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Abstract

Artificial intelligence (AI) tools are being developed widely within society to improve decision-
making, especially in resource-constrained settings like public health. However, developing effective
AI tools for public health is complicated by scale, the time-varying and intervention-dependent na-
ture of individuals’ behavior, and scarcity — of intervention resources, historical data, and real-time
observations. Many of these challenges are unaddressed in literature and can lead to poor outcomes
if ignored in real-world AI support systems for public health. For example, previous works have
modeled the problem of delivering interventions to improve engagement with health programs as
a restless bandit, a widely-studied framework in which a set of stochastic arms are controlled by a
planner with a limited intervention budget. However, these works do not account for the uncer-
tainty that results from estimating the dynamics of stochastic arms from noisy observations and his-
torical data. To address this, I introduce the first methods for computing uncertainty-robust restless
bandit policies, across a range of assumptions on prior information and observability. I achieve this
by designing novel approaches to efficiently search large policy and uncertainty spaces, e.g., a new
multi-agent deep reinforcement learning paradigm in which a centralized budget-network commu-
nicates with per-arm policy-networks to learn globally optimal policies in an environment controlled
by a regret-maximizing adversary-network. In union with this work, I advance art within the more
computationally intensive generalization of restless bandits that finds policies which balance many
types of interventions with unique costs and effects, e.g., a phone call vs. in-person visit; my works
identify and exploit functional structures to design new algorithms that scale. This dissertation
tackles several such challenges driven by identifying the key missing capabilities of interdisciplinary
collaborators, especially tuberculosis healthcare workers and workers within a maternal health non-
profit in India.
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0
Introduction

The goal of my research is to enable robust and equitable health decision-making in real-world

multi-agent systems. Moreover, the specific research questions I tackle are driven by identifying the

key missing capabilities of interdisciplinary health organizations with whom I collaborate. My body

of work is evidence that such a research model is a fruitful means to jointly produce disciplinary

advances and tools with potential for real-world impact.

In this dissertation, I tackle methodological challenges focused on one key goal: developing ar-
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tificial intelligence (AI) to improve the delivery of public health programs in low-resource settings.

Previously, this has been in varied contexts, e.g., training AI to detect disease from low-cost sensors

like chest x-rays131 or voice recordings173, training AI to predict key health markers from satellite

imagery20, and training AI to forecast the progression of pandemics7. Each of these studies produce

AI tools which may provide public health workers with additional intelligence at a moment in time.

However, they leave unanswered how to convert that intelligence into sustained improvements in

decision-making. This forms the core view of this dissertation, which aims to develop AI tools that

translate limited information into effective sequential decision recommendations for public health

workers whom are placed at the center of a challenging, ongoing, resource-constrained decision-

making problem to manage their patients’ evolving health behavior.

I believe that working closely with domain experts and stakeholders is critical to developing re-

sponsible AI tools that respond to the actual needs of on-ground practitioners. In pursuit of this, in

developing this dissertation, I collaborated with two public health organizations in India, the first

focused on eliminating tuberculosis (TB) and the second on improving maternal and child health.

Our primary partner in combating TB was the Mumbai office of the National TB Elimination Pro-

gram (NTEP) in India.* The NTEP provides free antibiotic medication to patients diagnosed with

TB throughout their 6-month to 2-year treatment courses. Health workers with the NTEP help

patients navigate treatment, refill their medications, and remain adherent to their 2-5 pill daily reg-

imens, complicated by many factors, e.g., medication side-effects that make it challenging to work.

Each NTEP health worker in Mumbai may manage hundreds of patients.

Our partner in improving maternal health was the non-profit, ARMMAN10. They provide a

range of free services to democratize access to evidence-based, life-saving health information for new

and expecting mothers across India. Specifically, we partnered in support of their program, mMitra,

*Previously, the NTEP was named the Revised National Tuberculosis Control Programme (RNTCP).
The name was changed in 2020.
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Figure 1: (a) A restless multi‐armed bandit (RMAB). One planner (e.g., health worker), acts on a set of arms (e.g., pa‐
tients), each with their own state (e.g., green=adherent, red=non‐adherent), subject to a per‐timestep budget constraint
(e.g., two calls per day). In an RMAB, there are only two types of actions, i.e., “no action” and “action” (e.g., “call” in
the figure). (b) The multi‐action generalization of RMABs (MARMABs), in which the planner has many types of actions
to choose from, each with varied costs/effects, subject to one per‐timestep budget constraint. In both RMABs and
MARMABs, there is always at least one action type that has zero cost so that the budget constraint is always satisfiable.

which provides free twice-weekly automated voice recordings to new and expecting mothers with

information tailored to their gestational age or the newborn’s age. At any given time, tens of thou-

sands of mothers are enrolled in the program, but the program faces waning engagement over time

for 30-40% of mothers. To address this disengagement, ARMMAN employs a team of workers who

deliver targeted service calls to mothers, e.g., explaining the value of the calls or correcting technical

issues for the mother. The team has capacity to contact hundreds of mothers per week.

For both of our partners, health workers share an arduous task in common: deciding how to

allocate their limited time and resources each week across large cohorts of patients such that engage-

ment with their evidence-based programs is maximized. Specifically, I study these problems through

the lens of restless multi-armed bandits (RMABs)163, a sequential decision-making framework in

which a centralized planner (e.g., health worker) manages a set ofN arms (e.g., patients), each with
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a state following a stochastic process (e.g., adhering or not adhering to medication each day). The

planner manages the arms by selecting a subset for intervention each time period. This process is

visualized in Figure 1(a). The restricted budget on interventions couples the evolution of the arms’

states, making the setting a complex combinatorial problem. As I applied ideas from these model-

ing frameworks across the TB and maternal health domains— through in-person workshops with

stakeholders, presentations at interdisciplinary conferences, and regular virtual meetings with collab-

orators across continents — I identified two major recurring methodological challenges that form

the basis of this dissertation work, and they are concretized in the following problem statement.

0.1 Problem Statement and Contributions

In this dissertation I address the question:

How can we jointly incorporate (i) resource heterogeneity and (ii) uncertainty in restless bandits for

improving public health program engagement?

In addressing this question, my key contributions are (1) optimization algorithms for scaling

the joint planning of heterogeneous intervention resources (2) machine learning algorithms for

learning arm dynamic models from confounded data and with combinatorial budget constraints

(3) a formal model for a new collapsing type of partial observability common across public health

engagement problems, with a scalable algorithm for computing optimal policies and (4) algorithms

for computing minimax regret-robust policies over interval model uncertainties that derive from

noisy historical data, including a newmulti-agent reinforcement learning paradigm.
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0.2 Summary

0.2.1 ScalingHeterogeneous Action Planning

Especially in the TB care setting, health workers have more than one option for how they intervene

on patients, e.g., texting, calling, traveling to visit a person in their home, or even escalating their case

to a supervisor. However, the majority of RMAB works are restricted to planning binary actions,

i.e., “to act or not to act”. There is limited previous work studying the generalization which handles

heterogeneous intervention resources, and these previous works have only been specialized to certain

sub-problems. To address this, I derive multiple algorithms for use on generalMulti-action RMABs

(MARMABs, visualized in Figure 1(b)) using Lagrangian relaxation techniques, leading to several

contributions. First, I develop algorithm which adapts to the inherent complexity of a problem’s

data via bound optimization, achieving excellent scale-up by leveraging a key insight that often only

a subset of arms are involved in the optimal policies of real-world planning problems. The bounds

leverage underlying problem convexity to quickly and provably converge to the well-performing

Lagrange policy. I also develop SampleLam, a fast sampling technique for estimating the Lagrange

policy, and derive a concentration bound to investigate its convergence properties. I then derive

best and worst case computational complexities for our algorithms as well as our main competitor,

showing improvements in the best case. Finally, I provide experimental results comparing the al-

gorithms to baselines on simulated distributions, including one motivated by the TB intervention

task, where a worker decides between texts, calls or an expensive “escalation” action. Our approach

achieves significant, up to ten-fold speedups over more general methods without sacrificing perfor-

mance. This demonstrates the importance of multi-action planning, as well as its potential for use

in real-world-scale problems. Chapter 1 lays the groundwork for the multi-action setting studied in

this dissertation. Chapters 2 and 5 build off these principles to enable online learning and planning

under model uncertainty in the challenging multi-action generalization of RMABs.
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0.2.2 Learning fromConfoundedHistory and Constrained Exploration

In the above work, I establish principles for solvingMARMABs assuming arm dynamics are known,

which itself is PSPACE-Hard122. However, in the real-world, arm dynamics must be estimated

from data (i) via real-time exploration and/or (ii) via estimation from observational data.

For (i) I develop two approaches, both of which reason carefully about restricted budgets while

learning in order to converge to effective policies. The first tackles this problem by learning per-

arm and per-action indexes that capture resource efficiency, using a two-timescale Q-learning and

convex parameter estimation procedure. This builds from a method for learning similar indexes in

the binary-action setting— I derive a generalized update rule and convergence proof for the multi-

action case. However, this approach requires restrictive assumptions on problem structure and is

slow to converge. By contrast, my second approach directly learns the well-performing and more

general Lagrange policy for MARMABs by learning to minimize the Lagrange bound through a

variant of Q-learning. The approach involves an approximation step that offers planners a tradeoff

between accuracy and efficiency, backed by guarantees. Both methods (1) take an epsilon-greedy

exploration approach, where I establish a good heuristic for selecting random feasible combinatorial

actions and (2) utilize a replay buffer that weights observed samples by the inverse of their action

cost which improves learning efficiency.

For (ii) I study an observational dataset on daily TB adherence data, enabled by Digital Adher-

ence Technologies (DATs), an increasingly popular method for verifying patient medication ad-

herence. I analyze a dataset fromMumbai with 17,000 patients and 2.1M dose records. I lay the

groundwork for learning from this real-world data, giving a method for avoiding the effects of un-

observed interventions in training data used for machine learning. Specifically, the data is missing

records of health worker interventions which, if ignored when training a classifier, can produce

antithetical recommendations. I develop a screening procedure that levereges domain knowledge
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from our NTEP partners to carefully split the training dataset where intervention signal may be

present, to train classifier that avoids this antithetical behavior. I then construct a deep learning

model, demonstrate its interpretability, and show how it can be adapted and trained in three differ-

ent clinical scenarios to better target and improve patient care.

0.2.3 Planning UnderModel andObservation Uncertainty

In the above works I give methods for handling uncertainty in the presence of uninformative priors,

or under specific structures in which confounders can be screened out. I now give more general

methods for incorporating prior information when planning, which is especially important when

planning horizons are short, i.e., there are fewer opportunities for learning in real-time.

I first handle uncertainty due to partial observability. In many cases, health workers can observe

the engagement of patients when they act, but otherwise the patient engagement is unknown, e.g.,

when DATs are unavailable. However, using historical information, we can help workers reason

about probabilities of engagement between observations that can improve policies. In a co-first au-

thor capacity, I propose and study Collapsing Bandits, a new RMAB setting which follows the

above structure. I give conditions under which the newmodel admits the asymptotically optimal

Whittle index policy, then build fast algorithms for computing the policy in a closed form. The

proofs and algorithm hinge on the monotonic evolution of the planner’s “belief” about the patient’s

engagement state, i.e., the key structure that captures the planner’s uncertainty between observa-

tions.

I then give the first methods for handling model uncertainty in RMABs andMARMABs. Nearly

all restless bandit techniques assume stochastic dynamics are precisely known. However, in many

real-world settings, dynamics are estimated with significant uncertainty, e.g., via historical data,

which can lead to bad outcomes if ignored. To address this, I develop an algorithm to compute

minimax regret–robust policies for the MARMAB setting. The approach uses a double oracle
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framework (oracles for agent and nature), which is often used for single-process robust planning

but requires significant new techniques to accommodate the combinatorial nature of MARMABs.

Specifically, I design a deep reinforcement learning (RL) algorithm, DDLPO, which tackles the

combinatorial challenge by learning an auxiliary “λ-network” in tandem with per-arm policy net-

works, greatly reducing sample complexity, with guarantees on convergence. DDLPO, of general

interest, implements our reward-maximizing agent oracle. I then tackle the challenging regret-

maximizing nature oracle, a non-stationary RL challenge, by formulating it as a multi-agent RL

problem between a policy optimizer and adversarial nature who selects worst-case environments

from the continuous uncertainty set over all arm dynamics models. I demonstrate through simu-

lated experiments,that the approach could improve outcomes in the 100-arm problems sizes of the

scale encountered by our TB partners.

However, we also wish to implement this system for our maternal health partner organization,

which has 100,000s of arms. This requires significant new techniques to search the massive pol-

icy and uncertainty spaces. In a co-first author capacity, to jointly handle the realities of large scale

andmodel uncertainty, I first instantiate a grouping abstraction, which combines arms with similar

behavior into a single planning unit. I then derive a new per-arm notion of regret (Whittle index

regret) to further decouple the problem and give a computable guide for searching the massive un-

certainty and policy spaces. Using this notion, I establish a new weighted index heuristic for the

planner oracle and a binary quadratic program for optimizingWhittle indices over uncertain transi-

tion probability intervals for the adversary oracle. I then prove a key theoretical result that planning

over grouped arms achieves the same minimax regret–optimal strategy as planning over individual

arms, under a technical condition. Finally, using real-world data from ARMMAN, I show that the

approach produces robust policies that reduce minimax regret by up to 50%, halving the number of

preventable missed voice messages to connect more mothers with life-saving maternal health infor-

mation.
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0.3 Dissertation Outline

This dissertation is organized as follows: Chapter 1 introduces RMABs and the heterogeneous ac-

tion setting with techniques for scaling and adapting to real-world data. Then, chapters 2 and 3 in-

troduce methods for learning from real-world data to improve planning. Next, chapters 4-6 discuss

planning under various forms of uncertainty. Finally, chapter 7 contains a conclusion and future

directions. Background and related works are given in each chapter.

0.4 ANote on the Use of AI Tools from this Dissertation

As has been noted countless times, all models are wrong, but some are useful22. The tools in this

dissertation are best seen not as prescriptive, but as descriptive; a way to transform large, messy

datasets into some specific view of the world paired with helpful insights about how to positively

influence that world. While we take great care in these chapters to find evidence that our models

are useful, they are inevitably imperfect, since they cannot capture all the rich complexities of the

real world. For example, they do not capture the tone of voice of a TB patient during intake, nor

the possibility that two patients may be friends supporting each other’s adherence habits. Thus it

is important to view the tools’ recommendations not as inherently authoritative, but rather as an

output from an additional tool in a larger toolbox to support decision making. Workers interacting

with the recommendations should have the opportunity to contextually calibrate their trust in the

recommendations15,14: when are the recommendations useful and when do they fail? How do the

recommendations interact with insights only captured by human interaction?

Additionally, at a higher level, viewing our AI tools as descriptive can help take a critical view

of the systems they model. Our tools may recommend intervention to a certain patient, but what

are the characteristics of the underlying model that led to that? What are the characteristics that

led to another patient not being recommended for intervention? If we ignore resource constraints
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and simulate providing interventions to all patients, which groups would be left behind, based on

our models? Then, what data led to our models reaching that conclusion and, critically, what are

the realities of the real-world system that generated that data? We can advocate for changes in real-

world systems as they exist today using our tools to generate evidence regarding the answers to such

questions; e.g., to set research and policy agendas that seek justice in healthcare systems, where all

patients affirmatively receive what they need to achieve the highest level of health128.
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Beyond “To Act or Not to Act”: Fast

Lagrangian Approaches to General

Multi-Action Restless Bandits

1.1 Introduction

RMAB, the state-based generalization of classic Multi-Armed Bandits152, have been studied exten-

sively for solving a diverse set of problems including machine replacement54,137, sensing and wireless

network scheduling13,177,5,32,112, job scheduling175,61,172 anti-poaching patrol scheduling130, and

healthcare92,103,17. In classic Multi-Armed Bandits, a planner must select k out ofN arms on which

to act for each of L rounds in a way that maximizes reward produced by the arms. In RMABs, ad-

ditional complexity is introduced in that the reward on each arm depends on the action as well as

an internal state that evolves according to an independent two-actionMarkov Decision Process

(MDP). It has been shown that this problem is, in general, PSPACE-hard to solve exactly122, but

highly effective heuristics are known to exist163,16.

However, a critical limitation of RMAB frameworks is they only allow for 2 actions: act or not

act. This is restrictive for many real-world cases where planners have various actions at their dis-

posal with varying degrees of cost and effect. For example, a systemmanager may need to balance

preventative maintenance, full repair, and job scheduling each with different costs and effects on

throughput26. In anti-poaching, the planner could allocate different levels of patrol effort to differ-
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ent targets, where more effort has higher cost and higher deterrent effect on poachers119. In public

health, a community health worker could have several options for intervening with a patient, such as

calling, visiting in person, or escalating patients to a more intense treatment169. Traditional RMABs

simply cannot model these complexities, restricting planners to a world where their only choices are

to, e.g., call or not call. Rather, the planner needs to simultaneously optimize the use of all of the

tools in their toolbelt each day, subject to a per-day time or cost budget B. This process is visualized

in Fig. 1.

To model such problems, we consider an under-examined generalization of RMABs that allow

for multiple action types per arm, which we call Multi-Action RMABs (MARMABs). Previous

work has considered extending the classical RMAB notion of indexability and corresponding index

policies to MARMABs52. In both traditional andMulti-action RMABs, index policies are desirable

because: (1) they decompose the problem in a manner that scales well and (2) when indexability

holds, they are asymptotically optimal161,63. However, both deriving index policies and verifying

indexability is notoriously difficult, and largely requires special problem structure54,52. Our goal is

thus to develop fast, well-performing policies for a broader class of MARMABs where no structure

is assumed and indexability cannot be readily verified. We bypass the task of deriving index policies

by taking a more general Lagrangian relaxation approach that leads to an auxiliary problem of com-

puting a policy that minimizes the Lagrange bound. Computing this “Lagrange policy” is desirable

because it recovers the performance of the index policies when they exist, but is readily computable

regardless of problem structure (see appendix A for additional discussion).

TheWeakly CoupledMDP (WCMDP) literature offers a method to compute the Lagrange pol-

icy for WCMDPs. Here, we recognize WCMDPs as a generalization of MARMABs and identify

that this approach can be used to compute the Lagrange policy for MARMABs. However, the ap-

proach relies on solving a large linear program (LP) that scales quadratically in the number of arms

and states. Setting up and solving this LP quickly becomes infeasible for large problem sizes as we
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show later in experiments. To address this issue, we investigate and utilize basic structural proper-

ties of general MARMABs to create scalable algorithms for computing the Lagrange policy on any

MARMAB problem, leading to the following contributions:

(i) Bound optimization algorithm: We develop BLam, an iterative bound optimization method

for computing the Lagrange policy. BLam leverages problem convexity to derive progressively

tighter upper and lower bounds on the Lagrange policy via a series of small LPs. We provide key

technical results that prove this method converges to the policy that minimizes the Lagrange bound

and provide experimental evaluation of its runtime on various distributions.

(ii) Sampling algorithm: We develop a sampling-based algorithm, SampleLam, which trades off

the guarantees of BLam for speed. SampleLam chooses a random subset of arms, rapidly computes

a statistic about the desirability of allocating budget to each arm, then combines the statistics to

construct an estimated Lagrange policy for the full problem. We derive a concentration bound to

prove the method converges, then use insights from the bound to inform how the algorithm carries

out sampling.

(iii) Complexity Results: We derive best and worst case computational complexities for our meth-

ods as well as our main competitor. Our exact algorithm, BLam, achieves≈
√
N improvement and

SampleLam achieves a factor ofN improvement in the best case;

(iv) Experimental evaluation: We compare our algorithms to baselines on synthetic distributions

with different underlying structure, including one motivated by a real-world public health chal-

lenge. Our algorithms scale up to ten times better than a more general baseline without sacrificing

performance, and readily adapt to each problem with minimal tuning. Thus our work newly makes

available multiple avenues for computing well-performing policies on newMARMABs at scale,

without the need for the user to first arduously derive a problem-specific index policy.
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1.2 RelatedWork

Previous work extends the traditional RMAB notion of indexability to MARMABs52,63. However,

their analysis is restricted to a subclass of MARMABs with special monotonic structure, whereas we

build algorithms for general MARMABs. “Superprocesses” are an alternative multi-action exten-

sion where a primary planner distributes a limited set of sub-planners who act on arms without con-

straint101,176,154. This structure does not generally apply to MARMABs since they do not constrain

the number of agents that can be acted on each round. Very recent work108 designs a Monte-Carlo

rollout approach for estimating traditional and multi-action RMAB policies when a restricted set of

“threshold” policies are optimal, but our algorithms do not assume this structure.

Also related are WCMDPs in which a planner operates N independent MDPs subject to a set

of arbitrary constraints over actions.110 derive methods for handling “global” resource constraints

over all rounds, whereas we address round-by-round constraints.60, the main baseline we compare

against, derive a Lagrangian relaxation on the general form of a WCMDP and give an LP for mini-

mizing the Lagrange bound. In contrast, we leverage the single constraint nature of MARMABs to

greatly speed up the computation of the Lagrange bound compared to60.4 give an approximate dy-

namic programming method that achieves a tighter bound and better performing policies than the

Lagrange approach toWCMDPs. However, it scales exponentially, restricting it to small problem

sizes.55 develop a Lagrange approach for solvingWCMDPs withMDPs that grow exponentially

in problem parameters, restricting them to approximation techniques. In contrast, we develop a

method that exactly computes the Lagrange policy.

Finally, our work is related to a large body of work developing Lagrangian methods for solving

traditional RMABs163,54,121,16. We generalize these settings to allow for multiple actions. Moreover,

the methods we develop here reduce in the binary action case to the widely-used, well-performing,

Whittle index policy163,54.
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1.3 Preliminaries

AMARMAB consists of a set ofN arms, each associated with a Markov Decision Process (MDP)129.

AnMDP {S,A, r,T, β} consists of a set of states S , a set of actionsA, a state-dependent bounded

reward function r : S → R, a transition function T, where T(s, a, s′) gives the probability of tran-

sitioning to state s′ when action a is taken from state s, and a discount factor β ∈ [0, 1). AnMDP

policy π : S → Amaps states to actions. The long-term discounted reward starting from state s0 = s

is defined as

Rπ
β (s) = E

[ ∞∑
t=0

βtr(st+1 ∼ T(st, π(st), s′t))|π, s0 = s

]
(1.1)

Each arm i in a MARMAB is anMDP with an action setAi of sizeMi and corresponding action

cost vector CCCi ∈ RMi . We assume all action sets and costs are the same for all arms (and henceforth

drop the subscript i), but all techniques in this chapter extend in a straightforward manner to gen-

eral action sets and costs. Without loss of generality, we assume that the elements cj of CCC are ordered

ascending. Also, to align with the standard bandit assumption that an arm can be “not played” at no

cost, we set c0 = 0. Each round, the planner must select one action for each of theN arms such that

the sum cost of all actions do not exceed a budget B. Formally, the planner must choose a decision

matrix XXX ∈ {0, 1}N×M with elements denoted xi,j such that

M−1∑
j=0

xi,j = 1 ∀i ∈ 0...N− 1
N−1∑
i=0

M−1∑
j=0

xi,jcj ≤ B (1.2)

where the first constraint enforces one action per arm and the second enforces the budget. The

planner’s goal is to maximize their discounted reward across the arms over time, subject to these

constraints. Let sss = [s0, s1, ..., sN−1] represent the vector of all arm states. The planner’s goal can be
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represented by the following constrained Bellman equation

J(sss) = max
XXX

{
N−1∑
i=0

ri(si) + βE[J(sss′)|sss,XXX]|
N−1∑
i=0

M−1∑
j=0

xi,jcj ≤ B} (1.3)

While Eq. 1.3 could be solved directly via value iteration, J(s) ∈ SN, and the number of feasible

actions over which to take the max for each J(sss) is also exponential inN, making this approach

intractable for non-trivial problem sizes. The key insight, though, is that the value functions and

actions are only coupled due to the shared budget constraint over all arms. Therefore to simplify

the problem, we relax the budget constraint and add it as a penalty to the objective with a Lagrange

multiplier λ as follows:

J(sss, λ) =

max
XXX

{
N−1∑
i=0

ri(si) + λ(B−
N−1∑
i=0

M−1∑
j=0

xi,jcj) + βE[J(sss′)|sss,XXX]}
(1.4)

The value functions then decouple as desired, giving:

J(sss, λ) =
λB
1− β

+
N−1∑
i=0

Vi(si, λ), where ∀i, (1.5)

Vi(si, λ) = max
aij∈A

{ri(si)− λcj + β
∑
si′

T(si, aij, si′)Vi(si′, λ)} (1.6)

See4 for a complete proof. Notice that for a given value of λ, Eq. 1.5 can be solved using a fast

method like value iteration to solve for the individualVis, whereVi and its corresponding actions

are now in S andA, respectively. However, the choice of λ will be critical when using the resulting

value functions to derive policies for our bandits. For instance, λ = 0 would correspond to ignoring

the budget constraint while planning which clearly will not be optimal in general. Alternatively, as
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λ → ∞, the optimal policy in each value function is to never act since all actions will have effec-

tively infinite cost except for c0 = 0. To gain insight about how to set the value of λ we recast the

problem as an LP, rewriting Eq. 1.5 by leveraging the known LP solution to the value function129:

J(sss, λ) = min
Vi(si,λ),λ

λB
1− β

+
N−1∑
i=0

μi(si)Vi(si, λ)

s.t. Vi(si, λ) ≥ ri(si)− λcj + β
∑
si′

T(si, aij, si′)Vi(si′, λ)

∀i ∈ {0, ...,N− 1}, ∀si ∈ S, ∀aj ∈ A, and λ ≥ 0

(1.7)

Where μi(si) = 1 if si is the start state for arm i and is 0 otherwise. That we minimize over λ and

that λ ≥ 0 is a classic Lagrangian result, motivated by making J(sss, λ) a tight-as-possible upper

bound on J(sss). Intuitively, and matching how problem-specific index policies have been derived in

previous work163,52, we want to derive a policy from theVis that provide the tightest bound on J(s).

So that our algorithms can generally apply to anyMARMAB, our approaches will solve Eq. 1.7 in

its general form.

The above derivation was first given by60 for WCMDPs, and as suggested therein, clearly one can

directly solve Eq. 1.7 using any LP solver. However, Eq. 1.7 hasN|S| + 1 variables andN|S||A|

constraints. Further, the current lowest known computational complexity for solving an LP is

O(n2+
1
18 ), where n is the number of variables69, implying that directly solving Eq. 1.7 has computa-

tional complexity≈ O(N2|S|2) (derived in section 1.4). The key to our approach will be separating

the computation of the λ that minimizes Eq. 1.7, henceforth λmin, and the correspondingVis that

solve Eq. 1.7 in a way that provides vast speedups. Herein we derive exact and heuristic methods

for computing λmin, each of which has an improved best case complexity inN by a factor of
√
N or

better.
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1.4 BoundOptimizationWith BLam

BLam is our exact approach to computing the Lagrange policy. We first give an overview, noting

theorems where relevant that are derived in the next section. The main idea is rooted in the form

of the functionsVi(si, λ) in Eq. 1.7, visualized in blue in Fig. 1.1. To exactly compute Eq. 1.7 re-

quires adding |S||A| constraints and |S| variables to the LP for each of theN arms’ value functions

Vi(si, λ). Instead, we will build special approximations to eachVi(si, λ) that are represented in the

LP each with just one variable and a constant number of constraints, achieving vast speedups. The

approximations are constructed by rapidly testing for the slope ofVi(si, λ) at various test points λtest

using value iteration, then creating a piecewise linear combination of the slopes. The key is we con-

struct two special types of approximations: one that upper bounds the slope ofVi(si, λ) and one

that lower bounds it, shown in Fig. 1.1 in green and red, respectively.

We then use the insight that theVi(si, λ) in Eq. 1.7, are indeed convex decreasing functions of

λ (Prop. 1.4.1), implying that Eq. 1.7 is minimized when the combined per-unit decrease to the

objective brought by the convexVi(si, λ) functions is equal to or less than the constant per-unit in-

crease to the objective brought by λB
1−β . In other words, λmin is the point where the negative sum of

slopes ofVi(si, λ) is equal to B
1−β (Prop. 1.4.2). Crucially, if we replace anyV

i(si, λ)with a convex

function with strictly more negative slope (i.e., a lower bound), the value of λ at which the negative

sum of slopes equals B
1−β could only increase, giving an upper bound on λmin. The converse also

holds, i.e., replacing with upper bound convex functions gives a lower bound on λmin (Thm. 1.4.3).

This constitutes the core tradeoff in our approach: the moreVi(si, λ) are replaced with approxi-

mations in the LP, the faster it will execute, but the looser the bounds will be. We handle this by

first “bounding out”, i.e., replacingVi(si, λ)with its approximation, all but a small numberK pro-

cesses to get loose bounds on λmin rapidly. We then iteratively add backVi(si, λ)s to the LP until the

bounds on λmin are with a pre-specified ε. With minimal tuning, the test points can be set to create
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tight enough bounds that BLam will converge after only a small number of iterations, leading to

great speed increases.

