in Section 3.5.5.
This section covers the remaining computation cost associated to other components, including the
computation cost of Whittle indices in the forward pass, and the computation cost of constructing
soft Whittle index policy using soft-top-k operator.

B.5.1 SolvingWhittle Index (Forward Pass)

In this section, we discuss the cost of computingWhittle index in the forward pass. In the work
by Qian et al. 258 , they propose to use value iteration and binary search to solve the Bellman equa-
tion withM states. Therefore, every value iteration requires updating the current value functions
ofM states by considering all the possibleM2 transitions between states, which results in a com-
putation cost ofO(M2) per value iteration. The value iteration is run for a constant number of
iterations, and the binary search is run forO(log 1

ε) iterations to get a precision of order ε. In total,
the computation cost is of orderO(M2 log 1

ε) = O(M2)where we simply use a fixed precision to
ignore the dependency on ε.

On the other hand, there is a faster way to compute the value function by solving linear program
withM variables directly. The Bellman equation can be expressed as a linear program where all the
M variables are the value functions. The best known complexity of solving a linear program withM
variables isO(M2+ 1

18 ) by Jiang et al. 152 . Notice that this complexity is slightly larger than the one in
value iteration because (i) value iteration does not guarantee convergence in a constant iterations (ii)
the constant associated to the number of value iterations is large.

In total, we need to compute the Whittle index ofN arms and forM possible states in S . The to-
tal complexity of value iteration and linear program areO(NM3)with a large constant andO(NM3+ 1

18 ),
respectively. In any cases, the cost of computing all Whittle indices in the forward pass is still smaller
thanO(NM1+ω), the cost of backpropagating through all the Whittle indices in the backward pass.
Therefore, the backward pass is the bottleneck of the entire process.

B.5.2 Soft-top-k Operators

In Section B.5.1 and Section 3.5.5, we analyze the cost of computing and backpropagating through
Whittle indices of all states and all arms. In this section, we discuss the cost of computing the soft
Whittle index policy from the givenWhittle indices using soft-top-k operators.

Soft-top-k operators Xie et al. 346 reduces top-k selection problem to an optimal transport
problem that transports a uniform distribution across all input elements with sizeN to a distribu-
tion where the elements with the highest-k values are assigned probability 1 and all the others are
assigned 0.

This optimal transport problem withN elements can be efficiently solved by using Bregman
projections41 with complexityO(LN), where L is the number of iterations used to run Bregman

290



0
10
20
30
40

2 4 6 8 10 12 14 16 18 20Ru
nt

im
e 

(s
ec

)

M: # of states

Empirical
Theoretical

Figure B.1: Computation cost comparison of decision‐focused learning in restless multi‐armed bandits to the theoretical
guarantee with varying number of statesM.

projections. In the backward pass, Xie et al. 346 shows that the technique of differentiating through
the fixed point equation32,11 also applies, but the naive implementation requires computation cost
O(N2). Therefore, Xie et al. 346 provides a faster computation approach by leveraging the associate
rule in matrix multiplication to lower the backward complexity toO(N).

In summary, a single soft-top-k operator requiresO(LN) to compute the result in the forward
pass, andO(N) to compute the derivative in the backward pass. In our case, we need to apply one
soft-top-k operator for every time step in T and for every trajectory in T . Therefore, the total com-
putation cost of computing a soft Whittle index policy and the associated importance sampling-
based evaluation metric is bounded byO(LNT|T |), which is linear in the number of armsN, but
still significantly smaller thanO(NMω+1), the cost of backpropagating through all Whittle indices
as shown in Section 3.5.5. Therefore, we just need to concern the computation cost of Whittle in-
dices in decision-focused learning.

B.5.3 Computation Cost Dependency on the Number of States

Figure B.1 compares the computation cost of our algorithm, DF-Whittle, and the theoretical com-
putation costO(NMω+1. We vary the number of statesM in Figure B.1 and we can see that the
computation cost of our algorithmmatches the theoretical guarantee on the computation cost. In
contrast to the prior work with computation costO(MωN), our algorithm significantly improves
the computation cost of running decision-focused learning on RMAB problems.

B.6 Importance Sampling-based Evaluations for ARMMANDataset with Sin-
gle Trajectory

Unlike the synthetic datasets that we can produce multiple trajectories of an RMAB problem, in the
real problem of service call scheduling problem operated by ARMMAN, there is only one trajectory
available to us for every RMAB problem. Due to the specialty of the maternal and child health do-
main, it is unlikely to have the exactly same set of the pregnant mothers participating in the service
call scheduling program at different times and under the same engagement behavior.

Given this restriction, we must evaluate the performance of a newly proposed policy using the
only available trajectory. Unfortunately, the standard CWPDIS in Equation 3.12 does not work
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because the CWPDIS estimator is canceled out when there is only one trajectory:

EvalIS(π, T ) =
∑

t∈[T],i∈[N]

γt−1Eτ∼T
[
rt,iρti(τ)

]
Eτ∼T

[
ρti(τ)

] =
∑

t∈[T],i∈[N]

γt−1 rt,iρti(τ)
ρti(τ)

=
∑

t∈[T],i∈[N]

γt−1rt,i

(B.1)

which is fixed regardless what target policy π is used and the associated importance sampling weights
π(at,i|st)

πbeh(at,i|st) and ρti =
t∏

t′=1

π(at′,i|st′ )
πbeh(at′,i|st′ )

. This implies that we cannot use CWPDIS to evaluate the target

policy when there is only one trajectory.
Accordingly, we use the following variant to evaluate the performance:

EvalIS(π, T ) =
∑

i∈[N],t∈[T]

γt−1 rt,iρ′ti(τ)
E

t′∈[T]

[
ρ′t′i(τ)

] (B.2)

where the new importance sampling weights are defined by ρ′t,i(τ) =
π(at,i|st)

πbeh(at,i|st) , which is not multi-
plicative compared to the original ones.

The main motivation of this new evaluation metric is to segment the given trajectory into a set
of length-1 trajectories. We can apply CWPDIS to the newly generated length-1 trajectories to com-
pute a meaningful estimate because we have more than one trajectory now. The OPE formulation
with segmentation is under the assumption that we can decompose the total reward into the contri-
bution of multiple segments using the idea of trajectory segmentation180,263. This assumption holds
when all segments start with the same state distribution. In our ARMMAN dataset, the data is
composed of trajectories of the participants who have enrolled in the system a few weeks ago, which
have (almost) reached a stationary distribution. Therefore, the state distribution under the behavior
policy, which is a uniform random policy, does not change over time. Our assumption of identi-
cal distribution is satisfied and we can decompose the trajectories into smaller segments to perform
evaluation. Empirically, we noticed that this temporal decomposition helps define a meaningful
importance sampling-based evaluation with the consistency benefit brought by CWPDIS.

B.7 Additional Experimental Results

We provide the learning curves of fully observable 2-state RMAB, fully observable 5-state RMAB,
partially observable 2-state RMAB, and the real ARMMAN fully observable 2-state RMAB prob-
lems in Figure B.2, Figure B.3, Figure B.4, and Figure B.5, respectively. Across all domains, two-
stage method consistently converges to a lower predictive loss faster than decision-focused learning
in Figure B.2(a), Figure B.3(a), Figure B.4(a), and Figure B.5(a). However, the learned model does
not produce a policy with good performance in the importance sampling-based evaluation metric in
Figure B.2(b), Figure B.3(b), Figure B.4(b), and Figure B.5(b), and similarly in the simulation-based
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evaluation metric in Figure B.2(c), Figure B.3(c), Figure B.4(c), and Figure B.5(c).
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(c) Testing simulation‐based evaluation

Figure B.2: Comparison between two‐stage and decision‐focused in the synthetic fully observable 2‐state RMAB prob‐
lems.
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Figure B.3: Comparison between two‐stage and decision‐focused learning for fully observable 5‐state RMAB problems.

B.8 Solving for andDifferentiating Through theWhittle Index Computa-
tion

To solve for the Whittle index for some state u ∈ S, you have to solve the following set of equations:

V(u) = R(s) + βu + γ
∑
s′∈S

P(s, 0, s′) · V(s′)

V(u) = R(s) + γ
∑
s′∈S

P(s, 1, s′) · V(s′) (B.3)

V(s) = max
a∈{0,1}

[R(s) + (1− a)βu + γ
∑
s′∈S

P(s, a, s′) · V(s′)], ∀s ∈ S − u (B.4)

Here:

S is the set of all states
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Figure B.4: Comparison between two‐stage and decision‐focused learning for 2‐state partially observable RMAB prob‐
lems.
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Figure B.5: Comparison between two‐stage and decision‐focused learning in the real ARMMAN service call scheduling
problem. The pulling action in the real dataset is much sparser, leading to a larger mismatch between predictive loss and
evaluation metrics. Two‐stage overfits to the predictive loss drastically with no improvement in evaluation metrics. In
contrast, decision‐focused learning can directly optimize the evaluation metric to avoid the objective mismatch issue.

R(s) is the reward for being in state s

P(s, a, s′) is the probability of transitioning to state s′ when you begin in state s and take action a

V(s) is the expected value of being in state s

βs is the whittle index for state s

One way to interpret these equations is to view them as the Bellman Optimality Equations associ-
ated with a modifiedMDP in which the reward function is changed toR′

u(s, a) = R(s)+ (1− a)βu,
i.e., you are given a ‘subsidy’ for not acting (Equation B.4). Then, to find the whittle index for state
u, you have to find the minimum subsidy for which the value of not acting exceeds the value of act-
ing337. At this transition point, the value of not acting is equal to the value of acting in that state
(Equation B.3), leading to the set of equations above.

Now, this set of equations is typically hard to solve because of themax terms in Equation B.4.
Specifically, knowing whether argmaxa = 0 or argmaxa = 1 for some state s is equivalent
to knowing what the optimal policy is for this modifiedMDP; such equations are typically solved
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using Value Iteration or variations thereof. However, this problem is slightly more complicated than
a standardMDP because one also has to determine the value of βs. The way that this problem is
traditionally solved in the literature is the following:

1. One guesses a value for the subsidy βs.
2. Given this guess, one solves the Bellman Optimality Equations associated with the modified

MDP.
3. Then, one checks the resultant policy. If it is more valuable to act than to not act in state s,

the value of the guess for the subsidy is increased. Else, it is decreased.
4. Go to Step 2 and repeat until convergence.

Given the monotonicity and the ability to bound the values of the whittle index, Step 3 above is
typically solved using binary search. However, even with Binary Search, this process is quite time-
consuming.

In this paper, we provide a much faster solution method for our application of interest. We lever-
age the small size of our state space to search over the space of policies rather than over the correct
value of βs. Concretely, because S = {0, 1} and A = {0, 1}, the whittle index equations for state
s = 0 above boil down to:

V(0) = R(0) + βs0 + γ
∑

s′∈{0,1}

P(0, 0, s′) · V(s′)

V(0) = R(0) + γ
∑

s′∈{0,1}

P(0, 1, s′) · V(s′)

V(1) = max
a∈{0,1}

[R(1) + (1− a)βs0 + γ
∑

s′∈{0,1}

P(1, a, s′) · V(s′)] (B.5)

These are 3 equations in 3 unknowns (V(0),V(1), βs0). The only hiccup here is that Equation B.5
has amax term and so this set of equations can not be solved as normal linear equations would be.
However, we can ‘unroll’ Equation B.5 into 2 different equations:

V(1) = R(1) + βs0 + γ
∑

s′∈{0,1}

P(1, 0, s′) · V(s′), or (B.6)

V(1) = R(1) + γ
∑

s′∈{0,1}

P(1, 1, s′) · V(s′) (B.7)

Each of these corresponds to evaluating the value function associated with the partial policies s =
1 → a = 0 and s = 1 → a = 1. Then to get the optimal policy, we can just evaluate both of the
policies and choose the better of the two policies, i.e., the policy with the higher expected valueV(1).
In practice, we pre-compute the Whittle index and value function using the binary search and value
iteration approach studied by Qian et al. 258 . Therefore, to determine which equation is satisfied,
we just use the pre-computed value functions to evaluate the expected future return of different
actions, and use the one with higher value to form a set of linear equations.
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This gives us a set of linear equations where Whittle index is a solution. We can therefore derive
a closed-form expression of the Whittle index as a function of the transition probabilities, which is
differentiable. This completes the differentiability of Whittle index. This technique is equivalent to
saying that the policy does not change if we infinitesimally change the input probabilities.

B.8.1 Worked Example

s = 0
R(0) = 0

s = 1
R(1) = 1

0.2, 0.8

0.8, 0.2

0.5, 0.5

0.5, 0.5

Figure B.6: An MDP with the probabilities associated with the passive action a = 0 in green and active action a = 1 in
red.

Let us consider the concrete example in Figure B.6 with γ = 0.5. To calculate the whittle index for
state s = 0, we have to solve the following set of linear equations:

V(0) = 0+ βs0 + 0.5 · [0.8V(0) + 0.2V(1)] V(0) = 0+ βs0 + 0.5 · [0.8V(0) + 0.2V(1)]

V(0) = 0+ 0.5 · [0.2V(0) + 0.8V(1)] V(0) = 0+ 0.5 · [0.2V(0) + 0.8V(1)]
V(1)= 1+ βs0 + 0.5 · [0.5V(0) + 0.5V(1)] V(1)= 1+ 0.5 · [0.5V(0) + 0.5V(1)]

V(0)≈ 0.65,V(1) ≈ 1.45, βs0≈ 0.25 V(0)≈ 0.52,V(1) ≈ 1.18, βs0≈ 0.20

Here the left set of equations corresponds to taking action a = 0 in state s = 1 and the right
corresponds to taking the action a = 1. As we can see in the above calculation, given subsidy βs0 ,
it is better to choose the passive action (a=0) on the left to obtain a higher expected future value
V(1). On the other hand, this can also be verified by precomputing the Whittle index and the value
function. Therefore, we know that the passive action in Equation B.7 leads to a higher value, where
the equality holds. Thus we can express the Whittle index as a solution to the following set of linear
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equations:

V(0) = R(0) + βs0 + γ
∑

s′∈{0,1}

P(0, 0, s′) · V(s′)

V(0) = R(0) + γ
∑

s′∈{0,1}

P(0, 1, s′) · V(s′)

V(1) = R(1) + βs0 + γ
∑

s′∈{0,1}

P(1, 0, s′) · V(s′)

By solving this set of linear equation, we can express the Whittle index βs0 as a function of the
transition probabilities. Therefore, we can apply auto-differentiation to compute the derivative
dβs0
dP .
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C
Appendix to Chapter 5

C.1 Computation of Defender Utility

Given coverage z, if we sort the vertices out by intermediate states then absorbing states, then the

transition matrix induced by behavior θ(z, x) can be written as: P =

[
Q R
0 I

]
, where I is an identity

matrix representing once the attacker reaches any absorbing states, he would never transit to other
states. Q,R are both functions of z and x.

The absorbing probability can be computed by B = (I− Q)−1R ∈ R|S|×(|T|+1), where the entry
Bij indicates the probability that the attacker initiates from state i and ends up being in absorbing
state j. Since we also know the distribution π ∈ R|S| that the attacker will appear and the defender
utilityUd ∈ R|T|+1 including the reward of catching the attacker, the defender utility can be given
by π⊤BUd, where the function f is defined by the negative defender utility:

f(z, θ) = −π⊤BUd = −π⊤(I− Q(z, θ))−1R(z, θ)Ud (C.1)

which is still a function of z and θ. We can also compute the derivatives of this function f. But since
the computation of f involves matrix inversion, the computation of derivatives will also involve
matrix inversions and multiplications, which can be very expensive especially for higher order deriva-
tives.
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C.2 The Choices of Loss Function

Given two transition matricesM,M′ ∈ R|V|×|V|, we can align with the any standard definition of
matrix norm:

L(M,M′) =
∥∥M−M′∥∥ (C.2)

Another choice of loss function definition is to compute the KL-divergence or cross entropy of
the path distribution inferred by these two transition matrices. Since there are absorbing states, the
path can eventually terminate when it reaches to any of the absorbing state. However, there could
be loop in the graph, which might incur infinitely many possible paths, making the path distribu-
tion infinitely dimensional. Another issue is that we do not have a close form of the path distribu-
tion, which can prevent us from computing the KL-divergence between two implicit distributions.

In our domain, we usually have samples from the ground truthMarkov chain, which can be used
as an empirical path distribution. By considering those samples as the empirical distribution Λ, we
can compute the KL-divergence between Λ and the predictedMarkov chainM:

L(Λ,M) =
∑
α

prob(α ∈ Λ) log
prob(α ∈ Λ)
prob(α ∈M)

(C.3)

which can be efficiently computed since Λ is finite and all the probability can be analytically com-
puted. This serves as an alternative for us to compute the KL-divergence between the ground truth
and our prediction.

