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ABSTRACT
Maternal and child health is a global priority, reflected in the UN

Sustainable Development Goal 3.1. Mobile health (mHealth) pro-

grams, using automated voice messages, are a vital tool for NGOs to

disseminate health information in underserved communities. How-

ever, these programs face challenges: limited beneficiary phone

access and unknown time preferences hinder timely outreach, lead-

ing to poor engagement. We address this by formulating the time

preference inference problem as a multi-agent multi-armed bandit

optimization problem, where beneficiaries are modeled as agents,

and time slots as arms. We introduce a novel online collaborative

filtering framework that infers preferred time slots by collaborating

across beneficiaries to quickly identify their preferred time slots.

To highlight the scope and impact of this problem, we are work-

ing with Kilkari, the world’s largest maternal and child mHealth

program serving millions in India every week. Kilkari faces sub-

stantial reattempt costs to improve call answer rates. Through

extensive experiments on real-world data obtained from Kilkari, we

demonstrate that our collaborative bandit framework significantly

outperforms both existing policies used by the NGO, and popu-

lar non-collaborative bandit algorithms (e.g., Upper Confidence

Bound), both in terms of number of call retries, saving critical band-

width that enables wider outreach, and by rapidly learning optimal

time slots, improving beneficiary engagement and retention.
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1 INTRODUCTION
Maternal mortality is unacceptably high in several parts of the

world. In 2020, an estimated 287,000 women died from preventable

causes related to pregnancy and childbirth [30]. Consequently, the

World Health Organization (WHO) has made improving maternal

health one of its top priorities. As part of WHO’s Sustainable De-

velopment Goals (SDGs), countries have committed to reducing the

global maternal mortality ratio to less than 70 per 100,000 live births

by 2030 and end preventable deaths of newborns and children under

5 years of age [31]. In line with this goal, several non-governmental

organizations (NGOs) are leveraging mobile health programs ex-

tensively to disseminate critical health information [3, 17, 26, 28]

economically due to the widespread availability of cellphones.

Kilkari is the largest maternal and child mHealth program in the

world [3] which is implemented by the NGO ARMMAN in partner-

ship with the Ministry of Health and Family Welfare of India, and

currently has 3.2 million active users. Kilkari uses free pre-recorded

voice calls to deliver vital preventive care information on maternal

and infant health to pregnant women and new mothers. To ensure

that beneficiaries listen to these messages in a timely manner, it is

vital to reach out to them at the right time. The reality is, practical

problems such as limited access to phones due to shared family

phone for many women, working hours, house chore responsibil-

ities significantly affect the likelihood of engagement at a given

time slot [6]. And hence, sending these automated voice calls at an

inconvenient/wrong time leads to poor listenership.

In fact, consistent low listenership of the calls can even lead

to beneficiaries being dropped from the program. To address this,

the NGO re-attempts sending voice messages multiple times in a

week until the call is answered. Despite this listenership remains

low with almost 50% of the economically weakest beneficiaries

requiring more than 6 attempts on average [27] and on average

23% being unreachable despite multiple attempts [23]. [27] pointed

out the positive impact of listening to Kilkari messages on health

outcomes, particularly among the most marginalised who have the

most to benefit from this program, and have the least access to

resources. However, despite the known advantages of sustained

high listenership, the scale of Kilkari’s operations makes it difficult

to gather individual time preferences, or demographic informa-

tion that could help predict those preferences [34]. This makes the

problem of identifying good time-slots even more challenging and

critical to the efficacy of the program.



Randomized policies such as the one’s currently deployed by

Kilkari pick a time slot at random, and call the beneficiary. How-

ever, such policies tend to be sub-optimal as they do not adapt

to beneficiary’s preferences (see Section 4 for empirical evidence),

and are a suboptimal use of the limited calling bandwidth [6]. To

help NGOs overcome this challenge, we study the problem of time

slot selection from the perspective of bandit optimization. To be

precise, we formulate the problem as a multi-agent multi-armed

bandit optimization problem where the beneficiaries are agents and

time slots are arms. Every day, one arm of every agent gets pulled

and we observe the feedback/reward corresponding to the arm.

Our goal is to quickly identify good time slots of each beneficiary,

which can be quantified using the following two metrics: (a) aver-

age number of retries before a successful pick-up, (b) time to learn

these preferences. Numerous algorithms such as Upper Confidence

Bound (UCB) [5], Thompson Sampling (TS) [1, 36], Successive Elim-

ination [4] have been proposed to solve the problem in the single

agent setting. While these algorithms are optimal for a single agent,

they tend to be sub-optimal in the multi-agent setting where one

can collaborate across similar agents to identify good arms much

faster, which is critical to retain and engage beneficiaries with the

program.

In this work, we consider collaborative bandit algorithms for

solving the time slot selection problem. Our algorithms try to si-

multaneously identify similar agents and collaborate across them

to learn their arm preferences. We would like to highlight that we

do this without access to any features of the agent. This is achieved

via a reduction of the collaborative bandit problem to low-rank

matrix completion problem where one tries to reconstruct a matrix

from a small subset of its entries [18, 22]. In this work, we propose

two novel algorithms: Greedy Matrix Completion (MC), and Phased

MC [19, 32]. In Greedy MC, we first collect exploratory data, then

perform matrix completion with the collected data to estimate the

arm preferences, and pull the best estimated arm for each agent

in the rest of the rounds. One of the key novelties in Greedy MC,

compared to existing works [19, 32], is that we bring in variance

reduction techniques [8] into our algorithm which makes it robust

to noise and improves its performance in practice. While Greedy

MC is effective in practice, the random exploration it performs

in early stages can hurt the user experience, which may lead to

dropouts from the program. To address this, we introduce Phased

MC, a novel bandit algorithm that operates in phases. Instead of

having a lengthy random exploration phase at the beginning, it

combines exploration and exploitation throughout the program

duration. Within each phase, we use Boltzmann exploration based

on the estimated reward matrix from previous phases [12]. At the

end of every phase, we use robust matrix completion to revise the

estimated reward matrix. In Section 2, we provide a more detailed

comparison between our algorithms and existing collaborative ban-

dit algorithms.

In Section 4, we evaluate our algorithms on an anonymized real-

world dataset obtained from Kilkari, collected over a period of one

year for 200𝑘 beneficiaries. The Kilkari program has 7 time slots in a

day during which the calls can be placed. Moreover, calls are placed

in a week at most 9 times until there is a pickup by the beneficiary.

Considering each slot (irrespective of the day) as an arm, in our

experiments, we demonstrate that the MC based bandit algorithms

(Greedy MC and Phased MC) achieve a reduction of at least 27% in

regret over non collaborative policies like UCB. Furthermore, our

MC based algorithms obtain >30% reduction in average number

of retries per week over random policy (that is in use by Kilkari)

and >8% reduction over the non collaborative UCB policy, for 42%
of the beneficiaries. When we account for the weekend/weekday

effect and increase our arm space to 14 (7 for weekends and 7 for

weekdays), we get >45% reduction in the number of retries over

random policy and >25% reduction over UCB policy for approxi-

mately 76% of the users. An optimistic estimate for the 14 time slots
case shows that if one were to equalize the total number of calls to
what the UCB policy would make, we could potentially onboard 56%
more beneficiaries (based on the plot in Fig. 2c).

2 RELATEDWORK
Maternal Healthcare. Restless Multi-Armed Bandits have been used

for improving maternal healthcare by providing solutions for lim-

ited resource allocation particularly where NGO’s serving under-

served communities are operating with limited resources [26, 29,

37]. In contrast, this paper focuses on stochastic MABs for time slot

planning.

Bandits. Multi-armed bandits (MAB) and other bandit optimiza-

tion problems have been widely studied in recent decades. UCB [5],

TS [1, 36], Phased Elimination [24, 35] are some of the most popular

algorithms for regret minimization in MABs. Recent works have

also studied best-arm identification in MABs and provided (near)

optimal algorithms [2, 15, 20, 21].