The algorithm proceeds in two parts. In BLamPrecompute, given in Alg. 1.4.1, we compute

the upper and lower bound approximations of of the arms, passing in the MDP parameters of

the arms, along with a listG of points λtest at which to approximate the slopes. VI in Alg. 1.4.1 de-

notes value iteration and U/Lwill contain the pieces of the piecewise upper and lower bounds for

Vi(si, λ) for all arms and states. BLamPrecompute runs once at the beginning of simulation.

BLam, given in Alg. 1.4.2, runs on each round of the MARMAB to compute λmin for the cur-

rent set of arm states sss (line 2 of Alg. 1.4.2 selects the bounding functions for the current state of

each arm). Using the piecewise bounded versions ofVi(si, λ), it constructs a special LP, BLamLP,

given in Eq.1.8 below, that produces upper and lower bounds on λmin by replacingVi(si, λ)with

their bounded counterparts. It loops, replacing successively moreVi(si, λ) in lieu of their bounded

forms, until the resulting bounds on λmin are within ε. BLam terminates by running one final value

iteration with the appropriate λmin, the result of which solves Eq. 1.7 without constructing or solving

the full LP, leading to vast speed ups. The resulting value functions will be used to construct a final

policy in section 1.6.

1.4.1 BLam: Derivation

To bound the slope ofVi(si, λ), we rely on it having a convex form.

Proposition 1.4.1. Vi(si, λ) is convex decreasing in λ, and as λ → ∞, dV
i(si,λ)
dλ → 0

Proof. This follows directly from Eq. 1.6, but can be shown via induction that sinceVi(si, λ) is a

max over piecewise linear convex functions of λ, it is also piecewise linear convex, and since λcj ≥ 0,

it must be weakly decreasing in λ. Furthermore, since c0 = 0 inMARMABs, as λ → ∞, the

one time charge λcj of any action aj s.t. j > 0 becomes greater than any long-term achievable
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Algorithm 1.4.1: BLamPrecompute
Data: T,R,C,N,G, β

1 D = [] ; // hold slopes at each arm test point
2 ε0 = 1e-3;
3 for i = 1, ...,N do
4 for j = 1, ..., |G[i]| do
5 λtest = G[i, j];
6 Rλ,Rλ+ε0 = R[i];
7 for x ∈ 1, ..., |C| do subtract action costs
8 Rλ[x] −= λtest ∗ C[x];
9 Rλ+ε0 [x] −= (λtest + ε0) ∗ C[x];

10 D[i, j] = (VI(T[i],Rλ+ε0 , β) - VI(T[i],Rλ, β))/ε0
11 U ,L = BuildBounds(D);
12 return U ,L

reward, therefore the optimal policy must always choose not to act. At that point,Vi(si, λ) =

E[
∑∞

t=0 β
tr(s)|π(a) = 0, ∀a]which does not depend on λ.

Let λu (λℓ) correspond to the λ which solves Eq. 1.7 whenVi(si, λ) are replaced in the objective

byL (U ). Note that the lower bound functionsLwill be used to derive upper bounds on the value

of λmin and vice versa.

Next, we give a helpful intermediate result.

Proposition 1.4.2. The optimal solution to Eq. 1.7 will be found at the value of λ in which the nega-

tive sums of the slopes of Vi(si, λ) w.r.t. λ become less than or equal to B
1−β .

Proof. Assume λ∗ corresponds to an optimal solution to Eq. 1.7 and the negative sums of the slopes

of convex decreasingVi(si, λ) are greater than B
1−β . Then λ

∗ can be increased by ε and the objective

value would decrease, i.e., J(sss, λ∗ + ε) < J(sss, λ∗) giving a contradiction.

We now can prove our main result:

Theorem 1.4.3. λℓ ≤ λmin ≤ λu
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Algorithm 1.4.2: BLam
Data: T,R,C,N,B, β, s,G, U ,L, ε, kStep

1 /* Only need bounds for current arm states */
2 GetCoeffsForState(U ,L, s);
3 Sort(U ,L, T,R);
4 st = PickStart(L,

√
N);

5 for k ∈ [st, st+kStep, ..., N] do
6 λu = BLamLP(T[: k],R[: k],B,C, β, s,L);
7 λℓ = BLamLP(T[: k],R[: k],B,C, β, s,U);
8 if λu − λℓ ≤ ε then break ;
9 V(i, s) = [] // Nx|S| array to hold value functions

10 λmin = (λu − λℓ)/2;
11 for i = 1, ...,N do
12 Rλ = R[i];
13 for x ∈ 1, ..., |C| do subtract action costs
14 Rλ[x] −= λmin ∗ C[x];
15 V[i] =VI(T[i],Rλ, β);
16 returnV

Proof. The proof is best seen by considering λmin which solves J(sss, λ), i.e., Eq. 1.7. We start with

λmin ≤ λu: Let V denote the set ofVi(si, λ) in the objective of Eq. 1.7. Further, let Vb denote the

set ofVi(si, λ)which will be replaced byLb ⊂ L. Now replace all Vb with their correspondingLb,

name this new LP Jλu(sss, λ) and name its optimal solution λu. By definition, at all values of λ, the

slope ofVi(si, λ) is greater than the slope ofLb. Thus, at λmin, the negative sums of the slopes of

Vi ∈ V\Vb plusLb is weakly greater than the negative sums of the slopes ofVi ∈ V . By Prop. 1.4.2,

we must have that Jλu(sss, λ) ≤ J(sss, λ), and respectively λu ≥ λmin.

λmin ≥ λl: The proof follows similarly.

We now describe a quick method for computing U andL. To construct these piecewise linear

convex functions that will serve as the bounds, we make use of the insight that the slope ofVi(si, λ)

can be rapidly computed at any test point λtest by calculating (Vi(si, λ = λtest + ε0) − Vi(si, λ =
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Figure 1.1: Constructing bounds on the slope ofVi(si, λ) for two different arms with three test points. Note: bounds
are with respect to the slope, not the value of the function.

λtest))/ε0 where bothVi(si, λ)s can be quickly computed via value iteration and ε0 ≈ 0. LetGi

represent the set of test points for a given arm. The largerGi, the tighter the bounds will be, but the

higher the up-front computational cost. Thus the choice of both the size and the exact elements of

Gi represent a set of parameters that can be tuned to maximize performance on a given distribution

ofVis. However, at minimum,Gi must include λtest = 0 since proposition 1.4.1 implies that the

minimum slope of anyVi occurs at λ = 0. Once the slope at all the test points are computed, they

are used to construct U andL via standard linear equations—the exact process is given in Appendix

A.1. Let U i(Gi
k,m) and U i(Gi

k, b) be the slopes and intercepts, respectively, for each piece k of the

upper bounding function U i for arm i. DefineLi(Gi
k, ∗) similarly.

Now, we can compute λu and λℓ. To start, we chooseK arms to include in Eq. 1.7 in their

Vi(si, λ) form, while the otherN − K arms will be replaced by their bounded counterparts. To
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compute λu, we replace theN− K arms withL to get the following LP:

Jλu(sss, λ) = min
Vi,λ,zj

λB
1− β

+

K∑
i=0

μi(si)Vi(si, λ) +
N−K∑

j
zj

s.t. Vi(si, λ) ≥ ri(si)− λcj + β
∑
si′

T(si, aij, si′)Vi(si′, λ)

∀i ∈ {0, ...,K}, ∀si ∈ S, ∀aj ∈ A (1.8)

zj ≥ Lj(Gj
k,m) ∗ λ + Lj(Gj

k, b)

∀k ∈ {0, ..., |Gj|}, ∀j ∈ {0, ...,N− K}

λ ≥ 0

where zj are auxiliary variables to represent the piecewise linear convex functionsLj via the |Gj|

constraints on zj. To compute λℓ we construct a similar LP using U i(Gi
k, ∗).

One important choice is in selecting the firstK arms. Intuitively, the bestVi(si, λ) to include

in Eq. 1.8 are those with the loosest bounds. One proxy for looseness is the slope of the last seg-

ment, i.e., the steeper the slope, the looser the bound, since we know the slope of allVi(si, λ) go to

0 eventually (Prop. 1.4.1). Therefore, we first sort arms in ascending order by this criteria (line 3 in

Alg. 1.4.2). To setK, we note that Prop. 1.4.2 implies that the negative sum of slopes ofVi(si, λ)

andLi must be less than or equal to B/(1 − β) for some value of λ to find a solution. SinceLi are

convex decreasing, if the negative sum of slopes of all the trailing segments ofLi are greater than

B/(1− β), then the LP will be unbounded. Thus, to guarantee the existence of a bounded solution,

we setK to pick the firstK arms in slope sorted order, such that the negative sum of slopes of all the

trailing segments ofLi is less than B/(1− β). We then setK = max(K,
√
N) (line 4 Alg. 1.4.2).

Once λu and λℓ are computed once, we iterate to includeKstep more arms in the LP such that

K += Kstep then repeat until the algorithm converges to within a difference ε. A straightforward in-
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duction argument shows that asK grows (and the set of bounded arms shrinks), the bounds become

progressively tighter and are guaranteed to be exact whenK = N. Once λmin is determined, we use

value iteration to rapidly solve Eq. 1.7, the result of which we will use to derive feasible policies in

Section 1.6.

1.4.2 BLam: Computational Complexity

In BLamPrecompute, BLam computes U i(Gi
k, ∗) andL

i(Gi
k, ∗) for allV

i(si, λ), which requires

two runs of value iteration for each arm for each test pointGi
k. Assuming all arms use the same

number of test points, states and actions, this scales asO(NGiVI(|S|, |A|))whereVI() is the com-

putational complexity of value iteration. While an exact complexity of value iteration is elusive, it is

known to be much faster than the LP formulation129. Thus, its complexity will be dominated by

the LP solves that occur in BLam— the same applies for the value iteration that runs at the end of

BLam each round.

To compute a policy for each round, BLam constructs Eq. 1.8 as an LP which hasK|S|+(N−K)

variables,K|S||A| constraints with |S| terms, and (N − K)Gi constraints with two terms. Although

the constraints associated with the (N − K) auxiliary variables only have two non-zero coefficients,

we conservatively assume that the matrix for this LP is dense in order to adopt the best known LP

complexity result69. In the best case, BLam would provide tight bounds on λmin after just one itera-

tion. So settingK =
√
N and assumingGi ≪ N, the per-round complexity is

Ω(
√
N|S|2|A|+N|S|2 +N

3
2 |S|+N2) (1.9)

Where the first term is the LP setup time to add constraints (which dominates the time to add vari-

ables) and the last three terms are the LP solve complexity, which is approximately square in the

number of variables. Applying the same reasoning to the direct LP solve approach, which hasN|S|
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variables andN|S||A| constraints gives the following best (and worst) case complexity

O(N|S|2|A|+N2|S|2) (1.10)

Thus, BLam has a strictly better best-case complexity in the problem size. However, in the worst case,

settingKstep =
√
N, BLam would require the full

√
N iterations to get a tight bound on λmin.

In this case, the LP setup time would match the naive LP approach, but successive solves would

become more expensive. Using basic summation, this gives a worst-case complexity of

O(N|S|2|A|+N
5
2 |S|2) (1.11)

Which, handily, is only
√
Nworse than the naive approach. However, we will show in experiments

that the typical run time and scaling of BLam is much faster than the naive approach in practice.

1.5 SampleLam

In some cases, especially very large problem sizes, speed can be more critical than performance.

Thus, next, we give an algorithm for quickly computing a heuristic estimate of λmin based on sam-

pling. The approach is grounded in the mathematical interpretation of λmin, i.e., that λmin captures

the willingness to violate the budget B given allVi processes. In this algorithm, we will estimate our

willingness to violate the budget for each arm individually given equal shares of the budget, solving

a series of singleton LPs, then combine that knowledge to generate an estimate for λmin

The algorithm is given in Alg. 1.5.1. It first choosesK processes at random to run through the

subroutine QuickLP, which solves Eq. 1.7 with a single arm and modified budget B
N giving a value

λi that estimates the value of playing that arm. It then creates an estimate of λmin by taking the sam-

ple mean of λi. Finally, it uses this estimate plus value iteration to solve for Eq. 1.7, which again we
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Algorithm 1.5.1: SampleLam
Data: T,R,C,N,B, β, rmax, cmin

1 Nsamples =
log(N)rmax

cmin
;

2 inds = RandomChoice([1, ...,N],Nsamples);
3 T, R = T[inds], R[inds];
4 λilist = [];
5 for i = 1...,Nsamples do
6 λi = QuickLP(T[i],R[i], B

N ,C, β);
7 λilist.append(λ

i)
8 V(i, s) = [] // Nx|S| array to hold value functions

9 λmin =Mean(λilist);
10 for i = 1, ...,N do
11 Rλ = R[i];
12 for x ∈ 1, ..., |C| do subtract action costs
13 Rλ[x] −= λmin ∗ C[x];
14 V[i] =VI(T[i],Rλ, β);
15 returnV

will use to derive feasible policies in section 1.6.

Although this method is not guaranteed to converge to the value of λmin, it is very fast, and works

well in practice on distributions which have an approximately normal distribution of budget across

arms under the true λmin policy. An example of such a distribution and the SampleLam estimate of

λmin is given in Fig. 1.2a.

1.5.1 SampleLam: Concentration Bound and Complexity

To understand SampleLam’s convergence properties, i.e., convergence to the sample mean of λi, we

derive a concentration bound below. The derivation first relies on showing that the distribution of

λis is sub-Gaussian.

Theorem 1.5.1. λi are σ2
n -sub-Gaussian with σ

2 = 1
4

(
rmax

cmin(1−β)

)2
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Figure 1.2: (a) λi is normally distributed about a mean equal to λmin (b) λmin is determined by a select few ”important”
arms, not equal to the sample mean. BLam is better suited for this case.

The proof involves showing 0 ≤ λi ≤ rmax
cmin(1−β) and is given in Appendix A.2. We can now use

sub-Gaussianness to derive a concentration bound relating the number of samples to a confidence

parameter 1− δ on the estimate of the sample mean of λi.

Theorem 1.5.2. The number of samples n needed to estimate the sample mean of λi within an error ε

and with confidence 1− δ is lower bounded as:

n ≥ 1
2ε2

(
rmax

cmin(1− β)

)2
log
(
1
δ

)
(1.12)

The proof, given in Appendix A.2, uses the Hoeffding bound and Thm. 1.5.1. This bound gives

the insight that the greater the reward to cost ratio, the more samples we need to well-estimate the

mean. We account for this by including a factor of rmax
cmin

in the setting forK in the SampleLam algo-

rithm. The drawback of this approach is that λmin is not guaranteed to be close to the sample mean

of λi in general. An adversarial case is shown in Fig. 1.2b in which SampleLam would compute an

arbitrarily bad estimate for λmin. SettingK = log(N) rmax
cmin

, the best and worst case complexity for

SampleLam is:

O
(
log(N)

rmax

cmin
|S|2|A|+N ∗ VI(|S|, |A|)

)
(1.13)
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Where the first term is the cost of setting up log(N) rmax
cmin

LPs, which dominates the solve time, and

the second term is the cost of the final value iteration.

1.6 Computing a Policy

Finally, once λmin is finalized, and the resulting value functions from Eq. 1.7 have been computed,

we use the value functions to compute the one-step greedy policy implied by the bound. To do

this, we expand the value functions to compute the action-value function,Q, which captures the

long term value for acting in a given state in each arm. We then choose actions by solving a modi-

fied knapsack whereQi(si, a, λmin) are the values subject to their respective action costs, the budget

B, and a constraint that ensures only one action is taken per arm. The knapsack LP is given in Ap-

pendix A.3, with an algorithm for computingQi(si, a, λmin) from value functions.

1.7 Experiments

We test our algorithms on two synthetic settings. In each, we compare the discounted sum of re-

wards, using discount factor 0.95, averaged over all armsN, over L = 40 rounds. All results are

averaged over 25 simulations. We compare our methods against the following baselines: Nobody:

Take a0 which has no cost on every arm;VfNc: Solves Eq. 1.7 with λ = 0, effectively ignoring all

future constraints, then follows Section 1.6;Hawkins: Solves Eq. 1.7 directly using an LP solver,

then follows Section 1.6. We also include several versions of BLam using various stopping criterion

ε, noted in each plot as BLam{ε}. Larger εwill lead to faster running times but looser bounds on

λmin, and thus worse performance in general. All algorithms were implemented in Python 3.6 and

use Gurobi version 9.0.3 to solve LPs via the gurobipy interface. All value iterations were computed

using a lightly modified version of pymdptoolbox version 4.0b335.

First, we explore an example distribution where VfNc and Haw-kins fail arbitrarily in terms
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of performance and runtime respectively. In this distribution, there are three types of agents: (1)

Greedy: Must take increasingly expensive actions to collect increasingly high reward. Once the re-

quired action is not taken, the agent never produces reward again. This is modeled with a single

chain of states, each with unit-increasing reward, reachable only by an action with unit-increasing

cost. Failure to take the next action leads to a dead state. (2) Reliable: Must take the cheapest non-

zero action every round to achieve reward 1. If the arm is not played for any round, it never pro-

duces reward again. This is modeled with a simple 2-state chain, in which the final state recurs with

the proper action, otherwise it goes to a dead state. (3) Easy: Always gives reward of 1 regardless

of action. We make the proportion of (1) and (2) equal and set the budget so that all of (1) or (2)

could be played (or some mix), but not more. Clearly, the optimal policy is to always play the Reli-

able agents since committing to the Greedy agents will eventually leave the planner only collecting

reward from the Easy agents. However, the Greedy agents will look most attractive to VfNc since,

without accounting for cost constraints, it will wrongly assume it can always pay the future cost to

obtain increasingly larger reward. Hawkins and BLam, using their constraint-based reasoning, will

instead commit to the Reliable agents. However, BLam will automatically detect the significant

structure within the problem, such as the existence of Easy agents as well as a simple form for theVi

of Reliable agents, to build tight bounds on the Lagrange policy using only a small subset of agents

in the coupled LP, leading to a significant speedup over Hawkins. The performance and runtimes

of the algorithms tested on a population with 0.25, 0.25, 0.5 mix across Greedy, Reliable, and Easy

agents with a budget of 0.25N and 30 actions (subsequently, 31 states) are shown in Fig. 1.3 and 1.4

confirming these insights. For BLam, all arms used test pointsGi = {0}. Here, SampleLam gives

good but variable performance in exchange for running approximately twice as fast as BLam.

Finally, we test our algorithms on a more rigorous simulation motivated by a real-world public

health care challenge, namely, tuberculosis care in India. In this real-world setting, a single com-

munity health worker manages up to 200 patients throughout the course of their 6-month an-
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Figure 1.3: Ignoring future constraints leads to bad policies.

200 400 600

Number of Arms (N)

0

5000

10000

R
un

ti
m

e
in

se
co

nd
s Hawkins

Blam0.2

Blam0.5

Blam1.0

SampleLam

VfNc

nobody

Figure 1.4: BLam and SampleLam scale better than Hawkins.

tibiotic regimen, monitoring and encouraging patients to take their daily medications. The health

worker has a range of actions they can take on each patient aimed at improving their adherence, each

with varying cost and effectiveness: call the patient (cheap), visit the patient in their home (semi-

expensive), escalate the patient (very expensive). Because the worker’s time and resources are limited,

the number and types of actions they can take each day across all patients are also limited.

We model this problem as follows. In the simulation, each patient state is a tuple of (adherence

level, treatment phase, day of treatment). The first entry captures the patient’s previous d days of

adherence. The second entry is binary and captures the ”phase” of treatment: the intensive phase

which lasts for the first IPL rounds, and the continuation phase which lasts from round IPL to the
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Figure 1.5: Rewards (top row) and runtimes (bottom row) on the health care dataset with budget 0.1N. Columns rep‐
resent d = 3, 4, 5 adherence levels, respectively. At all values of ε, BLam significantly outperforms VfNc. Further, the
Hawkins LP scales quadratically in the number of states on each arm, while BLam identifies problem structure that keep
the underlying LPs small, making speedups more dramatic as the problem size increases.

end. During the intensive phase, patients tend to have better adherence and are more responsive to

intervention. During the continuation phase, both effects tend to degrade and patients may drop

out (i.e., adherence of 0). The final entry captures time and can take any of IPL+ 2 values. The first

IPL values count days in the intensive phase and the next two are recurrent states that represent the

continuation phase and the dropout state.

In one relevant dataset that captured daily treatment adherence of TB patients in India over the

course of a year82, patients followed four distinct modes: (1) High adherence: adhere daily regard-

less of health worker action. This makes up the majority of the data; (2) Low adherence: Very low

adherence regardless of health worker action. (3) Receptive patients: Irregular adherence but can

benefit from intervention. On average, their adherence drops during the continuation phase, sug-

gesting that interventions become less effective. (4) Dropout patients: Like receptive patients but

have probability of dropping out during the continuation phase.

We implement each of these patient types in our simulation and include them in the follow-
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ing mix respectively: 0.64, 0.01, 0.175, 0.175. This mix matches the number of High and Low

adherence patients observed in the data, and splits the remaining portions evenly. At the start of

simulation, each patient is in the maximum adherence state since in the real world, patients begin

treatment in person. We run experiments with d = 3, 4, 5 adherence levels and set IPL = 2d. The

health worker’s action types are as follows: (1) No action: Take no action (c=0); (2) Call: Moder-

ately increased probability that patient will increase adherence state by 1 (c=1). (3) Visit: Significant

increased probability that patient will increase adherence state by 1 (c=2). (4) Escalate: Near-certain

probability that patient will return to the maximum adherence state. If a patient is in the dropout

state, there is a small probability they return to the continuation phase (c = B). Finally, rewards are

defined as (adherence level)/d, so more rewards are received for patients at higher adherence levels.

We simulate this setting for many parameter combinations. For BLam we report results using

test pointsGi = {0, 0.1, 0.2, 0.5}, though we found that, in general, most sets of 3 or 4 evenly

spaced points worked well. Fig. 1.5 shows the performance and runtime for the dataset with budget

of 0.1N for d = 3, 4, and 5 adherence levels. With such a small budget, the tradeoff between in-

dividual actions is important. In Fig. 1.5 we see that all versions of BLam significantly outperform

VfNc. Crucially, all versions of BLam also scale much better than Hawkins. In fact, as the number

of states in the underlying problem grows the speed ups become even more dramatic ranging from

a 2 times speedup with d = 3 to a 5 times speedup with d = 5. This is because the Hawkins LP

scales quadratically in the number of states of each arm, while the BLam algorithms are able to iden-

tify problem structure that keep the underlying LPs small with its bounding techniques, making

speedups more dramatic as the problem size increases.

In Appendix A.4, we run experiments varying the budget between 0.1N, 0.2N, 0.5N, with d =

4 adherence levels. As the budget increases, resources are less constrained, so all methods tend to

collapse to the same reward. However, again, BLam’s adaptivity allows it to recognize when the

problem is less constrained to automatically converge even more quickly to the optimal solution.
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These results demonstrate the exemplary ability for our approach to scale well without sacrificing

performance on a dataset whose technical structural conditions have no been established a priori.

That is, our algorithm can perform exceptionally with minimal tuning, while avoiding undertaking

the considerable effort of deriving an index policy and the existence thereof.

1.8 Conclusion

Our work makes available multiple avenues for computing well-performing policies on newMARMABs

at scale. We demonstrate that our algorithms offer vast speedups and can be readily adapted to new

problems without the need for the user to first arduously derive a problem-specific index policy,

as was previously the case. These advances make multi-action RMABs newly accessible, laying the

groundwork for wider study of this important framework.
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2
Q-Learning Lagrange Policies for

Multi-Action Restless Bandits

2.1 Introduction

Restless Multi-Armed Bandits (RMABs) are a versatile sequential decision making framework in

which, given a budget constraint, a planner decides how to allocate resources among a set of in-
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dependent processes that evolve over time. This model, diagrammed in Fig. 2.1, has wide-ranging

applications, such as in healthcare 92,103,17, anti-poaching patrol planning130, sensor monitoring

tasks67,54, machine replacement137, and many more. However, a key limitation of these approaches

is they only allow planners a binary choice—whether or not to allocate a resource to an arm at each

timestep. However, in many real world applications, a planner may choose among multiple actions,

each with varying cost and providing varying benefits. For example, in a community health setting

(e.g., Figure 2.1), a health worker who monitors patients’ adherence to medication may have the

ability to provide interventions via text, call, or in-person visit. Suchmulti-action interventions re-

quire varying amount of effort (or cost), and cause varying effects on patients’ adherence. Given

a fixed budget, the problem for a health worker is to decide what interventions to provide to each

patient and when, with the goal of maximizing the overall positive effect (e.g., the improvement of

patients’ adherence to medication).

Owing to the improved generality ofmulti-action RMABs over binary-action RMABs, this set-

ting has gained attention in recent years52,63,81. However, critically, all these papers have assumed

the offline setting, in which the dynamics of all the underlying processes are assumed to be known

before planning. This assumption is restrictive since, in most cases, the planner will not have perfect

information of the underlying processes, for example, how well a patient would respond to a given

type of intervention.

To address this shortcoming in previous work, this chapter presents the first algorithms for the

online setting for multi-action RMABs. Indeed, the online setting for even binary-action RMABs

has received only limited attention, in the works of Fu et al.46, Avrachenkov and Borkar12, and

Biswas et al.18,19. These papers adopt variants of the Q-learning update rule159,158, a well studied

reinforcement learning algorithm, for estimating the effect of each action across changing dynamics

of the systems. These methods aim to learnWhittle indexes163 over time and use them for choos-

ing actions. In the offline version, it has been shown that these indexes lead to an optimal selection
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policy when the RMAB instances meet the indexability condition. However, these methods only

apply to binary-action RMABs. This chapter presents two new algorithms for online multi-action

RMABs to address the shortcomings of previous work and presents an empirical comparison of the

approaches. The chapter provides three key contributions:

Figure 2.1: Schematic of a multi‐action RMAB. At each timestep, t, the planner (e.g., health worker) takes one action on
each ofN processes (e.g., patients). The sum cost of actions each timestep must not exceed a budget, B. After taking
actions at each timestep, the planner observes the rewards and state transitions of the processes, which the planner
uses to improve their action selection in the future. The goal is to maximize reward.

1. We design Multi-action Index-based Q-learning (MAIQL). We consider a multi-action no-

tion of indexability where the index for each action represents the “fair charge” for taking that

action52. If the dynamics of the underlying systems were known beforehand, an optimal policy

for multi-action indexable RMABs would choose actions based on these indexes when a linear

structure on the action costs is assumed63. We establish that, when these dynamics are unknown

and are required to be learned over time, MAIQL provably converges to these indexes for any

multi-action RMAB instance following the assumptions on cost and indexability. However,

these assumptions can be limiting, and in addition, the algorithm requires a two-timescale learn-

ing procedure that can be slow and unstable.

2. We propose a more general algorithm, Lagrange Policy Q-learning (LPQL). This method

takes a holistic back-to-the-basics approach of analyzing the Lagrangian relaxation of the multi-
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action RMAB problem and learning to play the Lagrange policy using the estimated Q values

which are updated over time. This policy converges more quickly thanMAIQL and other

benchmark algorithms, is applicable to problems with arbitrary cost structures, and does not

require the indexability condition.

3. We demonstrate the effectiveness of MAIQL and LPQL as compared to various baselines

on several experimental domains, including two synthetically generated domains and derived

from a real-world dataset on medication adherence of tuberculosis patients. Our algorithms

converge to the state-of-the-art offline policy much faster than the baselines, taking a crucial step

toward real-world deployment in online settings.*

2.2 RelatedWork

The restless multi-armed bandit (RMAB) problem was introduced byWhittle163 where he showed

that a relaxed version of the offline RMAB problem can be solved optimally using a heuristic called

theWhittle index policy. This policy is shown to be asymptotically optimal when the RMAB in-

stances satisfy the indexability condition161. Moreover, Papadimitriou and Tsitsiklis122 established

that solving RMABs is PSPACE-hard, even for the special case when the transition rules are deter-

ministic.

Since then, a vast literature have studied various subclasses of RMABs and provided algorithms

for computing the Whittle index. Lee et al.92 study the problem of selecting patients for screen-

ing with the goal of maximizing early-stage cancer detection under limited resources. Mate et al.103

consider bandits with two states to model a health intervention problem, where the uncertainty

collapses after an active action. They showed that the model is indexable and gave a mechanism

for computing the Whittle index policy. Bhattacharya17 models the problem of maximizing the

*Code available at: https://github.com/killian-34/MAIQL_and_LPQL
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coverage and spread of health information with limited resources as an RMAB and proposes a hier-

archical policy. Similarly, several other papers54,144,96 give Whittle indexability results for different

subclasses of RMABs where there are only two possible actions.

For more than two actions, Glazebrook et al.52,63 extendedWhittle indexability to multi-action

RMABs where the instances are assumed to have special monotonic structure. Along similar lines,

Killian et al.81 proposed a method that leverages the convexity of an approximate Lagrangian ver-

sion of the multi-action RMAB problem.

Also related to multi-action RMABs are weakly coupledMarkov decision processes (WCMDP).