C.3 Differentiable Quadratic Program

Given a quadratic program:

min
z

1
2
zTQz+ pTz (C.4)

s.t. Gz ≤ h
Az = b

According to80,11, we can compute the derivative of the optimal solution z∗ with respect to each pa-
rameters in the quadratic program, e.g.,Q, p,G, h,A, b. In our case, we only consider the derivative
with respect to p, whereG, h,A, b are constants and we ignore the derivative of the HessianQ since
its derivative is of third order.

After solving the quadratic program, we can get the solution z∗ with dual variables λ∗, ν∗ re-
spectively for the inequality constraints and equality constraints. All the variables z∗, λ∗, ν∗ are all
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functions of prediction θ. In80,11, they proposed that if we write the KKT conditions:

Qz∗ + p+ A⊤ν∗ + G⊤λ∗ = 0
Az∗ − b = 0

D(λ∗)(Gz∗ − h) = 0

whereD(λ∗) is the diagonal matrix with λ∗ on the diagonal. We can consider the total derivative of
the above equations, which yields:

dQz∗ + Qdz∗ + dp+ dA⊤ν∗ + A⊤dν∗ + dG⊤λ∗ + G⊤dλ∗ = 0
dAz∗ + Adz∗ − db = 0

D(Gz∗ − h)dλ∗ +D(λ∗)(dGz∗ + Gdz∗ − dh) = 0

Since here we assumeQ,G, h,A, b are all constants, so we can ignore the derivatives of there terms
and get:

Qdz∗ + dp+ A⊤dν∗ + G⊤dλ∗ = 0
Adz∗ = 0

D(Gz∗ − h)dλ∗ +D(λ∗)Gdz∗ = 0

which can be further turned into matrix form: Q G⊤ A⊤

D(λ∗)G D(Gz∗ − h) 0
A 0 0

dz∗dλ∗

dν∗

 =

−dp0
0


⇔

 Q G⊤ A⊤

D(λ∗)G D(Gz∗ − h) 0
A 0 0




dz∗
dp
dλ∗
dp
dν∗
dp

 =

−I0
0

 (C.5)

⇔


dz∗
dp
dλ∗
dp
dν∗
dp

 =

 Q G⊤ A⊤

D(λ∗)G D(Gz∗ − h) 0
A 0 0

−1 −I0
0


This allows us to compute the gradients dz∗

dp by solving the corresponging linear equation.

We can also combine the chain rule df
dp =

df
dz∗

dz∗
dp by:

df
dp

=


dz∗
dp
dλ∗
dp
dν∗
dp


⊤  df

dz∗
0
0

 =

−I0
0

⊤ Q D(λ∗)G⊤ A⊤

G D(Gz∗ − h) 0
A 0 0

−1  df
dz∗
0
0
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Or equivalently, define dzdλ
dν

 =

Q D(λ∗)G⊤ A⊤

G D(Gz∗ − h) 0
A 0 0

−1 − df
dz∗
0
0

 (C.6)

then df
dp = dz, which is the derivative of the objective function fwith respect to the linear coefficient

p of the quadratic program.

C.4 Proof of Theorem 3

Theorem 3. When the intermediate prediction matches the ground truth, i.e., θ(·, ·;w∗) = θ∗, we
have df(z∗,θ∗)

dw |w=w∗ = 0 for both Algorithm 3 and Algorithm 4 with any block C.

Proof. We first prove for the Algorithm 3 case. Our goal is to prove that this df
dp |θ=θ∗ = dz is exactly

0 at θ∗, meaning there is no gradient at the true optimal prediction θ∗.
To prove this, we directly show that dz = 0, dλ = 1{λ∗ ̸=0}, dν = ν∗ is a solution. When the KKT

matrix in Equation C.5 is non-singular, this implies that dz = 0 is the unique solution. When the
KKTmatrix is singular, dz = 0 is a subgradient. Furthermore, if we follow the implementation in80,
they remove the dependent rows of the KKTmatrix C.5 such that the matrix is non-singular, which
again implies that dz = 0 is the unique solution. To verify this, we can compute:Q G⊤D(λ∗) A⊤

G D(Gz∗ − h) 0
A 0 0

 0
1{λ∗ ̸=0}

ν∗


=

G⊤D(λ∗)1{λ∗ ̸=0} + A⊤ν∗
D(Gz∗ − h)1{λ∗ ̸=0}

0

 =

G⊤λ∗ + A⊤ν∗
0
0


Notice that the KKT condition of the quadratic program implies:

Qz∗ + p+ A⊤ν∗ + G⊤λ∗ = 0

⇔ Qz∗ +
∂f
∂z
|z=z∗,θ=θ∗ − Qz∗ + A⊤ν∗ + G⊤λ∗ = 0

⇔ ∂f
∂z
|z=z∗,θ=θ∗ + A⊤ν∗ + G⊤λ∗ = 0
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Q G⊤D(λ∗) A⊤

G D(Gz∗ − h) 0
A 0 0

 0
1{λ∗ ̸=0}

ν∗


=

G⊤λ∗ + A⊤ν∗
0
0

 =

− df
dz∗
0
0


This verifies that dz = 0, dλ = 1{λ∗ ̸=0}, dν = ν∗ is a solution of Equation C.6. This concludes the
proof of Algorithm 3.

To prove for Algorithm 4, we consider the following equation:

dzCdλ
dν

 =

QC D(λ∗)G⊤
C A⊤

C
GC D(GCz∗C − hC) 0
AC 0 0

−1
−

df
dz∗C
0
0

 (C.7)

whereG =
[
GC GC

]
,A =

[
AC AC

]
thatGC,AC correspond to the coefficients of indices C.

hC = h− GCz
∗
C corresponds to the modified linear inequalities without the effect of terms zC.

We can also verify that df
dpC |θ=θ∗ = dzC = 0 is a solution in Equation C.7. By setting dzC =

0, dλ = 1{λ∗ ̸=0}, dν = ν∗, we can find that this also satisfies the Equation C.7.
All of these imply that df

dpC |θ=θ∗ = 0 (or at least a feasible subderivative). By applying Equa-

tion 5.9 of Algorithm 3 or Equation 5.11 of Algorithm 4, we can get df(z∗,θ∗)
dθ |θ=θ∗ = 0 where θ∗ is

the optimal model parameter that gives the correct prediction θ∗.

C.5 Proof of Theorem 4

Theorem 4. The quadratic programs in Algorithm 3 and Algorithm 4 share the same primal solu-
tions on the block C. They also share the same dual solution on the non-degenerate constraints contain-
ing at least one variable in the block.

Proof. Since both algorithms are derived from Taylor expansion around a local optimum, the Hes-
sian is always positive definite. Therefore, the solution given by the quadratic program is exactly the
same as the local optimum previously computed, which is shared for both algorithms. So both of
them share the same primal solutions at indices C.

For the dual solutions, we can write down the quadratic programs C.4 for Algorithm 3 by:

min
z

1
2
z⊤Qz+ p⊤z (C.8)

s.t. Gz ≤ h
Az = b
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withQ =
∂2f
∂z2 |z=z∗ , p =

∂f
∂z |z=z∗ − Qz∗. The KKT stationary condition can be given by:

Qz∗ + p+ G⊤λ∗ + A⊤ν∗ = 0

⇔ Qz∗ +
∂f
∂z
|z=z∗ − Qz∗ + G⊤λ∗ + A⊤ν∗ = 0

⇔ ∂f
∂z
|z=z∗ + G⊤λ∗ + A⊤ν∗ = 0 (C.9)

Similarly for Algorithm 4 in the case there is no degenerative constraint, we have:

min
zC

1
2
z⊤CQCCzC + p⊤C zC (C.10)

s.t. GCzC ≤ hC = h− GCzC
ACzC = bC = b− ACzC

whereQCC =
∂2f
∂z2C
|z=z∗ , pC =

∂f
∂zC |z=z∗ − QCCz∗C, and constraintsG =

[
GC GC

]
,A =

[
AC AC

]
.

The KKT stationary condition can be given by:

QCCz∗C + pC + G⊤
C λ

∗ + A⊤
C ν∗ = 0

⇔ QCCz∗C +
∂f
∂zC
|z=z∗ − QCCz∗C + G⊤

C λ
∗ + A⊤

C ν∗ = 0

⇔ ∂f
∂zC
|z=z∗ + G⊤

C λ
∗ + A⊤

C ν∗ = 0 (C.11)

Comparing Equation C.9 and Equation C.11, we can find that Equation C.11 is just a subset
of Equation C.9, or more specifically the equations at indices C. Similarly, they also share the same
primal, dual feasibility conditions, and complementary slackness conditions. Therefore, the dual
solutions of the KKT conditions of quadratic program C.8 is also a solution of the KKT conditions
of C.10.

When there are degenerative constraints, for example, some rowsR of the constraintsGC are
degenerative and thus be all 0 after truncating by block C, i.e.,GR,C = 0. In this case,G⊤

C λ
∗ =

G⊤
R,Cλ

∗
R + G⊤

R,Cλ
∗
R = G⊤

R,Cλ
∗
R, where there is no constraint posted on λ

∗
R, which can be arbitrary

here. Similarly, some rows L of equality constraints AC might also be degenerative, i.e., AL,C = 0.
But if we only consider the non-degenerative constraintsGR,C and AL,C, we can re-write the KKT
stationary conditions in Equation C.11 by:

∂f
∂zC
|z=z∗ + G⊤

C λ
∗ + A⊤

C ν∗ = 0

⇔ ∂f
∂zC
|z=z∗ + G⊤

R,Cλ
∗ + A⊤

L,Cν∗ = 0 (C.12)
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In this case, the entire KKT condition with non-degenerative dual variables is non-singular, which
imposes a unique solution to the dual variables. But we have shown that the dual solution of Equa-
tion C.9 is also a solution to Equation C.11, which is again a solution to Equation C.12. By unique-
ness, this solution of Equation C.12is also a solution of Equation C.11 on the non-degenerative
constraintsGR,C,AL,C, thus a solution to the Equation C.9, which concludes the proof.

C.6 Proof of Theorem 5

Theorem 5. Given the primal solution z∗ and the dual solution λ∗ of the quadratic program in Al-
gorithm 3 with linear constraints G, h,A, b, the Hessian Q =

∂2f
∂z , linear coefficient p =

∂f
∂z , and

the sampled indices C ⊂ {1, 2, ..., |E|}, the gradient dz∗C
dpC ∈ R|C|×|C| computed in Algorithm 4 is an

approximation to the block component of the gradient dz∗
dp ∈ R|E|×|E| computed in Algorithm 3. More

specifically, ∥∥∥∥(dz∗

dp

)
CC
−

dz∗C
dpC

∥∥∥∥ ≤ Δ + ΔC

μmin(Q)
max(λ∗, 1)

∥∥K−1
CC
∥∥∥∥∥∥(dz∗

dp

)
CC

∥∥∥∥ (5.12)

where Δ =
∥∥G⊤G+ A⊤A

∥∥ ,ΔC =
∥∥∥Q⊤

CCQCC

∥∥∥, and μmin(Q) is the smallest eigenvalue of positive
definite matrix Q. KCC is the KTTmatrix given by the quadratic program in Algorithm 4.

Proof. DenoteK =

 Q G⊤ A⊤

D(λ∗)G D(Gz∗ − h) 0
A 0 0

 to be the KKTmatrix C.5 of the quadratic

program C.8 given by Algorithm 3. We can also denoteKCC =

 QCC G⊤
C A⊤

C
D(λ∗)GC D(GCz∗C − hC) 0

AC 0 0


to be the KKTmatrix of the quadratic program C.10 given by Algorithm 4. Notice thatKCC is in
fact a block ofK since they share the same primal and dual solution. According to Equation C.5, we
can write down the gradient dz∗

dp and dz∗C
dpC respectively in Algorithm 3 and Algorithm 4 by:

dz∗

dp
=

I0
0

⊤

K−1

−I0
0

 ,
dz∗C
dpC

=

I0
0

⊤

K−1
CC

−I0
0


If we use block form to represent the KKTmatrixK, we can get:

K =

[
K1 K2
K3 K4

]
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where we can apply the block matrix inversion technique and get:

K−1 =

[
K−1
1 + K−1

1 K2(K4 − K3K−1
1 K2)

−1K3K−1
1 −K−1

1 K2(K4 − K3K−1
1 K2)

−1

−(K4 − K3K−1
1 K2)

−1K3K−1
1 (K4 − K3K−1

1 K2)
−1

]
(C.13)

whereK1 needs to be invertible here.

SetK1 = QCC,K2 =
[
QCC G⊤

C A⊤
C

]
,K3 =

 QCC
D(λ∗)GC

AC

 ,K4 = KCC, whereK1 = QCC is

positive definite therefore also invertible. We can see thatK1 ∈ R|C|×|C| and the sizes ofK2,K3,K4
depend on the size of the block C and the size of the constraintsGC,AC, which can probably help
visualize the size of the block matrix.

If we truncate the gradient dz∗
dp to its C block, it is equivalent to remove the C part fromK−1,

which gives us:

(
dz∗

dp

)
CC

=

I0
0

⊤ (
K−1)

CC

−I0
0

 =

I0
0

⊤

(K4 − K3K−1
1 K2)

−1

−I0
0


Therefore, the difference between (dz∗dp )CC and

dz∗C
dpC can be bounded by:

(
dz∗

dp

)
CC
−

dz∗C
dpC

=

I0
0

⊤

(K4 − K3K−1
1 K2)

−1

−I0
0

−
I0
0

⊤

K−1
CC

−I0
0


=

I0
0

⊤

((K4 − K3K−1
1 K2)

−1 − K−1
CC)

−I0
0


=

I0
0

⊤

(K4 − K3K−1
1 K2)

−1(I− (K4 − K3K−1
1 K2)K−1

CC)

−I0
0


=

I0
0

⊤

(K4 − K3K−1
1 K2)

−1(K3K−1
1 K2K−1

CC)

−I0
0

 (C.14)

where the last equality comes from the choiceK4 = KCC, thus the identity matrix is canceled out.
We can then bound the matrix norm ofK3K−1

1 K2K−1
CC by:∥∥K3K−1

1 K2K−1
CC
∥∥ ≤ ‖K3K2‖

∥∥∥Q−1
CC

∥∥∥∥∥K−1
CC
∥∥
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≤
max(λ∗, 1)

∥∥K⊤
2 K2

∥∥
μmin(QCC)

∥∥K−1
CC
∥∥

≤ Δ + ΔC

μmin(QCC)
max(λ∗, 1)

∥∥K−1
CC
∥∥

≤ Δ + ΔC

μmin(Q)
max(λ∗, 1)

∥∥K−1
CC
∥∥ (C.15)

where the second inequality is from the fact thatK3 is a matrix multiplication ofK⊤
2 and a diagonal

matrix with 1 and λ∗ on the diagonal. The matrix norm can be bounded by the matrix norm of
the diagonal matrix, thusmax(λ∗, 1), and the remaining matrix multiplicationK⊤

2 K2. The third
inequality is due to the singular value

∥∥K⊤
2 K2

∥∥ =
∥∥K2K⊤

2
∥∥ =

∥∥∥QCCQCC + G⊤
CGC + A⊤

CAC

∥∥∥ ≤∥∥QCCQCC + G⊤G+ A⊤A
∥∥ ≤ Δ + ΔC, where the middle inequality is due to the fact that all these

individual terms are positive semi-definite, so adding new postive semi-definite terms such that they
becomeG⊤G,A⊤A only increases the norm value.

Taking matrix norm to Inequality C.14 and using Inequality C.15 to substitute
∥∥K3K−1

1 K2K−1
CC
∥∥,

we can get:

∥∥∥∥(dz∗

dp

)
CC
−

dz∗C
dpC

∥∥∥∥ ≤ Δ + ΔC

μmin(Q)
∥∥K−1

CC
∥∥∥∥∥∥∥∥
I0
0

 (K4 − K3K−1
1 K2)

−1

−I0
0

∥∥∥∥∥∥
=

Δ + ΔC

μmin(Q)
∥∥K−1

CC
∥∥∥∥∥∥(dz∗

dp

)
CC

∥∥∥∥ (C.16)

which concludes the proof.

C.6.1 Discussion of Singularity of KKTMatrix

One biggest concern is whether the KKTmatricesK andKCC are singular. If the chosenKCC is
singular, then the bound provided in Theorem 5 becomes useless.

As discussed in the appendix of80, in Equation C.5, due to KKT condition, at least one of λ∗i and
(Gz∗ − h)i is 0. Also as they discussed, when both of them are 0, the whole i-th row inD(λ∗)G and
Gz∗ − h is all 0. We can either impose new constraint or just remove the row to make the matrix
non-singular.