Collaborative Bandits. Collaborative bandit optimization has re-

cently gained significant attention due to its applicability in modern

recommendation systems where millions of users interact with the

system daily [9, 14, 16, 19, 32]. However, optimal algorithms for

this problem are only known under certain special settings. [32]

derived a regret optimal algorithm under the assumption that users

can be grouped into a small number of latent clusters. [19] assumed

the agents × arms reward matrix has rank 1 and derived an algo-

rithm which achieves optimal regret. However, the assumptions

made in both these works rarely hold in practice. [14] developed a

heuristic, alternating linear bandits algorithm for low-rank reward

matrices. However, this algorithm has poor performance in prac-

tice as the reward matrices in real-world are only approximately
low-rank. One of key technical contributions of our work is to

develop algorithms for collaborative bandits under approximate
low-rank assumptions. Our Greedy MC algorithm is inspired by the

greedy algorithm of [19]. The main novelty in Greedy MC comes

from the variance reduction technique we introduce to make it

robust to noise. Our Phased MC algorithm is inspired by the phased

elimination algorithms of [19, 32]. But unlike the algorithms of

[19, 32] which assume rank 1 reward matrix or cluster structure

among agents, we work with a more general approximate low-rank

assumption.

3 PROBLEM FORMULATION AND
ALGORITHMS

Notation.Wewrite [𝑚] to denote the set {1, 2, . . . ,𝑚}. For a vector
v ∈ R𝑚 , v𝑖 denotes the 𝑖th element; for any setU ⊆ [𝑚], let vU
denote the vector v restricted to the indices in U. Similarly, for



A ∈ R𝑚×𝑛 , A𝑖 𝑗 ,A𝑖 denotes the (𝑖, 𝑗)-th element and the 𝑖th row of

A respectively. For any set U ⊆ [𝑚],V ⊆ [𝑛], AU,V denotes A
restricted to the rows in U and columns in V . Let ∥A∥∞ denote

absolute value of the largest entry in matrix A. Ber(𝑝) denotes
the binary random variable that is 1 with probability 𝑝 (0 with

probability 1 − 𝑝). E𝑋 denotes expectation of random variable 𝑋 .

Problem Setting: We haveM beneficiaries and N slots (distinct

intervals of time during the day) where calls can be placed to each

beneficiary. Furthermore, there are T rounds - each round corre-

sponding to a day - at which the service provider can make calls

to as many beneficiaries as possible. In Kilkari, we have𝑀 ≈ 10
6
,

𝑁 = 7, and 𝑇 ≈ 300. Our goal is to design a sequential decision

making algorithm A that recommends the service provider appro-

priate slots to call the beneficiaries. To do this,A relies on the data

obtained via calls made until the previous day and aims to quickly

find the preferred time slot for every beneficiary. We model the

unknown preferences of the beneficiaries towards the distinct slots

using the following two matrices:

(1) Pick-upmatrix.We let P ∈ RM×N denote the pick-up probabil-

ities of beneficiaries. Here P𝑖 𝑗 denotes the probability of beneficiary
𝑖 picking-up a call at slot 𝑗 .

(2)Engagementmatrix.We let E ∈ RM×N denote the engagement

probabilities of beneficiaries, where E𝑖 𝑗 denotes the probability of

beneficiary 𝑖 picking-up and engaging with the call for at least 25%

of the message duration at slot 𝑗 .

In this work we assume that P, E are approximately low-rank matri-

ces. We note that this assumption typically holds in many domains;

e.g., movie preferences [7], genomics [10]. This assumption also

holds in Kilkari, where we observed that P, E are approximately

rank 2 matrices (see Figure 11).

We model the problem of learning optimal time slots for benefi-

ciaries as a multi-agent, multi-armed bandit optimization problem

with M agents (beneficiaries), N arms (time-slots) and T rounds

(days). For simplicity, we assume that at each round, the service

provider has sufficient capacity to call all the agents. In practice,

there can exist limitations on the number of beneficiaries that can

be called at a certain time slot or on a certain day. As we show later

in the paper, some of these constraints can be easily incorporated

into our algorithms (Section 4.2).

Suppose, for beneficiary 𝑢 at round 𝑡 , algorithm A recommends

the slot 𝜌𝑢 (𝑡) for making the call and observes a noisy feedback -

pick-up and engagement. The beneficiary 𝑢 will pick-up the call

with probability P𝑢𝜌𝑢 (𝑡 ) and conditioned on the call being picked up,
the beneficiary will engage with probability E𝑢𝜌𝑢 (𝑡 ) × [P𝑢𝜌𝑢 (𝑡 ) ]−1.
We will also define the functions 𝜋𝑝 : [M] → [N] and 𝜋𝑒 : [M] →
[N] that takes as input a beneficiary and maps it to the slot with

the highest pick-up probability and engagement probability respec-

tively for the chosen beneficiary. Next, we define two notions of

regret, namely Reg
pick-up

(T) and Reg
engage

(T):

Reg
pick-up

(T) =
∑

𝑢∈[M]

(
TP𝑢𝜋𝑝 (𝑢) − EA

∑
𝑡 ∈[T]

P𝑢𝜌𝑢 (𝑡 )
)

(1)

Reg
engage

(T) =
∑

𝑢∈[M]

(
TE𝑢𝜋𝑒 (𝑢) − EA

∑
𝑡 ∈[T]

R𝑢𝜌𝑢 (𝑡 )
)
. (2)

Intuitively, Reg
pick-up

(T)/TM measures how much the average call

pick-up rate of an algorithm differs from the call pick-up rate of

the best possible policy. Note that, even though we want to im-

prove engagement more than call pick-up, it is much harder to

do so because very few people engage with the calls, and conse-

quently, the data on engagement is very limited. Nonetheless, in

Section 4.1.2 we show that one could improve engagement rate by

smartly combining the pick-up and engagement data.

3.1 Collaborative Algorithms
Our collaborative bandit algorithms rely on an offline low rank

matrix completion oracle O. For an unknown matrix Z ∈ R𝑚×𝑛 , O
takes a subset of noisy observations of the matrix at positions Ω

({M𝑖 𝑗 }(𝑖, 𝑗) ∈Ω) as input, and returns an estimate Ẑ of Z. To imple-

ment this oracle, we minimize the following nuclear norm regular-

ized objective [13]:

minimizeẐ

∑
(𝑖, 𝑗) ∈Ω

(M𝑖 𝑗 − Ẑ𝑖 𝑗 )2 + _
������Ẑ������

★
. (3)

Here _ > 0 is the regularization parameter and

������Ẑ������
★
denotes the

nuclear norm of Ẑ. We note that this is a very popular technique

for matrix completion, and comes with strong theoretical guaran-

tees [13].

3.1.1 Greedy Matrix Completion (MC). In this section, we present

our first algorithm, Greedy MC (Algorithm 1). The key idea here

is to partition the T rounds into two phases - exploration phase

spanning the first T
explore

rounds and exploitation phase spanning

the next T− T
explore

rounds. In the exploration phase, we randomly

select a slot for each beneficiary and place a call in the chosen

slot (Lines 2, 3 in Algorithm 1). We store the observed pick-ups and

engagements of the beneficiaries in a matrixM (Line 4 in Algorithm

1). At the end of the exploration phase, we use the observed dataM
to estimate the unknown pick-up/engagement matrix. To do this,

we propose a novel bagging-based use of the matrix completion

oracle O (Algorithm 3) that we detail below. Subsequently, in the

exploitation phase, we use the estimated matrix to find the most

preferred time slot for each beneficiary and commit to that slot for

the remaining T − T
explore

rounds (Lines 7-9 in Algorithm 1).

Robust Median Estimates using Bagging (Algorithm 3): Naively
performing MC on the observed data (M) to infer P (or E) leads
to estimates with high variance. To address this, we infer P (or E)
using multiple sub-samples of the data, and aggregate the estimates

to produce a final estimate with reduced variance [8]. Specifically,

for each beneficiary 𝑢, we consider 𝐾 small groups of beneficiaries,

i.e.U𝑢
1
,U𝑢

2
. . .U𝑢

𝐾
where 𝑢 ∈ U𝑢

𝑖
⊂ [𝑀] (each group contains 𝑢).