The goal of a WCMDP is to maximize reward subject to a set of constraints over actions, manag-

ing a finite number of independent Markov decision processes (MDPs). Hawkins60 studied a La-

grangian relaxation of WCMDPs and proposed an LP for minimizing the Lagrange bound. On the

other hand, Adelman andMersereau4 provide an approximation algorithm that achieves a tighter

bound than the Lagrange approach toWCMDPs, trading off scalability. A more scalable approxi-

mation method is provided by Gocgun and Ghate55.

However, these papers focused only on the offline versions of the problem in which the dynamics

(transition and observation models) are known apriori. In the online setting, there has been some

recent work on binary-action RMABs. Gafni and Cohen47 propose an algorithm that learns to

play the arm with the highest expected reward. However, this is suboptimal for general RMABs

since rewards are state- and action-dependent. Addressing this, Biswas et al.18 give a Q-learning-

based based algorithm that acts on the arms that have the largest difference between their active and

passive Q values. Fu et al.46 take a related approach that adjust the Q values by some λ, and use it to

estimate the Whittle index. Similarly, Avrachenkov and Borkar12 provide a two-timescale algorithm

that learns the Q values as well as the index values over time. However, their convergence proof

requires indexability and that all arms are homogeneous with the same underlying MDPs. We use

the two-timescale methodology and define a multi-action indexability criterion to provide a general
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framework to learn multi-action RMABs with provable convergence guarantees. Our work is the

first to address the multi-action RMAB setting online.

2.3 Preliminaries andNotations

AMulti-action RMAB instance consists ofN arms and a budget B on the total cost. Each arm i ∈

[N] follows anMDP129. We define anMDP {S,A, C, r,T, β} as a finite set of states S , a finite set

ofM actionsA, a finite set of action costs C := {cj}j∈A, a reward function r : S → R, a transition

function T(s, a, s′) denoting the probability of transitioning from state s to state s′ when action a is

taken, and a discount factor β ∈ [0, 1)†. AnMDP policy π : S → Amaps states to actions. The

long-term discounted reward of arm i starting from state s is defined as

Jiβ,πi(s) = E

[ ∞∑
t=0

βtri(sit)|πi, si0 = s

]
(2.1)

where sit+1 ∼ T(sit, πi(sit), ·). For ease of exposition, we assume the action sets and costs are the same

for all arms, but our methods will apply to the general case where each arm has arbitrary (but finite)

state, action, and cost sets. Without loss of generality, we also assume that the actions are numbered

in increasing order of their costs, i.e., 0 = c0 ≤ c1 ≤ . . . , cM. Now, the planner must take decisions

for all arms jointly, subject to two constraints each round: (1) select one action for each arm and

(2) the sum of action costs over all arms must not exceed a given budget B. Formally, the planner

must choose a decision matrix AAA ∈ {0, 1}N×M such that:

M∑
j=1

AAAij = 1 ∀i ∈ [N]

N∑
i=1

M∑
j=1

AAAijcj ≤ B (2.2)

†β is only included under the discounted reward case, as opposed to the average reward case which we
address later.
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LetA be the set of decision matrices respecting the constraints in 2.2 and let sss = (s1, ..., sN) repre-

sent the initial state of each arm. The planner’s goal is to maximize the total discounted reward of all

arms over time, subject to the constraints in 2.2, as given by the constrained Bellman equation:

J(sss) = max
AAA∈A

{ N∑
i=1

ri(si) + βE[J(sss′)|sss,AAA]

}
(2.3)

However, this corresponds to an optimization problem with exponentially many states and combi-

natorially many actions, making it PSPACE-Hard to solve directly122. To circumvent this, we take

the Lagrangian relaxation of the second constraint in 2.260:

J(sss, λ) =

max
AAA


N∑
i=1

ri(si) + λ(B−
N∑
i=1

M∑
j=1

AAAijcj) + βE[J(sss′, λ)|sss,AAA]

 (2.4)

Since this constraint was the only term coupling the MDPs, relaxing this constraint decomposes the

problem except for the shared term λ. So Eq. 2.4 can be rewritten as (see4):

J(sss, λ) =
λB
1− β

+
N∑
i=1

max
aij∈Ai

{(Qi(si, aij, λ)} (2.5)

whereQi(si, aij, λ) =

ri(si)− λcj + β
∑
s′

T(si, aij, s′) max
aj∈Ai

{(Qi(s′, aj, λ)}
(2.6)

In Eq. 2.6, each arm is effectively decoupled, allowing us to solve for each arm independently for a

given value of λ. The choice of λ, however, affects the resulting optimal policies in each of the arms.

One intuitive interpretation of λ is that of a “penalty” associated with acting – given a fixed budget

B, a planner must weigh the cost of acting λcj against its ability to collect higher rewards. Thus, as
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λ is increased, the optimal policies on each arm will tend to prefer actions that generate the largest

”value for cost”.

The challenges we address are two-fold: (1) How to learn policies online that can be tuned by

varying λ and (2) How to make choices for the setting of λ that lead to good policies. Our two al-

gorithms in Sections 2.4 and 2.5 both build on Q-Learning to provide alternative ways of tackling

these challenges – where MAIQL builds on the rich existing literature of “index” policies, LPQL

goes “back to basics” and provides a more fundamental approach based on the Lagrangian relax-

ation discussed above.

2.4 Algorithm: MAIQL

Our first algorithm will reason about λ’s influence on each arm’s value function independently. In-

tuitively, this is desirable because it simplifies one size-N problem toN size-one problems that can be

solved quickly. Our goal will be to compute indexes for each action on each arm that capture a given

action’s value, then greedily follow the indexes as our policy. Such an index policywas proposed by

Whittle 163 for binary-action RMABs, in which the index is a value of λ such that the optimal pol-

icy is indifferent between acting and not acting in the given state. This policy has been shown to be

asymptotically optimal under the indexability condition161.

Glazebrook et al.52 and Hodge & Glazebrook 63 extended the definition and guarantees, respec-

tively, of the Whittle index to multi-action RMABs that satisfy the following assumptions:

1. Actions have equally spaced costs, i.e., after normalization, the action costs can be expressed

as {0, 1, . . . ,M− 1}.

2. The utility of acting is submodular in the cost of the action.

For such multi-action RMABs, Glazebrook et al. 52 defines multi-action indexability and the multi-

action index as follows:
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Definition 2.4.1 (Multi-action indexability). An arm is multi-action indexable if, for every given

action aj ∈ A, the set of states in which it is optimal to take an action of cost cj or above decreases mono-

tonically from S −→ ∅ as λ increases from−∞ → ∞.

Definition 2.4.2 (Multi-action index, λ∗s,aj). For a given state s and action aj, the multi-action index

is the minimum λ∗s,aj that is required to become indifferent between the actions aj and aj−1:

λ∗s,aj = inf
λ
{Q(s, aj, λ) ≤ Q(s, aj−1, λ)} (2.7)

= λ, s.t. Q(s, aj, λ) = Q(s, aj−1, λ) (2.8)

where Q(s, aj, λ) is the Q-value of taking action aj in state s with current and future rewards adjusted

by λ.

Given these multi-action indices, Hodge & Glazebrook 63 suggest a way to greedily allocate units

of resources that is asymptotically optimal – assume that the arms are in some state sss, then iterate

from 1 . . .B and in each round allocate a unit of resource to the arm with the highest multi-action

index associated with the next unit of resource. Specifically, if θ = ⟨θ1 . . . θN⟩ units of resource

have been allocated to each arm so far, then we allocate the next unit of resource to the arm with the

highest λ∗si,aθi . Given that the action utilities (λ
∗
s,aj) are submodular in aj by assumption, thismulti-

action index policy leads to the allocation in which the sum of multi-action index values across all the

arms are maximized.

Given the policy’s theoretical guarantees, an index-based solution to the multi-action RMAB

problem is attractive. The question then is how to calculate the value of the multi-action indices

λ∗s,aj . In the online setting (when the RMAB dynamics are unknown apriori), Avrachenkov &

Borkar 12 proposes a method for estimating the Whittle indexes for binary-action RMABs and,

in addition, proves that this algorithm’s estimate converges to the Whittle index.
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In this section, we describe theMulti-Action IndexQ -Learning (MAIQL) algorithm. Our algo-

rithm generalizes the update rule of the learning algorithm proposed by Avrachenkov & Borkar 12 .

We consider the notion of multi-action indexability from Glazebrook et al. 52 to create an update

rule that allows us to estimate the multi-action indexes (Section 2.4.1). In addition, we use the

multi-action indexability property to show that the convergence guarantees from Avrachenkov &

Borkar 12 are preserved in this multi-action extension (Section 2.4.2).

2.4.1 Algorithm

From Equation 2.8, we observe that if we could estimate the Q values for all the possible values of λ,

we would know the value of λ∗s,aj . This is not possible in general, but we can convert this insight into

an update rule for estimating λ∗s,aj in which we update the current estimate in the direction such that

Eq. 2.8 is closer to being satisfied. Based on this, we propose an iterative scheme in which Q values

and λ∗s,aj are learned together.

An important consideration is that, because the Q and λ∗s,aj values are inter-dependent, it is not

straightforward to learn them together, since updating the estimate of one may adversely impact

our estimate of the other. To combat this, we decouple the effects of learning each component by

relegating them to separate time-scales. Concretely, this means that an adaptive learning rate α(t)

for the Q values and γ(t) for λ-values are chosen such that limt→∞
γ(t)
α(t) → 0, i.e., the Q values

are learned on a fast-time scale in which λ values can be seen as quasi-static (details in appendix B.1

and B.3). The resultant two time-scale approach is given below.

To calculate the multi-action index, for a given state s ∈ S and action aj ∈ A, we store two sets

of values: (1) the Q values for all states and actions,Q(s, aj) ∀s ∈ S, aj ∈ A, and (2) the current

estimate of the multi-action index λs,aj . All the Q and λ values are initiated to zero. Then, for a given

state s in which we take action aj, we observe the resultant reward r and next state s′, then perform

the following updates:
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1. Q-update: At a fast time-scale (adjusted by α(ν(s, aj, t))), update to learn the correct Q values as

in standard Q-learning:

Qt+1
λ (s, aj) = Qt

λ(s, aj) + α(ν(s, aj, t))
[
[r(s)− λts,ajcj

−f(Qt
λ)+ max

a′j
Qt
λ(s

′, a′j)]− Qt
λ(s, aj)

]
(2.9)

where ν(s, aj, t) is a “local-clock” that stores howmany times the specificQλ(s, aj) value has

been updated in the past, and f(Qt
λ) =

∑
s,aj

Qt
λ(s,aj)∑

s,aj
1 is a function whose value converges to the

optimal average reward2. We give the average reward case to align with the traditional derivation

of binary-actionWhittle indexes, but this update (and related theory) can be extended easily to

the discounted reward case.

2. λ-update: Then, at a slower time-scale (adjusted by a function γ(t)), we update the value of λts,aj

according to:

λt+1
s,aj = λts,aj + γ(t) · (Qt

λ(s, aj)− Qt
λ(s, aj−1)) (2.10)

Note that the updates described in the paragraph above correspond to the estimation of a single

multi-action index. To efficiently estimate λ∗(s, aj) ∀ s, a, we make use of the fact that our algo-

rithm, like the Q-learning algorithm on which it is based, is off-policy – an off-policy algorithm does

not require collecting samples using the policy that is being learned. As a result, rather than learn

each of these multi-action index values sequentially, we learn them in parallel based on the samples

drawn from a single policy.

Specifically, since learning each index value requires imposing the current estimate λ on all cur-

rent and future action costs, and since a separate index is learned for all arms, states, and non-passive

actions,N(M − 1)|S| separate Q-functions (each a table of size |S| × M) and λ-values must be

maintained, requiringO(NM2|S|2)memory. However, since the estimation of each index is in-
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dependent, each round, the index and its Q-function can be updated in parallel, keeping the pro-

cess efficient, but requiringO(NM|S|) time if computed in serial. To take actions, we follow an

ε-greedy version of the multi-action index policy – which, when not acting randomly, greedily se-

lects indices in increasing size order for each arm’s current state, takingO(NM) time – and store

the resultant ⟨s, a, r, s′⟩ tuple in a replay buffer. The replay buffer is important because, in the multi-

action setting, each (s, a) pair is not sampled equally often; specifically, especially when B is small,

it is less likely to explore more expensive actions. After every fixed number of time-steps of run-

ning the policy, we randomly pick some ⟨s, a, r, s′⟩ tuples from the replay buffer with probability

weighted inversely to the number of times the tuple has been used for training, and update the Q

values associated with each of the multi-action indexes and the λs,a estimate for the sampled (s, a).‡

The resulting algorithm is guaranteed to converge to the multi-action indexes. Pseudocode is given

in appendix B.3.

2.4.2 Theoretical Guarantees

The attractiveness of the MAIQL approach comes from the fact that, if the problem is multi-action

indexable, the indexes can always be found. Formally, we show:

Theorem 2.4.3. MAIQL converges to the optimal multi-action index λ∗s,a for a given state s and

action a under Assumptions 1, 2, 3, and the problem being multi-action indexable.

Proof Sketch. At the fast time-scale: We can assume λs,a to be static. Then, for a given value of

λs,a = λ′, the problem reduces to a standardMDP problem, and the Q-learning algorithm con-

verges to the optimal policy.

At the slow time-scale: We can consider the fast-time scale process to have converged, and we

have the optimal Q valuesQ∗
λ′ corresponding to the current estimate of λs,a. Then, by the multi-

‡all algorithms in this chapter will be equipped with the replay buffer for fairness of comparison.
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action indexability property, we know that if λ < λ∗ an action of weight a or higher is preferred. As

a result,Q∗
λs,a(s, a) − Q∗

λs,a(s, a − 1) > 0, and so λt+1 > λt. When λ > λ∗, the opposite is true and

so λt+1 < λt. As a result, we constantly improve our estimate of λ such that we eventually converge

to the optimal multi-action index, i.e., limt→∞ λt → λ∗s,a.

The detailed proof follows along the lines of Avrachenkov & Borkar 12 , and can be found in ap-

pendix B.1. However, while they consider convergence in the binary-action case, our approach gen-

eralizes to the multi-action setting. The crux of the proof lies in showing how the multi-action index

generalizes the properties of the Whittle index in the multi-action case, and leads to convergence in

the slow time-scale.

2.4.3 MAIQL Limitations

The main limitations of MAIQL are (1) it assumes multi-action indexability and equally-spaced ac-

tion costs to be optimal and (2) it learns on two time-scales, making convergence slow and unstable

in practice. i.e., for the convergence guarantees to hold, MAIQLmust see “approximately” infinitely

many of all state-action pairs before updating λ once. This can be difficult to ensure in practice for

arms with transition probabilities near 0 or 1, and for problems where the budget is small, since

many more samples of (s,a) pairs with cheap actions will be collected than ones with expensive ac-

tions.

2.5 Algorithm: LPQL

In this section, we provide a more fundamental approach by studying the problem of minimiz-

ing J(·, λ) (Equation 2.5) over λ. By minimizing this value, we aim to compute a tight bound on

Eq. 2.3, the value function of the original, non-relaxed problem, then follow the policies implied

by the bound, i.e., the Lagrange policy. However, computing J(·, ·) requires theQi(s, a, λ) val-
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ues which in turn require the knowledge of transition probabilities (as shown in Equation 2.6).

In absence of the knowledge of transition probabilities, we propose a method, called Lagrange

PolicyQ -Learning (LPQL). This method learns a representation ofQi(s, aj, λ) by using samples

obtained from the environment via a mechanism similar to MAIQL. However, rather than estimat-

ingQi(s, aj, λ)with the purpose of estimating some downstream value of λ (i.e., indexes), now the

goal is to estimate the entire curveQi(s, aj, λ)with respect to λ. It is straightforward to show that

Qi(s, aj, λ) is convex decreasing in λ 60, meaning that once we have a representation ofQi(s, aj, λ),

minimizing J(·, ·) simply corresponds to a one-dimensional convex optimization problem that can

be solved extremely quickly.

In addition to its speed, this approach is desirable because it is designed for RMAB instances

without specific structures, i.e., LPQL accommodates arbitrary action costs and needs no assump-

tion on indexability. It does so by computing the Lagrange policy, which is asymptotically optimal

for binary-action RMABs regardless of indexability161, and works extremely well in practice for

multi-action settings81. LPQL enjoys these benefits, and further, is designed to work on a single

learning timescale, making its convergence faster and more stable thanMAIQL.

In the offline setting, J(·, ·) can be minimized by solving this linear program (LP), which can be

derived directly from Eq. 2.560:

min
λ

J(sss, λ) = min
Vi(si,λ),λ

λB
1− β

+
N−1∑
i=0

μi(si)Vi(si, λ)

s.t. Vi(si, λ) ≥ ri(si)− λcj + β
∑
si′

T(si, aij, si′)Vi(si′, λ)

∀i ∈ {0, ...,N− 1}, ∀si ∈ S, ∀aj ∈ A, and λ ≥ 0

(2.11)

where μi(si) = 1 if si is the start state for arm i, else it is 0, andVi(si, λ) = maxaj{Qi(si, aj, λ)}.

To learnQi(si, aj, λ) in the offline setting, we will build a piecewise- linear convex representation
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of the curve by estimating its value at various points λp. To do this, we keep a three-dimensional

vector for each armQ(s, aj, λ) ∈ R|S|×M×nlam where nlam is the number of points λp at which

to estimate the curve. For now, we choose the set of λp to be an equally spaced grid between 0 and

some value λmax. SinceVi(s, λ) is convex decreasing in λ, the largest possible value of λ that could be

a minimizer of J(·, ·) is the λ where dQi(s,aj,λ)
dλ = 0. Killian et al.81 show that this value is no greater

than max{r}
min{C}(1−β) , so this will serve as λmax unless otherwise specified.

On each round, an (s, aj, r, s′) tuple is sampled for each arm. We store estimates of Q for each

state, action, and λp value, requiringO(Nnlam|S|M)memory. The update rule forQ(s, aj, λp) is:

Qt+1(s, aj, λp) = Qt(s, aj, λp) + α(ν(s, aj, n))∗[
[r(s)− λpcj + β max

a′j∈A
Qt(s′, a′j, λp)]− Qt(s, aj, λp)

]
(2.12)

Where β is the discount factor. Each round, we sample a (s, aj, r, s′) tuple per arm, and for each

arm loop to updateQt+1(s, aj, λp) ∀p. As in MAIQL, this update can be parallelized but requires

O(Nnlam) time if computed serially. To choose a policy each round, we compute the minimum

of Eq. 2.5 by finding the point at which increasing λp (stepping from 0, λmax
nlam , . . . , λmax) results in

zero or positive change in objective value, as computed via our estimatesQ(s, aj, λp), takingO(nlam)

time. As our estimatesQ(s, a, λp) converge, we approximate points exactly on the trueQ(s, aj, λ)

curve. Even at convergence, there will be some small approximation error in the slope of the line

that will manifest as error in the objective value, but in the next subsection, we show that the ap-

proximation error can be made arbitrarily small as nlam increases.

Once the minimizing value of λ (λmin) is found, we follow the knapsack from81 to select actions,

i.e., we inputQ(s, aj, λmin) as values in a knapsack where the costs are the corresponding cj and the

budget is B. We then use the Gurobi optimizer software58 to solve the knapsack, then carry out the

policy in accordance with the selected actions, takingO(NMB) time in total81. Pseudocode for
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LPQL is given in appendix B.3.

2.5.1 Theoretical Guarantees

We establish that, given a λmax, a higher nlam results in a better approximation of the upper bound

of the policy return, given in Eq. 2.5. We show that, given a state profile sss = {s1, . . . , sN}, the

asymptotic values ofVi(si, λ) obtained at equally spaced discrete set of λ values (over-)approximates

Equation 2.11. The smaller the intervals are, the closer is the approximated value of J(sss, λ) at all λ

points that are not at the interval points. Before stating the theorem formally, we define the Chordal

Slope Lemma. For ease of representation, we drop the notations sss and si from functionsV() and J()

and also remove the superscript i.

Lemma 2.5.0.1 (The Chordal Slope Lemma48). Let F be a convex function on (a, b). If x1 < x < x2

are in (a, b), then for points P1 = (x1, F(x1)), P = (x, F(x)), and P2 = (x2, F(x2)), the slope of the

straight line P1P is less than or equal to the slope of the straight line P1P2.

Theorem 2.5.1. Let V′(·) be a convex piecewise-linear function over equally spaced intervals (Λ :=

{0, x, 2x, 3x, . . .}) that approximates the convex decreasing function V(λ), such that

V(λ) = V′(λ) for all λ ∈ Λ.

If values V(·) are replaced by values V′(·), then J(·) (Equation 2.11) is better approximated when the

interval length x is small.

Proof. V(·) are convex functions of λ which implies that the function J(λ), the sum of convex func-

tions, is also a convex function of λ. Let us assume that the convex decreasing functionV(λ) is ap-

proximated by a convex continuous piecewise-linear functionV′(λ), over equally spaced values,

taken from the set Λ := {0, x, 2x, 3x, . . .}, such thatV(λ) = V′(λ) for all λ ∈ Λ. Thus, using
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V′(·) values instead ofV(·) values, we obtain an approximation J′(·) of the convex function J(λ).

The function J′(λ) is a convex function with J(λ) = J′(λ) for all λ ∈ Λ.

Now, let us assume two different values of x, say x1 and x2, where x1 < x2. The corresponding

sets are Λ1 := {0, x1, 2x1, . . .} and Λ2 := {0, x2, 2x2, . . .}. Considering Λ1, and two points

λ0 ≥ 0 and λ1 = λ0 + x1, J′(·) is over approximated by a straight line J̄(·) that connects (λ0, J(λ0))

and (λ1, J(λ1)). The equation for the line is given by:

J̄λ0,x1,λ1(λ) = J(λ0) +
λ − λ0
x1

(J(λ1)− J(λ0)) ∀ λ0 ≤ λ ≤ λ1. (2.13)

Similarly, considering Λ2, the point λ0, and point λ2 = λ0 + x2 (where x1 < x2), J′(·) can be over

approximated by a straight line J̄(·) that connects (λ0, J(λ0)) and (λ2, J(λ2)). Thus, for any value of

λ ∈ [λ0, λ2], the difference J′(λ)− J(λ) is given by:

J̄λ0,x2,λ2(λ) = J(λ0) +
λ − λ0
x2

(J(λ2)− J(λ0)) ∀ λ0 ≤ λ ≤ λ2. (2.14)

For a given λ ∈ [λ0, λ1], the difference between the approximation obtained by Equation 2.14

and 2.13 is:

(λ − λ0)
(
J(λ2)− J(λ0)

x2
− J(λ1)− J(λ0)

x1

)
≥ 0 (∵ λ ≥ λ0 and Lemma 2.5.0.1) (2.15)

Thus, smaller the length of each interval, the corresponding surrogateV′(·) values can be used to

obtain a better approximation of J(·) values.
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2.5.2 Extending LPQLUpdate Technique to ApproximateMAIQL

The same tactic of approximatingQ(s, aj, λp) can be used to create an approximate version of

MAIQL (MAIQL-Aprx) that learns on a single timescale and is thus more sample efficient and

stable. The algorithm follows much in the same way as LPQL, except thatQ(s, a, λp) are not used

to minimize the LP. Instead, for each arm on each round, we compute the multi-action index for a

given (s, aj) by finding the argminλp |Q(s, aj, λp)−Q(s, aj−1, λp)|. We then choose actions according

to the same greedy policy as MAIQL.We can show with the same logic as the LPQL approximation

proof that with a large enough nlam, the indexes can be approximated to an arbitrary precision. We

investigate whether, due to its single timescale nature, this algorithm will have improved sample

efficiency and convergence behavior compared to standardMAIQL.

2.6 Experimental Results

In this section, we compare our algorithms against both learning baselines (WIBQL (Avrachenkov

& Borkar 12) andQL-λ=0), and offline baselines (Oracle LP,Oracle λ=0, andOracle-LP-Index).

WIBQL is designed to learnWhittle indexes for binary-action RMABs, but we adapt it to the

multi-action setting by allowing it to plan using two actions, namely the passive action a0 and a non-

passive action aj (j > 0) for the entire simulation. Clearly, this will be suboptimal in general, so we

also design a stronger, multi-action baseline,QL-λ=0. This uses standard Q-learning to learn state-

action values for each individual arm without reasoning about future costs or the shared budget be-

tween arms (i.e., λ = 0). At each step, the actions are chosen according to the knapsack procedure

of LPQL.Oracle λ=0 is the offline version of QL-λ=0 (i.e., it knows the transition probabilities).

Oracle LP is the offline version of LPQL that solves Eq.2.11 using an LP solver, then follows the

same knapsack procedure as LPQL.Oracle-LP-Index is an offline version of MAIQL that com-

putes the multi-action indexes using an LP (see appendix B.3). Since the oracles are computationally
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expensive, they are run for 1000 timesteps to allow their returns to converge, then are extrapolated.

All algorithms follow an ε-greedy paradigm for exploration where ε decays each round according

to ε0/
⌈ t
D
⌉
where ε0 andD are constants. All algorithms were implemented in Python 3.7.4 and LPs

were solved using Gurobi version 9.0.3 via the gurobipy interface58. All results are presented as the

average (solid line) and interquartile range (shaded region) over 20 independently seeded simulations

and were executed on a cluster running CentOS with Intel(R) Xeon(R) CPU E5-2683 v4 @ 2.1

GHz with 4GB of RAM.

2.6.1 Two Process Types

Figure 2.2: Two Process domain. Type‐A arms need constant actions to stay in the good state (reward 1), whereas Type‐
B arms stay in the good state for many rounds after an action.

In the first experiment, we demonstrate how failing to account for cost and budget information

while learning (i.e., QL-λ=0) can lead to poorly performing policies. The setting has two types of

processes (arms), as in Fig. 2.2. Each has 3 actions, with costs 0, 1, and 2. Both arms have a good and

bad state that gather 1 and 0 reward, respectively. TheType-A armmust be acted on every round

while in the good state to stay there. However, in the bad state it is difficult to recover. This leads
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Figure 2.3: Results from Type‐A v.s. Type‐B domain withN = 16 and B = 4 (top row) and B = 8 (bottom row).
Experiments in a row are the same, with different algorithms shown. Budget‐agnostic learning converges to a highly
suboptimal policy. Our algorithms converge to the best oracle policy, LPQL doing so the quickest. Binary‐action plan‐
ning underperforms except when a small budget forces the optimal policy to only use the cheapest action.

QL-λ=0 to learn thatQ(1, aj>0, λ = 0) − Q(1, a0, λ = 0) is large, i.e., acting in the good state

is important for Type-A arms. Conversely, theType-B arm will tend to stay in the good state even

when not acted on, and when in the bad state, it can be easily recovered with any action. This leads

QL-λ=0 to learn thatQ(1, aj>0, λ = 0) − Q(1, a0, λ = 0) is small. Thus QL-λ=0 will prefer

to act on Type-A arms. However, if the number of Type-B arms is larger than the available budget,

it is clearly better to spend the budget acting on Type-B arms since the action “goes farther”, i.e.,

they may spend several rounds in the good state following only a single action, v.s. Type-A arms

which are likely to only spend one round in the good state per action. Our budget-aware learning

algorithms learn this tradeoff to converge to well-performing policies that greatly outperform cost-

unaware planning.

We report the mean cumulative reward of each algorithm, i.e., its cumulative reward divided by

the current timestep, averaged over all seeds. Fig. 2.3 shows the results withN = 16, with 25%

of arms as Type-A and with 75% of arms as Type-B, over 50,000 timesteps. The top and bottom

rows use B = 4 and B = 8, respectively. For ease of visual representation, each column shows
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different combinations of algorithms – please note that the y-axis scales for each plot may be dif-

ferent. Fig. 2.4 shows results for the same arm type split and simulation length with B = 8, vary-

ingN ∈ [16, 32, 48] (top to bottom). Parameter settings for each algorithm are included in ap-

pendix B.2. We see that each of our algorithms beat the baselines and converge in the limit to the

Lagrange policy – equivalent to the multi-action index policy in this case – with the single-timescale

algorithms converging quickest. Since the rewards obtained using Oracle-LP-Index coincide with

Oracle LP, we do not plot the results for Oracle-LP-Index. Further, the plots demonstrate that the

WIBQL algorithms underperform in general, except in cases where budgets are so small that the

optimal policy effectively becomes binary-action (e.g., Fig 2.3 top right; B = 4). In the remaining

experiments, WIBQL is similarly dominated and so is omitted for visual clarity. In both figures,

interestingly, QL-λ=0 performs well at first while ε is large, suggesting that a random policy would

outperform the λ = 0 policy. However, it eventually converges to Oracle-λ=0 as expected.