If λ∗i = 0 with (Gz∗ − h)i > 0, then in the i-th row, there is only the term (Gz∗ − h)i being
nonzero. Thus we can solve the equation in the i-th row by setting (dλ

∗

dp )i = 0 and remove the row
and the variable (dλ

∗

dp )i from the linear equation. Therefore, the linear equation and the matrix can
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be simplified by:

 Q G⊤
I A⊤

D(λ∗I )GI D(Gz∗ − h)I 0
A 0 0




dz∗
dp
dλ∗I
dp
dν∗
dp

 =

−I0
0


where I = {i : λ∗i 6= 0}. But notice that (Gz∗ − h)i = 0 due to the KKT conditions and the
assumption of I. So we can simply write:

 Q G⊤
I A⊤

D(λ∗I )GI 0 0
A 0 0




dz∗
dp
dλ∗I
dp
dν∗
dp

 =

−I0
0

 (C.17)

Notice that we can assume
[
D(λ∗)GI

AI

]
to have a full row rank now. Equivalently, we can also as-

sume
[
G⊤
I A⊤

I
]
to have a full column rank.

C.6.2 Singularity of Block KKTMatrix

Given a simplified version of the non-singular full KKTmatrix in Equation C.17, we can write
down the block KKTmatrix as: QCC G⊤

I,C A⊤
C

D(λ∗I )GI,C 0 0
AC 0 0




dz∗C
dpC
dλ∗I
dpC
dν∗
dpC

 =

−I0
0

 (C.18)

whereGI =
[
GI,C GI,C

]
,AI =

[
AI,C AI,C

]
. In order to make the block KKTmatrix non-

singular, we need to select C such that
[
GC
AC

]
remains full row rank. In this case, the block KKT

matrix will remain non-singular and thus invertible.
In practice, we cannot access to the dual varialbe λ∗ before solving the QP and choosing the block

C. But we can compute the slack variablesGzopt − h since zopt is given. We need to make sure to
makeGI,C nonzero for I = {i : λ∗i 6= 0} ⊂ {i : (Gzopt − h)i = 0}, or equivalently the indices of
tight constraints.

Some choices of block Cmight make Equation C.18 singular but still solvable. That is due to

some dependent rows in
[
GI,C
AC

]
, which admit to each others since the right hand side is all 0. This

allows us to remove the redundant constraints and re-solve the linear equation by applying matrix
inversion. But in this case, the block KKTmatrix will not contain all the constraints, which leaves
some constraints out of the block. Algorithm 4 still works but theK1 in the proof of Theorem 5 is
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not justQCC but contains some additional terms from constraints excluded by the block quadratic
program. The bound will also vary since we need to estimate the eigenvalue ofK1, which depends
on the added constraints and does not have a simple form here.
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D
Appendix to Chapter 6

D.1 Preservation of Convexity and Submodularity

Proposition 1. If f is convex, then gP(y, θ) := f(Py, θ) is convex.

Proof. The convexity can be simply verified by computing the second-order derivative:

d2g
dy2

=
d2f(Py, θ)

dy2
= P⊤

d2f
dz2

P � 0

where the last inequality comes from the convexity of f, i.e., d
2f

dz2 � 0.

Proposition 2. If f is DR-submodular and P ≥ 0, then gP(y, θ) := f(Py, θ) is DR-submodular.

Proof. Assume f has the property of diminishing return submodularity (DR-submodular)46. Ac-
cording to definition of continuous DR-submodularity, we have:

∇2
zi,zjf(z, θ) ≤ 0 ∀i, j ∈ [n], y

After applying the reparameterization, we can write:

gP(y, θ) = f(z, θ)
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and the second-order derivative:

∇2
ygP(y, θ) = P⊤∇2

z fP(z, θ)P ≤ 0

Since all the entries of P are non-negative and all the entries of∇2
z fP(z, θ) are non-positive by DR-

submodularity, the product∇2
ygP(y, θ) also has all the entries being non-positive, which satisfies the

definition of DR-submodularity.

D.2 Quasiconvexity in ReparameterizationMatrix

Proposition 3. OPT(θ,P) := min
y feasible

gP(y, θ) is not globally quasiconvex in P.

Proof. Without loss of generality, let us ignore the effect of θ and write gP(y) = f(Pz). In this
proof, we will construct a strongly convex function fwhere the induced optimal value function
OPT(P) := miny gP(y) is not quasiconvex.

Consider z = [z1, z2, z3]⊤ ∈ R3. Define f(z) =

∥∥∥∥∥∥z−
1
1
1

∥∥∥∥∥∥
2

≥ 0 for all z ∈ R3. Define P =1 0
1 0
0 2

 and P′ =

0 1
0 1
2 0

. Apparently, z∗ =

1
1
1

 = P
(

1
0.5

)
and z∗ =

1
1
1

 = P′
(
0.5
1

)
are both achievable. So the optimal values OPT(P) = OPT(P′) = 0. But the combination P′′ =

1
2P+ 1

2P
′ =

0.5 0.5
0.5 0.5
1 1

 cannot, which results in an optimal valueOPT(P′′) = miny gP′′(y) =>

0 since

1
1
1

 6∈ span(P′′). This implies OPT( 12P + 1
2P

′) = OPT(P′′) > 0 = 1
2OPT(P) +

1
2OPT(P′). Thus OPT(P) is not globally convex in the feasible domain.

Theorem 6. If f(·, θ) is quasiconvex, then OPT(θ,P) := min
y feasible

gP(y, θ) is quasiconvex in Pi, the i-th

column of matrix P, for any 1 ≤ i ≤ m, where P = [P1,P2, . . . ,Pm].

Proof. Let us assume P = [p1, p2, ..., pm] and P′ = [p′1, p′2, ..., p′m], where pi = p′i ∀i 6= 1 with
only the first column different. In the optimization problem parameterized by P, there is an optimal

solution z =
m∑
i=1

piyi, yi ≥ 0 ∀i. Similarly, there is an optimal solution z′ =
m∑
i=1

p′iy′i, y′i ≥ 0 ∀i

for the optimization problem parameterized by P′. Denote h(P) := OPT(θ,P). We know that
f(z) = h(P), f(z′) = h(P′). Denote P′′ = cP + (1 − c)P′ = [p′′1 , p′′2 , ..., p′′m] to be a convex
combination of P and P′. Clearly, p′′1 = cp1 + (1 − c)p′1 and p′′i = pi = p′i ∀i 6= 1. Then we can
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construct a solution

z′′ =
1

c
y1 +

1−c
y′1

(
c
y1
z+

1− c
y′1

z′)

=
1

c
y1 +

1−c
y′1

(
c
y1

m∑
i=1

piyi +
1− c
y′1

m∑
i=1

p′iy′i)

=
1

c
y1 +

1−c
y′1

(cp1 + (1− c)p′1) +
1

c
y1 +

1−c
y′1

m∑
i=2

pi(
yi
y1

+
y′i
y′1
)

∈ Span(P′′)

Thus, z′′ is a feasible solution in the optimization problem parameterized by P′′. By the convexity of
f, we also know that

h(cP+ (1− c)P′) = h(P′′) ≤ f(z′′)

= f(
1

c
y1 +

1−c
y′1

(
c
y1
z+

1− c
y′1

z′))

≤ max(f(z), f(z′))
= max(h(P), h(P′))

When one of y1, y′1 is 0, without loss of generality we assume y1 = 0. Then we can construct a
solution z′′ = zwhich is still feasible in the optimization problem parameterized by P′′ = cP+ (1−
c)P′. Then we have the following:

h(P′′) ≤ f(z′′) = f(z) = h(P) ≤ max(h(P), h(P′))

which concludes the proof.

D.3 Sample Complexity of Learning PredictiveModel in Surrogate Problem

Theorem 7. LetHlin be the hypothesis class of all linear function mappings from x ∈ X ⊂ Rp to
θ ∈ Θ ∈ Rn, and let P ∈ Rn×m be a linear reparameterization used to construct the surrogate. The
expected Rademacher complexity over t i.i.d. random samples drawn fromD can be bounded by:

Radt(Hlin) ≤ 2mC
√

2p log(2mt ‖P+‖ ρ2(S))
t

+ O(
1
t
) (6.4)

where C := supθ(maxzf(z, θ) − minzf(z, θ)) is the gap between the optimal solution quality and the
worst solution quality, ρ2(S) is the diameter of the set S, and P+ is the pseudoinverse.

The proof of Theorem 7 relies on the results given by Balghiti et al.87. Balghiti et al. analyzed
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the sample complexity of predict-then-optimize framework when the optimization problem is a
constrained linear optimization problem.

The sample complexity depends on the hypothesis classH, mapping from the feature spaceX
to the parameter space Θ. z∗S(θ) = argminz∈S f(z, θ) characterizes the optimal solution with
given parameter θ ∈ Θ and feasible region S. This can be obtained by solving any linear program
solver with given parameters θ. The optimization gap with given parameter P is defined as ωS(θ) :=
maxz∈S f(z, θ) − minz∈S f(z, θ), and ωS(Θ) := supθ∈Θ ωS(θ) is defined as the upper bound on
optimization gap of all the possible parameter θ ∈ Θ. z∗(H) := {x → z∗(Φ(x))|Φ ∈ H} is the
set of all function mappings from features x to the predictive parameters θ = Φ(x) and then to the
optimal solution z∗(θ).

Definition 28 (Natarajan dimension). Suppose that S is a polyhedron andS is the set of its extreme
points. LetF ∈ SX be a hypothesis space of function mappings fromX toS, and let A ⊂ X to be
given. We say thatF shatters A if there exists g1, g2 ∈ F such that

• g1(x) 6= g2(x) ∀x ∈ A.

• For all B ⊂ A, there exists g ∈ F such that (i) for all x ∈ B, g(x) = g1(x) and (ii) for all
x ∈ A\B, g(x) = g2(x).

The Natarajan dimension ofF , denoted by dN(F), is the maximum cardinality of a set N-shattered
byF .

We first state their results below:

Theorem 29 (Balghiti et al.87 Theorem 2). Suppose that S is a polyhedron andS is the set of its
extreme points. LetH be a family of functions mapping from featuresX to parametersΘ ∈ Rn with
decision variable z ∈ Rn and objective function f(z, θ) = θ⊤z. Then we have that

Radt(H) ≤ ω∗S(Θ)

√
2dN(z∗(H)) log(t|S|2)

t
. (D.1)

where Radt denotes the Radamacher complexity averaging over all the possible realization of t i.i.d.
samples drawn from distributionD.

The following corollary provided by Balghiti et al.87 introduces a bound on Natarajan dimension
of linear hypothesis classH, mapping fromX ∈ Rp to Θ ∈ Rn:

Corollary 3 (Balghiti et al.87 Corollary 1). Suppose that S is a polyhedron andS is the set of its ex-
treme points. LetHlin be the hypothesis class of all linear functions, i.e.,Hlin = {x → Bx|B ∈ Rn×p}.
Then we have

dN(z∗(Hlin)) ≤ np (D.2)
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Also |S| can be estimated by constructing an ε-covering of the feasible region by open balls with
radius ε. Let Ŝε be the centers of all these open balls. We can choose ε = 1

t and the number of open
balls required to cover S can be estimated by

|Ŝε| ≤
(
2tρ2(S)

√
n
)n (D.3)

Combining Equation D.1, D.2, and D.3, the Radamacher complexity can be bounded by:

Corollary 4 (Balghiti et al.87 Corollary 2).

Radt(Hlin) ≤ 2nωS(Θ)

√
2p log(2ntρ2(S))

t
+ O(

1
t
) (D.4)

Now we are ready to prove Theorem 7:

Proof of Theorem 7. Now let us consider our case. We have a linear mapping from features x ∈
X ⊂ Rp to the parameters θ = Bx ∈ Θ ∈ Rn with B ∈ Rn×p. The objective function is formed by

gP(y, θ) = f(Py, θ) = θ⊤Py = (P⊤θ)⊤y = (P⊤Bx)⊤y (D.5)

This is equivalent to have a linear mapping from x ∈ X ⊂ Rp to θ′ = P⊤Bxwhere P⊤B ∈ Rm×p,
and the objective function is just gP(y, θ′) = θ′⊤y. This yields a similar bound but with a smaller
dimensionm� n as in Equation D.6:

Radt(Hlin) ≤ 2mωS(Θ)

√
2p log(2mtρ2(S′))

t
+ O(

1
t
) (D.6)

where ωS(Θ) is unchanged because the optimality gap is not changed by the reparameterization.
The only thing changed except for the substitution ofm is that the feasible region S′ is now defined
in a lower-dimensional space under reparameterization P. But since ∀y ∈ S′, we have Py ∈ S too. So
the diameter of the new feasible region can also be bounded by:

ρ(S′) = maxy,y′∈S′
∥∥y− y′

∥∥
= maxy,y′∈S′

∥∥P+P(y− y′)
∥∥

= maxy,y′∈S′
∥∥P+(Py− Py′)

∥∥
≤ maxz,z′∈S′

∥∥P+(z− z′)
∥∥

≤
∥∥P+∥∥maxz,z′∈S′

∥∥z− z′
∥∥

=
∥∥P+∥∥ ρ(S)

where P+ ∈ Rm×n is the pseudoinverse of the reparameterization matrix Pwith P+P = I ∈
Rm×m (assuming the matrix does not collapse). Substituting the term ρ(S′) in Equation D.6, we
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can get the bound on the Radamacher complexity in Equation 6.4, which concludes the proof of
Theorem 7.

D.4 Non-linear Reparameterization

The main reason that we use a linear reparameterization is to maintain the convexity of the inequal-
ity constraints and the linearity of the equality constraints. Instead, if we apply a convex reparam-
eterization z = P(y), e.g., an input convex neural network13, then the inequality constraints will
remain convex but the equality constraints will no longer be affine anymore. So such convex repa-
rameterization can be useful when there is no equality constraint. Lastly, we can still apply non-
convex reparameterization but it can create non-convex inequality and equality constraints, which
can be challenging to solve. All of these imply that the choice of reparameterization should depend
on the type of optimization problem to make sure we do not lose the scalability while solving the
surrogate problem.

D.5 Computing Infrastructure

All experiments were run on the computing cluster, where each node configured with 2 Intel Xeon
Cascade Lake CPUs, 184 GB of RAM, and 70 GB of local scratch space. Within each experiment,
we did not implement parallelization. So each experiment was purely run on a single CPU core. The
main bottleneck of the computation is on solving the optimization problem, where we use Scipy313
blackbox optimization solver using SLSQPmethod. No GPUwas used to train the neural network
and throughout the experiments.
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E
Appendix to Chapter 7

E.1 Proofs of Proposition 4

and Proposition 5

Proposition 4. The variance returned by Algorithm 5 is

σ2T,entire(xxx) = k(xxx, xxx)−
∑
i,j

zzz⊤i (
∑
l

DDDlKKKl,TDDDl)
−1zzzj (7.6)

where DDDj = diag([gj(xxx1), ..., gj(xxxT)]) and zzzi = DDDikkkj,T(xxx)gj(xxx) ∈ RT.

Proof of Proposition 4. According to Equation (7.4), the posterior covariance kT,entire(xxx, xxx′) in Algo-
rithm 5 can be written as:

kT,entire(xxx, xxx′) = k(xxx, xxx′)− kkkT(xxx)⊤KKKT
−1kkkT(xxx) (E.1)

By the decomposition assumption (Equation (7.1)), we have k(xxx, xxx′) =
J∑

j=1
gj(xxx)kj(xxx, xxx′)gj(xxx′).

315



Moreover,

kkkT(xxx) = [k(xxx1, xxx), ..., k(xxxT, xxx)]⊤

=

J∑
j=1

[gj(xxx1)kj(xxx1, xxx)gj(xxx), ..., gj(xxxT)kj(xxxT, xxx)gj(xxx)]⊤

=

J∑
j=1

DDDjkkkj,T(xxx)gj(xxx) (E.2)

where kkkj,T(xxx) = [kj(xxx1, xxx), ..., kj(xxxT, xxx)]⊤.
The variance function σ2T(xxx) is just the value of covariance function with xxx′ = xxx. Therefore,

combining Equation (E.1) and (E.2), the variance can be written as:

σ2T,entire(xxx) = kT,entire(xxx, xxx)

= k(xxx, xxx)− kkkT(xxx)⊤KKK−1
T kkkT(xxx)

= k(xxx, xxx)−
∑
i,j

gi(xxx)kkki,T(xxx)⊤DDD⊤
i KKK

−1
T DDDjkkkj,T(xxx)gj(xxx)

= k(xxx, xxx)−
∑
i,j

zzz⊤i KKK
−1
T zzzj (E.3)

= k(xxx, xxx)−
∑
i,j

zzz⊤i (
∑
l

DDDlKKKl,TDDDl)
−1zzzj (E.4)

with zzzi = DDDikkkj,Tgj(xxx) ∈ Rn and equation (E.3) to (E.4) is coming from:

KKKT = [k(xxx, xxx′)]xxx,xxx′∈AT + diag([σ2(xxxt)]t∈[T]) (E.5)

=

J∑
j=1

[gj(xxx)kj(xxx, xxx′)gj(xxx′)]xxx,xxx′∈AT

+ diag([g2j (xxxt)σ2j (xxxt)]t∈[T]) (E.6)

=
∑
j
DDDj([kj(xxx, xxx′)]xxx,xxx′∈AT + diag([σ2j (xxxt)]t∈[T]))DDDj

=
∑
j
DDDjKKKj,TDDDj

where the first kernel term from Equation (E.5) to (E.6) is derived by from definition. And in the
latter term, from the decomposition assumption (7.1), the noise variance σ2(xxx) of the target func-
tion f at point xxx is the cumulative variance of the noise variance σ2j (xxx) of each individual function fj,
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i.e.