These groups are chosen randomly such that |U𝑢
𝑖
| > 𝑁 . Suppose

Ω ⊂ [𝑀] × [𝑁 ] is the set of entries for which the pickup (or

engagement) data is available in matrixM. Note that |Ω | is typically
much smaller than N ×M. For each groupU𝑢

𝑖
, we use the relevant

data obtained from the exploration phase from matrixM, i.e. Ω̃𝑖 =
Ω ∩ (U𝑢

𝑖
× [𝑁 ]) and apply the optimization routine in (3) with

MU𝑢
𝑖
, [𝑁 ] . We obtain the completed sub-matrix ẐU𝑢

𝑖
, [𝑁 ] by using

(3). Thus, for each beneficiary𝑢, we obtain𝐾 estimates of it’s pickup



Algorithm 1 Greedy MC Algorithm for maximizing engagement

Require: exploration rounds T
explore

.

1: Initialize Ω ← ∅, M ∈ R𝑀×𝑁 .
2: for 𝑡 = 1, 2, . . . , T

explore
do

3: For each 𝑢 in [M], randomly sample a slot 𝜌𝑢 (𝑡) and place a call. Let the indicator of engagement be 𝐵𝑡 (𝑢)
4: If (𝑢, 𝜌𝑢 (𝑡)) ∉ Ω, then Ω ← Ω ∪ (𝑢, 𝜌𝑢 (𝑡)), M(𝑢, 𝜌𝑢 (𝑡)) ← 𝐵𝑡 (𝑢). If (𝑢, 𝜌𝑢 (𝑡)) ∈ Ω, then M(𝑢, 𝜌𝑢 (𝑡)) ← 𝐵𝑡 (𝑢)

𝑡 + (1 − 1

𝑡 )M(𝑢, 𝜌𝑢 (𝑡))
5: end for
6: For each beneficiary 𝑢 in [M], estimate the engagement rates for all the slots, E𝑢 ← MC_RME(𝑢,𝑀,Ω).
7: for each of remaining rounds do
8: For each beneficiary 𝑢, choose the slot from vector E𝑢 with highest estimated probability and make a call.

9: end for

Algorithm 2 Phased MC Algorithm for maximizing engagement

Require: Phase length Δ, temperature parameter 𝛽 .

1: Initialize row stochastic matrix Q ∈ RM×N with Q𝑖 𝑗 = N−1 for all (𝑖, 𝑗) ∈ [M] × [N]. Initialize Ω ← ∅, M ∈ R𝑀×𝑁 .
2: for phase = 1, 2, . . . , ⌈T/Δ⌉ do
3: for 𝑡 = 1, 2, . . . ,min(Δ, T − phase · Δ) do
4: For each 𝑢 in [M], sample a slot 𝜌𝑢 (𝑡) ∼ Q𝑢 and place a call. Let the indicator of engagement be 𝐵𝑡 (𝑢).
5: If (𝑢, 𝜌𝑢 (𝑡)) ∉ Ω, then Ω ← Ω∪ (𝑢, 𝜌𝑢 (𝑡)), M(𝑢, 𝜌𝑢 (𝑡)) ← 𝐵𝑡 (𝑢). If (𝑢, 𝜌𝑢 (𝑡)) ∈ Ω, thenM(𝑢, 𝜌𝑢 (𝑡)) ← 𝐵𝑡 (𝑢)

𝑡 + (1− 1

𝑡 )M(𝑢, 𝜌𝑢 (𝑡))
6: end for
7: For each beneficiary 𝑢 in [M], estimate the engagement rates for all the slots, E𝑢 ← MC_RME(𝑢,𝑀,Ω).
8: For each beneficiary 𝑢 ∈ [M] and each slot 𝑗 ∈ [N], update Q𝑢 𝑗 ← exp(𝛽E𝑢 𝑗 )

( ∑
𝑗 ′∈[N] exp(𝛽E𝑢 𝑗 ′)

)−1
.

9: end for

Algorithm 3Matrix Completion with Robust Median Estimates:MC_RME(𝑢,M,Ω)

Require: User 𝑢, Observed DataM ∈ RM×N, set of observed entries Ω, Low Rank MC Oracle O.
1: Construct K groupsU𝑢

1
,U𝑢

2
. . .U𝑢

𝐾
of N′ > N beneficiaries, each comprising 𝑢. In each group, the beneficiaries other than 𝑢 are sampled

uniformly at random without replacement.

2: For each group of beneficiaries U𝑢
𝑖
, invoke the MC completion oracle O, i.e. solving the optimization problem in (3), using Ω̃𝑖 =

Ω ∩U𝑢
𝑖
× [𝑁 ] and observed dataMU𝑢

𝑖
, [𝑁 ] , to compute an estimate of Ẑ𝑖U𝑢

𝑖
, [N] (sub-matrix corresponding to rows inU𝑢

𝑖
and set of

slots [N]).
3: Construct final estimate of E𝑢 by computing entry-wise median of the K estimates of row 𝑢, i.e. E𝑢 = Median({Ẑ𝑖𝑢,:}𝐾𝑖=1)
4: Return E𝑢

(or engagement) probabilities at each slot, and compute the entry-

wise median of the 𝐾 estimates and use it as the final estimate for

that beneficiary. This procedure helps reduce the variance in our

estimates, and makes it robust to outliers [11, 25, 33].

3.1.2 PhasedMatrix Completion (Algorithm 2). Although theGreedy
MC algorithm is conceptually quite simple, it has one main draw-

back: it needs a lengthy exploration phase in the beginning to get

a good estimate of P, E (see Figure 12). However, this can hurt the

user experience, and can even drive beneficiaries away from the

program, as slots are chosen randomly. To address this limitation,

we propose an alternate algorithm called PhasedMatrix Completion

(MC) which reduces the initial exploration period.

The Phased MC algorithm partitions the T rounds into equally

sized ⌈T/Δ⌉ phases of length Δ (Lines 2, 3 in Algorithm 2). The

first phase is similar to the exploration phase of Greedy MC; i.e.,
in each round of this phase, for each beneficiary, a slot is chosen

uniformly at random and a call is placed. At the end of each phase,

we rely on the data collected so far (M) to estimate P (or E) by

invoking the robust matrix completion subroutine (Algorithm 3).

The key novelty in our algorithm is in the kind of exploration we

perform in each phase. Within each phase, for each beneficiary, we

sample slots with probability proportional to exponential of the

estimated pick-up/engagement rate of the slot (modulo a scaling

factor 𝛽). 𝛽 provides a trade-off between exploration and exploita-

tion, with larger values favouring exploitation and smaller values

favouring exploration. This approach is also known as Boltzmann

exploration, and has been recently studied in the context of clas-

sical multi-armed bandits [12]. We note that Δ in this algorithm

is smaller than the exploration phase of Greedy MC. This helps

us pick meaningful slots after the end of first phase itself (see Fig-

ures 13a, 13b). However, in contrast to Greedy MC, the Phased MC

algorithm is computationally more intensive as it needs to compute

⌊T/Δ⌋ estimates - one after each phase - of P, E (see Appendix A).

4 EXPERIMENTS
Dataset:We obtained an anonymized call log dataset from our NGO

partner ARMMAN. This data was collected over a period of one



year, and has M = 200𝐾 beneficiaries, N = 7 time slots (across

8am to 8pm) at which the calls were made. Using this data, we first

constructed “ground truth” matrices P, E for simulation. Specifi-

cally, we estimated the pick-up (engagement) probability for each

(beneficiary, slot) tuple as the ratio of number of times the benefi-

ciary picked-up (engaged) to the number of calls placed in that slot.

In all our experiments, we ensure that the algorithms don’t have

access to the matrices P, E. We use these matrices solely to simulate

binary observations (pick-up, engagement). Finally, we note that

the constructed matrices P, E are completely filled (a small fraction

of entries are missing in the ground truth matrix but they were

imputed using ad-hoc techniques that are completely agnostic to

the algorithm). As stated in the introduction, we use the follow-

ing two metrics to compare various algorithms: (a) Reg
pick-up

(T),
Reg

engage
(T) which measure the expected pick-up, engagement

rates of an algorithm, and (b) number of retries before a successful

call. The major takeaways from our experiments with the retries

constraint (Section 4.2) that model the practical Kilikari set-up are

the following:

• The MC based algorithmic framework (Greedy MC and Phased

MC) obtain significant reduction in regret over the non-collaborative

UCB policy (> 27%).

• Our MC based algorithms obtain a significant reduction in the

number of average retries for 7 slots. The reduction over random

policies and UCB policy is > 30% and > 9% respectively for

several groups of beneficiaries.