2.6.2 RandomMatrices

The second experimental setting demonstrates LPQL’s superior generality over index policies and

its robustness to increases in the number of actions and variations in cost structure. In this setting,

all transition probabilities, rewards, and costs are sampled uniformly at random, ensuring with high

probability that the submodular action effect structure required for MAIQL’s good performance

will not exist. What remains to investigate is whether LPQL will be able to learn better policies than

MAIQL in such a setting. Specifically, rewards for each state on each arm are sampled uniformly

from [0, 1], with |S| = 5. Action costs are sampled uniformly from [0, 1]|A|, then we apply a cu-

mulative sum to ensure that costs are increasing (but c0 is set to 0). Fig. 2.5 shows results forN = 16

and B = N|A|/2 as |A| varies in [2, 5, 10] (top to bottom) over 50,000 timesteps. Note that B

scales with |A| to ensure that optimal policies will include the additional action types, since the costs

of the additional action types also scale with |A|. Rewards are shown as a moving average with a
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Figure 2.4: Results from the Two Process domain with B = 8 andN ∈ [16, 32, 48] (top to bottom). Budget‐agnostic
converges to highly suboptimal policies, while our algorithms converge to the best oracle policy, with single‐timescale
versions doing so the quickest. Binary action planning underperforms with the a = 2 adaptation deteriorating as the
budget becomes more constrained. Oracle λ = 0 (not shown) is dominated by all lines.

windows size of 100, which gives a clearer view of between-seed variance than the cumulative view.

Fig. 2.5 shows that not only is LPQL able to learn much better policies thanMAIQL andMAIQL-

Aprx, which themselves converge to their oracle upper bound (Oracle-LP-Index), it does so with

convergence behavior that is robust to increases in the number of actions, achieving near-optimal

average returns at around 10k steps in each setting. Parameter settings for the different algorithms

are again included in appendix B.2.

2.6.3 Medication Adherence

Finally, we run an experiment using data derived in-part from a real medication adherence do-

main82. The data contains daily 0-1 records of adherence from which transition probabilities can be
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Figure 2.5: Moving average rewards from the random domain, for |A| ∈ [2, 5, 10] (top to bottom) using a window size
(ws) of 100. Oracle LP and Oracle λ = 0 perform the same, as do MAIQL and MAIQL‐Aprx. Oracle‐LP‐Index computes
the index solution offline, demonstrating that MAIQL(‐Aprx) are converging correctly, but the index policy performs
poorly. LPQL converges quickly even as |A| increases.

estimated, assuming a corresponding 0-or-1 state (partial state history can also be accommodated).

However, the data contains no records of actions and so must be simulated. In this experiment, we

simulate actions that assume a natural “diminishing returns” structure in accordance with the as-

sumption in section 2.4. One drawback is this estimation procedure creates uniform action effects

across arms in expectation, i.e., a single “mode”. However, in the real world we expect there to be

multiple modes, representing patients’ diverse counseling needs and response rates to various in-

tervention types. To obtain multiple modes in a simple and interpretable way, we sample 25% of

arms as Type-A arms from section 2.6.1, since they also have a binary state structure and are easily

extended to accommodate partial state history. More details are given in appendix B.4. Note that,

similar to Section 2.6.1, Oracle LP coincides with Oracle-LP-Index and hence, we do not plot the

results for Oracle-LP-Index separately. Fig. 2.1 visualizes this domain.
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Fig. 2.6 shows the results for the medication adherence domain with history lengths of 2, 3, and

4 (top to bottom),N = 16, B = 4, and 3 actions of cost 0, 1, and 2, over 100000 timesteps. Please

see appendix B.2 for parameter settings. This demonstrates concretely that learning on a single

timescale (LPQL andMAIQL-Aprx) clearly improves speed of convergence, and this becomes more

pronounced as the size of the state space increases. To understand why, we analyzed the estimated

transition matrices and found that many patients had values near 0 or 1. This makes it very rare to

encounter certain states, making it difficult to obtain sufficient numbers of samples across all state

action pairs for MAIQL’s assumptions to hold, impeding its learning.

2.7 Conclusion

To the best of our knowledge, we are the first to provide algorithms for learningMARMABs in an

online setting. We show that by following the traditional approaches to RMAB problems, i.e., seek-

ing index policies in domains with structural assumptions, MAIQL is guaranteed to converge to the

optimal solution as t → ∞. However, it is not efficient, due to its two-timescale structure, and is

limited in scope, due to its indexability assumption. We solve these challenges by going back to the

fundamentals of RMABs to develop LPQL which works well regardless of the problem structure,

and outperforms all other baselines in terms of both convergence rate and obtained reward. To-

wards a real-world RMAB deployment, our models would apply to settings that allow many repeat

interactions over a long horizon, e.g., life-long medication adherence regimens36. However, since

our algorithms require thousands of samples to learn, more work is needed to apply to many settings

which may have short horizons. Still, this work lays a methodological and theoretical foundation for

future work in online multi-action RMABs, a crucial step toward their real-world deployment.
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Figure 2.6: Mean cumulative reward on medication adherence domain with 16 patients, B = 4 and history length of
2, 3, and 4 (top to bottom). LPQL is the fastest to converge and converges to the best policies across all history lengths.
MAIQL is slower to learn but does so eventually, where its approximate variant that learns on a single‐timescale is more
stable as the state size increases.
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Learning to Recommend Interventions for

Tuberculosis Patients using Digital

Adherence Data

3.1 Introduction

TheWorld Health Organization (WHO) reports that tuberculosis (TB) is among the top ten causes

of death worldwide167, yet in most cases it is a curable and preventable disease. The prevalence of

TB is caused in part by non-adherence to medication, resulting in greater risk of death, reinfection

and contraction of drug-resistant TB151. To combat non-adherence, the WHO recommends di-

rectly observed treatment (DOT), in which a health worker directly observes and confirms that a

patient is consuming the required medication daily. However, requiring patients to travel to the

DOT facility causes financial burden, and potentially social stigma due to public fear of the disease.

Such barriers contribute to patients being lost to follow up, making TB eradication difficult. Thus,

digital adherence technologies (DATs), which give patients flexible means to prove adherence, have

gained global popularity148.

DATs allow patients to be “observed” consuming their medication electronically, e.g. via two-way

text messaging, video capture, electronic pillboxes, or toll-free phone calls. Health workers can then

view real-time patient adherence on a dashboard such as Figure 3.1. In addition to improving pa-

tient flexibility and privacy, the dashboard enables health workers to triage patients and focus their
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Figure 3.1: 99DOTS electronic adherence dashboard seen by health workers for a given month. Missed doses are
marked in red while consumed doses are marked in green.

limited resources on the highest risk patients. Preliminary studies suggest that DATs can improve

adherence in multiple disease settings59,34,138, prompting its use and evaluation for managing TB

adherence49,97. TheWHO has even published a guide for the proper implementation of the tech-

nology in TB care168.

In this chapter, we study how the wealth of longitudinal data produced by DATs can be used to help

health workers better triage TB patients and deliver interventions to boost overall adherence of their pa-

tient cohort. The data we analyze is fromMumbai, India and comes from a partnership with the City

TB Office of Mumbai; they have implemented a DAT by which patients prove adherence through

daily toll-free calls. The DAT system was implemented with technical support from the healthcare

technology company Everwell45 and is known as 99DOTS37. In fact, Everwell supports imple-

mentations of 99DOTS throughout India where there were an estimated 2.7 million cases of TB

in 2017167. In Mumbai, patients enrolled in 99DOTS currently receive interventions according to
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the following general guidelines. If they have not taken their medication by the afternoon, they (and

their health worker) receive a text message reminder. If the patient still does not take their medica-

tion by some time later, the worker will call the patient directly. Finally, if a patient simply does not

respond to these previous interventions after some number of days, they may be personally visited

by a health worker. Note that many of these patients live in low-resource communities where each

health worker manages tens to hundreds of patients; far more than they can possibly visit in a day.

Thus, models that can identify patients at risk of missing doses and prioritize interventions by health

workers are of paramount importance.

At first glance, the problem of predicting whom to target for an intervention appears to be

a simple supervised machine learning problem. Given data about a patient’s medication adher-

ence through their calls to the 99DOTS system, one can train a machine learning model to predict

whether they will miss medication doses in the future. However, such a model ignores the concur-

rent interventions from health workers as the data was collected, and can lead to incorrect prioriti-

zation decisions even when it is highly accurate. For instance, we might observe that missed doses

are followed by a period of medication adherence: this does not mean that people with missed doses

are more likely to take medication, but most likely that there was an intervention by a health worker

after which the patient restarted their medication.

Thus, for prescribing interventions, we need to disentangle the effect of manual interventions

from other underlying factors that result in missing a dose. However, since this data was collected

via an extensive rollout to real patients, the data contains the effects of interventions carried out

by health workers. As an additional challenge, health workers rarely record their interventions on

the 99DOTS system, making it difficult to estimate their effects. While there is a well-developed

literature on estimating heterogeneous treatment effects, standard techniques uniformly require

knowledge of which patients received an intervention113,38,11,149. We note that such gaps will be

common as countries eagerly adapt DAT systems in the hopes of benefiting low-income regions; to
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support the delivery of improved care, we must be able to draw lessons from this messy but plentiful

data.

In this work, therefore, we introduce a general approach for learning from adherence data with

unobserved interventions, based on domain knowledge of the intervention heuristics applied by

health workers. We construct a proxy for interventions present in the historical 99DOTS data and

develop a model to help prioritize targets of interventions for health workers in three clinical scenar-

ios:

Modeling Daily Non-Adherence Risk. We propose the prediction task: given adherence data

up to a certain time period for patients not currently considered for intervention, predict risk of

non-adherence in the next week. We then introduce machine learning models for this task, which

enable health workers to accurately identify 21% more high-risk patients and catch nearly 76% more

missed doses compared to the heuristics currently used in practice.

Predicting success of treatment. Next, we apply our framework to predict the final outcome

at the end of the six-month treatment for a patient based on their initial adherence data. Like the

previous model, this can be useful for health workers to prioritize patients who are at risk of an un-

favorable outcome, even though their adherence might be high. Additionally, since this prediction

applies over the course of several months (rather than just one week in the previous task), this model

can be useful for public health officials to better plan for TB treatment in their area, e.g. by assign-

ing or hiring additional health workers. We show that our model can be used to achieve city-wide

treatment outcome goals at nearly 40% less cost than via baselines.

Decision Focused learning. Finally, building on recent work in end-to-end decision-focused

learning165, we build a machine learning model which is tailored for a specific intervention planning

problem. In the planning problem, workers must balance travel costs while predicting which pa-

tients will benefit most from interventions. This example demonstrates how the modeling flexibility

enabled by our approach allows us to fine-tune and extract additional gains for particular decision
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support tasks (in this case, a 15% improvement over our earlier model).

With our proposed models, 99DOTS can leverage years of adherence data to better inform pa-

tient care and prioritize limited intervention resources. Additionally, the challenges we address are

not unique to 99DOTS or TB adherence. DATs have been implemented for disease treatment regi-

mens such as HIV and diabetes across the globe, and in each case health workers face the same chal-

lenge of prioritizing patient interventions. By enabling health workers to intervene before more

missed doses, our model will directly contribute to saving the lives of those afflicted with TB and

other diseases. That is why, though our model is not yet deployed, we are excited about our contin-

ued collaboration with the City TB Office of Mumbai and prospectively testing our model in the

field.

3.2 RelatedWork

Outcomes and adherence research are well studied in the medical literature for a variety of dis-

eases75. Traditionally, studies have attempted to identify demographic or behavioral factors cor-

related with non-adherence so that health workers can focus interventions on patients who are likely

to fail. Tuberculosis in particular, given its lethality and prevalence in developing countries, has

been studied throughout the world including in Ethiopia142, Estonia85, and India136. Typically

these studies gather demographic and medical statistics on a cohort, observe their adherence and

outcomes throughout the trial, then retrospectively apply survival142,85 or logistic regression136

analysis to determine covariates predictive of failure. Newer work has improved classification ac-

curacy via machine learning techniques such as Decision Trees, Neural Networks, Support Vector

Machines and more74,66,139,105. However, the conclusions connecting predictors to risk are largely

the same as in previous medical literature. While such studies have improved patient screening at

the time of diagnosis, they offer little knowledge about how risk changes during treatment. In
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this work, we show how a patient’s real-time adherence data can be used to track and predict risk

changes throughout the course of their treatment. Previous studies likely did not address this ques-

tion because accurately measuring patient adherence has historically been difficult.

However, in recent years, new technologies have made measuring daily adherence feasible in the

context of many diseases such as HIV or stroke. One such common device is an electronic pill bottle

cap that records the date/time when the cap is removed. While some previous work has used elec-

tronic cap data to determine predictors of non-adherence127,125,33, almost no research has used the

daily measurements made possible by the electronic cap to study changes in adherence over time.

One study used the smart pillbox data to retrospectively categorize patient adherence84, but our fo-

cus is on prospective identification of patients at risk of missing doses before failures occur. As such

devices enter mainstream use, machine learning techniques like the ones we propose will play an

important role in the treatment of a wide spectrum of diseases.

Methodologically, our work is related to the large body of research that deals with estimating the

causal impact of interventions from observational data113,38,11,149. Given appropriate assumptions,

such techniques allow for valid inferences about counterfactual outcomes under a different policy

for determining interventions. However, they crucially require exact knowledge of when interven-

tions were carried out. This information is entirely absent in our setting, requiring us to develop

newmethods for handling unobserved interventions in the training data.

3.3 Data Description

99DOTS provides each patient with a cover for every sleeve of pills that associates a hidden un-

predictable phone number with each daily dose (note that one dose may consist of 2-5 pills). As

patients expose pills associated with each dose, they expose one phone number per day. Each patient

is instructed to place a toll-free call to the indicated number each day. 99DOTS counts a dose only
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if the patient calls the correct number for a given day. Due to the sensitivity of the health domain,

all data provided by our partners was fully anonymized before we received it. The dataset contains

over 2.1 million dose records for about 17,000 patients, served by 252 health centers across Mumbai

from Feb 2017 to Sept 2018. Table 3.1 summarizes the data. We now describe the available informa-

tion in more detail.

Table 3.1: Data Summary. *Doses per patient was calculated only on patients enrolled at least 6 months before Sept
2018.

Metric Count

Total doses recorded 2,169,976
—By patient call 1,459,908
—Manual (entered by health worker) 710,068
Registered phones 38,000
Patients 16,975
Health centers 252
Doses recorded per patient*
—Quartiles 57/149/188
—Min/Mean/Max 1/136/1409
Active patients per center per month
—Quartiles 7/18/35
—Min/Mean/Max 1/25/226

Patient Details. This is the primary record for patients who have enrolled with 99DOTS. The

table includes demographic features such as weight-band, age-band, gender and treatment center ID.

Also included are treatment start and end dates, whether treatment is completed or ongoing, and

an “adherence string” which summarizes a patient’s daily adherence. For patients who completed

treatment, a treatment outcome is also assigned according to the standardWHO definitions166 p. 5.

We label “Cured” and “Treatment Complete” to be favorable outcomes and “Died”, “Treatment

failed”, and “Lost to follow-up” to be unfavorable outcomes.
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Mapping phone numbers to patients. Patients must call from a registered phone number for

a dose to be counted by the 99DOTS system. Patients can register multiple phones, each of which

will be noted in the PhoneMap table. We filtered out phones that were registered to multiple pa-

tients since they could not be uniquely mapped to patients. Also, patients who had any calls from

shared phones were filtered out to avoid analyzing incomplete call records. This removed <1% of the

patients from the data set.

Call Log. The Call Log records every call received by 99DOTS, including from patients outside

of Mumbai. It also includes “manual doses” marked by health workers. Manual doses allow workers

to retroactively update a patient’s adherence on the dashboard. For instance, if a patient missed

a week of calls due to a cellular outage, the worker could update the record to account for those

missed doses. We filtered the Call Log to only contain entries with patients and phones registered in

Mumbai, then attached a Patient ID to each call by joining the filtered Call Log and PhoneMap.

Patient Log. Each time a health worker interacts with a patient’s data in the 99DOTS dash-

board, an automatic note is generated describing the interaction. The Patient Log records each such

event, noting the type of action, Patient ID, health worker ID, the health worker’s medical unit,

what action was taken, and a timestamp. We did not calculate features from this table as they tended

to be sparse. However, this table was used for calculating our training labels as described in Section

3.4.

3.4 Unobserved Interventions

The TB treatment system operates under tight resource limitations, e.g. one health worker may be

responsible for more than 100 patients. Thus, it is critical that workers be able to accurately rank

patient risk and prioritize interventions accordingly. Machine learning can be used to accomplish

such risk ranking with promising accuracy, but it requires taking special care to understand how
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intervention resources were allocated in the existing data.

Therefore, a key challenge is that users of the 99DOTS platform generally do not record inter-

ventions: workers may make texts, calls, or personal visits to patients to try to improve adherence,

but these interventions are not routinely logged in the data. While far from ideal, such gaps are in-

evitable as countries with differing standards of reporting adopt DATs for TB treatment. Given the

abundance of data created by DATs and their potential to impact human lives, we emphasize the

importance of learning lessons in this challenging setting where unobserved interventions occur. We

next resolve this challenge by formulating a screening procedure which identifies patients who were

likely candidates for particular interventions. However, we first illustrate the pitfalls of training and

using a risk model in this domain without our screening procedure.

Consider a naive model trained on the data as-is. Some of the data will be influenced by the his-

torical interventions carried out by health workers. Thus, such a model will learn how to predict

patient adherence given existing worker behaviors. Now consider the model’s intended use, namely

to recommend a new prioritization of limited resources based on risk. Then in deployment, some

patients who would have received interventions under the historical policy would be judged not to

require intervention by the newmodel. While such prioritization is desirable under resource con-

straints, naive models which ignore the impact of interventions in the dataset can actually worsen

patient outcomes. For instance, assume we use the naive model to make a prediction about the pa-

tient from Section 3.1 who had a week of missed doses, an intervention, then a week of good adher-

ence. By correctly predicting this patient’s good adherence the naive model would recommend no

intervention – but this patient’s good adherence is contingent on the hidden intervention in the data.

Hence, the naive model will take resources away from exactly the patients who would benefit most. To

avoid such pitfalls arising from unobserved interventions, we must train and evaluate on data that is

not influenced by such intervention effects. We now describe our general method for reshaping data

around intervention effects to build valid models.
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Intervention Proxy. Our goal is to use the available data to formulate a proxy for when an

intervention is likely to have occurred, so that we can train our models on data points which are

unaffected by interventions. The key is to identify a conservative estimate for where interventions

occur to ensure that data with intervention signals are not included. First, we draw a distinction be-

tween different types of health worker interventions. Specifically, we consider a house visit to be a

“resource-limited” intervention since workers cannot visit all of their patients in a timely manner.

Generally, this is a last resort for health workers when patients will not respond to other methods.

Alternatively, we consider calls and texts to be “non-resource-limited” interventions since they could

feasibly be made on a large number of patients at very low cost. Note that the naive model in the

previous section couldmake valid recommendations for actions in addition to normal health worker

behaviors. For this reason, we develop a proxy only for resource-limited interventions since non-

resource-limited interventions come virtually for “free”.

To formulate our proxy, we first searched for health worker guidelines for carrying out house

visits. The 2005 guide by India’s Revised National Tuberculosis Control Program (RNTCP)135

required that workers deliver a house visit after a single missed dose, but updated guides are far more

vague on the subject. Both the most recent guide by theWHO168 and by the RNTCP134 leave

house visits up to the discretion of the health worker. However, through discussions in Mumbai we

learned that health workers prioritize non-adherent patients for resource-limited interventions such

as house visits. Thus, we formulated our proxy based on the adherence dashboard seen by health

workers.

The 99DOTS dashboard gives a daily “Attention Required” value for each patient. First, if a pa-

tient has an entry in the Patient Log (i.e. provider made a note about the patient) in the last 7 days

they are automatically changed to “MEDIUM” attention, but this rule affects <1% of the labels.

The remaining 99% of labels are as follows: If a patient misses 0 or 1 doses in the last 7 days, they

are changed to “MEDIUM” attention, whereas if they miss 4 or more they are changed to “HIGH”
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attention. Patients with 2-3 missed doses retain their attention level from the previous day. As our

conservative proxy, we assumed that only “HIGH” attention patients were candidates for resource-

limited interventions since the attention level is a health worker’s primary summary of recent patient

adherence. This “Attention Required” system for screening resource-limited interventions is gen-

eralizable to any daily adherence setting; one need only to identify the threshold for a change to

HIGH attention.

With this screening system, we can identify sequences of days during which a patient was a can-

didate for a resource-limited intervention, and subsequently avoid using signal from those days in

our training task. We accomplish this with our formulation of the real-time risk prediction task as

follows.

Consider a given set of patients on the dashboard of a health worker at day t. Each patient will

have an “Attention Required” value in {MEDIUM, HIGH} representing their risk for that day.

Over the course of the next week up to t + 7, we will observe call behavior for each patient and so

the attention for each patient may also change each day. Between t + 1 and t + 7, any patient that is

at HIGH on a given day may receive a resource-limited intervention while those at MEDIUMmay

not. Note that a change fromMEDIUM to HIGH on day ti where t + 1 ≤ ti ≤ t + 7 means

that a patient missed 4 doses over days [ti − 6, ti]. Patients at HIGH attention are already known to

the health worker, so the goal for our ML system is to help prevent transitions fromMEDIUM to

HIGH by predicting which patients are at greatest risk before the transition occurs and allowing a

health worker to intervene early.

We formalize our prediction task as follows. For each patient who is MEDIUM at time t, use data

from days [t − 6, t] to predict whether or not they change to HIGH at any time ti where t + 1 ≤

ti ≤ t + 7. We now demonstrate that, with our intervention proxy, resource-limited intervention

effects cannot effect labels in this formulation. First, if a patient stays at MEDIUM for all ti, then

the label is 0. Since the patient was at MEDIUM for all ti, our proxy states that no resource-limited
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intervention took place between our prediction time t and the time that produced the label, t + 7.

Second, if a patient changes fromMEDIUM to HIGH on day ti, then on day ti we establish that the

label is 1. By our proxy, any resource-limited intervention effect must happen in [ti + 1, t+ 7], since

attention is established at the end of a day ti. So again, we have that no resource-limited intervention

took place between our prediction time t and the time that produced the label, ti.

Since we ensure that no resource-limited interventions happen between our prediction time and

the time the label is generated, we ensure that intervention effects cannot influence our labels. Now,

if we predict that a patient will have good adherence we can safely recommend no intervention since

our combined screening and training method guarantees that their good adherence is not contingent

on an intervention. Thus our classifier is suited to make predictions that prioritize resource-limited

interventions.

Despite messy data affected by unobserved interventions, this conservative, general proxy generates

clean data without interventions. In the next section, we show how this approach leads to significant

improvements in prediction performance and creates valid recommendations to enable interven-

tions among patients at immediate risk of becoming non-adherent.

3.5 Real-Time Risk Prediction

We now build a model for the prediction task formalized in Section 3.4 which leverages our inter-

vention screening proxy. We aimed to develop a model corresponding to the health worker’s daily

task of using their patients’ recent call history to evaluate adherence risk with the goal of scheduling

different types of interventions. Better predictions allow workers to proactively intervene with more

patients before they miss critical doses.

Sample Generation. We started with the full population of 16,975 patients and generated train-

ing samples from each patient as follows. We considered all consecutive sequences of 14 days of call

72



data where the first 7 days of each sequence were non-overlapping. We excluded each patient’s first

7 days and the last day of treatment to avoid bias resulting from contact with health workers when

starting or finishing treatment. We then took two filtering steps. First, we removed samples where

the patient had more than 2 doses manually marked by a provider during the input sequence since

these patients likely had contact with their provider outside of the 99DOTS system. Second, we re-

moved samples in which the patient did not miss any doses in the input sequence. These samples

made up the majority of data but included almost no positive (HIGH risk) labels, which distorted

training. Further, positive predictions on patients who missed 0 doses are unlikely to be useful; no

resource-limited intervention can be deployed so widely that patients with perfect recent adherence

are targeted. The above procedure generated 16,015 samples (2,437 positive).

Features. Each sample contained a time-series of call data and static features. The time series

included two sequences of length 7 for each sample. First was a binary sequence of call data (1 for

a call or manual dose and 0 for a miss.) The second sequence was a cumulative total of all doses

missed up to that day, considering the patient’s full history in the program. The static features

included four demographic features from the Patient Table: weight-band, age-band, gender, and

treatment center ID. Additional features were engineered from the patient Call Logs and captured

a patient’s behavior rather than just their adherence. For example, does the patient call at the same

time every morning or sporadically each day? This was captured through the mean and variance

of the call minute and hour. Other features included number of calls, number of manual doses,

mean/max/variance of calls per day as well as days per call. We also included analogous features

which used only unique calls per day (i.e. calls to unique phone numbers), or ignored manual doses.

This process resulted in 29 descriptive features.

Models. We first tested standard models which use only the static features: linear regression, a

random forest124 (with 100 trees and a max depth of 5), and a support vector machine. The ran-

dom forest performed best, so we exclude the others for clarity. To leverage the time series data we
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Figure 3.2: ROC Curve for the weekly risk prediction task comparing the missed call baseline (blue), Random Forest
(yellow) and LEAP (green). Numbers under the blue curve give thresholds used to calculate the baseline’s ROC curve.

also built a deep network, named LEAP (Lstm rEal-time Adherence Predictor), implemented with

Keras30 which takes both the time series and static features as input. LEAP has two input layers: 1)

a LSTMwith 64 hidden units for the time series input and 2) a dense layer with 100 units for the

static feature input. We concatenated the outputs of these two layers to feed forward into another

dense layer with 16 units, followed by a single sigmoid activation unit. We used a batch size of 128

and trained for 20 epochs.

Model Evaluation. To evaluate models we randomized all data then separated 25% as the test

set. We used 4-fold grid search to determine the best model parameters. To deal with class imbal-

ance, we used SMOTE to over-sample the training set29 implemented with the Python library im-

blearn93. We also normalized features as percentiles using SKLearn124 which we found empirically

to work well. The baseline we compared against was the method used by the existing 99DOTS plat-

form to asses risk, namely doses missed by the patient in the last week (lw-Misses).

Figure 3.2 shows the ROC curve of our models vs. the baseline. The random forest narrowly

outperforms the baseline and LEAP clearly outperforms both. However, to evaluate the usefulness
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Table 3.2: LEAP vs. Baseline ‐ Missed Doses Caught

Method True Positives Doses Caught

Baseline 204 204
LEAP 248 360
Improvement 21.6% 76.5%

LEAP vs. baseline for catching missed doses with a fixed false positive rate. Our method learns behaviors indicative of
non‐adherence far earlier than the baseline, allowing for more missed doses to be prevented.

Table 3.3: LEAP vs. Baseline: Additional Interventions

TPR Baseline FPR LEAP FPR Improvement

75% 50% 35% 30%
80% 63% 41% 35%
90% 82% 61% 26%

LEAP vs. baseline for implementing new interventions. At any TPR LEAP improves over the baseline FPR, allowing for
more precisely targeted interventions.

of our methods over the baseline, we consider how each method might be used to plan house-visit

interventions. Since this is a very limited resource, we set the strictest baseline threshold to consider

patients for this intervention; that is 3 missed calls. Fixing the FPR of this baseline method, Table

3.2 shows howmany more patients in the test set would be reached each week by our method (as a

result of its higher TPR) as well as the improvement in number of missed doses caught. To calculate

missed doses caught, we count only missed doses that occur before the patient moves to HIGH risk.

Our model catches 21.6% more patients and 76.5% more missed doses, demonstrating substantially

more precise targeting than the baseline.

Table 3.3 shows that our model also outperforms the baseline as both the true positive rate
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(TPR) and FPR increase, showcasing our model’s greater discriminatory power. This is useful for

non-resource-limited interventions such as calls or texts. Recall, that our screening procedure does

not apply to this type of intervention, so our predictions may only recommend additional inter-

ventions. It is important that additional interventions be carefully targeted since repeated contact

with a given patient reduces the efficacy of each over time39. This highlights the value of the greater

precision offered by our model, since simply blanketing the entire population with calls and texts is

likely counterproductive.

Interpretability. Our model has the potential to catch more missed doses than current meth-

ods. However, these gains cannot become reality without health workers on the ground delivering

interventions based on the predictions. Interpretability is thus a key factor in our model’s usefulness

because health workers need to understand why our model makes its predictions to trust the model

and integrate its reasoning with their own professional knowledge.

However, the best predictive performance was achieved with LEAP, a black-box network, rather

than a natively interpretable model like linear regression. Accordingly, we show how a visualization

tool can help users draw insights about our model’s reasoning. We used the SHapley Additive ex-

Planations (SHAP) python library, which generates visualizations for explaining machine learning

models100. Figure 3.3a shows how static features influence our model’s prediction, where red fea-

tures push predictions toward 1 (HIGH) and blue toward 0 (MEDIUM). Recall that features are

scaled as percentiles. In the blue, we see that this patient makes an above-average number of calls

each week pushing the prediction toward 0. However, in the red we see that this patient has a very

low average but a high variability in time between calls. These features capture that this patient

missed two days of calls, then made three calls on one day in an attempt to “back log” their previous

missed calls. Our model learned that this is a high-risk behavior.

Figure 3.3b shows four different samples as input to the LSTM layer of our model. The left

shows the binary input sequence as colored pixels where black is a call and yellow is a missed call.
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(a) SHAP values for LEAP’s dense layer features for a high‐risk sample (≥0.5).

(b) SHAP values for LEAP’s LSTM layer input for 4 samples.