σ2(xxx) =
J∑

j=1
g2j (xxx)σ2j (xxx) ∀xxx ∈ X , j ∈ [J]

which explains the derivation from Equation E.5 to E.6.

Proposition 5. The variance returned by Algorithm 6 is

σ2T,decomp(xxx) = k(xxx, xxx)−
∑
l

zzz⊤l (DDDlKKKl,TDDDl)
−1zzzl (7.7)

Proof of Proposition 5. In Algorithm 6, it runs GP regression to each function fj(xxx) respectively. We
can compute the corresponding posterior covariance function kj,T by:

kj,T(xxx, xxx′) = kj(xxx, xxx′)− kkkj,T(xxx)⊤KKK−1
j,Tkkkj,T(xxx)

By Algorithm 6, the synthetic covariance of the target function f(xxx) is:

kT,decomp(xxx, xxx′) =
J∑

j=1
gj(xxx)kj,T(xxx, xxx′)gj(xxx′)

σ2T,decomp(xxx) = kT,decomp(xxx, xxx)

=

J∑
j=1

gj(xxx)kj,T(xxx, xxx)gj(xxx)

=

J∑
j=1

gj(xxx)kj(xxx, xxx)gj(xxx)−
J∑

j=1
gj(xxx)kkkj,T(xxx)⊤KKK−1

j,Tkkkj,T(xxx)gj(xxx)

= k(xxx, xxx)−
∑
j
zzz⊤j DDD

−1
j KKK−1

j,TDDD
−1
j zzzj

= k(xxx, xxx)−
∑
j
zzz⊤j (DDDjKKKj,TDDDj)

−1zzzj

E.2 Proof of Theorem 8

Theorem 8. The variance provided by decomposed Gaussian process regression (Algorithm 6) is less
than or equal to the variance provided by Gaussian process regression (Algorithm 5), which implies the
uncertainty by using decomposed Gaussian process regression is smaller.
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Proof. If we write BBBl = DDDlKKKl,TDDDl, BBB is positive definite since it is the multiplication of positive def-
inite matrixKKKl,T and twoDDDl identical diagonal matrices. Using Proposition 4 and 5, the difference
between Equation (7.6) and (7.7) can be written as:

σ2T,entire(xxx)− σ2T,decomp(xxx)

=
∑
l

zzz⊤l (DDDlKKKl,TDDDl)
−1zzzl −

∑
i,j

zzz⊤i (
∑
l

DDDlKKKl,TDDDl)
−1zzzj

=
∑
l

zzz⊤l BBB
−1
l zzzl −

∑
i,j

zzz⊤i (
∑
l

BBBl)−1zzzj

=
∑
l

zzz⊤l BBB
−1
l zzzl − J(

∑
i
zzzi

J
)⊤(

∑
l BBBl
J

)−1(

∑
i
zzzi

J
)

=
∑
l

h(BBBl, zzzl)− Jh(B̄BB, z̄zz) ≥ 0

where B̄BB =

∑
i
BBBi

J and z̄zz =
∑
i
zzzi

J are the average value. The last inequality comes from Jensen inequal-
ity and Lemma 1, which says the matrix-fractional function h is convex.

E.3 Proof of Theorem 9

In order to prove this, we follow the similar techniques as GPUCB292, which is illustrated as fol-
lows:

Lemma 3 (Modified version of Lemma 5.1 from Srinivas et al.). Given f(xxx) =
J∑

j=1
gj(xxx)fj(xxx) (Def-

inition 7), deterministic known functions gj and unknown fj ∼ GP(0, kj(xxx, xxx′)), pick δ ∈ (0, 1)
and set βt = 2 log(|X |πt/δ), where

∑
t≥1

π−1
t = 1, πt > 0. Then, the μt−1(xxx), σt−1(xxx) returned by

Algorithm 7 satisfy:

|f(xxx)− μt−1(xxx)| ≤ β1/2t σt−1(xxx) ∀xxx ∈ X , t ≥ 1

with probability 1− δ.

Proof. Fix t ≥ 1 and xxx ∈ X , Conditioned on sampled points {xxx1, ..., xxxt−1} and sampled values
{y1,j, ..., yt−1,j∀j ∈ [J]}, the Bayesian property of decomposed GP regression (Algorithm 6) implies
that the function value at point xxx forms a Gaussian distribution with mean μt−1(xxx) and variance
σ2t−1(xxx), i.e. f(xxx) ∼ N(μt−1(xxx), σ

2
t−1(xxx)). Now, if r ∼ N(0, 1), then

Pr{r > c} = e−c2/2(2π)−1/2
∫

e−(r−c)2/2−c(r−c)dr ≤ e−c2/2Pr{r > 0} = (1/2)e−c2/2 (E.7)
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for c > 0, since e−c(r−c) ≤ 1 for r ≥ c. Therefore, Pr{|f(xxx) − μt−1(xxx)| > β1/2t σt−1(xxx)} ≤ e−β1/2t ,
using r = (f(xxx)− μt−1(xxx))/σt−1(xxx) and c = β1/2t . Then apply the union bound to all xxx ∈ X :

|f(xxx)− μt−1(xxx)| ≤ β1/2t σt−1(xxx) ∀xxx ∈ X

holds with probability≥ 1− |X |e−β1/2t . Choosing |X |e−β1/2t = δ/πt and using the union bound for
t ∈ N, the statement holds. For example, we can use πt = π2t2/6.

The proof is almost the same as Theorem 5.1 in Srinivas et al. 292 except the Bayesian property
of decomposed Gaussian process, where the Bayesian property of decomposed Gaussian process
can be gotten from the Bayesian property of each individual function fj and the linear combination
of Gaussian distributions is still a Gaussian distribution, which implies the posterior belief after
performing decomposed GP regression at a given point xxx still form a Gaussian distribution with
composed mean and variance.

Lemma 4 (Modified version of Lemma 5.2 from Srinivas et al. 292). Fix t ≥ 1. If |f(xxx)− μt−1(xxx)| ≤
β1/2t σt−1(xxx) for all xxx ∈ X , then the regret rt is bounded by 2β1/2t σt−1(xxxt), where xxxt is the t-th choice of
Algorithm 7.

Proof. By definition of xxxt: μt−1(xxxt) + β1/2t σt−1(xxxt) ≥ μt−1(xxx
∗) + β1/2t σt−1(xxx∗) ≥ f(xxx∗). Therefore,

rt = f(xxx∗)− f(xxxt) ≤ β1/2t σt−1(xxxt) + μt−1(xxxt)− f(xxxt) ≤ 2β1/2t σt−1(xxxt)

Lemma 5 (Modified version of Lemma 5.3 from Srinivas et al. 292). The information gain for the
points selected can be expressed in terms of the predictive variances. If fffj,T = {fj(xxxt)}t∈[T] ∈ RT and
yyyj,T = {yj,t}t∈[T] ∈ RT:

I(yyyj,T : fffj,T) =
1
2

T∑
t=1

log(1+ σ−2σ2j,t−1(xxxt))

where fj(xxxt), yj,t, σ2j,t−1 follow the definition and derivation in Algorithm 7.

Proof. Directly follow by replacing all the f, y, σ by fj, yj, σj in the proof of Theorem 5.3 from Srini-
vas et al. 292.

Theorem 9. Let δ ∈ (0, 1) and βt = 2 log(|X |t2π2/6δ). Running decomposed GP-UCB (Algorithm
7) for a composed sample f(xxx) =

∑
j=1

gj(xxx)fj(xxx) with bounded variance kj(xxx, xxx) ≤ 1 and each fj ∼

GP(0, kj(xxx, xxx′)), we obtain a regret bound ofO(
√
T log |X |

∑J
j=1 B2j γj,T) with high probability,
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where Bj = max
xxx∈X
|gj(xxx)|. Precisely,

Pr
{
RT ≤

√√√√C1TβT
J∑

j=1
B2j γj,T ∀T ≥ 1

}
≥ 1− δ (7.8)

where C1 = 8/ log(1+ σ−2) with noise variance σ2.

Proof. According to Lemma 5, we can take advantage of the individual information gain of each
fj(xxx), which is

Ij(yj,T; fj) =
1
2

T∑
t=1

log(1+ σ−2σ2j,t−1(xxxt))

γj,T = max Ij(yj,T; fj)

Besides, we can also bound the total regret by the individual information gains as following:

J∑
j=1

B2j Ij(yj,T; fj) =
1
2

J∑
j=1

B2j
T∑
t=1

log(1+ σ−2σ2j,t−1(xxxt))

≥ 1
2

J∑
j=1

B2j
T∑
t=1

C−1
2 σ−2σ2j,t−1(xxxt)

≥ 1
2
C−1
2 σ−2

J∑
j=1

T∑
t=1

g2j (xxxt)σ2j,t−1(xxxt)

≥ 1
2
C−1
2 σ−2

T∑
t=1

r2t
4βt

≥ C−1
2 σ−2

8βT

T∑
t=1

r2t

where C2 = σ−2/ log(1 + σ−2) ≥ 1, s2 ≤ C2 log(1 + s2) for s ∈ [0, σ−2] and σ−2σ2j,t−1(xxxt) ≤
σ−2kj(xxxt, xxxt) ≤ σ−2. Let C1 = 8σ2C2 = 8/ log(1+ σ−2). Applying Cauchy inequality gives us:

C1βTT
J∑

j=1
B2j Ij(yj,T; fj) ≥ (

T∑
t=1

rt)2 = R2
T

320



which implies a similar upper bound

RT ≤

√√√√C1TβT
J∑

j=1
B2j γj,T

E.4 Proof of Theorem 10

All the proofs in Theorem 9 apply except Lemma 3. Since the decomposition here is non-linear,
therefore the composition of outcomes of Gaussian processes is no longer an outcome of Gaus-
sian process, which prohibits us to have a nice Gaussian process property: function value f(xxx) does
not form a Gaussian distribution. Due to the non-linearity, the distribution gets distorted, los-
ing its original form with Gaussian distribution. Fortunately, if the partial derivatives of function
g : RJ → R (Definition 8) are bounded, then we can still perform a similar estimation and bound
the distribution by a larger Gaussian distribution, which enables us to have a similar result.

Lemma 6 (General Version with Definition 8 and Algorithm 8). Given f(xxx) = g(f1(xxx), ..., fJ(xxx))
(Definition 8), deterministic known functions g and unknown fj ∼ GP(0, kj(xxx, xxx′)), pick δ ∈ (0, 1)
and set βt = 2 log(|X |Jπt/δ), where

∑
t≥1

π−1
t = 1, πt > 0. Further assume the function g has bounded

partial derivatives Bj = max
xxx∈X
|∇jg(xxx)| ∀j ∈ [J]. Then, the μt−1(xxx), σt−1(xxx) returned by Algorithm 8

satisfy:

|f(xxx)− μt−1(xxx)| ≤ β1/2t σt−1(xxx)∀xxx ∈ X , t ≥ 1

with probability 1− δ.

Proof. The main problem here is the posterior distribution of f(xxx) is not a Gaussian distribution.
But fortunately, the posterior distribution of each fj(xxx) is still a Gaussian distribution with mean
μj,t−1(xxx) and variance σ

2
j,t−1(xxx) for any given xxx ∈ X . Then,

|f(xxx)− μt−1(xxx)| = |g(f1(xxx), ..., fJ(xxx))− g(μ1,t−1(xxx), ..., μJ,t−1(xxx))|

≤
J∑

j=1
Bj|fj(xxx)− μj,t−1(xxx)| (E.8)

Applying the same argument in Lemma 3 to function fj:

Pr{|fj(xxx)− μj,t−1(xxx)| > β1/2t σj,t−1(xxx)} ≤ e−β1/2t
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Then applying the union bound on j ∈ [J], we get

|f(xxx)− μt−1(xxx)| ≤
J∑

j=1
Bj|fj(xxx)− μj,t−1(xxx)|

≤
J∑

j=1
Bjβ1/2t σj,t−1(xxx)

≤ β1/2t

√√√√J(
J∑

j=1
B2j σ2j,t−1(xxx))

= β1/2t σt−1(xxx)

with probability 1− Je−β1/2t , where the last inequality is from Cauchy’s inequality. Then apply union
bound again to all xxx ∈ X , the above inequality yields:

|f(xxx)− μt−1(xxx)| ≤ β1/2t σt−1(xxx) ∀xxx ∈ X

with probability 1− |X |Je−β1/2t . Choosing |X |Je−β1/2t = δ/πt and using the union bound for t ∈ N,
the statement holds, i.e. βt = 2 log(|X |Jπt/δ). Specifically, if we choose πt = π2t2/6, then it
implies βt = 2 log(|X |Jt2π2/6δ).

Theorem 10. By running generalized decomposed GP-UCB with βt = 2 log(|X |Jt2π2/6δ) for a
composed sample f(xxx) = g(f1(xxx), ..., fJ(xxx)) of GPs with bounded variance kj(xxx, xxx) ≤ 1 and each
fj ∼ GP(0, kj(xxx, xxx′)). we obtain a regret bound ofO(

√
T log |X |

∑J
j=1 B2j γj,T) with high probability,

where Bj = max
xxx∈X
|∇jg(xxx)|. Precisely,

Pr
{
RT ≤

√√√√C1TβT
J∑

j=1
B2j γj,T ∀T ≥ 1

}
≥ 1− δ (7.10)

where C1 = 8/ log(1+ σ−2) with noise variance σ2.

Proof. Directly follow by the same proofs of Theorem 9 with Lemma 4, Lemma 5, and Lemma
6.

Remark 1. In inequality (E.8), if we write Zj = |fj(xxx)−μj,t−1(xxx)|, where fj(xxx)−μj,t−1(xxx) is sampled
from a normal distribution with 0mean and σ2j,t−1(xxx) (due to Gaussian process property). Then this
Zj is a random variable drawn from a half-normal distribution with parameter σj(xxx) (no longer the
variance here).
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The summation of half-normal distributions can still be computed and bounded by a similar in-
equality like inequality (E.7). This can provide a constant ratio of improvement to the βt exploration
parameter, thus the regret bound as well. However it does not change the order of regret and sample
complexity. Therefore we are not going to cover this here.
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F
Appendix to Chapter 8

F.1 Notation of Chapter 8

All the notations used in the problem statement, restless multi-armed bandits, and regret analysis are
shown in Table F.1 and Table F.2.

Problem instantiation

Symbol Definition

K Budget in each timestep
N Number of arms. Each arm indexed by i ∈ [N]
t Episode
T Number of episodes
h Timestep within a single episode
H Horizon length for a single episode
γ Discount factor, with γ ∈ (0, 1)

Table F.1: List of common notations in the online restless multi‐armed bandit problem
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Restless bandit notation

Symbol Definition

PPP Set of transition probabilities across all arms, with Pi as transitions for a
single arm

PPP⋆ True transition probabilities
S Set of finitely many possible states with |S| = M possible states
sssh State of the RMAB instance at timestep h, with sssh ∈ SN and initial state

sssinit
sh,i State of arm i ∈ [N] at timestep h
A Set of possible actions. We consider {0, 1}
aaah Action at time h, with aaah ∈ AN

ah,i Action taken on arm i at timestep h
R Given reward function as a function of the state and actionR : S × A →

R.
π(t) Learner’s policy in episode t, where π(t) : SN → AN

π⋆ The optimal policy that maximizes the total future reward.
Pm The optimization problem defined to maximize the optimistic Whittle

index value.
PV The optimization problem defined to maximize the optimistic future value.
Qmi(s, a) Q-value in Bellman equation. The Q-value is defined as the future value

associated to the current state and action.
R(sh,i, ah,i) Reward from arm i at timestep hwith action ah,i
UPPP,λ

π (sss1) Lagrangian relaxation of learner’s objective, with optimal valueUPPP,λ
⋆

VPi,λ
πi (s1,i) Value for being in state si

λ Global penalty for taking action a = 1
βi Whittle index penalty for arm i
Wi(Pi, si) Whittle index of arm iwith transitions Pi and state si
D Dataset of historical transitions

Table F.2: List of common notations in the online restless multi‐armed bandit regret analysis

F.2 Societal Impacts

Restless bandits have been increasingly applied to socially impactful problems including healthcare
and energy distribution. In these settings, we would likely not know the transition dynamics in ad-
vance, particularly if we are working with a new patient population (for healthcare) or new residen-
tial community (for energy). Even past work on streaming bandits209 which allow for newmothers
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to enroll over time assume that the transition probabilities are fully known in advance, which is not
realistic. Our UCWhittle approach enabling online learning for RMABs has the potential to greatly
broaden the applicability of RMABs for social impact, particularly as our theoretical results guaran-
tee limited regret.