• On extending our constrained setting to 14 time slots by taking

into account, the weekday-weekend flag, the reduction in average

retries for MC based algorithms become even more pronounced

and goes up to > 45% over random and > 25% over UCB policies.

4.1 Online Collaborative Learning
In this section, we demonstrate the efficacy of collaborative bandit

algorithms in identifying appropriate time-slots for beneficiaries.

We first describe our experimental setting. We subsampleM = 1000

beneficiaries uniformly at random from the 200𝐾 beneficiaries,

and consider T = 50 rounds. At each round, for each of the M
beneficiaries, a sequential algorithm chooses a time slot to call

the beneficiary based on the data obtained in previous rounds. We

simulate calls, pick-ups and engagements using the “ground truth”

P, E matrices as follows: the beneficiary 𝑢 picks up the call made

in the chosen time-slot 𝜌𝑢 (𝑡) at round 𝑡 with probability P𝑢𝜌𝑢 (𝑡 )
and engages with probability E𝑢𝜌𝑢 (𝑡 ) [P𝑢𝜌𝑢 (𝑡 ) ]−1 conditioned on

the pick-up. We compare the following algorithms: (a) UCB (Upper

Confidence Bound) which treats each beneficiary independently
1
,

(b) Greedy Matrix Completion with T
explore

set to 5, 10, and (c)

Phased Matrix Completion with Δ = 5. We repeat this experiment

15 times with different subset of beneficiaries. We used grid search

to select the exploration hyper-parameter in UCB, T
explore

in Greedy

MC and Δ in Phased MC.

In addition to regret, for a more intuitive evaluation, we also

compare the algorithms in terms of the average rank of the chosen

time-slot at each round. Note that for each beneficiary, we only

need to learn the right ranking of the available time-slots based

1
In the absence of user demographic features, UCB/TS are the best non-collaborative

baselines that attempt to intelligently elicit preferred timeslot info from each user.

Table 1: (Left Figure) Histogram of regret Regpick-up (T) (for T = 50

rounds) across 15 simulation runs of the 3 algorithms - 1) UCB 2)
Greedy MC with 5, 10 exploration rounds 3) Phased MC. (Right Fig-
ure) Histogram of regret Regengage (T) for the same setup - 1) En-
gagement data-only Greedy MC with 10 exploration rounds 2) Joint
Greedy MC with 10 exploration rounds 3) Joint Phased MC. Note
that the regret accrued by MC algorithms are significantly smaller
than UCB.

on their preferences. Based on this observation, at each round, we

will also consider the position (zero-indexed) of the time slot (po-

sition among time slots sorted in descending order of preference

- pickup/engagement probability) chosen by the algorithm for a

particular beneficiary and subsequently its average across all ben-

eficiaries. For example, at the 10
th

round, an average position of

1.5 implies that the time slot chosen by the algorithm at the 10
th

round is roughly the 2.5th best time slot for beneficiaries. Naturally,

the average time slot position is expected to decrease with rounds.

4.1.1 Pick-up data. In this sub-section, we will focus on the pick-

up matrix P. Here, all the algorithms try to minimize the regret

related to pick-ups Reg
pick-up

(T).
The left plot of Table 1 presents a histogram of regret of the three

algorithms described above, across 15 simulation runs. It is clear

from the figure that the Phased MC algorithm and the Greedy MC

algorithm (with 10 exploration rounds) significantly outperform

UCB (> 20% improvement in regret) and have the best performance

overall. Finally, we note that the purely randomized policy that is

currently implemented by the NGO has a regret more than 10000.

In order to understand intuitively the reason behind the im-

proved performance of the MC algorithms, note that the top 3

eigenvalues of the gram matrix of P are [182469.5, 24910.2, 7026.8].
Clearly the first eigen-value is approximately 6 times the second one

which in turn is approximately 3 times the third eigen-value. Thus,

we can conclude that the pickup estimate matrix P, despite being
an incredibly tall matrix with 7 columns can be well approximated

by a rank-2 matrix. This, in turn, implies that a significant amount

of information is shared across the beneficiaries. This is the crucial

structural prior exploited by MC algorithms. In contrast, UCB is

implemented separately for each beneficiary and therefore cannot

take advantage of the shared information across beneficiaries.

In Figure 1 we highlighted the average ranking (across benefi-

ciaries) of the chosen time-slot by various algorithms. It is clear

from the mean-variance plots that Greedy MC (with 10 exploration

rounds) and Phased MC have significantly improved choice of slots

as the learning progresses. We remark that there is a periodic struc-

ture in the choice of slots for the UCB algorithm - this stems from

the algorithmic design itself where the constructed confidence in-

terval is large enough for several beneficiaries who sequentially



(a) UCB (b) Greedy MC with 10 exploration rounds (c) Phased MC

Figure 1: (Pick-up) Figure shows the average rank/position of time-slot chosen, as a function of rounds. Each vertical bar represents themean,
variance of the rank. Note that the MC algorithms choose significantly better time-slots on average, as the algorithms progress.

go through all slots in a round-robin fashion. In the Greedy MC,

in the initial exploration component, slots are chosen uniformly

at random - thus the mean is close to 3. In the exploitation com-

ponent, the greedy MC algorithm commits to a fixed time-slot for

every beneficiary and therefore, vertical bars are identical across

rounds in exploitation component. For Phased MC, note that the

algorithm continues to improve its choice of slot gradually for all

beneficiaries.

We also perform a similar set of experiments on the engagement

data, where the goal is to minimize the engagement related regret

Reg
engage

(T). We obtain similar trends as in the pickup setting -

the relevant results are provided in Appendix D.1.

4.1.2 Combined Pick-up and Engagement data. Here, we aim to

minimize the engagement related regret Reg
engage

(T). However, in
contrast to experiments in Appendix D.1 where we relied solely on

engagement data, here we try to exploit both pick-up and engage-

ment data to improve Reg
engage

(T). While pick-up rate is only a

noisy signal of engagement rate, it is a much denser signal than

engagement. Consequently, we use it to augment the engagement

data to improve the performance of MC algorithms. Intuitively,

there can be several scenarios when the beneficiary had picked up

but didn’t engage (listened to less than 25%) due to several reasons

(inconvenient time or call picked up by family member or lack of in-

terest). In other words, even if the beneficiary picks up but does not

engage, it might lead to some information about the engagement

itself. The precise goal is to reduce Reg
engage

(T) by using pickup

and engagement information jointly over just using engagement

data. This is a challenging problem itself since it is non-trivial on

how to model the interaction between pick-up and engagement.

Due to above reasons, extending baseline non-collaborative al-

gorithms such as UCB to model interaction and pickups seems

complicated - it would necessarily entail making a certain set of

assumptions. However, the MC framework provides a very conve-

nient and elegant solution - the main idea is to jointly estimate both

pick-up and engagement matrices by combining all observations.

More precisely, consider the ground truth matrix R to be a concate-

nation of the pickup and engagement matrices P, E respectively

- as usual, R is unknown to the algorithm. As before, in a single

simulation run, we have M = 1000 randomly sampled users. At

each round, for each beneficiary, a slot is chosen to make a call -

subsequently two binary observations are made corresponding to

a pick-up and and engagement conditioned on a pick-up. Based on

these noisy binary observations, we impute all missing entries of R

jointly whenever we invoke the offline low rank MC algorithms.

We compare the regret of the following algorithms: (a) Greedy MC

algorithm with 10 exploration rounds that minimizes Reg
engage

(T)
based solely on engagement data (b) Joint greedy MC algorithm

with 10 exploration rounds, and (c) Joint phased MC algorithm.

Note that (b), (c) perform MC on the joint pick-up and engagement

data. The right figure of Table 1 presents the histogram of regret of

various algorithms over 15 simulation runs. Notice that our Joint

MC approaches achieve 10% improvement over the greedy MC

algorithm which only relies on engagement data.

4.2 Handling Retry Constraints
In practice, the NGOs are usually faced with resource constraints

and have an limit on the number of calls they can make to the

beneficiaries. To make our algorithms deployable in practice, we

now modify them to handle two such constraints that arise in the

context of Kilkari: (a) at most 9 attempts can be made to reach a

beneficiary via calls in each week (b) if a call is successful for a

particular beneficiary, then no other attempts are made in that week

to reach out to that beneficiary. In this setting, an important metric

to evaluate our algorithms is to demonstrate improvement in the

average retries needed before a successful call to the beneficiary.