Figure 3.3: Visualization of the (a) dense layer and (b) LSTM layer of our weekly risk prediction model. Red values corre‐
spond to inputs that push predictions toward output of 1; blue values push toward output of 0.
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On the right are SHAP values corresponding to each day of adherence data, and grey denotes the

start of the call sequence. We see that the model learned that calls later in the week carry more weight

than calls earlier in the week. In Sample 1, the bottom two pixels (the most recent calls) have blue

SHAP values while the other pixels have SHAP value close to 0. In Sample 3, a single missed call at

the beginning of the week combined with a call made at the end of the week result in essentially can-

celling SHAP values. Sample 4 also has one missed call but on the last day of the week, resulting in a

net positive SHAP value.

This visualization technique provides intuitive insights about the rules learned by our model. In

deployment, workers could generate these visualizations for any sample on the fly in order to aid

their decision-making process.

3.6 Outcome Prediction

Next we investigate how adherence data can be used to predict final treatment outcome. Traditional

TB treatment studies model outcomes only as they relate to patient covariates such as demographic

features. Exploiting daily real-time adherence data provided by DATs, we investigate how using the

first k days of a patient’s adherence enables more accurate, personalized outcome predictions. Note

that intervention effects are still present in this formulation. However, our screening procedure will

not apply since we predict over a period of several months, during which virtually all patients would

have had repeated in-person contact with health workers.

Sample Generation and Features. We formalize the prediction task as follows: given the first

k days of adherence data, predict the final binary treatment outcome. We considered “Cured” and

“Treatment Complete” as favorable outcomes and “Died”, “Lost to follow-up”, and “Treatment

Failure” as unfavorable outcomes. We only include patients who were assigned an outcome from

these categories. Further, since patients with the outcome “Died” or “Lost to follow-up” exit the
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program before the full 6 months of treatment, we removed those who were present for less than

k+ 1 days. Our final dataset contained 4167 samples with 433 unfavorable cases.

Through discussions in Mumbai, we learned that health workers often build a sense of a patient’s

risk of an unfavorable outcome within their first month of treatment. To model this process, we set

k=35 for our prediction task, capturing the first month of each patient’s adherence after enrollment

in 99DOTS. (Note that this is not a general rule for health workers, but simply served as a motiva-

tion for our choice of k in this task.) Both the static features and the sequence inputs were the same

as calculated for the weekly prediction task, but now taken over the initial 35 days. We included two

versions of the health worker baseline: missed doses in the last week (lw-Misses) and total missed

doses in 35 days (t-Misses).

Model Evaluation. We used the same models, grid search design, training process, and evalua-

tion procedure as before. For the Random Forest we used 150 trees and no max depth. For LEAP,

we used 64 hidden units for the LSTM input layer, 48 units for the dense layer input, and 4 units in

the penultimate dense layer.

Figure 3.4 shows ROC curves for each model. Even the very simple baseline of counting the

calls made in the last 7 days before the 35 day cutoff is fairly predictive of outcome suggesting that

the daily data made available by DATs is valuable in evaluating which patients will fail from TB

treatment. OurMLmodels display even greater predictive power, with LEAP performing the best,

followed closely by the random forest. We highlight how LEAP’s predictive power could help of-

ficials minimize the costs necessary to reach medical outcome goals for their city. For example, say

Mumbai launches a new initiative to catch 80% of unfavorable outcomes (true positives in Figure

3.4) by hiring new health staff. Over the 17,000 patients in Mumbai, where 10% have unsuccessful

outcomes as in our test set, an 80% catch rate requires saving 1360 patients. Using either baseline,

achieving the 80% TPR requires a FPR of 70%, i.e., hiring additional staff to support 10710 total

patients in this example scenario. However, using LEAP only incurs a FPR of 42%, translating to
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Figure 3.4: ROC curves for outcome prediction models.

6426 total patients. Recall that in Mumbai, the average health worker cares for about 25 patients.

At a yearly starting salary of |216,86428 (or $3026) our model would yield |37M in saved costs (or

$525,000) per year.

3.7 Decision Focused Learning

We now explore a case study of how our LEAPmodel can be specialized to provide decision support

for a particular intervention. We exploit end-to-end differentiability of the model to replace our

earlier loss function (binary cross-entropy) with a performance metric tailored to the objective and

constraints of specific decision problem. To accomplish this end-to-end training, we leverage recent

advances in decision-focused learning, which embeds an optimization model in the loop of machine

learning training165,41.

We focus on a specific optimization problem that models the allocation of health workers to in-

tervene with patients who are at risk in the near future. This prospective intervention is enabled by

our real-time risk predictions and serves as an example of how our system can enable proactive, tar-
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geted action by providers. However, we emphasize that our system can be easily modified to capture

other intervention problems. Such flexibility is one benefit to our technical approach, which allows

the MLmodel to automatically adapt to the problem specified by a domain expert.

Our optimization problemmodels a health worker who plans a series of interventions over the

course of a week. The health worker is responsible for a population of patients across different lo-

cations, and may visit one location each day. We use location identifiers at the level of the TB Unit

since this is the most granular identifier which is shared by the majority of patients in our dataset.

Visiting a location allows the health worker to intervene with any of the patients at that location.

The optimization problem is to select a set of locations to visit which maximizes the number of

patients who receive an intervention on or before the first day they would have missed a dose. We re-

fer to this quantity as the number of successful interventions, which we choose as our objective for

two reasons. First, it measures the extent to which the health worker can proactively engage with

patients before adherence suffers. Second, this objective only counts patients who start the week

at MEDIUM attention and receive an intervention before they could have transitioned to HIGH,

dovetailing with our earlier discussion on avoiding unobserved interventions in the data. This ex-

tends our earlier intervention proxy to handle day-by-day rewards.

We now show how this optimization problem can be formalized as a linear program. We have a

set of locations i = 1...L and patients j = 1...Nwhere patient j has location ℓj. Over days of the

week t = 1...7, the objective coefficient cjt is 1 if an intervention on day twith patient j is successful

and 0 otherwise. Our decision variable is xit, and takes the value 1 if the health worker visit location i
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on day t and 0 otherwise. With this notation, the final LP is as follows:

max
x

7∑
t=1

L∑
i=1

xit

∑
j:ℓj=i

cjt


s.t.

L∑
i=1

xit ≤ 1, t = 1...7

7∑
t=1

xit ≤ 1, i = 1...L

0 ≤ xit ≤ 1 ∀i, t

where the second constraint prevents the objective from double-counting multiple visit to a lo-

cation. We remark that the feasible region of the LP can be shown to be equivalent to a bipartite

matching polytope, implying that the optimal solution is always integral.

The machine learning task is to predict the values of the cjt, which are unknown at the start of the

week. We compare three models. First, we extend the lw-Misses baseline to this setting by threshold-

ing the number of doses patient jmissed in the last week, setting cjt = 0 for all t if this value falls

below the threshold τ and cjt = 1 otherwise. We used τ = 1 since it performed best. Second, we

trained our LEAP system directly on the true cjt as a binary prediction task using cross-entropy loss.

Third, we trained LEAP to predict cjt using performance on the above optimization problem as the

loss function (training via the differentiable surrogate given byWilder et al. 165). We refer to this

model as LEAP-Decision.

We created instances of the decision problem by randomly partitioning patients into groups of

100, modeling a health worker under severe resource constraints (as they would benefit most from

such a system). We included all patients, including those with no missed doses in the last week, since

the overall resource allocation problem over locations must still account for them.

Figure 3.5 shows results for this task. In the top row, we see that LEAP and LEAP-Decision both
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outperform lw-Misses, as expected. LEAP-Decision improves the number of successful interven-

tions by approximately 15% compared to LEAP, demonstrating the value of tailoring the learned

model to a given planning problem. LEAP-Decision actually has worse AUC than either LEAP or

lw-Misses, indicating that typical measures of machine learning accuracy are not a perfect proxy for

utility in decision making. To investigate what specifically distinguishes the predictions made by

LEAP-Decision, the bottom row of Figure 3.5 shows scatter plots of the predicted utility at each

location according to LEAP and LEAP-Decision versus the true values. Visually, LEAP-Decision

appears better able to distinguish the high-utility outliers which are most important to making good

decisions. Quantitatively, LEAP-Decision’s predictions have worse correlation with the ground

truth overall (0.463, versus 0.519 for LEAP), but better correlation on locations where the true util-

ity is strictly more than 1 (0.504 versus 0.409). Hence, decision-focused training incentivizes the

model to focus on making accurate predictions specifically for locations that are likely to be good

candidates for an intervention. This demonstrates the benefit of our flexible machine learning mod-

eling approach, which can use custom-defined loss functions to automatically adapt to particular

decision problems.

3.8 Discussion

We present a framework for learning to make intervention recommendations from data generated

by DAT systems applied to TB care. We develop a general approach for learning frommedical ad-

herence data that contains unobserved interventions and leverage this approach to build a model

for predicting risk in multiple settings. In the real-time adherence setting, we show that our model

would allow health workers to more accurately target interventions to high risk patients sooner –

catching 21%more patients and 76%more missed doses than the current heuristic baseline. Next,

we train our model for outcome prediction, showing how adherence data can more accurately de-

83



lw-Misses LEAP LEAP-Decision
2.0

2.5

3.0

3.5

4.0

S
uc

ce
ss

fu
l

in
te

rv
en

ti
on

s

lw-Misses LEAP LEAP-Decision
0.0

0.2

0.4

0.6

0.8

1.0

A
U

C
0 1 2 3 4

LEAP Predicted Utility

0

1

2

3

4

G
ro

un
d

T
ru

th
U

ti
lit

y

0 1 2 3 4
LEAP-Decision Predicted Utility

0

1

2

3

4

G
ro

un
d

T
ru

th
U

ti
lit

y

Figure 3.5: Results for decision focused learning problem. Top row: successful interventions and AUC for each method.
Bottom row: visualizations of model predictions.

tect patients at risk of unfavorable treatment outcomes. We finally show that tailoring our model for

a specific intervention via decision-focused learning can improve performance by a further 15%. The

learning approaches we present here are general and could be leveraged to study data generated by

DATs as applied to any medication regimen. With the growing popularity of DAT systems for TB,

HIV, Diabetes, Heart Disease, and other medications, we hope to lay the groundwork for improved

patient outcomes in healthcare settings around the world.
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4
Collapsing Bandits and Their Application

to Public Health Interventions

4.1 Introduction

Motivation. This chapter considers scheduling problems in which a planner must act on k out of

N binary-state processes each round. The planner fully observes the state of the processes on which
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she acts, then all processes undergo an action-dependent Markovian state transition; the state of the

process is unobserved until it is acted upon again, resulting in uncertainty. The planner’s goal is to

maximize the number of processes that are in some “good” state over the course of T rounds. This

class of problems is natural in the context ofmonitoring taskswhich arise in many domains such as

sensor/machine maintenance68,54,1,155, anti-poaching patrols130, and especially healthcare. For ex-

ample, nurses or community health workers are employed to monitor and improve the adherence

of patient cohorts to medications for diseases like diabetes118, hypertension24, tuberculosis132,27

and HIV77,76. Their goal is to keep patients adherent (i.e., in the “good” state) but a health worker

can only intervene on (visit) a limited number of patients each day. Health workers can play a sim-

ilar role in monitoring and delivering interventions for patient mental health, e.g., in the context of

depression98,114 or Alzheimer’s Disease95.

We adopt the solution framework ofRestless Multi-Arm Bandits (RMABs), a generalization

of Multi-Arm Bandits (MABs) in which a planner may act on k out ofN arms each round that

each follow aMarkov Decision Process (MDP). Solving an RMAB is PSPACE-hard in general122.

Therefore, a common approach is to consider the Lagrangian relaxation of the problem in which

the k
N budget constraint is dualized. Solving the relaxed problem gives Lagrange multipliers which

act as a greedy index heuristic, known as the Whittle index, for the original problem. Specifically, the

Whittle index policy computes the Whittle index for each arm, then plays the top k arms with the

largest indices. TheWhittle index policy has been shown to be asymptotically optimal (i.e.,N → ∞

with fixed k
N ) under a technical condition

161 and generally performs well empirically9 making it a

common solution technique for RMABs.

Critically, using the Whittle index policy requires two key components: (i) a fast method for

computing the index and (ii) proving the problem satisfies a technical condition known as index-

ability. Without (i) the approach can be prohibitively slow, and without (ii) asymptotic perfor-

mance guarantees are sacrificed161. Neither (i) nor (ii) are known for general RMABs. Therefore,
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to capture the scheduling problems addressed in this work, we introduce a new subclass of RMABs,

Collapsing Bandits, distinguished by the following feature: when an arm is played, the agent fully

observes its state, “collapsing” any uncertainty, but when an arm is passive, no observation is made

and uncertainty evolves. We show that this RMAB subclass is more general than previous models

and leads to new theoretical results, including conditions under which the problem is indexable

and under which optimal policies follow one of two simple threshold types. We use these results to

develop algorithms for quickly computing the Whittle index. In experiments, we analyze the algo-

rithms’ performance on (i) data from a real-world healthcare scheduling task in which our approach

ties state-of-the-art performance at a fraction the runtime and (ii) various synthetic distributions,

some of which the algorithm achieves performance comparable to the state of the art even outside its

optimality conditions.

To summarize, our contributions are as follows: (i) We introduce a new subclass of RMABs, Col-

lapsing Bandits, (ii) Derive theoretical conditions for Whittle indexability and for the optimal policy

to be threshold-type, and (iii) Develop an efficient solution that achieves a 3-order-of-magnitude

speedup compared to more general state-of-the-art RMAB techniques, without sacrificing perfor-

mance.

4.2 RestlessMulti-Armed Bandits

An RMAB consists of a set ofN arms, each associated with anMDP with two actions129. AnMDP

{S,A, r,P} consists of a set of states S , a set of actionsA, a state-dependent reward function r :

S → R, and a transition function P, where Pas,s′ denotes the probability of transitioning from state s

to s′ when action a is taken. AnMDP policy π : S → A represents a choice of action to take at each

state. We consider both discounted and average reward criteria. The long-term discounted reward

starting from state s0 = s is defined asRπ
β (s) = E

[∑∞
t=0 β

tr(st+1 ∼ T(st, π(st), st+1)|π, s0 = s
]
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where β ∈ [0, 1) is the discount factor and actions are selected using π. To define average reward,

let fπ(s) : S → [0, 1] denote the occupancy frequency induced by policy π, i.e., the fraction of

time spent in each state of the MDP. The average reward Rπ of policy π be defined as the expected

reward computed over the occupancy frequency: Rπ
=
∑

s∈S fπ(s)r(s).

Each arm in an RMAB is anMDP with the action setA = {0, 1}. Action 1 (0) is called the

active (passive) action and denotes the arm being pulled (not pulled). The agent can pull at most

k arms at each time step. The agent’s goal is to maximize either her discounted or average reward

across the arms over time. Some RMAB problems need to account for partial observability of states.

It is sufficient to let the MDP state be the belief state: the probability of being in each latent state73.

While intractable in general due to infinite number of reachable belief states, most partially observ-

able RMABs studied (including our Collapsing Bandits) have polynomially many belief states due

to a finite time horizon or other structures.

Related work. RMABs have been an attractive framework for studying various stochastic

scheduling problems since Whittle indices were introduced163. Because RMABs are PSPACE-

hard122, studies usually consider restricted classes under which some performance guarantees can

be derived. Collapsing Bandits form one such novel class that generalizes some existing results which

we note in later sections. Liu & Zhao 96 develop an efficient Whittle index policy for a 2-state par-

tially observable RMAB subclass in which the state transitions are unaffected by the actions taken

and reward is accrued from the active arms only. Akbarzadeh &Mahajan 6 define a class of bandits

with “controlled restarts,” giving indexability results and a method for computing the Whittle in-

dex. However, “controlled restarts” define the active action as state independent, a stronger assump-

tion than Collapsing Bandits which allow state-dependent action effects. Glazebrook et al. 54 give

Whittle indexability results for three classes of restless bandits: (1) A machine maintenance regime

with deterministic active action effect (we consider stochastic active action effect) (2) A switching

regime in which the passive action freezes state transitions (in our setting, states always change re-
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gardless of action) (3) A reward depletion/replenishment bandit which deterministically resets to

a start state on passive action (we consider stochastic passive action effect). Hsu 64 and Sombabu

et al. 145 augment the machine maintenance problem fromGlazebrook et al. 54 to include either

i.i.d. or Markovian evolving probabilities of an active action having no effect, a limited form of

state-dependent action. Meshram et al. 109 introduce HiddenMarkov Bandits which, similar to

our approach, consider binary state transitions under partial observability, but do not allow for state

dependent rewards on passive arms. In sum, our Collapsing Bandits introduce a new, more general

RMAB formulation than special subclasses previously considered. Qian et al. 130 present a generic

approach for any indexable RMAB based on solving the (partially observable) MDPs on arms di-

rectly. Because we derive a closed form for the Whittle index, our algorithm is orders of magnitude

faster.

4.3 Collapsing Bandits

We introduce Collapsing Bandits (CoB) as a specially structured RMABwith partial observability.

In CoB, each arm n ∈ {1, . . . ,N} has binary latent states S = {0, 1}, representing bad and good

state, respectively. The agent acts during each of finite days t ∈ 1, . . . ,T. Let at ∈ {0, 1}N denote

the vector of actions taken by the agent on day t. Arm n is said to be active at t if at(n) = 1 and

passive otherwise. The agent acts on k arms per day, i.e., ∥at∥ = k, where k ≪ N because resources

are limited. When acting on arm n, the true latent state of n is fully observed by the agent and thus

its uncertainty “collapses” to a realization of the binary latent state. We denote this observation as

ω ∈ S . States of passive arms are completely unobservable by the agent.

Active arms transition according to the transition matrix Pa,ns,s′ and passive arms transition ac-

cording to Pp,ns,s′ . We drop the superscript nwhen there is no ambiguity. Our scheduling problem,

like many problems in analogous domains, exhibits the following natural structure: (i) processes are
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Figure 4.1: Belief‐state MDP under the policy of always being passive. There is one chain for each observation ω ∈
{0, 1} with the head marked black. Belief states deterministically transition down the chains.

more likely to stay “good” than change from “bad” to “good”; (ii) when acted on, they tend to im-

prove. These natural structures are respectively captured by imposing the following constraints on

Pp and Pa for each arm: (i) Pp0,1 < Pp1,1 and Pa0,1 < Pa1,1; (ii) P
p
0,1 < Pa0,1 and P

p
1,1 < Pa1,1. To avoid

unnecessary complication through edge cases, all transition probabilities are assumed to be nonzero.

The agent receives reward rt =
∑N

n=1 st(n) at t, where st(n) is the latent state of arm n at t. The

agent’s goal is to maximize the long term rewards, either discounted or average, defined in Sec. 4.2.

Belief-StateMDPRepresentation In limited observability settings, belief-state MDPs

have organized chain-like structures, which we will exploit. In particular, the only information that

affects our belief of an arm being in state 1 is the number of days since that arm was last pulled and

the state ω observed at that time. Therefore, we can arrange these belief states into two “chains” of

length T, each for an observation ω. A sketch of the belief state chains under the passive action is

shown in Fig. 4.1. Let bω(u) denote the belief state, i.e., the probability that the state is 1, if the agent

received observation ω ∈ {0, 1}when it acted on the process u days ago. Note that bω(u) is also the

expected reward associated with that belief state, and let B be the set of all belief states.

When the belief-state MDP is allowed to evolve under some policy, the following mechanism

arises: first, after an action, the state ω is observed (uncertainty “collapses”), then one round passes

causing the agent’s belief to become Paω,1, representing the head of the chain determined by ω.

Subsequent passive actions cause the process to transition deterministically down the same chain
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(though, the transition in the latent state is still stochastic). Then when the process’s arm is active, it

transitions to the head of one of the chains with probability equal to the belief that the correspond-

ing observation would be emitted (see Fig. 4.2a for an illustration).

The belief associated with a belief state can be calculated in closed form with the given transition

probabilities. Formally,

bω(u) = τu−1(Paω,1) ∀u ∈ [T] where τu(b) =
Pp0,1 − (Pp1,1 − Pp0,1)u(P

p
0,1 − b(1+ Pp0,1 − Pp1,1))

(1+ Pp0,1 − Pp1,1)

(4.1)

4.4 Collapsing Bandits: Threshold Policies andWhittle Indexability

Because of the well-known intractability of solving general RMABs, the widely adopted solution

concept in the literature of RMABs is the Whittle index approach; for a comprehensive descrip-

tion, see Whittle 163 . Intuitively, the Whittle index captures the value of acting on an arm in a

particular state by finding the minimum subsidy m the agent would accept to not act, where the

subsidy is some exogenous “donation” of reward. Formally, the modified reward function be-

comes rm : S × A → R, where rm(s, 0) = r(s) + m and rm(s, 1) = r(s). LetRπ
β,m(s) =

E
[∑∞

t=0 β
trm(st, π(st))|π, s0 = s

]
andRπ

m =
∑

s∈S fπ(s)rm(s, π(s)) be the discounted and average

reward criteria for this new subsidy setting, respectively. The former is maximized by the discounted

value function (we give a value function for the average reward criterion in Fast Whittle Index

Computation):

Vm(b) = max


m+ b+ βVm(τ1(b)) passive

b+ β(bVm(Pa1,1) + (1− b)Vm(Pa0,1)) active
(4.2)
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where τ is defined in Eq. 4.1 and b is shorthand for bω(u). In a CoB, the Whittle index of a belief

state b is the smallestm s.t. it is equally optimal to be active or passive in the current state. Formally:

W(b) = inf
m
{m : Vm(b; a = 0) ≥ Vm(b; a = 1)} (4.3)

Critically, performance guarantees hold only if the problem satisfies indexability161,163, a condition

which says that for all states, the optimal action cannot switch to active asm increases. Let Π∗
m be

the set of policies that maximize a given reward criterion under subsidym.

Definition 4.4.1 (Indexability). An arm is indexable if B∗(m) = {b : ∀π ∈ Π∗
m, π(b) = 0}

monotonically increases from ∅ to the entire state space as m increases from−∞ to∞. An RMAB is

indexable if every arm is indexable.

The following special type of MDP policy is central to our analysis.

Definition 4.4.2 (Threshold Policies). A policy is a forward (reverse) threshold policy if there exists

a threshold bth such that π(b) = 0 (π(b) = 1) if b > bth and π(b) = 1 (π(b) = 0) otherwise.

Theorem 4.4.3. If for each arm and any subsidy m ∈ R, there exists an optimal policy that is a

forward or reverse threshold policy, the Collapsing Bandit is indexable under discounted and average

reward criteria.

Proof Sketch. Using linearity of the value function in subsidym for any fixed policy, we first argue

that when forward (reverse) threshold policies are optimal, proving indexability reduces to showing

that the threshold monotonically decreases (increases) withm. Unfortunately, establishing such a

monotonic relationship between the threshold andm is a well-known challenging task in the litera-

ture that often involves problem-specific reasoning96. Our proof features a sophisticated induction

argument exploiting the finite size of B and relies on tools from real analysis for limit arguments.
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All formal proofs can be found in the appendix. We remark that Thm. 4.4.3 generalizes the result

in the seminal work by Liu & Zhao 96 who proved the indexability for a special class of CoB. In par-

ticular, the RMAB in Liu & Zhao 96 can be viewed as a CoB setting with Pa = Pp, i.e., transitions

are independent of actions.

Though theWhittle index is known to be challenging to compute in general163, we are able to

design an algorithm that computes the Whittle index efficiently assuming the optimality of thresh-

old policies, which we now describe.

FastWhittle Index Computation The main algorithmic idea we use is the Markov chain

structure that arises from imposing a forward threshold policy on anMDP. A forward threshold

policy can be defined by a tuple of the first belief state in each chain that is less than or equal to some

belief threshold bth ∈ [0, 1]. In the two-observation setting we consider, this is a tuple (Xbth
0 ,Xbth

1 ),

where Xbthω ∈ 1, . . . ,T is the index of the first belief state in each chain where it is optimal to act

(i.e., the belief is less than or equal to bth). We now drop the superscript bth for ease of exposition.

See Fig. 4.2a for a visualization of the transitions induced by such an example policy. For a forward

threshold policy (X0,X1), the occupancy frequencies induced for each state bω(u) are:

f(X0,X1)(bω(u)) =



α if ω = 0, u ≤ X0

β if ω = 1, u ≤ X1

0 otherwise

(4.4)

α =

(
(X1b0(X0))

1− b1(X1)
+ X0

)−1
, β =

(
X1b0(X0)

1− b1(X1)
+ X0

)−1 b0(X0)

1− b1(X1)
(4.5)

These equations are derived from standardMarkov chain theory. These occupancy frequencies do

not depend on the subsidy. Let J(X0,X1)
m be the average reward of policy (X0,X1) under subsidym.
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Figure 4.2: (a) Visualization of forward threshold policy (X0 = 4,X1 = 3). Black nodes are the head of each chain
and grey nodes are the thresholds. (b) Non‐increasing belief (NIB) process has non‐increasing belief in both chains. A
split belief process (SB) has non‐increasing belief after being observed in state 1, but non‐decreasing belief after being
observed in state 0.

We decompose the average reward into the contribution of the state reward and the subsidy

J(X0,X1)
m =

∑
b∈B

bf(X0,X1)(b) +m(1− f(X0,X1)(b1(X1))− f(X0,X1)(b0(X0))) (4.6)

Recall that for any belief state bω(u), the Whittle index is the smallestm for which the active and

passive actions are both optimal. Given forward threshold optimality, this translates to two corre-

sponding threshold policies being equally optimal. Such policies must have adjacent belief states as

thresholds, as can be concluded from Lemma C.1.0.1 in Appendix C.1. Note that for a belief state

b0(X0) the only adjacent threshold policies with active and passive as optimal actions at b0(X0) are

(X0,X1) and (X0 + 1,X1) respectively. Thus the subsidy which makes these two policies equal in

value must thus be the Whittle Index for b0(X0), which we obtain by solving: J
(X0,X1)
m = J(X0+1,X1)

m

form. We use this idea to construct two fast Whittle index algorithms.

Sequential index computation algorithm Alg. 4.4.1 precomputes the Whittle index

of every belief state for each process, having time complexityO(|S|2TN). Then, the per-round

complexity to retrieve the top k indices isO(Nmin{k, log(N)}). This gives a great improvement
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over the more general method given by Qian et al.130 (our main competitor) which has per-round

complexity of≈ O(N log( 1ε )(|S|T)
2+ 1

18 ), where log( 1ε ) is due to a bifurcation method for approx-

imating the Whittle index to within error ε on each arm and (|S|T)2+
1
18 is due to the best-known

complexity of solving a linear program with |S|T variables69.

Alg. 4.4.1 is optimized for settings in which theWhittle index can be precomputed. However, for

online learning settings, we give an alternative method in Appendix C.6 that computes the Whittle

index on-demand, in a closed form.

Algorithm 4.4.1: Sequential index computation algorithm
1 Initialize counters to heads of the chains: X1 = 1, X0 = 1
2 while X1 < T or X0 < T do
3 Computem1 := m such that J(X0,X1)

m = J(X0,X1+1)
m

4 Computem0 := m such that J(X0,X1)
m = J(X0+1,X1)

m
5 Set i = argmin{m0,m1} andW(Xi) = min{m0,m1}
6 Increment Xi

Our algorithm also requires that belief is decreasing in X0 and X1. Formally, we require:

Definition 4.4.4 (Non-increasing belief (NIB) processes). A process has non-increasing belief if, for

any u ∈ [T] and for any ω ∈ S , bω(u) ≥ bω(u+ 1).

All possible CoB belief trends are shown in Fig. 4.2b. We make this distinction because the com-

putation of the Whittle index in Alg. 4.4.1 is guaranteed to be exact for NIB processes that are also

forward threshold optimal, though we show empirically that our approach works surprisingly well

for most distributions. In the next section, we analyze the possible forms of optimal policies to find

conditions under which threshold policies are optimal.
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Figure 4.3: Components ofVm(b) in Eq. 4.2. Since the
passive action is convex in b, active action is linear in b, and
value function is a max over these, at most three optimal
policy types are possible.

Types of Optimal Policies Analyzing

Eq. 4.2 reveals that at most three types of op-

timal policies exist. This follows directly from

the definition ofVm(b), which is a max over

the passive action value function and the active

action value function. The former is convex

in b, a well-known POMDP result146, and the

latter is linear in b. Thus, as shown in Fig. 4.3, there are three ways in which the value functions

of each action may intersect; this defines three optimal policy forms of forward, reverse and dual

threshold types, respectively. Forward and reverse threshold policies are defined in Def. 4.4.2; dual

threshold policies are active between two separate threshold points and passive elsewhere. Not only

do threshold policies greatly reduce the optimization search space, they often admit closed form ex-

pressions for the index as demonstrated earlier in this section. We now derive sufficient conditions

on the state transition probabilities under which each type of policy is verifiably optimal.