F.3 Limitations

One challenge with our UCWhittle approach is that online learning often converges slower than
offline learning that reuses all the data to train for many epochs. In order to accommodate new data
coming in, online learning approaches often take a single update when each new data arrives. In
contrast, offline learning can iterate through the same data for many times, which allows offline
learning approaches to fit the data repeatedly. Therefore, online learning approaches often require
more data to reach the same performance as offline learning approaches.

However, this slower learning behavior also allows online learning approaches to be less biased
to the existing dataset. Online learning approaches are incentivized to explore and update data that
is less queried previously, which also encourages exploring underrepresented groups. This prop-
erty encourages the exploration process and reduce bias to the learned model. This is particularly
important when there are features involved in the learning process. Online learning approaches are
able to explore unseen features more, while offline learning approaches often rely on extrapolation
and are unable to handle unseen features. Our work further extends research in online learning in
RMABs, which also helps explore more possibility to accommodate new data and new features that
are unseen in the existing dataset.

F.4 Full Proofs

F.4.1 Confidence Bound

Proposition 6. Given δ > 0 and t ≥ 1, we have: Pr
(
PPP⋆ ∈ BBB(t)

)
≥ 1− δ

t4 .

Proof. Generally, the L1-deviation of the true distribution and the empirical distribution overm
distinct events from n samples is bounded according to335 by:

Pr(‖p̂− p‖1 ≥ ε) ≤ (2m − 2) exp(−
nε2
2 ) (F.1)

This result can be applied to our case to compare P(t)i (s, a, ·) ∈ R|S| with P⋆(s, a, ·) ∈ R|S| for every
state s and action a. We have:

Pr
(∥∥∥P(t)i (s, a, ·)− P⋆(s, a, ·)

∥∥∥
1
≥ ε
)
≤
(
2|S| − 2

)
exp

(
− nε2

2

)
(F.2)
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By choosing ε =
√

2
n log

(
2|S||S||A|N t4

δ

)
≤
√

2|S|
n log

(
2|S||A|N t4

δ

)
, we have:

Pr

(∥∥∥P(t)i (s, a, ·)− P⋆(s, a, ·)
∥∥∥
1
≥

√
2|S|
n

log

(
2|S||A|Nt4

δ

))
≤ 2|S| exp− log

(
2|S||S||A|N t4

δ

)

=
δ

|S||A|Nt4
(F.3)

Set n = max{1,N(t)
i (s, a)} for each pair of (s, a). Taking union bound over all states s ∈ S , actions

a ∈ A, and arms i ∈ [N] yields:

Pr
(
PPP⋆ 6∈ BBB(t)

)
≤ δ

t4
=⇒ Pr

(
PPP⋆ ∈ BBB(t)

)
≥ 1− δ

t4
(F.4)

F.4.2 Regret Decomposition

Theorem 12 (Per-episode regret decomposition in the fully observable setting). For an arm i, fix
P(t)i , P⋆i , λ, and the initial state s1,i. We have:

VP(t)i ,λ
π(t)i

(s1,i)− VP⋆i ,λ
π(t)i

(s1,i) = E
P⋆i ,π

(t)
i

[ ∞∑
h=1

γh−1
(
T P(t)i

π(t)i
− T P⋆i

π(t)i

)
VP(t)i ,λ
π(t)i

(sh,i)

]
. (8.11)

Proof. Since the value function is a fixed point to the corresponding Bellman operator, we have:

VP(t)i

π(t)i
(s1,i)− VP⋆i

π(t)i
(s1,i) =

(
T P(t)i

π(t)i
VP(t)i

π(t)i
− T P⋆i

π(t)i
VP⋆i
π(t)i

)
(s1,i)

=

(
T P(t)i

π(t)i
− T P⋆i

π(t)i

)
VP(t)i

π(t)i
(s1,i) + T

P⋆i
π(t)i

(
VP(t)i

π(t)i
− VP⋆i

π(t)i

)
(s1,i) (F.5)

where the second term in Equation (F.5) can be further expanded by the Bellman operator:

T P⋆i
π(t)i

(VP(t)i

π(t)i
− VP⋆i

π(t)i
)(s1,i) = Ea∼π(t)i

[
γ
∑
s′∈S

P⋆i (s1,i, a, s′)(V
P(t)i

π(t)i
(s′)− VP⋆i

π(t)i
(s′))

]

= γEs2,i∼P⋆i ,π
(t)
i

[
VP(t)i

π(t)i
(s2,i)− VP⋆i

π(t)i
(s2,i)

]
(F.6)

We can repeatedly apply the decomposition process in Equation (F.5) to the value function differ-
ence in Equation (F.6) to get Equation (8.11), which concludes the proof.
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F.4.3 Regret Boundwith Given Penalty

Theorem 13. Assume the penalty term λ(t) = λ is given and the RMAB instance is ε-ergodicity after
H timesteps. Then with probability 1− δ, the cumulative regret in T episodes is:

Regλ(t) ≤ O
(
1
ε
|S||A|

1
2NH

√
T logT

)
. (8.12)

Proof. We can write

Reg(T) =
T∑
t=1

Reg(t) =
T∑
t=1

(
Reg(t)1PPP⋆ ̸∈BBB(t) + Reg(t)1PPP⋆∈BBB(t)

)
=

T∑
t=1

Reg(t)1PPP⋆ ̸∈BBB(t) +
T∑
t=1

Reg(t)1PPP⋆∈BBB(t) (F.7)

We will analyze both terms separately and combine them together in the end.

Regret when the confidence bounds do not hold

T∑
t=1

Reg(t)1PPP⋆ ̸∈BBB(t) =

√
T∑

t=1
Reg(t)1PPP⋆ ̸∈BBB(t) +

T∑
t=

√
T+1

Reg(t)1PPP⋆ ̸∈BBB(t)

≤NRmax

1− γ
√
T+

T∑
t=

√
T+1

Reg(t)1PPP⋆ ̸∈BBB(t) (F.8)

where we use the trivial upper bound of the individual regret Reg(t) ≤ NRmax
1−γ for all t, whereRmax is

the maximal reward per time step.
Notice that the second term vanishes with probability:

Pr
({

PPP⋆ ∈ BBB(t) ∀
√
T ≤ t ≤ T

})
≥ 1−

∑
√
T≤t≤T

Pr
({

PPP⋆ ∈ BBB(t)
})

≥ 1−
∑

√
T≤t≤T

δ
t4

≥ 1−
∑

√
T≤t≤T

3δ
t4

≥ 1−
∫ ∞

√
T

3δ
t4
dt
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= 1− δ
T3/2 (F.9)

Therefore, the regret outside of confidence bounds is upper bounded byO(
√
T)with probability at

least 1− δ
T3/2 . We can apply union bound to all possible T ∈ N, which holds with high probability:

1−
∞∑
T=1

δ
T3/2 = 1− O(δ) . (F.10)

Regret when the confidence bounds hold Notice that(
T P(t)i

π(t)i
− T P⋆i

π(t)i

)
V(s)

= E
a∼π(t)i

[(
R(s, a) +

∑
s′∈S

P(t)i (s, a, s′)V(s′)

)
−

(
R(s, a) +

∑
s′∈S

P⋆i (s, a, s′)

)
V(s′)

]

= E
a∼π(t)i

[∑
s′∈S

(P(t)i (s, a, s′)− P⋆i (s, a, s′))V(s′)

]

When the confidence bound holds PPP⋆ ∈ BBB(t), we can bound the regret at round l by:

Reg(t) =UPPP(t)
π(t)(sss1)− UPPP⋆

π(t)(sss1)

=
N∑
i=1

VP(t)i

π(t)i
(s1,i)− VP⋆i

π(t)i
(s1,i)

=
N∑
i=1

EP⋆i ,π
(t)
i

[ ∞∑
h=1

γh−1(T P(t)i

π(t)i
− T P⋆i

π(t)i
)VP(t)i

π(t)i
(sh,i)

]

=
N∑
i=1

EP⋆i ,π
(t)
i

∞∑
h=1

∑
s′∈S

γh−1(P(t)i (sh,i, ah,i, s′)− P⋆i (sh,i, ah,i, s′))V
P(t)i

π(t)i
(s′)

≤
N∑
i=1

EP⋆i ,π
(t)
i

∞∑
h=1

γh−1
∥∥∥P(t)i (sh,i, ah,i, ·)− P⋆i (sh,i, ah,i, ·)

∥∥∥
1
Vmax

≤ 2
N∑
i=1

EP⋆i ,π(t)

∞∑
h=1

γh−1d(t)i (sh,i, ah,i)Vmax (F.11)

Next, we split the term into regret withinH horizon and the regret outside ofH horizon. By
applying Theorem 30 with the assumption (Assumption 4) of theH-step ergodicity ε of MDP
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associated to arm i, we can bound the regret outside ofH horizon by the regret atH time step:

EP⋆i ,π(t)

∞∑
h=H+1

γh−1d(t)i (sh,i, ah,i)Vmax

=

∞∑∑∑
h=H+1

γh−1Esh,i,ah,i∼P⋆i ,π
(t)
i

[
d(t)i (sh,i, ah,i)Vmax

]
≤

∞∑∑∑
h=H+1

γh−1 1
ε
EsH,i,aH,i∼P⋆i ,π

(t)
i

[
d(t)i (sh,i, ah,i)Vmax

]
=

γH

ε(1− γ)
EsH,i,aH,i∼P⋆i ,π

(t)
i

[
d(t)i (sh,i, ah,i)Vmax

]
(F.12)

Now, we can further bound the contribution of arm i in Equation F.11 by substituting the regret
afterH steps by Equation F.12 to get:

EP⋆i ,π
(t)
i

∞∑
h=1

γh−1d(t)i (sh,i, ah,i)Vmax

≤EP⋆i ,π
(t)
i

( H∑
h=1

γh−1d(t)i (sh,i, ah,i) +
γH

δ(1− γ)
d(t)i (sH,i, aH,i)

)
Vmax

≤
(
1+

γH

ε(1− γ)

)
EP⋆i ,π

(t)
i

( H∑
h=1

d(t)i (sh,i, ah,i)Vmax

)

=

(
1+

γH

ε(1− γ)

)√
2|S| log(2|A|Nt)VmaxEP⋆i ,π

(t)
i

 H∑
h=1

1√
max{1,N(t)

i (s, a)}


≤
(
1+

γH

ε(1− γ)

)√
2|S| log(2|A|NT)VmaxEP⋆i ,π

(t)
i

 ∑
s∈S,a∈A

v(t)i (s, a)√
max{1,N(t)

i (s, a)}

 (F.13)

where v(t)i (s, a) is a random variable denoting the number of visitations to the pair (s, a) at arm i
that the policy π(t)i visits withinH steps under the transition probability P⋆i .

Recall that
l−1∑
j=1

v(j)i (s, a) = N(t)
i (s, a). We also know that 0 ≤ v(j)i (s, a) ≤ H. Applying Lemma 7,

we have:

T∑
t=1

v(t)i (s, a)√
max{1,N(t)

i (s, a)}
≤
(√

H+ 1+ 1
)√

N(t)
i (s, a) (F.14)
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Taking summation over all the (s, a) pairs and applying Jensen inequality give us:(√
H+ 1+ 1

) ∑
s∈S,a∈A

√
N(t)

i (s, a)

≤
(√

H+ 1+ 1
)
|S||A|

√√√√√ ∑
s∈S,a∈A

N(t)
i (s, a)

|S||A|

=
(√

H+ 1+ 1
)√
|S||A|TH (F.15)

where
∑

s∈S,a∈A
N(t)

i (s, a) = TH is the total number of state-action pairs visited in T rounds.

Lastly, using the trivial upper boundVmax ≤ Rmax
1−γ , we can take summation over the regret from

all T rounds. This give us:

T∑
t=1

Reg(t)1PPP⋆∈BBB(t) (F.16)

≤
N∑
i=1

2
(
1+

γH

ε(1− γ)

)√
2|S| log(2|A|NT)Vmax

(√
H+ 1+ 1

)√
|S||A|TH

≤O
(
1
ε
|S||A|

1
2NH

√
T logT

)
(F.17)

Combining everything together In the first part, we show that
T∑
t=1

Reg(t)1PPP⋆ ̸∈BBB(t) is upper

bounded byO(
√
T) for all T ∈ Nwith probability 1 − O(δ). In the second part, we show that

T∑
t=1

Reg(t)1PPP⋆∈BBB(t) = O(|S||A|
1
2N
√
T logT). Therefore, we can conclude that the total regret

Reg(T) is upper bounded byO(|S||A|
1
2N
√
T logT) for all T ∈ Nwith probability 1− O(δ).

F.4.4 Supplementary Lemma and Theorem

Assumption 4 (Ergodic Markov chain). We denote uP
⋆
i ,πi

h to be the state distribution ofMarkov
chain induced by theMDP with transition probability P⋆i and policy πi after h time steps. We assume
uP

⋆
i ,πi

h (s) > ε > 0 for all entry s ∈ S , all arm i ∈ [N], h ≥ H, and all policy πi. In other words, the
state distribution after H steps is universally lower-bounded by ε > 0, which we say that theMDP is
H-step ε-ergodic.

Assumption 4 can be achieved when both the MDP is ergodic and the horizonH is large enough.
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Theorem 30 (Regret outside ofH steps). When theMarkov chain induced by transition P⋆i and
policy π is H-step ε ergodic, we have:

Esh,i,ah,i∼P⋆i ,πf(sh,i, ah,i) ≤
1
ε
EsH,i,aH,i∼P⋆i ,πf(sH,i, aH,i) (F.18)

for all non-negative function f and h ≥ H.

Proof.

Esh,i,ah,i∼P⋆i ,πf(sh,i, ah,i) =
∑

s∼S,a∼A

Pr(πi(s) = a)uh(s)f(s, a)

≤
∑

s∼S,a∼A

Pr(πi(s) = a)f(s, a)

≤
∑

s∼S,a∼A

Pr(πi(s) = a)
uH(s)
ε

f(s, a)

=
1
ε

∑
s∼S,a∼A

Pr(πi(s) = a)uH(s)f(s, a)

=
1
ε
EsH,i,aH,i∼P⋆i ,πf(sH,i, aH,i) (F.19)

Lemma 7. For any sequence of numbers z1, · · · , zT with 0 ≤ zj ≤ H and Zt = max{1,
t∑

j=1
zj}, we

have:

T∑
t=1

zt√
Zt−1

≤
(√

H+ 1+ 1
)√

ZT

(F.20)

Proof. Proof by induction. Assume that Equation F.20 holds for T− 1. We have:

T−1∑
t=1

zt√
Zt−1

≤
(√

H+ 1+ 1
)√

ZT−1

(F.21)

Adding an additional term zT√
ZT−1

, we get:

T−1∑
t=1

zt√
Zt−1

+
zT√
ZT−1

≤
(√

H+ 1+ 1
)√

ZT−1 +
zT√
ZT−1
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=

√(√
H+ 1+ 1

)2
ZT−1 + 2

(√
H+ 1+ 1

)
zT +

z2T
ZT−1

≤
√(√

H+ 1+ 1
)2

ZT−1 + 2
(√

H+ 1+ 1
)
zT +HzT

≤
√(√

H+ 1+ 1
)2

ZT−1 +
(√

H+ 1+ 1
)2

zT

≤
(√

H+ 1+ 1
)√

ZT−1 + zT

=
(√

H+ 1+ 1
)√

ZT (F.22)

which implies the Equation F.20 also holds for T.
The initial case with T = 1 holds trivially. Therefore, by induction, we conclude the proof.

F.4.5 Regret Boundwith UnknownOptimal Penalty

Theorem 14 (Regret bound with optimal penalty). Assume the penalty λ(t) in Algorithm 9 is up-
dated by a saddle point (λ(t),PPP(t), π(t)) = argminλ maxPPP,π UPPP,λ

π (sss1) subject to constraints in Equa-
tion (PV). The cumulative regret of the optimal Lagrangian objective is bounded with probability
1− δ:

Regλ⋆(t) ≤ O
(
1
ε
|S||A|

1
2NH

√
T logT

)
. (8.14)

Proof. The main challenge of an unknown penalty term λ⋆ is that the optimality of the chosen
transition PPP(t) and policy π(t) does not hold in Theorem 11 due to the misalignment of the penalty
λ(t) used in solving the optimization in Equation (PV) and the penalty λ⋆ used in computing the
regret.

The optimality of λ(t) (minimizingUPPP,λ
π ) and the optimality of PPP(t), π(t) (maximizingUPPP,λ

π ) are
given by:

λ(t),PPP(t), π(t) = argmin
λ

max
PPP,π

UPPP,λ
π

which give us, respectively:

UPPP(t),λ(t)

π(t) ≤ UPPP(t),λ⋆

π(t) , UPPP⋆,λ(t)
π⋆ ≤ UPPP(t),λ(t)

π(t) (F.23)

Similarly, the optimality of λ⋆ can be written as:

λ⋆ = argmin
λ

UPPP⋆,λ
π⋆
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which gives us

UPPP⋆,λ⋆
π⋆ ≤ UPPP⋆,λ(t)

π⋆ (F.24)

Combining Inequality F.23 and Inequality F.24, we can bound:

UPPP⋆,λ⋆
π⋆ ≤ UPPP⋆,λ(t)

π⋆ ≤ UPPP(t),λ(t)

π(t) ≤ UPPP(t),λ⋆

π(t)

This implies that:

Reg(t)λ⋆ = UPPP⋆,λ⋆
π⋆ − UPPP⋆,λ⋆

π(t) ≤ UPPP(t),λ⋆

π(t) − UPPP⋆,λ⋆

π(t) (F.25)

which is exactly the same result as shown in Equation 8.10. The rest of the proof follows the same
argument of Theorem 12 and Theorem 13, which concludes the proof.