As a service provider, if the average retries is reduced, there is

a significant increase in the capacity. This extra capacity can be

used to place further calls to low-engagement beneficiaries, as well

as potentially increase enrolments into the program which are

currently limited due to the infrastructural constraints.

As before, in each run of the simulation, we sample M = 1000

beneficiaries from the 200𝑘 beneficiaries uniformly at random and

simulate calls, pick-ups and engagements. In this setting, we con-

sider T = 270 rounds - each week comprises of 9 rounds and thus,

we simulate our experiment over 30 weeks of data. At each par-

ticular round in a week, we only simulate a call and pickup (or

engagement) for those beneficiaries who have not picked up (or

engaged) in any of the previous calls made in that week. Since we

do not call every beneficiary in each round, we define a modified

version of the usual regret Regnew
pick-up

(T),Regnew
engage

(T) for pick-up
and engagement respectively. In these definitions, for each benefi-

ciary, we only consider the rounds when calls are placed to them.

More precisely, let T𝑢 ⊂ [T] be the set of rounds when calls are

made to beneficiary 𝑢. We define the regret in this setting as

Regnew
pick-up

(T) =
∑

𝑢∈[M]

(
|T𝑢 | P𝑢𝜋𝑝 (𝑢) − EA

∑
𝑡 ∈T𝑢

P𝑢𝜌𝑢 (𝑡 )
)



Regnew
engage

(T) =
∑

𝑢∈[M]

(
|T𝑢 | E𝑢𝜋𝑒 (𝑢) − EA

∑
𝑡 ∈T𝑢

R𝑢𝜌𝑢 (𝑡 )
)
.

With the above set-up, we again compare the regret and the

average retries of the 3 aforementioned algorithm - (a) UCB (Upper

Confidence Bound) implemented separately for each beneficiary (b)

Greedy MCwith exploration periods of 27, 45 rounds and (c) Phased

MC with Δ = 27. We implement our algorithms by simulating calls,

pickups and engagement using the ground truth matrices related

to pick-up (P), engagement (E) respectively.

4.2.1 Pickup Data: In this sub-section, we will again focus on the

ground truthmatrix P to simulate call pick-ups. For each beneficiary,

we have the following template - 1) the 270 rounds are partitioned

into 30 groups (representing weeks) of 9 rounds each 2) In each

group of rounds, our designed algorithm chooses a slot to call the

beneficiary until they have picked-up - pickups are simulated by

entries of P as is usual 3) once the beneficiary picks up, no more

calls are placed to that beneficiary in remaining rounds in that

group 4) The algorithm restarts making calls in the subsequent

week to the beneficiary.

Our simulation results (across 15 simulation runs) with pick-up

data are summarized in Figures 2a, 2b and 2c. Figures 2a compares

the regret for each simulation run across 15 runs. As in previous

experiments, a random policy accrues a 10 times higher regret of

more than 50000 in each simulation run. In Figure 2a, it is clear

that there is a significant reduction in regret of more than 33%

(Regnew
pick-up

(T) for T = 270) by the Greedy and Phased algorithms

in MC framework over non-collaborative UCB algorithm. In turn,

this also translates into a reduction of > 5% in the average number

of call retries for pickup (average across users and rounds), for MC

based algorithms over UCB. In Figures 2b and 2c, we dive deeper

into the analysis of average retries.

Note that in our dataset, there are several beneficiaries who are

low-pickup - in other words, nomatter the slot that is recommended

to these beneficiaries, they are unlikely to pickup and engage. For

these beneficiaries, the choice of algorithm is almost irrelevant espe-

cially when there is a cap of 9 retries per week for each beneficiary

(shown by red horizontal lines in the figures). To understand this

better, we study the reduction in average retries of beneficiaries by

stratifying them according to the maximum pick-up ground truth

probabilities. We have 6 bins (partitioning the probability range)

that comprise of the intervals [0, 0.1], [0.1, 0.2] and the interval

[0.2, 1] partitioned into 4 equal intervals. More precisely, the bin

[𝑎, 𝑏] comprises all beneficiaries each of whom satisfies the follow-

ing condition - the maximum probability of pick-up assigned to

some slot for each of the aforementioned beneficiaries lies in the

interval [𝑎, 𝑏]. For each bin, we report 1) the average number of

beneficiaries in that bin 2) average reduction in percentage of re-

tries as compared to UCB policy 3) average reduction in percentage

of retries as compared to a random policy - here the average is

computed across all 15 simulation runs. The non-uniform splitting

of bins is to highlight low pick-up users (bin [0, 0.1]) in particular -

here the choice of algorithms is almost inconsequential as benefi-

ciaries rarely pick-up. Yet, even for the aforementioned bin, greedy

MC leads to a reduction of > 4% over random policy and > 1.5%

over UCB.

Clearly, in Figure 2b, the greedy MC with 27 exploration rounds

leads to more significant reduction in average retries when the

maximum ground truth pick-up probabilities is neither large nor

small - we have 1) 14.49% and > 35% reduction in average retries

over UCB and random policy respectively for the 195 beneficiaries

(on average) that lie in the bin [0.4.0.6] 2) > 7% and > 35% reduction

in average retries over UCB and random policy respectively for

332 beneficiaries (on average) in the two adjacent bins. This in

particular highlights the efficacy of our algorithm. Note that for

very low pickup beneficiaries and very high pick-up beneficiaries,

UCB and Greedy MC have similar performance - however, in the

latter case, there is a > 37% reduction in average retries.

Next, for Figure 2c, we consider a more complex setting with

14 time-slots (the 7 time slots considered previously along with

weekday/weekend flag). With this granular definition of time slots,

the beneficiaries have a significant amount of missing data. Out of

approximately 200𝑘 beneficiaries in the actual data-set, we focused

on ≈ 23𝑘 beneficiaries who had ground truth data for at least 10

slots out of the 14. For each of these ≈ 23𝑘 beneficiaries, we impute

the missing data by simply taking the average of the available

probabilities for the ≥ 10 slots of the concerned. Fig. 2c report

average retries until pickup/engagement with retries constraint

for 14 slots corresponding to 7 slots of the day combined with a

weekday/weekend flag. We find upto > 45% benefit in retries over

random policy and upto > 30% benefit in retries over UCB policy.

Finally, if we consider convergencewithin 0.15 of the true highest

probability slot, Greedy MC converges for 93% beneficiaries after

27 rounds (by design), while UCB converges for 85.5% beneficiaries

within 270 rounds (and 62% in 27 rounds), and fails to converge

for 15.5% beneficiaries even after 270 rounds. This highlights the

quick convergence of the algorithm for majority of the population

enabling the NGO to act fast to avoid dropoffs from the program

and boost engagement.

4.2.2 Engagement Data. We now focus on the ground truth matrix

E to simulate call engagements. We have the same setting as in the

pick-up case. In a particular simulation run, for each beneficiary

among 1000 randomly sampled beneficiaries, 1) the T = 270 rounds

are partitioned into 30 groups of 9 rounds each 2) In each group of

rounds, our designed algorithm chooses a slot to call the beneficiary

until they have engaged - simulated by entries of E 3) once the

beneficiary engages, the algorithm no longer places calls to that

beneficiary in that week and restarts next week.