Theorem 4.4.5. Consider a belief-state MDP corresponding to an arm in a Collapsing Bandit. For

any subsidy m, there is a forward threshold policy that is optimal under the condition:

(Pp1,1 − Pp0,1)(1+ β(Pa1,1 − Pa0,1))(1− β) ≥ Pa1,1 − Pa0,1 (4.7)

Proof Sketch. Forward threshold optimality requires that if the optimal action at a belief b is passive,

then it must be so for all b′ > b. This can be established by requiring that the derivative of the pas-

sive action value function is greater than the derivative of the active action value function w.r.t. b.

The main challenge is to distill this requirement down to measurable quantities so the final condi-

tion can be easily verified. We accomplish this by leveraging properties of τ(b) and using induction

to derive both upper and lower bounds onVm(b1) − Vm(b2) ∀ b1, b2 as well as a lower bound on
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d(Vm(b))
db .

Intuitively, the condition requires that the intervention effect on processes in the “bad” state

must be large, making Pa1,1 − Pa0,1 small. Note that Liu & Zhao 96 consider the case where Pa1,1 = Pp1,1

and Pa0,1 = Pp0,1, which makes Eq. 4.7 always true. Thus we generalize their result for threshold

optimality.

Theorem 4.4.6. Consider a belief-state MDP corresponding to an arm in a Collapsing Bandit. For

any subsidy m, there is a reverse threshold policy that is optimal under the condition:

(Pp1,1 − Pp0,1)
(
1+

β(Pa1,1 − Pa0,1)
1− β

)
≤ Pa1,1 − Pa0,1 (4.8)

Intuitively, the condition requires small intervention effect on processes in the “bad” state, the

opposite of the forward threshold optimal requirement. Note that both Thm. 4.4.5 and Thm. 4.4.6

also serve as conditions for the average reward case as β → 1 (a proof based on Dutta’s Theorem42 is

given in Appendix C.4).

Conjecture 1. Dual threshold policies are never optimal for Collapsing Bandits.

This conjecture is supported by extensive numerical simulations over the random space of state

transition probabilities, values of β, and values of subsidym; its proof remains an open problem.

Note that this would imply that all Collapsing Bandits are indexable.

4.5 Experimental Evaluation

We evaluate our algorithm on several domains using both real and synthetic data distributions. We

test the following algorithms: Threshold Whittle is the algorithm developed in this chapter. Qian

et al. 130 , a slow, but precise general method for computing the Whittle index, is our main baseline
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that we improve upon. Random selects k process to act on at random each round. Myopic acts on

the k processes that maximize the expected reward at the immediate next time step. Formally, at time

t, this policy picks the k processes with the largest values of Δbt = (bt+1|a = 1) − (bt+1|a =

0). Oracle fully observes all states and uses Qian et al. 130 to calculate Whittle indices. We measure

performance in terms of intervention benefit, where 0% corresponds to the reward of a policy that is

always passive and 100% corresponds to Oracle. All results are averaged over 50 independent trials.

4.5.1 Real Data: Monitoring Tuberculosis Medication Adherence

We first test on tuberculosis medication adherence monitoring data, which contains daily adher-

ence information recorded for each real patient in the system, as obtained from Killian et al. 82 . The

“good” and “bad” states of the arm (patient) correspond to “Adhering” and “Not Adhering” to

medication, respectively. State transition probabilities are estimated from the data. Because this data

is noisy and contains only the adherence records and not the intervention (action) information (as

the authors state), we perturb the computed average transition matrix by reducing (increasing) Pω,1

by a uniform random number between 0 and δ1, δ2 (δ3, δ4) then renormalizing to obtain Ppω,1 (Paω,1)

for the simulation. Reward is measured as the undiscounted sum of patients (arms) in the adher-

ent state over all rounds, where each trial lasts T = 180 days (matching the length of first-line TB

treatment) withN patients and a budget of k calls per day. All experiments in this section set all δ to

0.05.

In Fig. 4.4a, we plot the runtime in seconds vs the number of patientsN. Fig. 4.4b compares the

intervention benefit forN = 100, 200, 300, 500 patients and k = 10% ofN. In theN = 200 case,

the runtimes of a single trial of Qian et al. and ThresholdWhittle index policy are 3708 seconds and

3 seconds, respectively, while attaining near-identical intervention benefit. Our algorithm is thus 3

orders of magnitude faster than the previous state of the art without sacrificing performance.

We next test ThresholdWhittle as the resource level k is varied. Fig. 4.4c shows the performance
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in the k = 5%N, k = 10%N and k = 15%N regimes (N = 200). ThresholdWhittle outperforms

Myopic and Random by a large margin in these low resource settings. We also affirm the robustness

of our algorithm to δ, the perturbation parameter used to approximate real-world Ppω,1 and Paω,1 from

the data, and present the extensive sensitivity analysis in Appendix C.7. Finally, in Appendix C.6 we

couple our algorithm to a Thompson Sampling-based learning approach and show it performs well

in the real-world case where transition probabilities would need to be learned online, supporting the

deployability of our work.
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Figure 4.4: (a) Threshold Whittle is several orders of magnitude faster than Qian et al. and scales to thousands of pa‐
tients without sacrificing performance on realistic data (b). (c) Intervention benefit of Threshold Whittle is far larger than
naive baselines and nearly as large as Oracle.

4.5.2 Synthetic Domains

We test our algorithm on four synthetic domains, that potentially characterize other healthcare

or relevant domains, and highlight different phenomena. Specifically, we: (i) identify situations

whenMyopic fails completely while Whittle remains close to optimal, (ii) analyze the effect of latent

state entropy on policy performance, (iii) identify limitations of ThresholdWhittle by constructing

processes for which ThresholdWhittle shows separation fromOracle, and (iv) test robustness of

our algorithm outside of the theoretically guaranteed conditions. To facilitate comparison with the

real data distribution, we simulate trials for T = 180 rounds where reward is the undiscounted

sum of arms in state 1 over all rounds. We consider the space of transition probabilities satisfying the

99



assumed natural constraints, as outlined in Sec. 4.3.

Fig. 4.5a demonstrates a domain characterized by processes that are either self-correcting or

non-recoverable. Self-correcting processes have a high probability of transitioning from state 0

to 1 regardless of the action taken, while non-recoverable processes have a low chance of doing

so. We show that when the immediate reward is larger for the former than the latter, Myopic can

perform even worse than Random. That is because a myopic policy always prefers to act on the

self-correcting processes per their larger immediate reward, while ThresholdWhittle, capable of

long-term planning, looks to avoid spending resources on these processes. In this regime, the best

long-term plan is to always act on the non-recoverable processes to keep them from failing. Ana-

lytical explanation of this phenomenon is presented in Appendix C.5. We set the resource level,

k = 10%N in our simulation for Fig. 4.5a. Note that performance of Myopic drops as the fraction

of self-correcting processes becomes larger and reaches a minimum at x = 100% − k = 90%.

Beyond this point, ThresholdWhittle can no longer completely avoid self-correcting processes and

the gap subsequently starts to decrease.

Fig. 4.5b explores the effect of uncertainty in the latent state on long-term planning. For each

point on the x-axis, we draw all transition probabilities according to Ppω,1,Paω,1 ∼ [x, x + 0.1]. The

entropy of the state of a process is maximum near 0.5 making long term planning most uncertain

and as a result, this point shows the biggest gap with Oracle, which can observe all the states in each

round. Note that Myopic andWhittle policies perform similarly, as expected for (nearly) stochasti-

cally identical arms.

Fig. 4.5c studies processes that have a large propensity to transition to state 0 when passive and

a corresponding low active action impact, but a significantly larger active action impact in state

1. This makes it attractive to exclusively act on processes in the 1 state. This simulates healthcare

domains where a fraction of patients degrade rapidly, but can recover, and indeed respond very

well to interventions if already in a good state. To simulate these, we draw transition matrices with
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Pp0,1,P
p
1,1,Pa0,1 ∼ [0.3, 0.32] and Pa1,1 ∼ [0.7, 0.72] in varying proportions and sample the rest

from the real TB adherence data. Because the best plan is to act on processes in state 1, bothMyopic

andWhittle act on the processes with the largest belief giving Oracle a significant advantage as it has

perfect knowledge of states.

Although we provide theoretical guarantees on our algorithm for forward threshold optimal

processes with non-increasing belief, Fig. 4.5d reveals that Alg. 4.4.1 performs well empirically even

with these conditions relaxed. Here, we sample processes uniformly at random from the state tran-

sition probability space, and use rejection sampling to vary the proportion of threshold optimal

processes. ThresholdWhittle performs well even when as few as 20% of the processes are forward

threshold optimal; we briefly analyze this phenomenon in Appendix C.8.
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Figure 4.5: (a) Myopic can be trapped into performing even worse than Random while Threshold Whittle remains close
to optimal. (b) Long‐term planning is least effective when entropy of states is maximum. (c) Myopic and Whittle planning
become similar when more processes are prone to failures. (d) Threshold Whittle is surprisingly robust to processes even
outside of theoretically guaranteed conditions.

4.6 Conclusion

We open a new subspace of Restless Bandits, Collapsing Bandits, which applies to a broad range of

real-world problems, especially in healthcare delivery. We give new theoretical results that cover a

large portion of real-world data as well as an algorithm that runs thousands of times faster than the

state of the art without sacrificing performance. We simultaneously also recognize limitations of our

101



theoretical results, which become narrow in the average reward case. We envision several interesting

avenues for future work, including techniques to incorporate the user/health worker inputs for

planning, generalizing our inherently 2-state approach to allow for a multi-state model, and allowing

multiple actions and/or more general reward functions.

Broader Impact

Figure 4.6: CHW delivering vaccine. Credit: Pippa
Ranger.

Our work is largely motivated by resource con-

strained health intervention delivery. This setting

is common across low, middle, and high-income

countries, in which community health workers

(CHWs) are recruited to deliver basic care to a co-

hort of patients or benefactors. In fact, CHWs

have been critical in achieving global health ini-

tiatives for over five decades, and evidence shows that CHWs have had a positive impact in myriad

domains including maternal and newborn health31,43, (non-)communicable diseases31,143, and sex-

ual/reproductive health169 in low-resource communities across the world40,43,143,162. Our modeling

has the potential to improve the delivery of care in these highly resource-constrained settings.

However, a deployment of our system to any setting must be done responsibly. For instance, we

designed our system with the intention of assisting human CHWs plan resource-limited interven-

tions. That said, we present results that highlight our algorithm’s ability to plan for thousands of

processes at a time, far more than for which a human could independently plan. Just making this

capability available could encourage the automation of applicable interventions via automated calls

or texts, potentially displacing CHW jobs, reducing human contact with patients, and unfairly lim-

iting care for patients with limited access to technology.
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Additionally, users of the systemmust be dutifully aware that its recommendations will be based

solely on the data entered in the system. In the context of medication adherence monitoring, if the

worker enters incorrect data, e.g., the patient was adhering (“good” state) but they instead mark the

patient as not adhering (“bad” state), then the algorithm could make the wrong recommendation

about the patient the next day, since its belief of the patient’s adherence would also be wrong.

Finally, our AI system is inherently a blackbox which would likely be replacing an interpretable

scheduling heuristic. This would limit any user or administrator’s ability to audit decisions around

why certain patients were recommended for intervention. As with any potential deployment of a

blackbox system to a domain that affects the allocation of resources to humans, system designers

should be acutely aware of the balance between their needs to be able to perform audits vs. their

need for optimization.
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Restless and Uncertain: Robust Policies for

Restless Bandits via DeepMulti-Agent

Reinforcement Learning

5.1 Introduction

Restless multi-armed bandits (RMABs), a model for constrained resource allocation amongN in-

dependent stochastic processes (arms), are widely studied. Traditionally a binary-action problem,

in which a planner decides whether or not to act on each ofN arms, here we consider themulti-

action generalization81,52 which more accurately captures challenging real-world planning prob-

lems. Salient examples of RMABs include scheduling13,172, machine replacement54,137, aerial ve-

hicle routing91, anti-poaching patrol planning130, and healthcare92,103. While these works have

established important theoretical foundations, they share one key limitation: assuming stochastic

dynamics are precisely known. Having exact knowledge of dynamics is impossible in many real-

world problems. For example, in healthcare intervention planning, the probability that a patient will

adhere to treatment after receiving an intervention is not perfectly known a priori; in anti-poaching

patrol planning, the probability of finding a poacher’s snare at some location is not known with

certainty.

Accordingly, methods have been developed to learn RMAB policies online, assuming no a priori

knowledge71,157. However, these methods require tens of thousands of samples to converge to good
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policies which is prohibitive for many real-world problems, e.g., in finite-length treatment settings

such as tuberculosis103 with only a few dozen rounds. Instead, real-world planners must make the

most of noisy data at hand, estimating dynamics from historical data or consulting experts, inducing

significant uncertainty. RMAB techniques can be used to plan with point estimates, but we show

that ignoring uncertainty can lead to arbitrarily bad policies.

To address these shortcomings and push RMABs toward wider real-world applicability, we intro-

duceRobust RMABs, a generalization of RMABs which allows stochastic dynamics to be specified

as uncertainty intervals, rather than point estimates. This new problem is very computationally de-

manding, adding a combinatorial layer of complexity onto an already PSPACE-hard problem122.

Addressing this complexity gives rise to a rich set of challenges that necessitates the design of new

techniques that not only help solve the robust objective we analyze, but also are of general interest to

RMAB research.

Concretely, we plan under aminimax regret objective, using a double oracle (DO) framework106

that has seen success in problems involving a singleMarkov decision process (MDP)170. The DO

approach casts the robust planning problem as a zero-sum game between an agent oracle and ad-

versarial nature oracle. However, existing techniques fail for any non-trivially sized RMABs since

the state and action spaces grow combinatorially in the number of armsN and resource constraint

B, respectively. Specifically, given S-sized state spaces for each arm, the full combinatorial problem

has state space of size SN and action space–and thus policy-network output–of size
(N
B
)
(for binary-

action RMAB; action space is larger with multi-action). At this size, we found that directly applying

Xu et al. 170 to solve the full combinatorial problem as a single process fails to learn good policies

for RMABs as small asN = 5 arms, with B = 3 and S = 2. Moreover, under the minimax re-

gret objective, the nature oracle is a particularly difficult challenge as it requires jointly searching the

RMAB policy space and the continuous, uncertain space of transition probabilities. Previously, this

objective has been posed as a non-stationary RL problem and solved heuristically with a single pol-
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icy network170. We improve the nature oracle by formulating it as a multi-agent RL problem and

develop a novel solution method for RMABs. In summary, our contributions are:

1. We introduce the Robust RMAB problem with interval uncertainty over arm dynamics and

develop techniques to solve a minimax regret objective via double oracle.

2. To enable the DO approach, we introduce DDLPO, a novel deep RL algorithm for RMABs,

of general interest. DDLPO tackles the combinatorial complexity of RMABs by learning an

auxiliary “λ-network” in tandem with individual arm policy networks, which greatly reduces

training sample complexity. The procedure implements the reward-maximizing agent oracle, has

convergence guarantees, and solves RMABs with multiple action types81,52, the first deep RL

procedure to do so. DDLPO also easily extends to more general weakly-coupledMDPs4,60 and

enables computing continuous-action policies, a previously unstudied RMAB direction.

3. We formulate the non-stationary regret-maximizing nature oracle as a multi-agent RL (MARL)

problem, a framework of potential general interest in robust planning. We solve this problem in

the combinatorially hard RMAB setting by extending DDLPO to include a shared critic and a

continuous-action policy network for nature’s selection of the uncertain transition dynamics.

5.2 RelatedWork

RMABs The reward-maximizing, binary-action RMAB problem was introduced byWhittle 163 .

His widely usedWhittle index policy103,54,13 is asymptotically optimal under indexability161. Glaze-

brook et al. 52 and Hodge & Glazebrook 63 extended theWhittle index to multi-action RMABs

with special monotonic structure, while Killian et al. 81 gave a more general Lagrange-based method.

Hawkins 60 studied methods for weakly coupledMarkov decision processes (WCMDP), which gen-

eralize multi-action RMABs to have multiple constraints, and propose Lagrangian solutions for

small problems. Adelman &Mersereau 4 and Gocgun &Ghate 55 followed by providing better so-
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lutions toWCMDPs but sacrifice scalability. All these works assumed precise knowledge of stochas-

tic dynamics. Some recent works have studied online RMABs with unknown dynamics but all have

prohibitively large sample complexity 47,72,18,80. None consider robust planning under environment

uncertainty, which we address.

Our work also relates to learning algorithms for stochasticmulti-armed bandit (MAB) prob-

lems111,21,88. However, since stochastic MABs follow a stateless reward process, learning algorithms

utilize the fact that the true optimal policy simply selects the top B reward-producing arms each

round. Conversely, the arms in restless MABs have reward processes that followMDPs, so the top

B arms to play each round is state- and action-dependent and constantly evolving, making both the

learning and the planning problems much more challenging, and which our algorithms address.

RL for RMABs A few recent works learnWhittle indices for indexable binary-action RMABs

using (i) deep reinforcement learning (DRL)117 and (ii) tabular Q-learning 18,46,12. Killian et al. 80

take tabular Q-learning to the multi-action setting. In contrast, our DRL approach provides a more

general solution to binary and multi-action RMAB domains, not requiring indexability or problem

structure, and is far more scalable than tabular methods. We are also the first to handle continuous-

action RMABs, key to the nature oracle. Also related is the space of combinatorial RL. However,

most existing algorithms consider single-shot problems, e.g., traveling salesman87,79, which lack a

notion of future state that is critical to solving any version of RMAB, and none accommodate the

general cost/budget structure of multi-action RMAB147; our methods address these limitations.

Robust planning Work on robust planning in RLmainly focuses on maximin reward via

robust adversarial RL126 or multi-agent RL (MARL)90,94, but maximin reward leads to overly con-

servative policies120. The minimax regret criterion23 avoids this pitfall, but this objective is chal-

lenging with very large or continuous strategy spaces. This can be addressed with the DO approach
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Figure 5.1: (a) Proposed framework for solving the Robust RMAB problem. The main loop follows a DO approach to
iteratively compute a minimax regret optimal RMAB policy where each oracle is a novel DRL algorithm for RMABs.
(b) The nature oracle: a novel multi‐agent RL formulation of RMAB, that tackles non‐stationarity with a centralized critic.

proposed byMcMahan et al. 106 which explores a small subset of strategies while still guaranteeing

optimal convergence51. Subsequently, DO has been extended to optimize MARL problems with

multiple selfish agents90. Recently, Xu et al. 170 used DO to solve a single Markov decision process

(MDP) minimax-regret planning problem and used RL to implement the oracles. However, when

applied to RMABs, the number of outputs in their policy network grows exponentially, as does the

size of the state space being learned, both of which require prohibitively long training times beyond

trivially sized RMABs. Accordingly, we found that their RL algorithms failed to scale pastN = 5

arms and S = 2 states, whereas we show in Sec. 5.5 that our algorithms solve problems that are or-

ders of magnitude larger. Additionally, their approach is designed only for continuous state/action

spaces, whereas our approach can find robust policies for any combination of discrete or continuous

state/action spaces. We accomplish this via our novel formulation of the nature oracle as a MARL

problem, which decomposes the causes of non-stationarity, i.e., agent and nature, and learn them

with separate networks.
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5.3 Preliminaries

We consider the multi-action RMAB setting withN arms81,52, which generalizes classical binary-

action RMABs163.* Each arm n ∈ [N] follows anMDP (Sn,An, Cn,Tn,Rn, β), where Sn is a set of

finite, discrete states;An is a set of finite, discrete actions; Cn : An −→ R defines action costs, where

Cn[0] = 0 encodes a no-cost “passive action” for all arms; Tn : Sn × An × Sn −→ [0, 1] gives the

probability of transitioning from one state to another given an action;Rn : Sn −→ R is a reward

function; and β ∈ [0, 1) is the discount factor. For ease of exposition, let Sn,An, Cn, andRn be the

same for all n ∈ [N], and thus drop the subscript n, though all methods apply to the general case.

Let sss be anN-length vector of states over all arms and let AAA ∈ {0, 1}N×|A| be a decision matrix that

one-hot-encodes the action taken on each arm. The planner computes policies π which map states

sss to actions AAAwith the constraint that the sum cost of actions is less than a budget B in every round

t ∈ [H].

We extend multi-action RMABs to the robust setting in which the exact transition probabilities

are unknown. Instead, the transition dynamics Tn of each arm n ∈ [N] are determined by a set of

parameters ωn ∈ Ωn, each within a given interval uncertainty ωn := [ωn, ωn]. Let ω be a given

parameter setting such that ωn ∈ ωn for all n ∈ [N]. LetG(π, ω) = E[
∑H

t=1 β
t∑

n∈[N] R(sssnt ) |

π, ω] be the planner’s expected discounted reward under π and ω, where ssstn is the state of arm n at

time t. Then, regret is defined:

L(π, ω) = G(π⋆ω, ω)− G(π, ω) , (5.1)

where π⋆ω is the optimal reward-maximizing policy under ω. In our robust setting, our objective is to

*Our approaches also easily extend to weakly-coupledMDPs, which allow multiple budget constraints60,
as well as to continuous-action RMABs, previously unstudied.
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compute a policy π† that minimizes the maximum regret L possible for any realization of ω, i.e.:

π† = min
π

max
ω

L(π, ω) . (5.2)

This problem is computationally expensive to solve since simply computing a policy π that maxi-

mizes the rewardG(π, ω) is PSPACE-hard122 even when the Tn are known, i.e., ω is given.

A more tractable approach for computing multi-action RMAB policies π is to utilize the La-

grangian relaxation60,81, reproduced below. For a given ω, the optimal policy π⋆ω maximizes the

constrained Bellman equation:

J(sss) = max
AAAc

{ N∑
n=1

R(sssn) + βE
ω
[J(sss′) | sss,AAAc]

}
(5.3)

where AAAc ⊆ AAA

s.t.
N∑
n=1

|A|∑
j=1

AAAnjcj ≤ B
|A|∑
j=1

AAAnj = 1 ∀n ∈ [N]

where AAAnj = 1 if the jth action is taken on arm n (else 0) and cj ∈ C is the jth action cost. We then

take the Lagrangian relaxation of the budget constraint60, giving:

J(sss, λ⋆) = min
λ

(
λB
1− β

+

N∑
n=1

max
j∈|A|

{Qn(sssn, anj, λ)}

)
(5.4)

where Qn(sssn, anj, λ) = R(sssn)− λcj+

βEω
[
Qn(sss′n, anj, λ) | πLaω (λ)

]
. (5.5)

Here, anj is the jth action of arm n,Q is the state-action value function, and πLaω (λ) is the optimal

policy for a given λ. The key insight is that this relaxation decouples the value functions of the arms,

except for the shared λ, i.e., for a given value of λ, allQn could be solved viaN individual value iter-
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ations. However, finding and setting λ := λ⋆ is critical to finding good policies for multi-action

RMABs81,52, where πLaω (λ⋆) is used to recover a policy that respects the original budget constraint

by solving a knapsack withQn(sssn, anj, λ⋆) as values, C as weights, and the constraints of Eq. 5.3,

then taking the actions according to theQn in the solved knapsack. The knapsack solution finds the

combination of actions with the largest sum of learnedQn(sssn, anj, λ⋆) values which still respects the

budget. The integer program for the knapsack is given in Appendix D.2 and has time complexity

O(N|A|B)81.

5.4 Solving Robust RMABs

We now build our approach for finding robust RMAB policies, visualized in Fig. 5.1(a). We use an

iterative DO approach which achieves the minimax regret objective of Eq. 5.2 by casting the op-

timization problem as a zero-sum game between two players: an agent which learns policies π to

minimize regret, and an adversarial nature which selects environment parameters ω to maximize re-

gret of the agent. In this two-player game, the pure strategy space for the agent is the set of all feasible

RMAB policies π that respect the budget constraint. The pure strategy space for nature is a contin-

uous, closed set of parameters ω within the given uncertainty intervals. The algorithmmaintains a

pure strategy set for the agent and nature (Fig. 5.1(a) left boxes); each iteration, these strategy sets

are used to compute amixed strategy—i.e., a probability distribution over pure strategies—Nash

equilibrium in a regret game (Fig. 5.1(a) center). Each oracle then learns a best response against the

opponent’s mixed strategy to add to its strategy set (Fig. 5.1(a) right boxes).

The agent oracle’s goal is to find an RMAB policy π, or pure strategy, that minimizes regret

(Eq. 5.1) given a nature mixed strategy ω̃. That is, the agent minimizes L(π, ω̃)w.r.t. π, while ω̃ is

constant. Recall from Eq. 5.1 that L(π, ω̃) = G(π⋆ω̃, ω̃) − G(π, ω̃). Since ω̃ and π⋆ω̃ are constant,

then the first termG(π⋆ω̃, ω̃) is also constant. Thus minimizing L(π, ω̃) is equivalent to maximizing
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the second termG(π, ω̃), which is maximal at π = π⋆ω̃. In other words, the agent oracle must com-

pute an optimal reward-maximizing policy w.r.t. ω̃. Such a reward-maximizing objective aligns with

existing RL techniques, but still requires that we address the challenge of learning in the combina-

torial state and action spaces of the RMAB. To address this challenge, we propose a new RLmethod

which decomposes the RMAB into N per-arm learning problems and a complementary λ-network

learning problem, which together learn to spend limited budget where it will give the best return,

detailed in Sec. 5.4.1.

Conversely, the nature oracle seeks to find a parameter setting ω, or pure strategy, that maximizes

the agent’s regret given a mixed strategy π̃, i.e., maximize L(π̃, ω)with respect to ω, while π̃ is fixed.

This objective is even more challenging because bothG(π⋆ω, ω) andG(π̃, ω) are functions of ω.

Most critically, computingG(π⋆ω, ω) requires obtaining an optimal policy π⋆ω as ω changes in the

optimization—this amounts to a planning problem in which an agent must learn an optimal policy

while the environment changes, controlled by ω, making the nature oracle difficult to solve. More-

over, in the interval uncertainty setting we consider, ω is defined by a space of continuous values;

thus nature’s pure strategy space is infinite, making the problem even more complex, since it cannot

be exhaustively searched.

To tackle this complexity we propose a novel method for implementing the regret-maximizing na-

ture oracle by casting it as anMARL problem. The approach, visualized in Fig. 5.1(b), trains one

auxiliary agent to solve for a policy π⋆ω (πA in Fig. 5.1(b)), needed to computeG(π⋆ω, ω) in the regret

term, and simultaneously trains a second agent to learn worst-case parameters ω (πB in Fig. 5.1(b))

that minimizeG(π̃, ω)—together, these will maximize the regret L(π̃, ω). With this MARL setup,

we mitigate nonstationarity through centralized critic networks which allow each agent to include

the other’s actions in their learned state space. Solving a MARL problem requires an RL algorithm

to optimize the underlying policy, so we first introduce our novel RL approach, DDLPO, to solve

RMABs (Sec. 5.4.1) as a part of our agent oracle and then use the algorithm as the backbone of our

113



Algorithm 5.4.1DDLPO

Input: Initial state sss0, nature mixed strategy ω̃,
n_epochs, n_subepochs, n_steps

1: Init. policy networks θn for each arm n ∈ [N]
2: Init. critic networks φn for each arm n ∈ [N]
3: Init. λ-network Λ
4: Init. buff = [] and sss = sss0
5: for epoch = 1, 2, . . . , n_epochs do
6: Sample λ = Λ(sss)
7: Sample ω ∼ ω̃
8: for subepoch = 1, . . . , n_subepochs do
9: for timestep t = 1, . . . , n_steps do
10: Sample actions an ∼ θn(sn, λ) ∀n ∈ [N]
11: sss′, rrr = Simulate(sss, aaa, ω)
12: Add tuple (sss, aaa, rrr, sss′, λ) to buff
13: sss = sss′
14: Update each (θn, φn) pair via PPO, using trajectories in buff
15: Update Λ via Prop. 5.4.1 with costs of final subepoch
16: return θ1, . . . , θN, φ1, . . . , φN and Λ

nature oracle (Sec. 5.4.2).

5.4.1 Agent Oracle: Deep RL for RMAB

Existing DRL approaches can be applied to the objective in Eq. 5.3, but, as detailed in Sec. 5.2,

they fail to scale past trivially sized RMAB problems since the action and state spaces grow exponen-

tially inN. To overcome this, we develop a novel DRL algorithm that instead solves the decoupled

problem (Eq. 5.4). The key benefit of decoupling is to render policies andQ values of each arm in-

dependent, allowing us to learnN independent networks with linearly sized state and action spaces,

relieving the combinatorial burden of the learning problem. However, this decoupling approach in-

troduces a new technical challenge in solving the dual objective which maximizes over policies but
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Algorithm 5.4.2DDLPO-Act

Input: State sss, costs C, budget B, agent actor, critic, and λ networks θ1, . . . , θN, φ1, . . . , φN,
Λ, selection method α

1: λ = Λ(sss)
2: if α == ‘GreedyProba’ then
3: pn = θn(sn, λ) ∀n ∈ [N] {Action distr. of arm n}
4: aaa = GreedyProba(ppp, C,B) {Greedily select highest probability actions until

budget B is reached}
5: else if α == ‘QKnapsack’ then
6: qnj = φn(sn, anj, λ) ∀n ∈ [N],∀j ∈ [|A|]
7: aaa = QKnapsack(qqq, C,B) {Solve knapsack in Appendix D.2}
8: else if α == ‘Whittle’ then {Binary action only}
9: aaa = BinaSearch(sss,B, φ1, ..., φN) {Appendix D.2}
10: return aaa

minimizes over λ, as discussed in Sec. 5.3.