F.4.6 Choice of Horizon and Ergodicity Constant ε

For a givenMarkov chain, we needH to be sufficiently large to ensure the probability of visiting any
state afterH steps is at least a positive constant ε > 0. The choice ofH depends on the MDP; we
elaborate below how to selectH and ε.

We follow a similar analysis of Markov chain convergence from Chapter 10 in290 by defining:

ω2 = max
π∈Π

σ2(Pπ)

where σ2(P) is the magnitude of the second largest eigenvalue of the random walk matrix Pπ
induced by the policy π. In practice, ω2 can be upper bounded by 1 if the MDP satisfies some prop-
erties, e.g., laziness of the Markov chain induced from theMDP (Chapter 10.2 in290).

Let v be the corresponding stationary distribution of the random walk matrix Pπ with the policy
π that maximizes the second largest eigenvalue. We know that v is strictly positive by ergodicity.
When σ2 < 1, we can write r = mini vi > 0 and choose ε = 1

2r > 0.
Let w be an arbitrary initial distribution. By applying Theorem 10.4.1 from290 (the directed

graph version), for every t > H = logω2(
1
2r

3/2) = logω2(
√
2ε3/2), we have:

|v− Ptπw|1 ≤
√

1
mini vi

ωt2 ≤
r
2

which implies that the minimum value of Ptπw and the minimum value of v, i.e., r, differ by at most
r
2 . This implies that the minimum value of Ptπw is at least r

2 = ε for any initial distribution w. This
choice of ε andH satisfies our requirement mentioned in Appendix F.4.4.
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F.5 Experiment Details

F.5.1 Whittle Index Implementation Speedups

We introduce a number of implementation-level improvements to speed up the computation of
Whittle indices. To our knowledge these approaches are novel for Whittle index computation.

Early termination The key insight is that the Whittle index threshold policy will pull the
arms with theK largest Whittle indices. As we computeWhittle indices for each of theN arms, after
we have computed the firstKWhittle indices, any future arm selected would have to haveWhittle in-
dex at least as high as theK-th largest seen so far in order to be pulled. Let us notate theK-th largest
value seen so far as top-k.

Whittle indices are computed using a binary search procedure258, which at each iteration tracks
the upper bound λ and lower bound λ of the index. Once the upper bound falls below that of the
minimum value of theK largest indices so far λ < top-k, then we can terminate the binary search
procedure as we are guaranteed that we would not act on that arm anyways. We implement the
tracking of theK largest indices so far with a priority queue.

Similarly, we implement early termination to solve the bilinear programs (PV) and (Pm) as call-
backs in the Gurobi solver, in which we check the value of the current objective bound.

Memoization Wememoize every Whittle index result computed throughout execution to track
the index resulting from each pair of probabilities Pi and current state si as we perform calculations
for each arm i. We implement this memoizer as a dictionary where the key is a tuple (Pi, si)with Pi
recorded to four decimal places.

To implement the bilinear programs (PV) and (Pm), we similarly memoize using the lower confi-
dence bound (LCB) and upper confidence bound (UCB) that comprise the space BBB(t)i .

F.5.2 Synthetic Data

The synthetic datasets are created by generating transition probabilities Pis,a,s′ sampled uniformly at
random from the interval [0, 1] for each arm i, starting state s, action a, and next state s′. Specifically
we select transition probabilities for the probability of transitioning to a good state Pis,a,s′=1, then set
Pis,a,s′=0 = 1− Pis,a,s′=1.

To ensure the validity constraints that acting is always helpful and starting in the good state is
always helpful, we apply the following: for all arms i ∈ [N]:

• Acting is always helpful: If this requirement is violated with Pis,a=1,1 < Pis,a=0,1, then Pis,a=0,1 =
Pis,a=1,1 × ηwhere η is uniform noise sampled between [0, 1].

• Starting from good state is always helpful: If this requirement is violated with Pis=1,a,1 <
Pis=0,a,1, then Pis=0,a,1 = Pis=1,a,1 × ηwhere η is uniform noise sampled between [0, 1].
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The thin margin dataset is created by mirroring the procedure described above but then con-
straining the probability of transitioning to a good state Pis,a,s′=1 to the interval [0.2, 0.4]. Thus the
probabilities of transitioning to the bad state Pis,a,s′=0 are all between [0.6, 0.8].

F.5.3 Acting in Low-Budget Settings

The potential impact of effectively allocating one resource is greater in low-budget settings. As one
example, the ARMMAN setting from our experiments helps distribute a small number of health-
care workers across a group of pregnant women for preventative health care. We study real data
from ARMMAN to show that the performance gap between approaches is wider in low-budget
settings.

Using one actual instance from ARMMAN, we consider distributing healthcare workers across
mothers (arms). Using the true transition probabilities, we calculate the (sorted) Whittle indices of
an optimal policy as: 0.42, 0.39, 0.28, 0.23, 0.19, 0.11, 0.07, 0.

In the table below, we first show the expected reward of the optimal action and a random action
(baseline) as we increase budget in the ARMMAN problem. We then calculate the difference in
reward between the optimal action and random action for each budget level, normalized per worker.
It is clear that the potential impact over the baseline of effectively allocating one worker is greater in
low budget settings.

Reward Reward gap per worker

K Optimal Random (Opt− Random)/K

1 0.42 0.211 0.209
2 0.81 0.423 0.194
3 1.09 0.634 0.152
4 1.32 0.845 0.119
5 1.51 1.056 0.091
6 1.62 1.268 0.059
7 1.69 1.479 0.030
8 1.69 1.690 0.000

Table F.3: Average reward contribution from each health worker in the online learning restless multi‐armed bandit prob‐
lem analysis.

F.5.4 Computation Infrastructure

All results are averaged over 30 random seeds. Experiments were executed on a cluster running Cen-
tOS with Intel(R) Xeon(R) CPU E5-2683 v4 @ 2.1 GHz with 8GB of RAM using Python 3.9.12.
The bilinear program solved using Gurobi optimizer 9.5.1.
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G
Appendix to Chapter 9

G.1 Computation Infrastructure

All the experiments were run on instances with 8 CPUs using 2nd generation Intel Xeon Platinum
8000 series processor (Skylake-SP or Cascade Lake) with a sustained all core Turbo CPU clock
speed of up to 3.6 GHz. All algorithms do not require GPU to run. The implementation will be
made available when accepted.

G.2 Societal Impact

The idea of smoothed online combinatorial optimization is not restricted to distributed streaming
systems. Anything with a switching cost can be benefited from the study of smoothed online com-
binatorial optimization, including public policy with a switching cost96, medication and wireless
scheduling problems181, where both of these can impact the process of policy making and schedul-
ing algorithms. Including the distributed streaming system problem, these are all applications of
smoothed online combinatorial optimization that can lead to change of the current algorithm de-
sign in our daily life with impact to the society.
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G.3 Proofs of Theorem 15 and Theorem 16

Theorem 15. Under Assumption 1, the regret from time step t to t + S − 1 in Equation 9.3 is upper

bounded by: Regt+S−1
t (zt−1) ≤ 2L

t+S−1∑
s=t

ε
(t)
s . where L is the Lipschitz constant in Assumption 1.

Proof. For simplicity of the proof, we define function g(x, y, z) as follows:

g(x, y, z) := f(x, y) + d(x, z)

which includes both the cost from the cost function f and the switching cost d.
Let {z′s}s∈{t,t+1,··· ,t+S−1} be the optimal solutions when the full information of the cost function

parameters {θs}s∈{t,t+1,··· ,t+S−1} is given. Let {zs}s∈{t,t+1,··· ,t+S−1} be the optimal solutions using
the predicted parameters {θ(t)s }s∈{t,t+1,··· ,t+S−1}. Without loss of generality, we let z′t−1 = zt−1 to be
the same initial decision at the time step t− 1. We have:

Regt+S−1
t (zt−1)

=

(t+S−1∑
s=t

g(zs, θs, zs−1)− g(z′s, θs, z′s−1)

)

=

(t+S−1∑
s=t

g(zs, θs, zs−1)− g(zs, θ(t)s , zs−1)

)
+

(t+S−1∑
s=t

g(zs, θ(t)s , zs−1)− g(z′s, θ(t)s , z′s−1)

)

+

(t+S−1∑
s=t

g(z′s, θ(t)s , z′s−1)− g(z′s, θs, z′s−1)

)
(G.1)

≤
t+S−1∑
s=t

L
∥∥∥θs − θ(t)s

∥∥∥+ 0+
t+S−1∑
s=t

L
∥∥∥θ(t)s − θs

∥∥∥
=2L

t+S−1∑
s=t

∥∥∥θs − θ(t)s
∥∥∥

≤2L
t+S−1∑
s=t

ε(t)s

The first term in Equation (G.1) can be bounded by (similar the third term):

g(zs, θs, zs−1)− g(zs, θ(t)s , zs−1) = f(zs, θs, zs−1) + d(zs, zs−1)− f(zs, θ(t)s , zs−1)− d(zs, zs−1)

= f(zs, θs, zs−1)− f(zs, θ(t)s , zs−1) ≤ L
∥∥∥θs − θ(t)s

∥∥∥
The second term in Equation (G.1) is non-positive because the optimality of the sequence {zs}s∈{t,t+1,··· ,t+S−1}
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when using the predictions as the parameters, i.e.,

t+S−1∑
s=t

g(zs, θ(t)s , zs−1) ≤
t+S−1∑
s=t

g(z∗s , θ(t)s , z∗s−1)

Theorem 16. Given Lipschitzness L in Assumption 1 and the maximal switching cost B in Assump-
tion 2, in T time steps, Algorithm 10 achieves cumulative regret upper bounded by 2BI, where I is the
total number of planning windows used in Algorithm 10.

Proof. In the offline setting, given all the traffic up to time T, we can solve the optimization problem
in Equation (9.1) to get the optimal solution z∗. We use cost(z∗, θ) to denote the optimal offline
cost.

On the other hand, we assume that Algorithm 10 runs with I restarts and each restart runs Si
time steps using the predictions to plan ahead for each i ∈ [I]. Let Ti =

∑i−1
j=1 Sj + 1 be the start

time of the i-th planning window. We can split the decisions into chunks— {zTi+s}s∈{0,1,··· ,Si−1}
for each i ∈ [I] that correspond to the decisions obtained in the i-th planning window.

Now we would like to compare the cost of the offline optimal solution {z∗t }t∈[T] with the online
solution {zt}t∈[T] within the i-th chunk {Ti,Ti+1, · · · ,Ti+Si−1}. Since the initial point z∗Ti−1 of
the offline optimal solution and the initial point zTi−1 of the online solution are different, we cannot
directly apply the result in Theorem 15 to bound the regret.

To resolve the misalignment, we additionally define {z′t}t∈{Ti,Ti+1,··· ,Ti+Si−1} to be a new offline
optimal solution starting from Ti till Ti + Si − 1 with z′Ti−1 = zTi−1 being the initial point. z′t
serves as an intermediate to link z∗t and zt. Compare to this new offline solution with the same initial
decision, the corresponding regret becomes:

RegTi+Si−1
Ti

= RegTi+Si−1
Ti

(zTi−1) :=

Ti+Si−1∑
t=Ti

(f(zt, θt) + d(zt, zt−1))−
Ti+Si−1∑
t=Ti

(
f(z′t, θt) + d(z′t, z′t−1)

)
(G.2)

Therefore, we can write:

Ti+Si−1∑
t=Ti

(f(zt, θt) + d(zt, zt−1)) (G.3)

= RegTi+Si−1
Ti

+

Ti+Si−1∑
t=Ti

(
f(z′t, θt) + d(z′t, z′t−1)

)
(G.4)

≤ RegTi+Si−1
Ti

+ f(z∗Ti , θTi) + d(z∗Ti , zTi−1) +

Ti+Si−1∑
t=Ti+1

(
f(z∗t , θt) + d(z∗t , z∗t−1)

)
(G.5)
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≤ RegTi+Si−1
Ti

+ B+ f(z∗Ti , θTi) + d(z∗Ti , z
∗
Ti−1) +

Ti+Si−1∑
t=Ti+1

(
f(z∗t , θt) + d(z∗t , z∗t−1)

)
(G.6)

= RegTi+Si−1
Ti

+ B+

Ti+Si−1∑
t=Ti

(
f(z∗t , θt) + d(z∗t , z∗t−1)

)
(G.7)

First, from Equation (G.3) to Equation (G.4) is by the definition of RegTi+Si−1
Ti

in Equation (G.2).
Second, Equation (G.4) to Equation (G.5) is due to the optimality of z′t:

{z′t}t∈{Ti,Ti+1,··· ,Ti+Si−1} = argmin
y

Ti+Si−1∑
t=Ti

(f(yt, θt) + d(yt, yt−1)) , where yTi−1 = zTi−1

Therefore, plugging in the original optimal solution z∗ results in a larger cost in Equation (G.5).
Lastly, Equation (G.5) and Equation (G.6) only differ by the initial point at time step Ti, where

Equation (G.5) uses zTi−1 and Equation (G.6) uses z∗Ti−1. Thus the difference is bounded by the
maximal switching cost B.

We can reorganize the inequality in Equation (G.7) to get:

Ti+Si−1∑
t=Ti

(f(zt, θt) + d(zt, zt−1))−
Ti+Si−1∑
t=Ti

(
f(z∗t , θt) + d(z∗t , z∗t−1)

)
≤ RegTi+Si−1

Ti
(zTi−1) + B

≤ 2L
Ti+Si−1∑
s=Ti

ε(t)s + B

= 2B

where the last inequality is by the choice of the dynamic planning window Si such that 2L
∑Ti+Si−1

s=Ti
ε
(t)
s ≤

B. Lastly, we can take summation over all the i ∈ [I] to get:

RegT =

T∑
t=1

(f(zt, θt) + d(zt, zt−1))−
T∑
t=1

(
f(z∗t , θt) + d(z∗t , z∗t−1)

)
=

I∑
i=1

(Ti+Si−1∑
t=Ti

(f(zt, θt) + d(zt, zt−1))−
Ti+Si−1∑
t=Ti

(
f(z∗t , θt) + d(z∗t , z∗t−1)

))

≤
I∑

i=1
2B

= 2BI
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G.4 Proof of Corollary 1

Corollary 1. If the uncertainty satisfies ε(t)t+s−1 = O( satb ), ∀s, t ∈ N with a, b ∈ R≥0, we have:

RegT ≤


O(T1− b

a+1 ) if b < a+ 1
O(logT) if b = a+ 1
O(log logT) if b > a+ 1

.

To prove Corollary 1, we need the following lemmas:

Lemma 8. Given any fixed 0 ≤ α and the following recursive formula:

T1 = 1
Ti+1 ≥ Ti + A · Tα

i , ∀i ≥ 1.

We can show:

Ti ≥


c · iβ if α < 1
(A+ 1)i−1 if α = 1
(A+ 1)α(i−2) if α > 1

where β = 1
1−α if α < 1. The constant c ∈ R≥0 satisfies c ≤ ( e

β

A )
1−α = eAα−1 and c ≤ 1.

We prove three different cases separately.

• Case 1 (α < 1) (this is deferred to the end).

• Case 2 (α = 1).

• Case 3 (α > 1).

Proof of Case 2. The recursive formula reduces to Ti+1 ≥ (A+ 1)Ti, where we can easily show that
Ti ≥ (A+ 1)i−1.

Proof of Case 3. The recursive formula can be written as Ti+1 ≥ Tα
i and T2 ≥ A + 1. Thus we can

simply unroll the recursion to get

Ti ≥ Tα
i−1 ≥ Tα2

i−2 ≥ · · · ≥ Tα(i−2)

2 = (A+ 1)α
(i−2)
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Proof of Case 1. We prove by induction.
Base case: Since c ≤ 1, the base case is automatically satisfied by 1 = T1 ≥ c = c · 1β.
Inductive step: By induction, assume Ti ≥ c · iβ. By our choice of c, we can see that Acα−1 ≥ eβ,

which implies:

Acα−1iαβ ≥ eβ · iαβ = eβ · iβ−1 (G.8)

where the second step follows from αβ = β− 1.
Therefore, we can lower bound Ti+1 by:

Ti+1 ≥ Ti + ATα
i

≥ (c · iβ) + A(c · iβ)α by Ti ≥ ciβ

= c · (iβ + Acα−1iαβ)

≥ c · (iβ + eβiβ−1) by Equation (G.8)

≥ c · (i+ 1)β, by Lemma 9

where we can apply Lemma 9 because β = 1
1−α ≥ 1 for all α ∈ [0, 1).