Our simulations with the engagement data are summarized in

Figures 2d, 2e and 8b with analogous conclusions to the pickup

setting. As before, we can conclude from the first figure that there

is a significant reduction in regret (> 27%) accrued by MC algo-

rithms over UCB. This, in turn, leads to a reduction in the number

of average call retries for beneficiary engagement. This reduction

is lower than that obtained for the pickup setting but it stems from

the presence of a significantly larger fraction of low-engagement

beneficiaries as compared to low pick-up beneficiaries. In Figure 2e,

we stratify the users according to the maximum engagement proba-

bility for some slot. As before, we partition the range of engagement

probabilities [0, 1] into 6 disjoint intervals - [0, 0.1], [0.1, 0.2] and
[0.2, 1] split into 4 intervals. Notice that the reduction in average re-

tries over the random policy is significantly large and is more than



(a) Comparison of Regnewpick-up (T) (b) Retries across max probability bins (c) Retries across max probability bins with
weekday/weekend flags

(d) Comparison of Regnewengage (T) (e) Retries across max-probability bins (f) Retries across max probability bins with
weekday/weekend flags

Figure 2: Our experiments with retries constraint on a weekly basis. The top row shows figures corresponding to our results for pick-up
(bottom row for engagement) with the retries constraint. In the first column, we compare the regret for pick-up (engagement),i.e. Regnewpick-up (T)
(Regnewengage (T)), for T = 270 rounds across 15 simulation runs for 4 distinct algorithms. 1) UCB 2) Greedy MC with 27, 45 exploration rounds 3)
Phased MC. Clearly, the MC based algorithms lead to > 27% reduction in regret over non-collaborative algorithms. Figures in second column
report reduction in average retries of MC based algorithms over baselines with beneficiaries slotted into bins. Bin [𝑎,𝑏 ] has beneficiaries
whose true max probability of pick-up (engagement) lies in [𝑎,𝑏 ]. Again the MC based algorithms show significant reduction in average
retries over random policy (> 30% in some cases) and over UCB policy (> 9% in some cases). Fig. 2c and Fig. 2f report average retries until
pickup/engagement with retries constraint for 14 slots corresponding to 7 slots of the day combined with a weekday/weekend flag. We find
upto > 45% benefit in retries over random policy and upto > 30% benefit in retries over UCB policy.

40% for certain bins. Similarly, the reduction in average retries over

UCB also goes to > 12% in certain bins. Again the objective of non-

uniform splitting is to highlight the low-engagement beneficiaries.

Figure 2e show that on average 33.4% of beneficiaries are extremely

low engagement with maximum engagement probability for some

slot to be between 0 − 0.1. Even for these low-engagement bene-

ficiaries, Greedy MC gets a > 5% and 1.78% reduction in average

retries over random policy and UCB respectively. The improvement

becomes more pronounced with higher-engagement users. Similar

to the pick-up setting, on generalization our experiments to the

case of 14 slots, the improvement in average retries again become

significantly pronounced - these results are summarized in Fig. 2f.

Combined Pickup and Engagement data: We repeated the greedy

version of our algorithms with the combined pick-up and engage-

ment data to minimize the regret for engagement. However, in this

setting, we find nominal gains on combining - over 15 simulation

runs, the greedy algorithm on concatenated pickup and engagement

data with 27 exploration rounds accrue average Regnew
engage

(270) of
3072.69 while the greedy algorithm on sole engagement data with

27 exploration rounds accrue average Regnew
engage

(270) of 3182.25.

5 CONCLUSION
We presented two methods inspired by collaborative bandits that

exploit the low-rank structure of the problem to infer optimal time

slots to boost listenership with the largest maternal mHealth pro-

gram in the world. Additionally, we strengthen our models by

combining pickup and engagement signals. We conducted multiple

experiments with real-world data obtained from the NGO ARM-

MAN to show both the methods outperform the current baseline

deployed by the NGO as well as a non collaborative approach (UCB).

Particularly, for 7 time slot problem, the average number of retries

needed to reach a person drastically reduces by 30% and 9% com-

pared to random and UCB for 42% beneficiaries, and over 45% and

25% reduction for 14 time slots respectively (for 76% beneficiaries),

saving critical bandwidth for the program to enable reaching out

to more beneficiaries. For the 14 time slots case, we show that one

can optimistically reach 56% more beneficiaries with our MC based

approach when compared to UCB based non collaborative policies

when resources for both are equalized. Additionally, the proposed

methods converge to within 0.15 of the best time slot for 93% bene-

ficiaries in 3 weeks, enabling the NGO to act fast and hence retain

beneficiaries in the program as well as boost their engagement.



6 DATA USAGE AND ETHICS
The analysis presented in this paper falls into the category of sec-

ondary analysis of the anonymized dataset obtained from our NGO

partner ARMMAN. There is no demographic or personally iden-

tifiable information available. We only use previously collected

listenership trajectories of beneficiaries participating in the Kilkari

program to train the predictive model and evaluate it’s performance.

All the data collected through the program is owned by the NGO

and only the NGO is allowed to share data.

Bias and fairness. Prior studies on Kilkari [27] point out that

exposure to Kilkari helps improve health behaviors among the most

marginalised, and that the more marginalised population benefits

from higher number of retries in Kilkari calls. While we don’t have

access to demographic data, we do hope for the proposed method

to potentially help reduce such inequities by improving listenership

of Kilkari messages particularly amongst low listeners.

Path to deployment.The proposed method is intended to be

deployed at a national scale in India. With that goal in mind, the

next step will involve a randomized control trial in one state in

India to validate the true usefulness of the method in the field.

With Kilkari being operational in 19 states in India, the model can

then be deployed gradually across the different regions. Naturally

a deployment at this scale and diversity of beneficiaries may reveal

new challenges, such as regional differences in listenership patterns,

bandwidth limitations. Most importantly, though, all of the steps

will be done in close collaboration with our partner ARMMAN;

with ARMMAN ultimately in charge of the actual deployment.
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(a) Pickup Data (b) Engagement Data (c) Joint Pickup and Engagement Data

Figure 3: In first and second figure, we have compared the run-wise regret Regpick-up (T) and Regengage (T) (for T = 50 rounds) across 15

simulation runs of the 3 algorithms - 1) UCB 2) Greedy MC with 5, 10 exploration rounds 3) Phased MC. Here, the x-axis represents the
index of the simulation run and y-axis represents the accrued regret. Note that the Phased MC and Greedy MC (with 10 exploration rounds)
consistently outperform UCB. In the third figure, we have compared the Run-wise regret Regengage (T) (for T = 50 rounds) across 15 simulation
runs of the 3 algorithms - 1) Engagement data-only Greedy MC with 10 exploration rounds 2) Joint Greedy MC with 10 exploration rounds 3)
Joint Phased MC. Again, note that the joint MC algorithms consistently outperform engagement-only MC.

A COMPUTATIONAL COMPLEXITY OF PROPOSED ALGORITHMS
Both the proposed algorithms are very fast (with 10-20 minutes of run time on a laptop) and can easily scale to millions of beneficiaries. The

key component in our algorithms is the low rank matrix completion (LR-MC) subroutine. While Greedy MC utilizes LR-MC once, Phased MC

applies it ⌊T/Δ⌋ times. LR-MC is a well studied problem with very efficient algorithms known for matrices with billions of rows, columns;

we can incorporate any of these algorithms as black-boxes into our technique. The other key component is the Boltzmann exploration,

whose time complexity scales linearly with the number of timeslots (which is a small quantity).

B EXTENSIONS AND FUTUREWORK
Below we present some interesting avenues for future work:

(1) Theoretical Analysis: understanding the theoretical properties of our algorithm and deriving formal regret guarantees.

(2) Exploration Strategy: Investigating alternatives to Boltzmann exploration strategy that can potentially improve the performance of

the algorithm.

(3) Contextual Variants: Exploring methods to incorporate contextual information, when available.

C UPPER CONFIDENCE BOUND (UCB) ALGORITHM
Here we discuss a strong baseline UCB for our problem setting that solve the online bandit optimization problem for each beneficiary

separately. UCB is a folklore algorithm [5] for a single-agent bandit optimization problem that is known to obtain optimal regret guarantees.

The algorithm computes the sample average of pickups/engagements for each beneficiary and a time slot along with a confidence interval

for these estimates. At each round, for each beneficiary, UCB chooses the time slot with the highest upper confidence.

D ADDITIONAL EXPERIMENTS
D.1 Online Setting for Engagement data without Constraints
In this sub-section, similar to the setting in 4.1 for pickup data, we will focus on the ground truth matrix E related to call engagements. Here,

the goal of the designed algorithm is to minimize the accrued cumulative regret related to engagements Reg
engage

(T). As discussed earlier,

in each simulation run, we sample a subset ofM = 1000 users with N = 7 slots (arms) and run our algorithms for 50 rounds.

In Figure 5, we have shown analogous histogram to Figure ?? with similar conclusions but for the engagement matrix E as ground

truth. Again, this further validates the improved performance of matrix completion based algorithms. As before, random policies accrue an

empirical regret of more than 8000 in all simulation runs. Intuitively the improved performance of MC algorithms stem again from the low

rank structure - the top 3 eigenvalues of the gram matrix of E are [90467.1, 17909.2, 4823.2]. Hence E can be well-approximated by a rank-2

matrix - this is crucially exploited by MC algorithms that solve the bandit optimization problems jointly across beneficiaries. Note that in

figures 4a,4b and 4c, we have also highlighted the average position (across beneficiaries) of the chosen time-slot for engagement. As in the

pick-up setting, it is clear from the mean-variance plots that Greedy MC (with 10 exploration rounds) and Phased MC have improved choice

of slots for purpose of engagement with increase in rounds.