To solve this, we derive a dual gradient update procedure that iteratively optimizes each objective

as follows: (1) holding λ constant, learnN independent policy networks via policy gradient, aug-

menting the state space to include λ as input, as in Eq. 5.4; (2) use sampled trajectories from those

learned policies as an estimate to update λ towards its minimizing value via a novel gradient update

rule. Another challenge is that λ⋆ of Eq. 5.4 depends on the current state of each arm—therefore,

a key element of our approach is to learn this function λ⋆(sss) concurrently with our iterative op-

timization, using a neural network we call the λ-network that is parameterized by Λ. To train the

λ-network, we use the following gradient update rule.

Proposition 5.4.1. To learn the value λ that minimizes Eq. 5.4 given a state sss, the λ-network, param-

eterized by Λ, should be updated with the following gradient rule:

Λt = Λt−1 − α

(
B

1− β
+

N∑
n=1

Dn(sn, λt−1(sss))

)
(5.6)
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where α is the learning rate and Dn(sn, λ) is the negative of the expected β-discounted sum of action

costs for arm n starting at state sn under the optimal policy for arm n for a given value of λ.

AsDn lacks a closed form, the key insight we make is that it can be estimated by sampling multi-

ple rollouts of the policy networks of all arms during training. As long as arm policies are trained for

adequate time on the given value of λ, the gradient estimate will be accurate, i.e.,Dn(sn, λt−1(sss)) ≈

−
∑K−1

k=0 β
kckn whereK is the number of samples collected in an epoch and ckn is the action cost of

arm n in round k. Moreover, this procedure will converge to the optimal parameters Λ⋆ if the arm

policies are optimal.

Proposition 5.4.2. Given arm policies corresponding to optimal Q-functions, Prop. 5.4.1 will lead Λ

to converge to the optimal as the number of training epochs and K −→ ∞.

Proofs are given in Appendix D.1. One interesting feature of this update rule is that to collect

samples that reflect the proper gradient, the RMAB budget must not be imposed at training time—

rather, the policy networks and λ-network must be allowed to learn to play the Lagrange policy

of Eq. 5.4, which learns to spend the correct budget in expectation, via our iterative update pro-

cedure. Therefore, at training time, we sample actions randomly according to the actor network

distributions, without imposing the budget constraint. However, at test time, we always take ac-

tions in a way that respects the budget constraint as described in Alg. 5.4.2. Alg. 5.4.2 chooses actions

either by (1) selecting greedily by the probabilities of the arm actor networks (2) using the learned

Q(λ)-functions of the arm critic networks to follow the Q-value-maximizing knapsack procedure

(Appendix D.2), or (3) in binary-action settings, using theQ(λ)-functions to follow a binary search

procedure such that selected actions are equivalent to the Whittle index policy (Appendix D.2).

In theory, the policy networks could be trained via any DRL procedure that ensures the above

characteristics for training the λ-network. In practice, we train with proximal policy optimization
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(PPO)141, a state-of-the-art policy gradient approach. Importantly, PPO is also flexible enough to

handle both discrete and continuous actions which is necessary for the nature oracle.

Finally, to enable our iterative, dual-update procedure in practice, we need a mechanism to both

(1) explore new arm policy actions after an update to Λ, then (2) exploit learned policy actions to

develop good gradient estimates for Λ. We navigate this important trade-off by adding an entropy

regularization term to the policy networks losses, controlled via a cyclical temperature parameter.

We call our algorithmDeep Distributed Lagrange Policy Optimization (DDLPO), provide pseu-

docode in Algorithm 5.4.1, and include more implementation details in Appendix D.4.

5.4.2 Nature Oracle: Multi-Agent RL

Armed with a DRL procedure for learning RMAB policies, we now develop the MARL procedure,

which we call MA-DDLPO, to implement the nature oracle. Recall that the challenge of the nature

oracle is to jointly optimize a policy π⋆ω and environment parameters ω. We propose to solve this op-

timization using MARL, designed to handle this form of non-stationarity99 via centralized critics.

In our MARL setup, each of two “players” (i.e., the “multiple agents”) will aim to compute π⋆ω and

ω, respectively, with separate objectives. The procedure is visualized in Fig. 5.1(b).

To implement the MARL nature oracle, we introduce two new players A and B. Player A is an

auxiliary player whose goal is to optimize the RMAB policy π⋆ω given a changing ω, i.e., the first

term of regret (Eq. 5.1). We call A auxiliary because its learned policy will never be used outside the

nature oracle; A is only used to assist the nature oracle in computing the regret associated with a

given ω. Alternatively player B is an adversarial player whose goal is the same as that of the nature

oracle itself, i.e., to find parameters ω that maximize regret of the current agent mixed strategy π̃. We

define a shared transition function for the environment in which the players act T : S × AA ×

AB −→ S . Here,AA is the action space of the underlying multi-action RMAB. At a given state sss,

the action spaceAB defines for player B actions ω which, in general, depend on sss. That is, at each
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Algorithm 5.4.3MA-DDLPO
Input: Agent mixed strategy π̃, n_epochs, n_subepochs, n_steps,
n_sims

1: Init. player A: arm policy networks θ(A)n and arm critic networks φ(A)
n ∀n ∈ [N], and λ-

network Λ
2: Init. player B: environment parameter policy network θ(B), critic network φ(B)

3: Init. buff = []
4: for epoch = 1, 2, . . . , n_epochs do
5: Sample sss at random
6: Sample λ = Λ(sss)
7: for subepoch = 1, . . . , n_subepochs do
8: for t = 1, . . . , n_steps do
9: Sample a(A)n ∼ θ(A)n (sn, λ) for each n ∈ [N]

10: Sample ω(B) ∼ θ(B)(sss)
11: rrr(A), sss′ = simulate(sss, aaa(A), ω(B))
12: r̃ = simulate(sss, π̃(sss), ω(B), n_sims) {(mean of n_sims 1-step roll-

outs of π̃)}
13: r(B) =

(∑
n∈[N] r(A)n

)
− r̃ {(regret of π̃)}

14: Add (sss, aaa(A), ω(B), rrr(A), r(B), sss′, λ) to buff
15: sss = sss′
16: Update each (θ(A)n , φ(A)

n ) pair using trajectories in buff. φ(A)
n get ω(B) as part of

state
17: Update Λ via Prop. 5.4.1 with costs of final subepoch
18: Update θ(B), φ(B) using trajectories in buff. φ(B) gets aaa(A) as part of state
19: return θ(B)

step, player B selects environment parameters ω, and thus transition probabilities that will influence

the outcome of player A’s actions. We adopt the centralized critic idea frommulti-agent PPO174

to our RMAB setting to create MA-DDLPO. A notable strength of our MARL approach is that it

allows the discrete-space policy of player A and the continuous-space policy of player B to be learned

by separate networks, simplifying training compared to an alternative combined-network approach.

Moreover, our choice to use PPO offers a convenient way to learn both types of policies as separate

networks, while utilizing a single framework of update rules.
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A critical step is then to define the rewards for players A and B to match their objectives. Since

player A’s objective is to find π⋆ω, it adopts the reward defined by the underlying RMAB, that is,

R(A)(sss) =
∑N

n=1 Rn(sss). However, player B’s objective is to learn the regret-maximizing parameters

ω. This objective is challenging because it requires computing and optimizing over the returns of

the fixed input policy π̃ with respect to all possible ω, which is in general non-convex. In practice,

to estimate the returns of π̃ω, we execute a series of roll-outs against player B’s current action. That

is, given sss at a given round, we sample an action from π̃ω and the next state sss′, and define the regret-

based reward of player B, asR(B) =
∑N

n=1 Rn(sn)− 1
Y
∑Y

y=1 r
π̃,ω
y , where rπ̃,ωy is the reward from each

of Y one-stepMonte Carlo simulations of the mixed strategy π̃ in ω.

To train the policies, player A has the same policy network architecture as DDLPO, i.e.,N dis-

crete policy networks and one λ-network, and the player B actor network is a single continuous-

action policy network. Since players A and B have separate reward functions, they have their own

critic networks, but these critics are centralized in that they both take the actions of the other as

input. Other than the centralized critic, player A is trained the same way as DDLPO, and player B

is trained in a standard PPO fashion. In practice, to ensure good gradient estimates for player A’s

λ-network inMA-DDLPO, we keep player B’s network—and thus the environment—constant

between Λ updates, updating B’s network with the same frequency as the λ-network updates. Pseu-

docode for MA-DDLPO is given in Alg. 5.4.3 and further details of its implementation are given in

Appendix D.4.

5.4.3 Minimax Regret RMABDouble Oracle

We now have all the pieces needed to run our robust algorithm, Robust RMABs via Deep Pol-

icy Oracles (RR-DPO), visualized in Fig. 5.1(a), with pseudocode presented in Algorithm 5.4.4,

adapted from theMIRROR framework170. We use DDLPO to instantiate the agent oracle, MA-

DDLPO for the nature oracle, and run RR-DPO until the improvement in value for each player is
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Algorithm 5.4.4 RR-DPO
Input: Environment simulator and parameter uncertainty intervals ωn for all n ∈ [N]
Parameters: Convergence threshold ε
Output: Agent mixed strategy π̃
1: Ω0 = {ω0}, with ω0 selected at random
2: Π0 = {πB1 , πB2 , . . .}, where πBi are baseline and heuristic strategies
3: for epoch e = 1, 2, . . . do
4: Solve for (π̃e, ω̃e), mixed Nash equilibrium of regret game with strategy sets Ωe−1

and Πe−1
5: πe = DDLPO(ω̃e)
6: ωe = MA-DDLPO(π̃e)
7: Ωe = Ωe−1 ∪ {ωe},Πe = Πe−1 ∪ {πe}
8: if L(π̃e, ωe)− L(π̃e−1, ω̃e−1) ≤ ε and L(πe, ω̃e)− L(π̃e−1, ω̃e−1) ≤ ε then
9: break
10: return π̃e

within a tolerance ε or until a set number of iterations.

We now establish conditions under which RR-DPO converges to the minimax regret–optimal

policy in finite iterations. In the binary-action setting, assuming each oracle returns true best re-

sponses, and under an analytical condition that is straightforward to achieve, i.e., finite pure strategy

sets:†

Proposition 5.4.3. RR-DPO converges in a finite number of steps to the minimax regret-optimal

policy.

In addition, we empirically verify that good policies are found outside of these conditions, and that

RR-DPO converges using our continuous-strategy-space nature oracle. Further, we show that a

policy that maximizes reward assuming a fixed parameter set can incur arbitrarily large regret when

the parameters are changed (proofs in Appendix D.1).

†Straightforward to achieve for nature oracle via discretization.
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Proposition 5.4.4. In the Robust RMAB problem with interval uncertainty, the max regret of a

reward-maximizing policy can be arbitrarily large compared to a minimax regret-optimal policy.

5.5 Experimental Evaluation

We first experimentally demonstrate the importance of robust planning in the presence of uncer-

tainty using a hand-crafted synthetic domain (inspired by Prop. 5.4.4). We then evaluate our al-

gorithm on two challenging real-world-inspired public health planning scenarios which demon-

strate the capability of our robust RMAB framework. All experiments use selection method α =

‘GreedyProba’ for DDLPO-Act (Alg. 5.4.2), which we found had the best performance.

We compare RR-DPO against five baselines. These baselines include three variations of the

reward-maximizing approach fromHawkins 60 , which, given fixed environment parameters ω, at

each step computes a Lagrange policy, then chooses actions following the knapsack procedure de-

scribed in Sec. 5.3. The three variations are pessimistic (HP), mean (HM), and optimistic (HO),

which assume the environment parameters are set at the lower bound, mean, and upper bound of

the given intervals for each arm. We also implementRLvMid, which learns (rather than computes)

a policy via DDLPO assumingmean parameters, andRand, which acts randomly to fill the bud-

get. All results are averaged over 50 random seeds and were executed on a cluster running CentOS

with Intel(R) Xeon(R) CPU E5-2683 v4 @ 2.1 GHz with 8GB of RAM using Python 3.7.10. Our

DDLPO implementation builds on OpenAI Spinning Up3 and RR-DPO builds on the MIR-

ROR implementation170, computing Nash equilibria using Nashpy 0.0.2186. Code is available at

https://github.com/killian-34/RobustRMAB and hyperparameter settings are in Appendix D.4.
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5.5.1 Experimental Domains

Synthetic demonstrates that reward-maximizing policies (RLvMid, HP, HM, HO) may incur large

regret in the presence of uncertainty. There are three binary-action arm types {U,V,W}, each with

C = {0, 1}, S = {0, 1},R(s) = s, and the following transition matrix, with rows and columns

corresponding to actions and next states, respectively:

Tn
s=0 =

0.5 0.5

0.5 0.5

 , Tn
s=1 =

 1.0 0.0

1− pn pn


pU ∈ [0.00, 1.00], pV ∈ [0.05, 0.90], pW ∈ [0.10, 0.95]

When an arm is at s = 0, each action has equal impact on the state transition. When the arms are at

s = 1, selecting arms with high pn is optimal. This implies that policies can be specified by the order

in which arms would be acted on, when they are in state s = 1. Accordingly, πHP = [W,V,U],

πHM = [W,U,V], and πHO = [U,W,V]. However, observe that there exist values of pn that

can make each of the reward-maximizing policies incur large regret, e.g., for πHO pU = 0.0, pV =

0.9, pW = 0.1 would induce an optimal policy [V,W,U], which is the reverse of πHO.

ARMMAN is a real-worldmaternal healthcare intervention problemmodeled as a binary-action

RMAB18. The goal is to select a subset of mothers each week to intervene on to encourage engage-

ment with automated maternal health messaging. The behavior of enrolled women is modeled by

anMDP with three states: Self-motivated, Persuadable, and Lost Cause. We use the summary statis-

tics given in their paper and assume uncertainty intervals of 0.5 centered around the transition pa-

rameters, resulting in 6 uncertain parameters per arm (details in Appendix D.3.1). Similar to the

setup by Biswas et al. 18 , we assume 1:1:3 split of arms with high, medium, and low probability of

increasing their engagement upon intervention. In our experiments, we scale the value ofN in mul-
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Figure 5.2: (a–f)Maximum policy regret of RR‐DPO in robust setting for Synthetic (a,b), ARMMAN (c,d) and SIS (e,f) do‐
mains. Lower is better. Synthetic is scaled by 3 and ARMMAN by 5 to maintain the distributions of arm types specified
in Sec. 5.5. (e) uses S = 50 and (f) usesN = 5,B = 4. RR‐DPO beats all baselines by a large margin across various
settings. (g–l) Returns of DDLPO for reward‐maximizing setting (agent oracle) for synthetic (g,h), ARMMAN (i,j), and SIS
(k,l) domains. Higher is better. (k) uses S = 50 and (l) usesN = 5,B = 4. DDLPO is competitive across parameter
settings.
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Figure 5.3: The poor scaling of query time of the Hawkins baseline compared to DDLPO, as discussed in Sec. 5.5, even
for relatively small problem sizes (N = 10,B = 2).

tiples of 5 to keep the same split of arm categories of 1:1:3.

SIS Epidemic Model is a discrete-state model in which arms represent distinct geographic re-

gions and each member of an arm’s population of sizeNp is either (S)usceptible to or (I)nfected

with an infectious disease. Such models have been the subject of increased interest following the

COVID-19 pandemic62,78, and will represent a large-state and multi-action experimental domain.

In our model, the count of Smembers of the population is the state of each arm. Each arm’s SIS

model is defined by parameters κ, the average number of contacts per round, and rinfect, the proba-

bility of infection given contact with an Imember. Details on computing discrete state transition

probabilities from these parameters are derived from Yaesoubi & Cohen 171 and given in Appendix

D.3.2. We introduce three intervention actions {a0, a1, a2}with costs c = {0, 1, 2}. Action a0
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represents no action, a1 represents messaging about physical distancing (divides κ by aeff1 ), and a2

represents distributing face masks (divides rinfect by a
eff
2 ). We impose the following uncertainty inter-

vals: κ ∈ [1, 10], rinfect ∈ [0.5, 0.99], aeff{1,2} ∈ [1, 10].

5.5.2 Performance of RR-DPO

First, we evaluate the performance of the algorithms in uncertain environments. We compute the

regret of an agent’s pure strategy π against a nature pure strategy ω as the difference in the average

reward obtained by π against ω and the average reward of the best strategy in the experiment against

ω. The average reward is the discounted sum of rewards over all arms for a horizon of length 10,

over 25 simulations. In each setting, DO runs for 6 epochs, using 100 rollout steps and 100 training

epochs for each oracle. After completion, each baseline strategy is evaluated by querying the nature

oracle for the best response against that strategy, then computing max regret against all ω. The regret

of RR-DPO is computed as the utility of the agent mixed strategy returned by the DO over the two-

player regret game.

Fig. 5.2(a–f) shows RR-DPO incurs the lowest regret, beating the baselines in all domains. (a,b)

shows results on the synthetic domain, demonstrating our approach can reduce regret by ~50%

against the benchmarks, across various values ofN and B. Moreover, as B increases, the regret in-

curred may increase, since higher budget implies better reward potential for the optimal policy;

however, the regret for RR-DPO remains small even as B grows. Similarly, for the ARMMAN do-

main (c,d), a challenging domain adapted from a real-world problem, our algorithm performs con-

sistently better than the baselines, achieving regret that is around 50% lower than the best baselines.

In the SIS domain (e–f), another real-world planning setting with a larger state space and multiple

actions, our results are robust across parameter settings. Importantly, this holds even as we increase

the state space from S = 100 to 500 (f), in which running the Hawkins baseline becomes pro-

hibitively expensive.
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Finally, we run sensitivity analyses of the algorithms against H and the size of the uncertainty sets

(Appendix Fig. D.1). WhenH varies from 10 to 100, RR-DPOmaintains very low regret, while

competitor regret as much as doubles, increasing RR-DPO’s relative improvement as high as ~60%.

Similar results are obtained when varying the uncertainty intervals between 0.25, 0.5 and 1.0 times

their widths from the experiments in Fig. 5.2, with RR-DPO always dominating.

5.5.3 Performance of DDLPO

We also evaluate the performance of DDLPO, our novel DRL approach to find reward-maximizing

policies for multi-action RMABs, which implements our agent oracle. We compare againstNo Ac-

tion andRandom baselines as well as the computationally intensive solution by Hawkins which

computes the Lagrange policy, but which requires exact environment parameters and discrete

states/actions. Hawkins upper bounds DDLPO for small discrete problems since it is exact whereas

DDLPO learns the Lagrange policy from samples. Each experiment is a traditional reward-maximizing

RMAB instantiated with a random sample of valid parameter settings for each seed.

Fig. 5.2(g–l) shows DDLPO achieves reward comparable to the Hawkins algorithm and signif-

icantly better than random, providing insight into the success of our RR-DPO approach which

DDLPO enables, and showing promise for DDLPO as an algorithm of general interest. In the syn-

thetic domain (g,h), DDLPO learns to act on the 33% of arms who belong to categoryW. The

mean reward of DDLPO almost matches that of Hawkins algorithm asN scales with a commensu-

rate budget (g). As we fixN and vary the budget (h), the optimal policy accumulates more reward,

and DDLPO almost equals the optimal. We observe similar results on the ARMMAN domain

(i,j), a challenging real-world health problem. On the SIS domain (k,l), the strong performance of

DDLPO holds in a multi-action setting even as we increase the number of states from 50 to 500 (l).

Moreover, DDLPO beats Hawkins computationally: in Fig. 5.3, a single rollout (10 rounds)

of Hawkins takes ~100 seconds when there are 500 states, scaling quadratically in general. This
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demonstrates that it would be prohibitive to run Hawkins in the loop of RR-DPO, since agent

policies are evaluated thousands of times to compute the regret matrices. For just 25 simulations,

computation would take ~42 minutes to evaluate a single cell in the regret matrix, which has |Π| ×

|Ω| total cells.

5.6 Conclusion

We address a key limitation blocking RMABs frommany real-world settings: that arm dynamics

are not known precisely. To plan safe, effective policies, robust approaches accounting for uncer-

tainty are essential, which we give in RR-DPO, enabled by DDLPO, a novel deep-RL algorithm for

RMABs of general interest. We hope our contributions bring us closer to deploying RMABs for

real-world impact.
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Robust Planning over Restless Groups:

Engagement Interventions for a Large-Scale

Maternal Telehealth Program

6.1 Introduction

Maternal mortality, the death of a mother* during pregnancy or within 42 days after childbirth, is

an ongoing global health crisis. In India, the maternal mortality rate is particularly stark, estimated

between 99 and 130 deaths per 100K births in 2020107,50, significantly higher than Sustainable

Development Goal 3.1 target of 70 per 100K births153. Tragically, most maternal deaths are pre-

ventable164, but lack of finances and awareness prevent mothers from seeking care, particularly in

low-income communities25.

To improve maternal health outcomes, we work with ARMMAN, an India-based non-profit

that provides free preventive care to millions of mothers by sending automated health voice mes-

sages, specifically targeted towards low-income communities (similar to MAMA70). Mothers en-

rolled in the program receive weekly automated voice messages during pregnancy and up to one year

after childbirth. Randomized control trials showed that ARMMAN’s messaging program signif-

icantly improves key indicators including treatment-seeking during complications, infant breast-

*We recognize that the term “mother” is imperfect, most notably by not reflecting transgender and non-
binary identities. We highlight alternative language with discussion in Appendix E.1.
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Figure 6.1: Mothers enrolled with ARMMAN receive life‐saving preventative care information via voice messages
throughout their pregnancy, childbirth, and neonatal period. Photo courtesy of ARMMAN.

feeding, and post-infancy weight115. However, ARMMAN found that nearly 38% of mothers

disengage, missing critical health information. To improve engagement, ARMMAN employs health

workers to provide service calls, but there are only tens of health workers compared to hundreds of

thousands of mothers in a given service area— so interventions must be carefully targeted to maxi-

mize engagement.

Working with ARMMAN, we model this resource-limited intervention planning problem as a

restless multi-armed bandit (RMAB), where each mother (arm) changes their weekly engagement

(state) according to a stochastic Markov decision process. RMABs are PSPACE-hard to solve ex-

actly122 and even the more tractable, asymptotically optimal “Whittle index policy”163 is challeng-

ing to compute at scale.

To improve the scalability of real-world RMAB planning, Mate et al. 104 proposed to organize

arms into a small number of groups, infer transition dynamics from each group’s data, then compute

the Whittle index policy per group. While the scalability of their method is desirable for ARM-

MAN’s problem setting, it ignores a key reality ofmodel uncertainty: learning transition probabili-

ties from historical data leads to imprecise and imperfect estimates which must be accounted for in

planning. Computing RMAB policies that are robust to model uncertainty has only recently been

studied. Existing methods achieve robustness to interval uncertainty over model dynamics by plan-

ning against a model-controlling “nature” adversary to yield policies that minimize max regret83,170.
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Robustness is desirable for ARMMAN’s setting, but these methods require training deep reinforce-

ment learning (RL) agents for each arm, so unfortunately do not scale past hundreds of arms.

To enable large-scale, robust intervention planning for ARMMAN, we bridge the gaps in previ-

ous works by introducing robust grouped RMAB. Our model achieves scalability by considering a

grouped-arm paradigm and optimizing for minimax regret over the uncertain model dynamics per

group. Unfortunately, the grouping abstraction breaks key assumptions used in previous robust

RMAB work: that (1) policies improve by collecting samples of regret by evolving a joint state of all

arms, and (2) the nature adversary controls the transitions of each arm individually. We overcome

(1) by decomposing regret per arm, freeing the planner from relying on a cumbersome joint state to

enable efficient group-abstracted planning. For (2), we prove that restricting the adversary to control

dynamics only over groups does not change the equilibrium strategy, allowing us to leverage the scal-

able robust grouped model to find policies over hundreds of thousands of arms without sacrificing

quality.

Our contributions are as follows. First,we introduce robust grouped RMABs with a minimax re-

gret objective and propose a solution that employs the double oracle framework106. The approach

we propose isGROUPS: Group RMABOracles for Uncertainty-robust Planning at Scale. Second,

we develop novel methods designed for robust grouped RMABs to implement the two oracles, the

planner and adversary. Planning over groups of arms allows large scale-up but presents several new

algorithmic challenges as we detail above. Third,we prove that the minimax regret–optimal strategy

is the same whether the planner and adversary play at the individual or group level. Our proof en-

ables massive scale-up as it is now sufficient to compute robust strategies over groups, instead of over in-

dividual arms. Finally,we demonstrate empirically on real data thatGROUPS reduces worst-case

regret up to 50% compared to baselines, representing potentially thousands of additional en-

gagements with life-saving information. We are working with ARMMAN to deploy GROUPS

to positively impact maternal health.
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6.2 RelatedWork

Mobile-based maternal health services are effective and affordable in low- and middle-income com-

munities160,150. Successful programs include MatHealth in Uganda116, Aponjon in Bangladesh8,

ARMMAN in India115, and text4baby in the United States44. Our work is designed to support

such programs.

Whittle 163 introduced RMABs and proposed theWhittle index policy, which computes indices

estimating each arm’s “return on investment” then acts on arms with the topK. Weber &Weiss 161

showed this policy is asymptotically optimal under a technical condition. Many RMAB studies

assume known transition dynamics, although some recent works design methods to learn policies

online157,117,18,80,156. However, these online approaches require collecting a prohibitively large

number of samples, limiting their real-world applicability in scenarios where the time horizon is

short.

Most robust planning papers consider single-MDP (one arm) settings126,90,94, rather than the

budget-coupled N-MDP setting of RMAB. Even for single MDPs, optimizing criteria such as min-

imax regret23 requires searching massive strategy spaces; double oracle106 is one approach to do so

efficiently. Recent work combines double oracle with deep RL to solve for minimax regret–optimal

robust policies for single MDPs170. Killian et al. 83 extended the idea to solve larger RMABs. Both

Xu et al. 170 and Killian et al. 83 use deep RL which, if applied to a group setting, would need to ex-

plicitly account for the size of each group and state of each arm within each group, limiting their

methods’ ability to scale beyond hundreds of arms. For the large problem size that ARMMAN

faces, our methods must scale to hundreds of thousands of arms.

Finally, robust planning for stochastic bandits is well studied102,65 However, stochastic bandits are

stateless and lack passive rewards, and so are not expressive enough to model ARMMAN’s setting.
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6.3 Model

We consider grouped RMABswhereN arms (enrolled mothers) compriseM groups. Each arm n ∈

[N] follows anMDP ⟨S,A,Pn, r, γ⟩where s ∈ S := {0, 1} is the state space indicating whether a

mother is engaging (sn = 1) or not engaging (sn = 0) with automated voice messages; r(s) = s is

the reward function; a ∈ A := {0, 1} is the action space, i.e., {not intervene, intervene}; Pn(s, a, s′)

is the probability that arm n transitions from state s to s′ given action a; γ ∈ [0, 1] is the discount

factor. Let sss ∈ SN and aaa ∈ AN be the combined state and action vectors of all arms. At each

timestep t, the task is to chooseKmothers to intervene on (deliver service calls to) given the state ssst

at time t.

Formally, we compute RMAB policies π : SN → AN that respect a budget constraint ∥π(ssst)∥1 =

K for all t. For a given policy π and a fixed environment P := {Pn}n∈[N] representing a matrix of

transition probabilities of all arms, the average discounted reward isG(π,P) := E[
∑∞

t=0 γtr(ssst) |

π,P]. Given P, the optimal policy which maximizes reward is π⋆P := maxπ G(π,P). An asymp-

totically optimal RMAB policy is the Whittle index policy (WIP), which computes the Whittle

indexWn
P(s) for each arm n and state s, then intervenes on the arms with the greatestK indices.

TheWhittle index represents “return on investment,” interpreted as a charge for acting that makes

no intervention equally valuable as intervention in the long term. LetQn
P(s, a, λ) = r(s) − λa +

γEs′∈S [maxa′∈A Qn
P(s′, a′, λ)] be the long-term expected value of action a on arm n in state s. Then,

for a given P, the Whittle index for arm n at state s isWn
P(s) = min{λ : Qn

P(s, 1, λ) = Qn
P(s, 0, λ)}.

Grouped RMAB For scalability, we organize arms into groups, extending the concept from

Mate et al. 104 to our more challenging robust setting, e.g., by clustering based on historical en-

gagement patterns. We then estimate uncertainty intervals over transition probabilities per group.

However, note that our robust policy computation steps in Section 6.4 are agnostic to the par-
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ticular grouping and interval estimation methods. Let φ : [N] → [M] be a surjective map-

ping of arms to groups and φ−1(m) be the set of arms in groupm. The uncertainty intervals are

Pms,a,s′ := [Pms,a,s′ ,P
m
s,a,s′ ] for allm, s, a, s′. Then let Pm := {Pms,a,s′}s,a,s′ be the interval uncertainty

matrix for groupm across all states and actions. Importantly, though arms in the same group have

the same uncertainty intervals, they may not have the same instantiated probabilities within those

intervals.