Lemma 9.

xk + ekxk−1 ≥ (x+ 1)k ∀x ≥ 1, k ≥ 1 (G.9)

Proof. Define a function g(x, k) = xk + ekxk−1 − (x + 1)k. We can check that g(x, 1) = x + e −
(x + 1) > 0. Next, we show that g(x, k) is an increasing function in kwhen x ≥ 1. Notice that the
derivative dg

dk can be written as:

dg
dk
|x,k= log x · xk + ekxk−1 + log x · ekxk−1 − log(x+ 1) · (x+ 1)k

= log x · xk + ekxk−1 + log x · ekxk−1 − log x · (x+ 1)k − log(
1+ x
x

) · (x+ 1)k

= log x · (xk + ekxk−1 − (x+ 1)k) + ekxk−1 − log(1+
1
x
) · (x+ 1)k

≥ log x · g(x, k) +
(
ekxk−1 − 1

x
· (x+ 1)k

)
(G.10)

where the last inequality is due to log(1+ 1
x) ≤

1
x .

The second term in Equation (G.10) can be written as:

ekxk−1 − 1
x
· (x+ 1)k =

1
x

(
(ex)k − (x+ 1)k

)
> 0 (G.11)

which is always satisfied because ex > x+ 1 ∀x ≥ 1.
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Therefore, Equation (G.10) and Equation (G.11) together guarantee that if the value g(x, k) ≥ 0,
then its derivative is positive dg

dk |x,k> 0 because every term in Equation (G.10) is positive. So now
we have g(x, 1) > 0 and the derivative dg

dk |x,k> 0 if g(x, k) ≥ 0.
Lastly, we just need to ensure that the function is always non-negative. Given fixed x, defineU =

{k > 1 | g(x, k) < 0}. We will prove by contradiction by assumingU is non-empty. Given thatU is
not empty, we can choose u = inf{k : k ∈ U}. By the continuity of function g, g(x, u) ≤ 0. Since
g(x, 1) > 0 and the continuity of g, we can find g(x, 1 + ε) > 0 for all ε ∈ B(0, r) in a small open
ball. Thus u ≥ 1+ ε > 1. Now by the mean value theorem applied on g(x, 1) > 0 and g(x, u) ≤ 0,
we can find a value v ∈ (1, u) such that g(x, v) = g(x,u)−g(x,1)

u−1 < 0. However, we have proven that
if g(x, k) ≥ 0 then we know dg

dk |x,k> 0. Since we have g(x, v) < 0, this implies g(x, v) < 0 as well
with v ∈ (1, u) and thus v ∈ U, which contradicts to the definition of u, i.e., the infimum of the set
U. Thus the assumption thatU is non-empty is incorrect. We conclude thatU is empty. Thus for
any given x, we have g(x, k) ≥ 0 for all k, which implies the original inequality.

Now we are ready to prove Corollary 1.

Proof of Corollary 1. First, let Si denote the size of the i-th planning window in Algorithm 10 for
each i ∈ [I]. Let Ti =

∑i−1
j=1 Sj + 1 denote the start time of the i-th planning part.

In the i-th iteration of Algorithm 10 starting at time Ti, Si is chosen such that Si is the largest

integer* satisfying 2L
Ti+Si−1∑
s=Ti

ε
(Ti)
s ≤ B. This implies 2L

Ti+Si∑
s=Ti

ε
(Ti)
s > B and we can estimate Si by:

B < 2L
Si+1∑
s=1

ε
(Ti)
Ti+s−1 ≤ 2LD

Si+1∑
s=1

sa

Tb
i
≤ 2LD

a+ 1
(Si + 2)a+1

Tb
i

for some constantD > 0. This suggests:

(
a+ 1
2D

)
1

a+1 (
B
L
)

1
a+1T

b
a+1
i ≤ Si + 2 ≤ 3Si, AT

b
a+1
i ≤ Si

where A = 1
3(

a+1
2D )

1
a+1 (BL)

1
a+1 = Θ((BL)

1
a+1 ) is a constant dependent on the maximal switching cost

B and the Lipschitzness L.
Therefore, we have

T1 = 1, Ti+1 = Ti + Si ≥ Ti + AT
b

a+1
i

*We need B ≥ ε
(Ti)
Ti

to ensure that we can at least choose Si ≥ 1. In the extreme case where B < ε
(Ti)
Ti

, it
implies that the uncertainty is too large while the switching cost is relatively small. Thus it is ideal to re-plan
every time step because switching is cheap. The analysis of balancing switching cost and future planning does
not apply.
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where Lemma 8 can be applied to get:

Ti ≥


ci

a+1
a+1−b if b < a+ 1

(A+ 1)i−1 if b = a+ 1

(A+ 1)
b

a+1
(i−2)

if b > a+ 1

with the choice of the constant c = min(1, eA
a+1−b
a+1 ). Lastly, since TI ≤ T, we can bound the total

iteration I by:

T ≥ TI ≥


cI

a+1
a−b+1 if b < a+ 1

(A+ 1)I−1 if b = a+ 1

(A+ 1)
b

a+1
(I−2)

if b > a+ 1

which gives:

I ≤


(Tc )

a−b+1
a+1

logA+1 T+ 1
logA+1 log b

a+1
T+ 2

=


O(T1− b

a+1 ) if b < a+ 1
O(logT) if b = a+ 1
O(log logT) if b > a+ 1

By applying Theorem 16 and substituting the total number of iterations I by the above inequal-
ity, we get:

RegT ≤ Θ(BI) =


O(T1− b

a+1 ) if b < a+ 1
O(logT) if b = a+ 1
O(log logT) if b > a+ 1

G.5 Proof of Corollary 2

Corollary 2. Given ε(t)t+s−1 = Ω( s
a

tb ) for all t, s ∈ N with 0 ≤ b, there exist instances such that for any
randomized algorithm, the expected regret is at least:

E[RegT] ≥


Ω(T1−b) if b < 1
Ω(logT) if b = 1
Ω(1) if b > 1

.
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Proof. Let ε(t)s = 1
tb = O( satb ) for all t, s ∈ Nwith 1

tb < 1
2 . We construct a sequence of one-

dimensional incoming traffic θt =

{
1
2 +

1
tb

1
2 −

1
tb

and a one-dimensional feasible setZ = {0, 1}. The

prediction given by the predictive model is θ(t)s = 1
2 for all t, s ∈ N, whose predictive error satisfies

the bound
∥∥∥θs − θ(t)s

∥∥∥ ≤ 1
tb = ε

(t)
s . Assume that the cost function is defined by f(z, θ) = L ‖z− θ‖

and there is no switching cost d(z, y) = 0.
Under this construction, if all the incoming traffics are given in advance, the optimal cost within

T time steps is:

L
T∑
i=1

(
1
2
− 1

tb

)
=

LT
2
− L

T∑
i=1

t−b ≤


LT
2 −

1
1−bT

1−b if b < 1
LT
2 − logT if b = 1
LT
2 − Θ(1) if b > 1

where we can just choose zt = 1 if θt is closer to 1 and 0 otherwise.
On the other hand, if the incoming traffics are not given in advance, any decision made at time

step t produces cost L( 12 + 1
tb )with probability

1
2 and cost L(

1
2 −

1
tb )with probability

1
2 , which

gives expected cost L
2 and a cumulative cost LT

2 . Therefore, the expected cumulative regret is at least
Θ(T1−b) if b < 1
Θ(logT) if b = 1
Θ(1) if b > 1

.

G.6 Iterative Algorithm for Offline Problemwith Switching Cost

Given imperfect predictions and the planning windows, we can reduce the online problem to an
offline problem. This section focuses on solving the following offline combinatorial optimization
problem with switching cost.

min
zt∈Z

S∑
t=1

f(zt, θt) + d(zt, zt−1). (G.12)

Solving Equation (G.12) is challenging because the combinatorial structure of the decision zt ∈
Zt and the additional temporal dependency caused by the switching cost d(zt, zt−1).
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Algorithm 16: Iterative algorithm for offline problems
1 Initialization: Let J = 10 and zt = z0 for all t ∈ [S].
2 for j ∈ [J] do
3 for t ∈ [S] do
4 Let c = 0.5 if j < J otherwise c = 1.
5 Solve Equation (G.13) with zt−1, zt+1, c to update zt.

Decomposition and Iterative Algorithm

If we fix the assignments zt−1, zt+1, finding the optimal solution at time step t reduces to the follow-
ing problem with c = 1:

zt = argmin
z∈Zt

f(z, θt) + c(d(z, zt−1) + d(z, zt+1)). (G.13)

Compared to Equation (G.12), Equation (G.13) avoids the temporal dependency across multiple
time steps and largely reduces the number of binary variables. In practice, solving Equation (G.13) is
more tractable than solving Equation (G.12).

This observation motivates the idea of iteratively fixing the neighbor decisions zt−1, zt+1 and up-
dating the decision at time step t for all t ∈ [S]. We use zt = z0 to initialize all decisions. Then we
can iteratively solve Equation (G.13) with different t to update the decision zt. This method decou-
ples the temporal dependency and reduces the problem to a standard combinatorial optimization
of function fwith additional regularization terms. We can use mixed integer linear program or any
other approximation algorithms to solve Equation (G.13).

Moreover, we can notice that any improvement made by solving Equation (G.13) with c = 1
provides the same improvement to Equation (G.12). This suggests that the optimal decision of
Equation (G.12) is a fixed point of Equation (G.13) when c = 1.

Theorem 31. The optimal sequence {z∗t }t∈[S] of Equation (G.12) is a fixed point of Equation (G.13)
with c = 1.

Proof. Suppose that {z∗s }s∈[S] optimizes Equation (G.12). For any t ∈ [S], if we can find z′t gets a
positive improvement in Equation (G.13) with c = 1:

0 < δ =
(
f(z∗t , θt) + d(z∗t , z∗t−1 + d(z∗t , z∗t+1)

)
−
(
f(z′t, θt) + d(z′t, z∗t−1) + d(z′t, z∗t+1)

)
Then the new sequence {z∗1 , · · · , z∗t−1, z′t, z∗t+1, · · · , z∗S} gets the same improvement with:

cost({z∗s }s∈[S])− cost({z∗1 , · · · , z∗t−1, z′t, z∗t+1, · · · , z∗S}) = δ > 0 (G.14)

where cost({z∗1 , · · · , z∗t−1, z′t, z∗t+1, · · · , z∗S}) is strictly smaller than the optimal value cost({z∗s }s∈[S]),
which violates the optimality assumption of {z∗s }s∈[S]. This implies that we cannot find z′t that gives
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a strictly smaller objective in Equation (G.13), which also implies that z∗t is a fixed point to Equa-
tion (G.13) with c = 1 using z∗t−1 and z∗t+1 as the neighbor decisions.

Theorem 31 ensures that the iterative process in Equation G.13 stops updating at the optimal
solution. However, in practice, there could be multiple fixed points and suboptimal points due to
the combinatorial structure. This can be problematic because the iterative process in Equation G.13
can stop at many different suboptimal solution without further improving the solution quality. To
avoid getting stuck by suboptimal solutions, we use a smaller scaling constant c = 0.5 to relax the
iterative update, and use c = 1 in the final step to strengthen the solution. The iterative algorithm is
described in Algorithm 16, which can be used to replace Line 6 in Algorithm 10.
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H
Appendix to Chapter 10

H.1 Implementation Details

We implement a differentiable PyTorch module to compute a sample of the followers’ equilibria.
The module takes the leader’s strategy as input and outputs a Nash equilibrium computed in the
forward pass using the relaxation algorithm. We use a random initialization to run the relaxation
algorithm, which can reach to different equilibria depending on different initialization. Given the
sampled equilibrium zzz∗ computed in the forward pass, the backward pass is implemented by Py-
Torch autograd to compute all the second-order derivatives to express Equation 10.5. The backward
pass solves the linear system in Equation 10.5 analytically to derive dzzz∗

dπ as an approximate of the
equilibrium flow.

This PyTorch module is used in all three examples in our experiment. The implementation is
flexible as we just need to adjust the followers’ objectives and constraints, the relaxation algorithm
and the gradient computation all directly apply.

H.2 Proofs of Theorem 19 and Theorem 20

Theorem 19. If v(zzz∗, π) is the equilibrium flow of the stochastic equilibrium oracleO(π), we have:

d
dπ E

zzz∗∼O(π)
f(zzz∗, π) = E

zzz∗∼O(π)
[fπ(zzz∗, π) + fzzz(zzz∗, π) · v(zzz∗, π)] . (10.8)

Proof. To compute the derivative on the left-hand side, we have to first expand the expectation
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because the equilibrium distribution is dependent on the environment parameter π:

d
dπ E

zzz∼O(π)
f(zzz, π) =

d
dπ

∫
zzz∈Z

f(zzz, π)p(zzz, π)dzzz

=

∫
zzz∈Z

(
p(zzz, π)

∂

∂π
f(zzz, π) + f(zzz, π)

∂

∂π
p(zzz, π)

)
dzzz

= E
zzz∼O(π)

fπ(zzz, π) +
∫
zzz∈Z

f(zzz, π)
∂

∂π
p(zzz, π)dzzz (H.1)

We further define Φ(zzz, π) = p(zzz, π)v(zzz, π). By the equilibrium flow definition in Equa-
tion 10.7, we have

∂

∂π
p(zzz, π) = −∇zzz · Φ(zzz, π)

Therefore, the later term in Equation H.1 can be computed by integration by parts and Stokes’
theorem: ∫

zzz∈Z
f(zzz, π)

∂

∂π
p(zzz, π)dzzz

=−
∫
z∈Z

f(zzz, π)∇zzz · Φ(zzz, π)dzzz

=−
∫
z∈Z
∇zzz · (f(zzz, π)Φ(zzz, π))dzzz+

∫
zzz∈Z

fzzz(zzz, π)Φ(zzz, π)dzzz

=−
∮
∂Z

f(zzz, π)Φ(zzz, π)dS+
∫
zzz∈Z

fzzz(zzz, π)Φ(zzz, π)dzzz

Therefore, we have

d
dπ E

zzz∼O(π)
f(zzz, π) = E

zzz∼O(π)
fπ(zzz, π) +

∫
zzz∈Z

f(zzz, π)
∂

∂π
p(zzz, π)dzzz

= E
zzz∼O(π)

fπ(zzz, π)−
∮
∂Z

f(zzz, π)Φ(zzz, π)dS+
∫
zzz∈Z

fzzz(zzz, π)Φ(zzz, π)dzzz

= E
zzz∼O(π)

fπ(zzz, π)−
∮
∂Z

f(zzz, π)p(zzz, π)v(zzz, π)dS+
∫
zzz∈Z

fzzz(zzz, π)p(zzz, π)v(zzz, π)dzzz

= E
zzz∼O(π)

[fπ(zzz, π) + fzzz(zzz, π)v(zzz, π)]

where the term
∮
∂Z f(zzz, π)p(zzz, π)v(zzz, π)dS = 0 because p(zzz, π) = 0 at the boundary ∂Z . This

concludes the proof of Theorem 19.

Notice that in the proof of Theorem 19, we only use integration by parts and Stokes’ theorem,
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where both of them apply to Riemann integral and Lebesgue integral. Thus, the proof of Theo-
rem 19 also works for any measure zero jumps in the probability density function.

Theorem 20. Given the leader’s strategy π and a sampled equilibrium zzz, if (1) the KKTmatrix at
(zzz, π) is invertible and (2) the equilibrium zzz is sampled with a fixed probability locally, the solution to
Equation 10.5 is a homogeneous solution to Equation 10.7 and matches the equilibrium flow v(π, zzz)
locally.

Proof. Since the KKT conditions hold for all equilibria, the given π and zzzmust satisfyKKT(zzz, π) =
0. The KKTmatrix in Equation 10.5 is given by ∂KKT

∂zzz , the Jacobian matrix of the functionKKT(zzz, π)
with respect to zzz. If the KKTmatrix is invertible, by implicit function theorem, there exists an open
setU containing π such that there exists a unique continuously differentiable function h : U → Z
such that h(π) = zzz andKKT(h(π′), π′) = 0 for all π′ ∈ U. Moreover, the analysis in Equa-
tion 10.5 applies, where dh(π)

dπ = dzzz
dπ matches the solution of Equation 10.5.

Lastly, the condition that the equilibrium zzz is sampled with a fixed probability density c locally
implies the corresponding probability density function must satisfy p(z′, π′) = c1KKT(z′,π′)=0 =
c1zzz′=h(π′) for all π′ ∈ U in an open set locally*.