(a) UCB (b) Greedy MC with 10 exploration rounds (c) Phased MC

Figure 4: (Engagement) At any round 𝑡 , for each beneficiary the position of the chosen time-slot for engagement by an algorithm is computed
- their mean, variance across beneficiaries is shown for the T = 50 rounds. Note that the MC algorithms choose significantly better time-slots
on average for engagement with progress in number of rounds.

Figure 5: Histogram of regret Regengage (T) (for T = 50 rounds) across 15 simulation runs of the 3 algorithms - 1) UCB 2) Greedy MC with 5, 10

exploration rounds 3) Phased MC. Note that the regret accrued by MC algorithms are significantly smaller than UCB.

D.1.1 Run-wise comparison of regret from Section 4.1. In Figures 3a and 3b, we have also compared for each simulation run (over 15 runs)

the regret that is accrued by the following algorithms: 1) UCB 2) Greedy MC with 5, 10 exploration rounds 3) Phased MC. In Figure 3c, we

have also compared run-wise for 15 simulations the accrued regret for engagement when we jointly consider the concatenated pickup and

engagement matrices versus just the engagement matrix as ground truth alone.

D.2 Unconstrained Setting with 270 rounds
In this setting, we will consider T = 270 rounds without the retries constraint - this is in contrast to T = 50 that we used to simulate our

algorithms in Section 4.1. More precisely, in each run of the simulation, we sampleM = 1000 beneficiaries uniformly at random and simulate

calls, pick-ups and engagements for T = 270 rounds. At each round, for each of M beneficiaries, a sequential algorithm chooses a time slot to

call the beneficiary based on past data obtained in previous rounds - the chosen time slot can be different for each beneficiary. Now we

simulate the pick-up in the following way - the beneficiary 𝑢 picks up the call made in the chosen time-slot 𝜌𝑢 (𝑡) at round 𝑡 with probability

P𝑢𝜌𝑢 (𝑡 ) and engages with probability (E𝑢𝜌𝑢 (𝑡 ) ) (P𝑢𝜌𝑢 (𝑡 ) )−1 conditioned on the pick-up. With the above set-up, we compare the empirical

regret performance of several different algorithms - a) UCB (Upper Confidence Bound) implemented independently for each beneficiary

b) Greedy Matrix Completion with exploration periods of 10, 27 and 45 rounds c) Phased Matrix Completion (Matrix Completion with

Boltzmann Exploration). In this setting, from Figures 6a and 6b, it is clear that the Greedy MC algorithm (with 27 exploration rounds) and the

Phased MC algorithm obtains a significant reduction of > 40% in regret (Reg
pick-up

(T) for T = 270 rounds) over UCB consistently. Therefore,



(a) Retries across max probability bins (b) Retries across sparsity bins

Figure 6: (Pickup for 270 rounds) In first figure, we compare the regret Regpick-up (T) corresponding to pickup for T = 270 rounds and in the
second figure, we compare the regret guarantees for every simulation run. From the experiments it is clear that Phased Matrix Completion
and Greedy Matrix Completion (with 27 exploration rounds) does significantly better than UCB achieving a > 40% reduction in regret.

(a) Retries across max probability bins (b) Retries across sparsity bins

Figure 7: (Engagement data for 270 rounds) In first figure, we compare the regret Regengage (T) corresponding to engagement for T = 270 rounds
and in the second figure, we compare the regret guarantees for every simulation run. From the experiments it is clear that Phased Matrix
Completion and Greedy Matrix Completion (with 27 exploration rounds) does significantly better than UCB achieving a > 40% reduction in
regret.

we can conclude that the difference in regret between collaborative and non-collaborative algorithms increases with the increase in number

of rounds - this is also corroborated by theoretical guarantees in similar collaborative bandits settings [32].

We also repeat the same set of experiments with T = 270 rounds using the engagement dataset. Our results are summarized in the Figures

7a and 7b. As in the pickup case, we reached a similar set of conclusion - name the difference in regret (Reg
engage

(T)) increases with increase

in number of rounds.

D.3 Startification Based on Sparsity for 7 slots with Retries Constraint
In Figure 8a, we consider a different stratification of the beneficiaries based on the sparsity of their ground truth probability vectors. Sparsity

of a vector v ∈ R𝑑 is often captured by | |v| |
1
/| |v| |

2
(see [38]) - the ratio of the ℓ1 and ℓ2 norms of the vector v. Note that the ratio is bounded

from below by 1 and from above by

√
𝑑 . Intuitively, our goal is to understand the reduction in average retries separately for 1) users who

have a significantly large preference for some particular slots - the ratio is close to 1 2) users who have similar-ish preferences for all slots -

the ratio is close to

√
7. We partition the interval [1,

√
7] mapped to [0, 1] via appropriate scaling (for improved readability) into 5 bins of



(a) Retries across sparsity bins (b) Retries across sparsity bins

Figure 8: (Setting with Retries Constraint for T = 270 rounds considered in Section 4.2). In this Figure, we stratify the beneficiaries into bins
based on the sparsity level of ground truth probabilities captured by ratio of ℓ1 and ℓ2 norm. This ratio belongs to the interval [1,

√
7] which,

has been normalized to [0, 1]. Gains of MC based algorithms over UCB become more significant with denser ground truth probabilities. The
horizontal red line shows hard thresholding at 9 retries.

equal length.
2
As before, the average reduction in retries over random policies are significantly pronounced - on the other hand, the gains

over UCB become more significant as the ratio of ℓ1 and ℓ2 norm increase (the second case). This is because when all slots have similar

preferences, they are easier to estimate for the low rank MC oracles via partial observations.

Finally, in Figure 8b, we stratify the users according to sparsity level captured by the ratio of ℓ1, ℓ2 norm of their ground truth engagement

probability vector. As in the pick-up setting, the reduction in number of average retries becomes more pronounced as the ground truth

probability vectors become denser. The intuition is that denser ground truth reveals more information via partial noisy observations.

D.4 Weekday Weekend Flag (14 time slots)
Recall that in Section 4.2, we modelled the following practical constraint in the real Kilikari set-up where calls are made on a weekly basis by

the service provider a) at most 9 attempts can be made to reach a beneficiary via calls in each week b) if a call is successful for a particular

beneficiary, then no other attempts are made in that week to reach out to that beneficiary. Therefore, as mentioned before in this setting, an

important metric to evaluate our algorithms is by demonstrating the average retries (average across beneficiaries) in each week.

In contrast to Section 4.2, here we consider a more complex setting with 14 time-slots (the 7 time slots considered previously along with

weekday/weekend flag). The difficulty here is that beneficiaries have a significant amount of missing data corresponding to slots in the

ground truth call logs data that we collected - this is because many beneficiaries were not placed called at certain times in the data collection

phase. Out of approximately 200𝑘 beneficiaries in the actual data-set, we focused on ≈ 23𝑘 beneficiaries who had ground truth data for at

least 10 slots out of the 14. For each of these ≈ 23𝑘 beneficiaries, we impute the missing data by simply taking the average of the available

probabilities for the ≥ 10 slots of the concerned beneficiary.

As in Section 4.2, we first consider the pickup data where the goal is to improve user pickup and subsequently reduce the average retries

for placing calls so that the user picks up. In Figures 9a, 9b and 9c, our results are summarized in the analogous plots for this setting with 14

slots as in Figures 2a, 2b and 8a respectively. We stratify the beneficiaries in a similar manner (based on maximum ground truth probability

and the ratio of ℓ1, ℓ2 norms) - the goal is again to highlight 1) beneficiaries with different rates of pickup 2) beneficiaries who are opinionated

towards certain slots. Furthermore, note that in this setting, the reduction in average retries is very significant and goes above 50% for

random policies and above 40% for UCB for certain beneficiaries based on our stratification.

We then consider the engagement data in this setting where the goal is improve engagement of beneficiaries online - we consider the

metrics of regret and average retries for successful user engagement. In Figures 9d, 9e and 9f, our results are summarized in the analogous

plots for this setting with 14 slots as in Figures 2d, 2e and 8b respectively. Again, we obtain significantly high gains over both the random

policy as well as the UCB algorithm.

D.5 Offline Matrix Completion for sparse fine-grained Pick-up data
In this setting we consider a more fine-grained version of the slots by taking the day of the week into account as well. Therefore we have

N = 49 time slots corresponding to 7 days of the week and 7 time-slots in each day. However, it turns out that the ground truth matrix

P (related to pick-ups) with N = 49 columns is extremely sparse with < 25% filled entries
3
. We consider a subset ofM = 1000 randomly

sampled beneficiaries. The lack of ground truth data makes evaluating an online algorithm infeasible - we have very sparse ground truth and

so it is not possible to simulate pickups of a user called at a particular slot. Therefore, in this setting, the validation we can provide for our

technique is via offline low rank matrix completion. Suppose we have the ground truth data - we split this data into train and held-out test

data in the ratio of 4:1. Subsequently, using the training data, we run an off the shelf matrix completion algorithm to impute all the missing

2
There are some ignored beneficiaries with zero ground truth pickup probabilities for all slots.

3
The analogous matrix for engagement is even more sparse with very few non-zero entries. Hence we conduct the experiment only with pick-up estimates



(a) Comparison of Regnewpick-up (T) (b) Retries across max probability bins (c) Retries across sparsity bins

(d) Comparison of Regnewengage (T) (e) Retries across max-probability bins (f) Retries across sparsity bins

Figure 9: Our experiments with retries constraint for 14 slots corresponding to 7 slots of the day combined with weekday/weekend flag.
The top (bottom) row shows figures corresponding to our results for pick-up (engagement) with the retries constraint. In the first column,
we compare the accrued regret for pick-up (engagement) namely Regnewpick-up (T) (Reg

new
engage (T) for engagement) for T = 270 rounds across 15

simulation runs for 4 distinct algorithms 1) UCB 2) GreedyMCwith 27, 45 exploration rounds 3) Phased MC. Clearly, the MC based algorithms
lead to > 27% reduction in regret over non-collaborative UCB-based algorithm. In the second column, we compare the reduction in average
retries of MC based algorithms over UCB and random policy after stratifying the beneficiaries into bins - each bin [𝑎,𝑏 ] corresponds to
beneficiaries with maximum probability of slot pick-up (engagement) lies in [𝑎,𝑏 ]. Again the MC based algorithms gain significant reduction
in average retries over random policy (> 50% in some cases) and over UCB policy (> 40% in some cases). In the third column, we stratify
the beneficiaries into bins in a different manner based on the sparsity level of ground truth probability vectors captured by ratio of ℓ1 and ℓ2
norm. This ratio belongs to the interval [1,

√
7] which, for readability has been mapped to [0, 1] by appropriate normalization. Note that the

gains of MC based algorithms over UCB become more significant with denser ground truth probabilities. The horizontal red line shows hard
thresholding at 9 retries.

entries. We evaluate the matrix completion algorithm by their performance on the held out test data. The hypothesis is that if the offline

matrix completion algorithm is doing well on the held out test data, it will have good performance on completely unobserved entries as well.

Evaluation Metric. - For each data-point 𝑝 in the held-out test data, suppose the corresponding estimated value is 𝑝 . A very popular measure

of computing the statistical distance between two distributions is the KL divergence
4
. For two Bernoulli distributions with parameters 𝑝, 𝑞,

we have that

KL(𝑝 | |𝑞) = 𝑝 log 𝑝
𝑞
+ (1 − 𝑝) log

(
1 − 𝑝
1 − 𝑞

)
In that case, we compute KL(𝑝 | |𝑝) for all data-points in the held-out test data and report its histogram in Figure 10. Note that the average

KL divergence is 0.25 and Figure 10 clearly shows a peak at zero with an exponentially decaying tail. Thus the offline low rank matrix

completion algorithm is able to predict the held-out test data decently well from a very small number of observed entries in the ground truth

matrix.

4
Note that KL divergence is strictly not a distance measure as it is not symmetric in its arguments



Figure 10: Histogram of the KL divergence accrued by Offline MC algorithm for the held out test data-set obtained by masking 20% of
observed entries in a sparse ground truth matrix.

E FURTHER EXPERIMENTAL DETAILS
Note that all our experiments have been done on Google Colab Pro+ with 12.7GB RAM and 225.8GB Disk Memory. Below, we mention the

choice of hyper-parameters in each of our experiments:

Experiments in Section 4.1. In all experiments for the unconstrained setting, we ran UCB algorithm for a particular slot 𝑠 and beneficiary

tuple 𝑏 with a confidence interval of

√
2 log𝛿−1

𝑛𝑠,𝑏
where 𝛿 = 0.99 and 𝑛𝑠,𝑏 is the number of times calls were placed in slot 𝑠 for beneficiary 𝑏.

For the Greedy MC algorithm with T = 50, we used the low rank matrix completion oracle with a nuclear norm regularizer _ = 10. The same

value of regularizer was also used for the Phased MC algorithm. Furthermore, for the phased MC algorithm, Δ (phase length) was set to be 5.

The same parameters were also used for both Greedy and Phased MC when invoked for concatenated Pickup and Engagement Matrices.

Experiments for Unconstrained Setting with 270 rounds. In all experiments for the unconstrained setting, we ran UCB algorithm for a

particular slot 𝑠 and beneficiary tuple 𝑏 with a confidence interval of

√
2 log𝛿−1

𝑛𝑠,𝑏
where 𝛿 = 0.99 and 𝑛𝑠,𝑏 is the number of times calls were

placed in slot 𝑠 for beneficiary 𝑏. For the Greedy MC algorithm with T = 270, we used the low rank matrix completion oracle with a nuclear

norm regularizer _ = 2. Furthermore, for the phased MC algorithm, Δ (phase length) was set to be 10. Finally, recall that in the Phased MC

algorithm, the low rank matrix completion oracle is invoked in every phase (27 phases in all) - in the 𝑖th phase, the value of the nuclear norm

regularizer that was used was 2 − (𝑖 − 1) ∗ (2/27).

Experiments in Section 4.2. In all experiments for the constrained setting, we ran UCB algorithm for a particular slot 𝑠 and beneficiary

tuple 𝑏 with a confidence interval of

√
2 log𝛿−1

𝑛𝑠,𝑏
where 𝛿 = 0.99 and 𝑛𝑠,𝑏 is the number of times calls were placed in slot 𝑠 for beneficiary

𝑏. For the Greedy MC algorithm with T = 270, we used the low rank matrix completion oracle with a nuclear norm regularizer _ = 2.

Furthermore, for the phased MC algorithm, Δ (phase length) was set to be 27. Finally, recall that in the Phased MC algorithm, the low

rank matrix completion oracle is invoked in every phase (10 phases in all) - in the 𝑖th phase, the value of the nuclear norm regularizer

that was used was 2 − (𝑖 − 1) ∗ 0.2. The same hyper-parameters were also used for the experiments with 14 time slots (7 slots along with

weekday/weekend flag) incorporating the retries constraints.

F ADDITIONAL PLOTS



Figure 11: Spectrum of singular of the gram matrix of ground truth matrices P, E corresponding to pickup and engagement respectively.

Figure 12: Experiment for comparison of regret for varying exploration parameter in greedy MC vs phase length Δ in Phased MC with
T = 270 rounds. This experiment is for a randomly sampled set of M = 1000 beneficiaries. Note that Greedy MC obtains the smallest regret at
20 exploration rounds while Phased MC obtains a comparable regret at phase length 10 itself.



(a) Retries across max probability bins (b) Retries across sparsity bins

Figure 13: (Unconstrained Setting for T = 50 rounds considered in Section 4.1). Here we compare the actual simulated pick-ups that are
obtained by the different algorithms. Note that Phased MC has a sharp increase in actual pickups after 5 rounds itself and the pickup rate
continues to increase. This is also observed in the second figure - the cumulative pickups is significantly larger for Phased MC. On the other
hand, Greedy MC has the sharp rise in pick-up after the exploration component of 10 rounds. Finally, note that UCB has a continuously
increasing pickup rate but it is inferior to the MC algorithms.
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