Now we can verify whether p(zzz′, π′) and v(zzz′, π′) = dh(π′)
dπ (independent of zzz′) satisfy the partial

differential equation of equilibrium flow as defined in Definition 17. We first compute the left-hand
side of Equation 10.7 by:

∂

∂π
p(zzz′, π′) =

∂

∂π
c1zzz′=h(π′) = cδzzz′=h(π′)

dh(π′)
dπ

(H.2)

where Equation H.2 is derived by fixing zzz′, the derivative of a jump function 1zzz′=h(π′) is a Dirac
delta function located at zzz′ = h(π′)multiplied by a Jacobian term dh(π′)

dπ .
We can also compute the right-hand side of Equation 10.7 by:

∇z · (p(zzz′, π′)v(zzz′, π′)) =v(zzz′, π′)
∂

∂zzz
p(zzz′, π′) + p(zzz′, π′)

∂

∂zzz
v(zzz′, π′) (H.3)

=
dh(π′)
dπ

∂

∂zzz
c111zzz′=h(π′)

=cδzzz′=h(π′)
dh(π′)
dπ

(H.4)

where the second term in Equation H.3 is 0 because we define v(zzz′, π′) = dh(π′)
dπ , which is indepen-

dent of zzz′. Equation H.4 is derived by fixing π′, the derivative of a jump function is a Dirac delta
function located at zzz′ = π′.

The above calculation shows that Equation H.2 is identical to Equation H.4, which implies the
left-hand side and the right-hand side of Equation 10.7 are equal. Therefore, we conclude that the

*We can choose the smaller subsetU such that both the implicit function theorem and the locally fixed
probability c both hold.
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(a) Normal‐form games with n = 3
followers and variedm strategies per
follower.
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(b) Stackelberg security games with
n = 5 followers and variedm
strategies per follower.
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(c) Cyber insurance games withm =
1 dimensional investment decision and
varied n.

Figure H.1: We compare the computation cost of equilibrium computation (forward) and the gradient access (backward)
per iteration. Backward pass is cheaper than forward pass in all three domains. Gradient‐based method runs a forward
pass and a backward pass per iteration, while gradient‐free method requires many forward passes to perform one step
of local search.

choice of v(zzz′, π′) = dzzz′
dπ = dh(π′)

dπ is a homogeneous solution to differential equation in Equa-
tion 10.7 locally in π′ ∈ U. By the definition of the equilibrium flow, v(zzz′, π′) = dzzz′

dπ is a solution
to the equilibrium flow because we can subtract the homogeneous solution and define a new partial
differential equation without regionU to compute the solution outside ofU.

H.3 Limitation of Theorem 19 and Theorem 20

Although Theorem 19 always holds, the main challenge preventing us from directly applying The-
orem 19 is that we do not know the equilibrium flow in advance. Given the probability density
function of the equilibrium oracle, we can compute the equilibrium flow by solving the partial dif-
ferential equation in Equation 10.7. However, the probability density function is generally not
given.

Theorem 20 tells us that the derivative computed in Equation 10.5 is exactly the equilibrium flow
defined by the partial differential equation when the sampled equilibrium admits to an invertible
KKTmatrix and is locally sampled with a fixed probability. That is to say, when these conditions
hold, we can treat the equilibrium sampled from a distribution over multiple equilibria as a unique
equilibrium to differentiate through as discussed in the section of unique Nash equilibrium. These
conditions are also satisfied when the sampled equilibrium is locally stable without any discontinu-
ous jump, generalizing the differentiability of unique Nash equilibrium and globally isolated Nash
equilibria to the case with only conditions on the sampled Nash equilibrium.

351



H.4 Dimensionality and Computation Cost

H.4.1 Dimensionality of Control Parameters

We discuss the solution quality attained and computation costs required by different optimization
methods. To understand the results, it is useful to compare the role and dimensionality of the envi-
ronment parameter π in each setting.

• Normal-form games: parameter π corresponds to the non-negative subsidies provided to

each follower for each entry of its payoff matrix. We have dim(π) = n
n∏
i=1

mi = nmn, where

for simplicity we setmi = m for all i.

• Stackelberg security games: parameter π refers to the non-negative subsidies provided to each
follower at each available target. Because each follower i can only cover targets Ti ⊆ T, we

have dim(π) =
n∑
i=1
|Ti| = nm, where we set |Ti| = m for all i.

• Cyber insurance games: each insurance plan is composed of a premium and a coverage amount.
Therefore in total, dim(π) = 2n, the smallest out of the three tasks.

H.4.2 Computation Cost

In Figure H.1, we compare the computation cost per iteration of equilibrium-finding oracle (for-
ward) and the gradient oracle (backward). Due to the hardness of the Nash equilibrium-finding
problem, no equilibrium oracle is likely to have polynomial-time complexity in the forward pass
(computing an equilibrium). We instead focus more on the computation cost of the backward pass
(differentiating through an equilibrium).

As we can see in Equation 10.5, the complexity of gradient computation is dominated by in-
verting the KKTmatrix with size L = O(nm) and the dimensionality of environment parameter
π since the matrix dzzz∗

dπ is of size L × dim(π). Therefore, the complexity of the backward pass is
bounded above byO(Lα) + O(L2 dim(π)) = O(nαmα) + O(n2m2 dim(π))with α = 2.373.

• In Figure H.1(a), the complexity is given byO(n2m2 dim(π)) = O(n3mn+2) = O(m5)
where we set n = 3 with variedm, number of actions per follower, shown in the x-axis.

• In Figure H.1(b), the complexity isO(n2m2 dim(π)) = O(m3)with n = 5 and variedm,
number of actions per follower, shown in the x-axis.

• In Figure H.1(c), the complexity isO(n2m2 dim(π)) = O(n3)withm = 1 and varied num-
ber of followers n shown in the x-axis. The runtime of the forward pass increases drastically,
while the runtime of the backward pass remains polynomial.
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In all three examples, the gradient computation (backward) has polynomial complexity and is faster
than the equilibrium finding oracle (forward). Numerical gradient estimation in gradient-free meth-
ods requires repeatedly accessing the forward pass, which can be even more expensive than our gradi-
ent computation.

H.5 Optimization Reformulation of the Stackelberg Problems withMulti-
ple Followers

In this section, we describe how to reformulate the leader’s optimization problem with multiple
followers involved into an single-level optimization problem with stationary and complementarity
constraints. Notice that this reformulation requires the assumption that all followers break ties in
favor of the leader, while our gradient-based method can deal with arbitrary oracle access not limited
to any tie-breaking rules.

H.5.1 Normal-FormGames with Risk Penalty

In this example, the followers’ objectives are defined by:

fi(zzz, π) = Ui(zzz) + πi(zzz)−H(zi)/λ, (H.5)

whereUi is the given payoff matrix and πi is the subsidy provided by the leader. H is the Gibbs en-
tropy denoting the risk aversion penalty.

The leader’s objective and the constraint are respectively defined by:

f(zzz, π) =
∑
i∈[n]

Ui(zzz)

g(zzz, π) =

∑
i∈[n]

πi(zzz)

− B ≤ 0.

Bilevel optimization formulation we can write the followers’ best response into the
leader’s optimization problem:

max
π

f(zzz) =
∑
i∈[n]

Ui(zzz) = U(zzz)

s.t. zi ∈ [0, 1]mi , 111⊤zi = 1 ∀i ∈ [n]
zi = argmax

z∈Zi
fi(zi, z−i, π) ∀i ∈ [n]

π(zzz) ≤ B
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where fi is defined in Equation H.5. By converting the inner-level optimization problem to its KKT
conditions, we can rewrite the optimization problem as:

min
π,zzz,λ,μ,ν

− f(zzz) = −U(zzz)

s.t. zi, 111⊤zi = 1 ∀i ∈ [n]
λi, μi ∈ Rmi

≥0, νi ∈ R ∀i ∈ [n]

λi,jzi,j = 0 ∀i ∈ [n], j ∈ [mi]

μi,j(1− zi,j) = 0 ∀i ∈ [n], j ∈ [mi]

−∇zifi − λi + μi + νi111 = 0 ∀i ∈ [n]
π(zzz) ≤ B

We add dual variables λi, μi to the inequality constraints zi,j ≥ 0 and zi,j ≤ 1 respectively. We also
add dual variables νi to the equality constraints 111⊤zi = 1. We can explicitly write down the gradient:

∇zifi(zi, z−i, π) = (Ui + πi)(z−i)−
∑
j
(1+ log zij)/λ (H.6)

where λ here is a specific constant (different from the Lagrangian multipliers), which is chosen to be
1 in our implementation.

H.5.2 Stackelberg Security GamesWithMultiple Defenders

The followers’ objectives are defined by:

fi(zzz, π) =
∑
t∈Ti

(Ui,t + πi,t)(1− yt)pt, (H.7)

whereUi,t is the loss received by defender iwhen target t is successfully attacked, and πi,t is the corre-
sponding reimbursement provided by the leader to remedy the loss. We define yt := 1−

∏
i
(1− zi,t)

to denote the effective coverage of target t, representing the probability that target t is protected un-
der the overlapping protection patrol plan zzz. Given the effective coverage of all targets, we assume
the attacker attacks target twith probability pt = e−ωyt+at/(

∑
s∈T

e−ωys+as), where at ∈ R is a known

attractiveness value and ω ≥ 0 is a scaling constant.
The leader’s objective and constraint are respectively defined by:

f(zzz, π) =
∑
t∈T

Ut(1− yt)pt
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g(zzz, π) =

(∑
i,t

πi,t(1− yt)pt

)
− B ≤ 0,

whereUt < 0 is the penalty for the leader when target t is attacked without any coverage.

Bilevel optimization formulation Similarly, we can also write down the bilevel optimiza-
tion formulation of the Stackelberg security games with multiple defenders as:

max
π

f(zzz) =
∑
t∈T

Ut(1− yt)pt

s.t. zi,t ∈ [0, 1] ∀i ∈ [n], t ∈ Ti

yt, pt ∈ R ∀t ∈ T∑
t∈Ti

zi,t = bi ∀i ∈ [n]

yt = 1−
∏
i:t∈Ti

(1− zi,t) ∀t ∈ T

pt =
e−ωyt+at∑

s∈T
e−ωys+as ∀t ∈ T

zi = argmax
z∈Zi

fi(zi, z−i, π) ∀i ∈ [n]∑
i,t

(
πui,t(1− yt)pt + πci,tytpt

)
≤ B

where pt is the probability that attacker will attack target t under protect scheme zzz and the resulting
yyy. The function fi is defined in by:

fi(zzz, π) =
∑
t∈Ti

(Ui,t + πi,t)(1− yt)pt. (H.8)

This bilevel optimization problem can be reformulated into a single level optimization problem if
we assume all the individual followers break ties (equilibria) in favor of the leader, which is given by:

max
π,zzz,λ,μ,ν

∑
t∈T

Ut(1− yt)pt

s.t. zi,t ∈ [0, 1] ∀i ∈ [n], t ∈ Ti

yt, pt ∈ R ∀t ∈ T∑
t∈Ti

zi,t = bi ∀i ∈ [n]
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yt = 1−
∏
i:t∈Ti

(1− zi,t) ∀t ∈ T

pt =
e−ωyt+at∑

s∈T
e−ωys+as ∀t ∈ T

λi,t, μi,t ∈ R≥0, νi ∈ R≥0 ∀i ∈ [n], t ∈ Ti

λi,tzi,t = 0 ∀i ∈ [n], t ∈ Ti

μi,t(1− zi,t) = 0 ∀i ∈ [n], t ∈ Ti

−∇zifi − λi + μi + νi111 = 0 ∀i ∈ [n]∑
i,t

(
πui,t(1− yt)pt + πci,tytpt

)
≤ B

Similarly, we add dual variables λi,t, μi,t, νi to constraints zi,t ≥ 0, zi,t ≤ 1, and
∑
t∈Ti

zi,t = bi.

H.5.3 Cyber Insurance Games

The followers’ objectives are defined by:

fi(zzz, π) = −cizi − ρi − (Li − Ii)qi − γ|Li − Ii|
√
qi(1− qi), (H.9)

where ci is the unit cost of the protection zi and Li is the loss when the computer is attacked. The
insurance plan offered to agent i is defined as zi := (ρi, Ii), where ρi is the fixed premium paid to
enroll in the insurance plan and Ii is the compensation received when the computer is attacked.

We assume the computer is attacked with a probability qi, where qi = σ(−
n∑
j=1

wijzj + vLi)with

σ being sigmoid function, a matrixW = {wij > 0}i,j∈[n] to represent the interconnectedness be-
tween agents, v ≥ 0 to reflect the attacker’s preference over high-value targets, and lastly it depends
on the loss Li incurred by agent iwhen attacked. This attack probability is a smooth non-convex
function, which makes the reformulation approach hard and the non-convexity can lead to multiple
equilibria reached by the followers.

The last term in Equation H.9 is the risk penalty to agent i. This term is the standard deviation of
the loss received by agent i. We assume the agent is risk averse and thus penalized by a constant time
of the standard deviation.

On the other hand, the leader’s objective is defined by:

f(zzz, π) =
n∑
i=1
−Iiqi + ρi

where the leader’s objective is simply the total revenue received by the insurer, which includes the
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premium collected from all agents and the compensation paid to all agents.
The constraints are the individual rationality of each agent, where the customized insurance plan

needs to incentivize the agent to purchase the insurance plan. In other words, the compensation Ii
and premium ρi must incentivize agents to purchase the insurance plan by making the payoff with
insurance no worse than the payoff without.

gi(zzz, π) =
(
−cizi − Liqi − γLi

√
qi(1− qi)

)
− fi(zzz, π) ≤ 0.

Bilevel optimization reformulation The bilevel optimization formulation for the cyber
insurance domain with an external insurer is given by:

max
π

f(zzz) =
n∑
i=1
−Iiqi + ρi

s.t. zi ∈ [0,∞) ∀i ∈ [n]

qi = σ

− n∑
j=1

wijzj + vLi

 ∀i ∈ [n]

zi = argmax
z′i∈Zi

fi(z′i, z−i, π) ∀i ∈ [n]

− cizi − Liqi − γLi

√
qi(1− qi) ≤ fi(zzz, π) ∀i ∈ [n]

where fi(zzz, π) = −cizi − ρi − (Li − Ii)qi − γ ‖Li − Ii‖
√
qi(1− qi).

Reformulating this bilevel problem into a single level optimization problem, we have:

max
π,zzz,λ

f(zzz) =
n∑
i=1
−Iiqi + ρi

s.t. zi ∈ [0,∞), λi ∈ [0,∞) ∀i ∈ [n]

qi = σ

− n∑
j=1

wijzj + vLi

 ∀i ∈ [n]

ziλi = 0 ∀i ∈ [n]

− cizi − Liqi − γLi

√
qi(1− qi) ≤ fi(zzz, π) ∀i ∈ [n]

−∇zifi − λi = 0 ∀i ∈ [n]

with dual variables λi for the zi ≥ 0 constraint.
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H.6 Experimental Setup

For reproducibility, we set the random seeds to be from 1 to 30 for NSGs and cyber insurance games,
and from 1 to 100 for SSGs.

H.6.1 Normal-FormGames

In NFGs, we randomly generate the payoff matrixUi ∈ Rm1×m2×···×mn of follower iwith each
entry of the payoff matrix randomly drawn from a uniform distributionU(0, 10). We assume there
are n = 3 followers. Each follower has three pure strategies to usemi = m = 3 for all i. The risk
aversion penalty constant is set to be λ = 1.

H.6.2 Stackelberg Security Games

In SSGs, we randomly generate the penaltyUi,t < 0 of each defender i associated to each target
t ∈ Ti ⊂ T from a uniform distributionUi,t ∼ U(−10, 0). The leader’s penaltyUt < 0 is
also generated from the same uniform distributionUt ∼ U(−10, 0). We assume there are n = 5
followers in total. There are |T| = 100 targets and each follower is able to protect |Ti| = m = 50
targets randomly sampled from all targets. Each follower can spend at most bi = 10 effort on the
available targets. The attractiveness values at used to denote the attacker’s preference is randomly
generated from a normal distribution at ∈ N (0, 1)with 0 mean and standard deviation 1. The
scaling constant is set to be ω = 5.

H.6.3 Cyber Insurance Games

In cyber insurance games, for each follower i, we generate the unit protection cost ci from a uniform
distribution ci ∼ U(5, 10) , and the incurred loss Li from a uniform distribution Li ∼ U(50, 100).
We assume there are in total n = 10 followers. Each follower can only determine their own invest-
ment and thusm = 1. The entry of the correlation matrixW ∈ Rn×n is generated from uniform
distributionsWi,j ∼ U(0, 1) if i 6= j, andWi,j ∼ U(1, 2) if i = j to reflect the higher dependency
on the self investments. We choose the risk aversion constant γ to be γ = 0.01.

H.7 Computing Infrastructure

All experiments except VI experiments were run on a computing cluster, where each node is config-
ured with 2 Intel Xeon Cascade Lake CPUs, 184 GB of RAM, and 70 GB of local scratch space. VI
experiments require a Knitro license and were run on a machine with i9-7940X CPU@ 3.10GHz
with 14 cores and 128 GB of RAM.Within each experiment, we did not implement parallelization,
so each experiment was purely run on a single CPU core.
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