Minimax regret We define regret for grouped RMAB as:

R(π,P) := G(π⋆P,P)− G(π,P) , (6.1)

where P instantiates Pm ∈ Pm for all groupsm ∈ [M]. Our objective is to learn a policy π that

minimizes max regret:

min
π

max
P

R(π,P) . (6.2)

We choose minimax regret as our robust objective since it does not require probability distributions

over the uncertainty intervals23. Such distributional information is scarce in our setting whereK ≪

N, giving us few samples of transitions for action a = 1.

6.4 Methodology

We introduce GROUPS (Group RMABOracles for Uncertainty-robust Planning at Scale), a four-

step approach visualized end-to-end in Fig. 6.2. Step (3) is our key algorithmic contribution. In

step (1), similar arms (mothers) are mapped into groups. In step (2), we combine data from arms in

each group with historical engagement data, using bootstrapping to estimate uncertainty intervals

Pm for each group140. In step (3), we compute a minimax regret–optimal policy over groups, where

arms in a given group are treated as having the same transition probabilities, greatly improving com-
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Figure 6.2: GROUPS pipeline for robust grouped RMABs. (1) Assign enrolled mothers (arms) to groups. (2) Estimate un‐
certainty intervals over transition probabilities. (3) Novelty of this work: Compute robust minimax regret–optimal policy
via double oracle, where each oracle efficiently searches the large‐scale strategy spaces by using the group abstraction.
(4) To execute policies, translate group‐level indices Ĩms to arm‐level intervention policy.

putational efficiency. Critically, we show in Section 6.5 that this group-level planning is lossless —

i.e., the policies we compute are the same minimax regret–optimal policies as would be computed if

grouped arms were allowed different transition probabilities (within the same uncertainty intervals).

In step (4), we map group-level policies back to individual-level policies by computingWhittle in-

dices for each groupm ∈ [M], then assigning an index to each arm nwithin that group based on its

current state sn. Our policy is to intervene on mothers with the topK indices.

Double oracle In step (3), we adopt a double oracle (DO) framework106, solving Eq. 6.2 by

formulating the problem as a two-player zero-sum game between the RMAB planner and nature

adversary, where the players aim to minimize and maximize regret respectively. The planner’s pure

strategy space is the finite set of all feasible RMAB policies π; the adversary has the continuous space

of transition probabilities Pwithin the uncertainty intervals Pm for allm ∈ [M]. The algorithm

maintains a finite pure strategy set for each player. For each iteration, we compute a mixed strategy

Nash equilibrium (MSNE) on the game over the finite strategy sets. Amixed strategy is a probability

distribution over pure strategies. In each iteration, the planner oracle computes a best response pure

strategy π against the adversary’s mixed strategy; π is added to the planner’s finite strategy set. We
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follow a symmetric approach to compute a best response P for the adversary. Upon termination,

we return the final planner mixed strategy, which is guaranteed, under mild conditions, to be an

ε-optimal minimax solution170. In practice, we terminate after T iterations90. The key technical

challenge of using the double oracle approach is designing planner and adversary oracles for group

RMABs.

6.4.1 Planner Oracle: WI forMixed Strategy

An adversary mixed strategy β contains tuples (Pi, βi)where βi is the probability of playing pure

strategy Pi. Similarly, a planner mixed strategy α contains tuples (πi, αi)where αi is the probability

of playing pure strategy πi.

The planner oracle must compute an intervention policy π that minimizes regret with respect

to a given adversary mixed strategy β over environment settings Pi. Since β and thus all Pi are fixed,

and only the second term of regret in Eq. 6.1 depends on π, minimizing regret is equivalent to max-

imizing reward, to ensure that mothers engage with as many voice messages as possible. However,

existing reward-maximizing RMAB algorithms assume a single environment Pi, versus a mixed strat-

egy β over multiple Pi. To address this combinatorially hard problem, we develop a new heuristic

approach that computes well-performing policies π based on strategically weighted combinations of

Whittle indices.

Unfortunately, optimizing exact regret is at least PSPACE-hard122. Previous work optimized

regret of the Lagrange relaxation83, but relied on joint arm states which does not scale. We introduce

a decomposed notion of regret, allowing us to optimize regret of the full RMAB in a far more scalable

way. We call thisWhittle index regret: the sum ofWhittle indices played by a policy π compared to

the optimal WIP. The key is that the Whittle index is a measure of “reward if played”— so agents

who play arms with lowWhittle indexes in lieu of arms with highWhittle indexes will incur large

regret. As a further advantage, this regret notion naturally extends to groups— since the Whittle
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index is a function only of transition probabilities and rewards, all of which are shared in a group

under Pi — improving scaling.

Given states sss, denote the set of arms pulled by policy π as Φπ(sss) = {n ∈ [N] : πn(sss) = 1}

where πn(sss) is the action on arm n. The planner’s Whittle index regretRplanner
W (sss) is:

∑
(Pi,βi)

βi

[
max
κ⊆[N]
|κ|=K

{∑
n∈κ

(Wn
Pi(sss

n))

}
−
∑

n∈Φπ(sss)

Wn
Pi(sss

n)

]
. (6.3)

The first term in Eq. 6.3 corresponds to a planner’s optimal mixed strategy which plays the WIP

corresponding to each setting of transition probabilities Pi in β. To minimize regretRplanner
W , we seek

a policy π that plays Whittle indices as close as possible to the WIPs in the first term, which equiva-

lently maximizes the second term. How to produce a pure strategy π that closely follows themixed

WIP policies of the first term is the key challenge. We start by making the first termmore closely com-

putable as a pure strategywith a relaxation that leads to relaxed regret, by moving the expectation

over βi inside the max over indices:

max
κ⊆[N]
|κ|=K

∑
n∈κ

∑
(Pi,βi)∈β

βiW
n
Pi(sss

n)

 . (6.4)

We replace the first term ofRplanner
W (sss) (from Eq. 6.3) with Eq. 6.4 to get R̃planner

W (sss). This illu-

minates a heuristic for the planner oracle. Specifically, Eq. 6.4 can be computed exactly by a single

policy π, meaning we can make R̃planner
W (sss) = 0 by finding a π equivalent to Eq. 6.4. To do so,

we compute Whittle indices for each pure strategy Pi, compute the βi–weighted average index Ĩ
m
s

for each groupm and state s, then follow the greedy strategy of a WIP. Since the expectation over

βi is pushed through the max (Eq. 6.4) we have R̃planner
W (sss) ≤ Rplanner

W , but we show in appendix

Fig. E.1 that this weighted index policy performs well, despite this relaxation. We call this approach

Whittle Index for Mixed Strategy (WI4MS), given in Alg. 6.4.1. Whittle indices are computed via
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Algorithm 6.4.1WI4MS (Planner Oracle)
InputAdversary mixed strategy β
1: for (Pi, βi) ∈ β do {environment and probability i}
2: for {m = 1 toM} and {s ∈ S} do
3: Ĩ[m, s] += βi × ComputeWI(m, s,Pm

i )

4: π = WIP(̃I) {implements Whittle index policy}
5: return π {planner pure strategy}

ComputeWI described in Alg. E.7.2 in the appendix.

6.4.2 Adversary Oracle: RegretMaxWhittle Index

The adversary oracle must find one environment P that maximizes regret for the planner’s current

mixed strategy α over policies πi to maximize the number of missed calls. To guide the search, we

must address challenges both in maximizing regret of RMAB policies and in searching over a con-

tinuous strategy space Pm. Our insight is to maximize regret by manipulating the optimal RMAB

policy (a Whittle index policy) to simultaneouslyminimize the values of Whittle indices acted on by

the planner andmaximize indices that are not.

We utilize again the notion of Whittle index regret, re-defined for the adversary oracle:

Radversary
W = E

sss

 ∑
n∈Φπ⋆P (sss)

Wn
P(sssn))

∣∣∣ π⋆P,P


−
∑

(πi,αi)∈α

αi

(
E
sss

 ∑
n∈Φπi (sss)

Wn
P(sssn))

∣∣∣ πi,P
) . (6.5)

Given an environment, Pi, Eq. 6.5 captures the difference in the Whittle indices collected by the

optimal policy π⋆Pi versus the Whittle indices collected by the policies of the agent mixed strategies

πi. TheWIP is a proxy for finding the most effective arms on which to intervene; intuitively, this

means the adversary oracle should find Pi which maximizes the Whittle indices of arms played by
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Algorithm 6.4.2 RegretMaxWI (Adversary Oracle)
Input: Mixed strategies (α,β), intervals Pm, group-mean budgetKM, P =
[]

1: {Lm
s }

m∈[M]
s∈S = MonteCarlo(α, β) {simulation}

2: Kth = FindThresh(L,KM) {returns action count of ⌈KM⌉th group-state}
3: for {m = 1 toM} and {s ∈ S} do
4: obj[m, s] =min if (Lm

s ≥ Kth) else max
5: form = 1 toM do
6: Pm = MinMaxWhittleBQP(obj[m],Pm

)
7: return P {Adversary pure strategy}

the optimal policy but not played by the planner, and simultaneously minimizes the Whittle indices

of arms played only by the planner policies.

The first challenge is to determine which arms the planner will act on in expectation. We pro-

pose a simple but effective solution which counts the number of times the arm-state pairs are acted

on duringMonte Carlo simulation of the planner’s mixed strategy. Since the adversary operates at

the group level, we then aggregate arm-state counts into group-state counts, denoted Lm
s for each

groupm and state s. The next question is which group-state indices to minimize or maximize. Intu-

itively, if we reduced all indices an equal amount, we would reduce reward but not regret since the

optimal policy, i.e., the first term of Eq. 6.5, would reduce the same as the second. Thus, we need

to strategically minimize some indices, butmaximize others to induce an optimal policy that plays

different arms. Specifically, we choose to minimize the indices of the topKM = K
N/M — i.e., the

budget normalized by average group size — entries of Lm
s , approximating the topK choices of the

agent mixed strategy in expectation. Then we maximize the Whittle indices of all group-state pairs

below that threshold.

The second challenge is to find transition probabilities P that minimize or maximize the Whittle

indices of a group over its transition probability intervals. This problem has general implications,

e.g., for optimistic or pessimistic search over uncertainty sets in online learning. We derive a novel
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binary-quadratic program that, given a group and objective for each state (min, max, or null), com-

putes a Pm that optimizes the indices for all states simultaneously, detailed in the appendix as Min-

MaxWhittleBQP (Eq. E.13). We give the full adversary oracle algorithm, RegretMaxWI, in

Alg. 6.4.2 and empirically demonstrate its good performance in the appendix Fig. E.2.

6.5 Theoretical Regret Guarantee

In Section 6.4, we proposed an approach to compute a minimax regret–optimal strategy against an

adversary choosing the same transition probabilities for all arms in the same group from their corre-

sponding intervals. However, arms within the same group may not have identical transition prob-

abilities. Also, it is not intuitive that a minimax regret–optimal policy, when the adversary chooses

the same transition probabilities for all the arms in a group, also minimizes max regret when the ad-

versary chooses different transition probabilities for the arms in a group from their corresponding

intervals. In this section, we show this is true under mild assumptions. In particular, the minimax

regret–optimal strategy of the planner is the same against an adversary choosing transition proba-

bilities at the group level as against an adversary choosing transition probabilities at the individual

level.

Let Π be the planner’s pure strategy space of all individual-level policies, i.e., all choices of subsets

of arms with cardinalityK. Then we define mixed strategy sets for the planner at individual-level,

ΔI(Π), and group-level, ΔM(Π), where ΔM(Π) ⊆ ΔI(Π) is a restricted set of mixed strategies

in which the planner is indifferent between arms in the same group and state (see Appendix E.4.2

for definition). Next, letP be the adversary’s pure strategy space, containing all individual-level

policies, i.e., choices of transition probabilities {Pn}n∈[N] respecting the given uncertainty inter-

vals Pφ(n). Similarly, we define mixed strategy sets for the adversary at individual-level, ΔI(P), and

group-level, ΔM(P), where ΔM(P) ⊆ ΔI(P) is a restricted space that assigns same transition
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probabilities to all arms within a group.

For X,Y ∈ {I(individual),M(group)}, the regret game with X-level planner and Y-level adver-

sary is noted as X/Y. The X/Y regret of a planner’s mixed strategy α ∈ ΔX(Π) against an adversary’s

mixed strategy β ∈ ΔY(P) is:

R(α, β) :=
∑

i∈[|ΔX(Π)|]

∑
j∈[|ΔY(P)|]

αiβjR(πi,Pj) ,

where αi is the ith pure strategy of the X-level planner and βj is the j
th pure strategy of the Y-level

adversary. Let α⋆X,Y be the planner’s mixed strategy of a X/Y game, defined:

min
α∈ΔX(Π)

max
β∈ΔY(P)

R(α, β) = max
β∈ΔY(P)

R(α⋆X,Y, β)

which holds since the regret game is a two-player zero sum game, making minimax regret equal to

maximin reward. We call this the worst-case regret for α⋆X,Y.

We first show in Theorem 6.5.1† that, when all arms within the same group have the same transi-

tion intervals, the minimax I/I regret is equal to the minimaxM/I regret.

Theorem 6.5.1. The worst-case regrets of α⋆I,I and α⋆M,I against an adversary operating at the individ-

ual level is equal:

max
β∈ΔI(P)

R(α⋆I,I, β) = max
β∈ΔI(P)

R(α⋆M,I, β) .

Similarly, in Theorem 6.5.2, we show that, when all arms within the same group have the same tran-

sition intervals, the minimax I/M regret is equal to the minimaxM/M regret.

Theorem 6.5.2. The worst-case regrets of α⋆I,M and α⋆M,M against an adversary operating at the group

†Proofs of Theorem 6.5.1, 6.5.2, and 6.5.3 are given in Appendix E.5.
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level are equal:

max
β∈ΔM(P)

R(α⋆I,M, β) = max
β∈ΔM(P)

R(α⋆M,M, β) .

Finally, we use these results to establish our main result in Theorem 6.5.3 that the worst-case regret

of α⋆M,M is equal to the worst-case regret of α⋆I,I when (1) all arms in the same group have the same

intervals and (2) there exists a surjective function ψ that maps ΔI(P) to ΔM(P) that preserves

the regret ordering of planner and adversary strategies (formal definition and example ψ given in

Appendix E.5.1).

Theorem 6.5.3. If there exists an order-preserving map, then the worst-case regret of α⋆M,M is equal to

that of α⋆I,I, against an individual-level adversary, that is,

max
β∈ΔI(P)

R(α⋆M,M, β) = max
β∈ΔI(P)

R(α⋆I,I, β) .

Theorems 6.5.1, 6.5.2, and 6.5.3 together establish that the minimax regret–optimal strategy is the

same whether the planner and adversary play at individual or group level. In particular, this result

ensures that, under some conditions, the minimax regret–optimal strategy obtained by our algo-

rithm GROUPS, which implements group-level planner and adversary, is also minimax regret–

optimal against an individual-level adversary.

6.6 Experiments

6.6.1 Experiment Setup

ARMMANmaternal health domain Every week, ARMMAN’s automated system deliv-

ers prerecorded health messages to each enrolled mother with information tailored to the mother’s

gestational age. If mothers stop listening to the messages, healthcare workers can deliver interven-

tions to try to improve mothers’ engagement. We evaluate the increase in number of health messages
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mothers listen to using GROUPS to target interventions compared to existing baselines. To construct

a simulation environment, we use a real anonymized dataset from ARMMAN’s records of weekly

program engagement data for 15,336 mothers (though we note that ARMMAN’s larger service ar-

eas operate on the scale of hundreds of thousands). A mother is “engaged” if they listen to at least

30 seconds of a message that week. Thus, states are {not engaged, engaged}with rewards 0 and

1, respectively. To create an arm–group mapping, we run K-means clustering on the engagement

data and compute uncertainty intervals via bootstrapping followed by multiple imputation to com-

pute standard deviations of the means140. Statistics on the uncertainty intervals and group sizes

are shown in appendix Figs. E.6 and E.7. For details on the dataset and consent for collection, see

appendix E.11.

In the experiments, the default parameters match the intervention setup used by ARMMAN,

i.e., budgetK = 100,N = 15,320 mothers, andM = 40 groups. For sensitivity analysis, we

vary the budget, horizon, and number of mothers. Additional analysis varying uncertainty interval

width, number of groups, and distribution of group sizes are included in appendix Fig. E.4.

Additional domains To demonstrate wider applicability, we include results from two ad-

ditional domains. TheTB domain is constructed from an anonymized dataset of daily adherence

to tuberculosis medication82. States, rewards, and groups were derived analogously to the ma-

ternal health setting; complete details are in appendix E.12, including group statistics in Figs. E.8

and E.9. In our experiments, the default setting hasN = 8,350 arms,M = 60 groups, budget

K = N/10, and Aσ = 3, i.e., interval width of 3 standard deviations. We vary the budget, number

of groups, and Aσ. Finally, we use the Synthetic benchmark domain from recent robust RMAB

work83. This domain considers three “arm types” [U,V,W]with different intervals, designed so

that non-robust policies incur greater regret than robust ones. We augment the domain to allow ho-

mogeneous groups of each arm type, where the size and proportion of groups of each type may vary.
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In our experiments, the default setting hasN = 18,000 arms,M = 36 groups, where 1/3 of groups

are composed of each of the arm types, and budgetK = 100. We run sensitivity analysis onK, the

proportion of groups made up of each arm type, and a “block group” setting which joins all arms of

a given type into a single group.

Evaluation To evaluate performance, we plan at the group level but simulate individuals

within groups independently, where each individual undergoes state transitions based on their own

state, action, and transition probabilities. All experiments use horizonH = 10 and report the av-

erage of 30 seeds. We measure total reward with discount factor γ = 0.9. In Fig. 6.3, we evaluate

each approach in terms of regret (Eq. 6.1), computed by simulating each planner strategy against the

full set of adversary pure strategies and selecting one that maximizes regret. Note, there is no actual

deployment of the proposed algorithm; all results are simulated.

Baselines First, we compare against the state-of-the-art robust RMABmethod,DDLPO, for

small settings in which DDLPO can complete83. For larger-scale experiments with tens of thou-

sands of arms, no other robust methods are tractable, so we compare against several scalable non-

robust baselines. The non-robust baseline fromMate et al. 104 assumes all environment parameters

take the median of their uncertainty intervals then computes a reward-maximizingWIP; this strat-

egy was employed in a recent real-world pilot104. We consider two additional non-robust variants

which assume that all parameters take the lower bound of the uncertainty interval (pessimist) or the

upper bound (optimist), then compute a WIP strategy. Finally, random plans a WIP strategy against

an environment that is uniformly randomly sampled from the uncertainty intervals.
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Figure 6.3: Max regret (lower is better) incurred by GROUPS, our robust solution approach, compared to non‐robust
baselines across various settings. (a–c) Maternal health. For (c), the number of arms is increased by multiplying each
group size by a constant factor, i.e., 1, 10, and 20, butM is constant. (d–f) TB. For (d), budgets are 5%, 10%, and 15% of
N. (g–i) Synthetic. For (h), the x‐axis is the fraction of groups of arm type U — the fraction of type V is always 0.33, and
the remaining fraction are type W. For (i) the x‐axis denotes the arm type that has been combined into a single group
of 6000 arms, where the other two types are split across 12 groups each of size 500. In the maternal health and TB
settings, regret can be interpreted, in real‐world terms, as the maximum preventable missed health messages and doses,
respectively, across the uncertainty space.

6.6.2 Results

Fig. 6.3 shows GROUPS outperforms baselines in terms of max regret across several settings. Fig. 6.3(a–

c) shows results for thematernal health setting of ARMMAN. In particular, Fig. 6.3(c) shows

that GROUPS scales past 300,000 arms, representing more than a 1000× increase over the robust

state-of-the-art to meet a key need of real-world deployment settings. Moreover, across experiments,

the max regret of GROUPS is nearly half that of the non-robust strategy used inMate et al. 104 . In

other words, our simulations demonstrate that compared to the best non-robust strategyGROUPS

could prevent mothers from missing thousands of pregnancy-related health messages, each

containing potentially life-saving care information.

On theTB domain (Fig. 6.3(d–f)), we see again that GROUPS performs well across various
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strategies for grouping and computing uncertainty, even with very imbalanced group sizes. On the

synthetic domain (Fig. 6.3(g–i)), across various budgets and grouping strategies, the non-robust

baselines vary in performance and are sometimes worse than random, demonstrating the need for

reliable robust policies. Moreover, Table 6.1 shows that GROUPS even outperforms the state-of-

the-art DDLPO in terms of regret on the synthetic benchmark dataset for problems sizes small

enough for DDLPO to complete (i.e.,N < 100). The superior performance of GROUPS is due

to our Whittle-based policies which specialize to two-action settings, in contrast to the more general

but highly stochastic deep learning–based policies of DDLPO.

GROUPS DDLPO

N = 6 0.64± 0.05 1.00± 0.06
N = 9 0.47± 0.06 0.98± 0.05
N = 12 0.45± 0.06 0.88± 0.05

Table 6.1: Regret of GROUPS vs. robust method DDLPO on Synthetic. We setM = N andK = 1 to match the
evaluation in Killian et al. 83 . GROUPS incurs less regret.

Supported by Theorem 6.5.3, GROUPS scales significantly without incurring additional regret. In

Appendix E.9, we demonstrate the significant runtime improvement of GROUPS asM decreases,

holdingN constant. The scalability of our approach is critical for robust RMAB solutions to actu-

ally be deployed in real-world, low-resource settings.

6.7 Conclusion

The GROUPS algorithm we introduce presents several key advances to make RMABs more useful

in practice, enabling simultaneous scaleup and robustness to uncertainty. We are working with AR-

MMAN to deploy GROUPS to positively impact maternal health, demonstrating the real-world

capabilities this work enables. Most notably, our simulation experiments demonstrate that our

robust planning method could help ARMMAN prevent mothers from missing thousands of
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health messages, a promising result that we hope to translate into practice to help deliver life-saving

health information to otherwise under-served mothers.
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7
Conclusion

To conclude, this thesis makes key advances in AI to help enable effective resource allocation in

public health. In working closely with collaborators, I identified key thematic challenges of resource

heterogeneity and planning under model and observational uncertainty. I developed state of the

art algorithms for addressing these challenges using multi-agent planning, optimization, machine

learning, and deep reinforcement learning. Moving forward, I aim to continue to collaborate with

interdisciplinary teams to research and develop effective AI tools with the goal of improving health
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equitably for all. From a technical viewpoint, there are many areas in which I would like to continue

to advance this agenda.

Learning from real-world data. When learning from historical trajectories, some decisions

may be generated based on variables that are impartially recorded (e.g., ambiguous active medication

lists or adherence rates) or not recorded (e.g., patient preferences or decision-maker bias.) Training

naively on such data can lead to spurious policies with ambiguous support. To address this, I will

work with healthcare partners to develop latent variable models that can account for specific struc-

tures of unobserved confounders, to maximize our ability to learn from existing historical data. Also

of key interest is the complementary problem of designing closed-loop learning systems whose deci-

sions, when deployed, will impact the data distributions that the system will later (1) learn from and

(2) be evaluated on by decision makers. A key unanswered question in AI planning is how to design

policies that are jointly useful for learning (e.g., requiring some exploration) and allow for statisti-

cally rigorous evaluation (e.g., requiringminimal exploration to allow for post hoc construction of

synthetic cohorts).

Safety and Reliability. Especially in high-stakes real-time settings (like the intensive care unit),

there are certain policy choices that are unacceptable e.g., unintentionally forcing vital signs into an

unsafe range. I will build on my experience in constrained RL to develop methods for giving prob-

abilistic guarantees that policies will avoid pre-specified unsafe state space regions. Moreover, I will

develop methods for statistically evaluating these guarantees on real-world offline data. Of course,

sometimes guarantees may be challenging to satisfy, especially in more volatile regions of the state

space. So it will also be important to build on the constrained policy methods to incorporate ”learn-

ing to defer” to human experts when they enter regions of the state space where safety guarantees

may be violated.

In sum, I believe that AI will have a positive impact on the world, especially in the domain of

health. Developed as complementary components of holistic systems, conceived, developed and
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analyzed by diverse interdisciplinary teams, AI may achieve its promise.
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A
Appendix to Chapter 1

A.1 Constructing upper and lower bounds

The algorithm for constructing U andL, the bounded representations ofVi(si, λ), is given in

Alg. A.1.1.
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A.2 Proof of Theorems 1.5.1 and 1.5.2

Theorem 1.5.1. λi are σ2
n -sub-Gaussian where σ

2 = 1
4

(
rmax

cmin(1−β)

)2
Proof. By Hoeffding’s Lemma, if the values of a random variable can be bounded almost surely by

a lower bound a and upper bound b, and its expected value is 0, then the random variable is (b−a)2
4 -

sub-Gaussian. Note that shifting the expected value to be centered around the true mean introduces

the factor n in the denominator, the number of samples used to estimate the mean. It remains to

show that λi is bounded. The lower bound of λi is 0 due to the nature of the budget constraint,

i.e., the budget constraint is≤. To upper bound λi, we consider the Lagrange LP (i.e., Eq. 1.7) for a

single arm. We assume there always exists a 0 cost action (bandit assumption) which achieves at least

0 zero reward. Then if any single action charge λcmin is greater than any possible long term future

reward rmax
1−β , the optimal policy will always choose the no-cost action, since the difference of the

future reward and the charge will always be negative otherwise. Thus lambda cannot be increased

further in the objective of the LP than rmax
cmin(1−β) , and is thus the upper bound on λ

i.

Theorem 1.5.2. The number of samples n needed to estimate the sample mean of λi within an error ε

and with confidence 1− δ is lower bounded as:

n ≥ 1
2ε2

(
rmax

cmin(1− β)

)2
log
(
1
δ

)
(A.1)

Proof.

P(λ̂i ≥ λi + ε) ≤ exp
(
−nε2

2σ2

)
≤ δ Hoeffding bound (A.2)

n ≥ 2σ2

ε2
log
(
1
δ

)
(A.3)

n ≥ 1
2ε2

(
rmax

cmin(1− β)

)2
log
(
1
δ

)
(A.4)
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A.3 Modified Knapsack

The integer program used to compute policies in section 1.6 is as follows:

max
X

N−1∑
i=0

M−1∑
j=0

xi,jQi(si, aj, λmin) (A.5)

s.t.
N−1∑
i=0

M−1∑
j=0

xi,jcj ≤ B (A.6)

M−1∑
j=0

xi,j = 1 ∀i ∈ 0...N− 1 (A.7)

xi,j ∈ {0, 1} (A.8)

whereQi(si, aj, λmin) is the action value function associated with arm i. Note thatQi(si, aj, λmin)

can be readily computed using the value functions returned by BLam and SampleLam via algo-

rithm A.3.1.

Note that this integer program is a generalization of the {0,1} knapsack problem, in which mul-

tiple “actions” can be taken on each item to achieve different values at the corresponding action

costs. In practice we use Gurobi to solve the integer program, but we also give a dynamic program

solution in Alg. A.3.2 to prove the worst-case computational complexity. The idea is to compute a

table z[i, j]where z is the maximum achievable value considering to the first i items and respecting a

budget j. The table entries are computed iteratively using using a standard dynamic programming

approach. Once the table is computed, the optimal value can be retrieved from the entry z[N− 1,B],

and the corresponding optimal actions can be recovered via a backtrace. Both computing the table

and running the backtrace takeO(N|A|B) time, as well asO(NB) andO(N)memory respectively.
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Note that all algorithms in this chapter employ this same knapsack procedure to select policies using

their respective estimates ofQ.

A.4 Additional Experimental Results

BLam’s superior runtime emerges when there is existing problem structure of which its bounding

technique can take advantage. In the medication adherence experiment, the primary structure it

identifies is that both high and low adherence patients have small responses to interventions. In

terms ofV(s, λ), the term in the LP that BLam “bounds” with a cheaper representation, such small-

response patients have aV(s, λ) curve whose derivative quickly goes to zero. Such curves can be

closely approximated with “bounded” curves made up of only a few test points (see Fig. 1.1) — and

the closer the approximation of the bounds, the faster BLam will converge.

In Fig. A.1, we investigate a second mode by which BLam can achieve speedups, as the budget B

is varied. As the budget increases, resources are less constrained which intuitively makes planning

easier, since there are more resources available to take each arm’s individually optimal action (i.e., the

action one would take on an arm if planning for that arm in isolation). This allows all methods to

tend toward the same high reward as the budget is increased. However, BLam’s adaptivity allows it

to recognize when the problem is less constrained to automatically converge even more quickly to

the optimal solution, as demonstrated by the increasing runtime gap between Hawkins and BLam as

the budget is increased. These gains will be most drastic when the true λmin is 0, since (1) this can be

quickly verified in a single step of BLam if its upper bound returns 0 and (2) the larger the budget B,

the more likely BLam will return an upper bound of 0, since the larger the slope of the term λB
1−β will

become. Figs. A.2 and A.3 replicate the results from Figures 1.5 and 1.4, respectively, with log-scale

runtimes included.

Finally, in Fig. A.4, we give a sensitivity analysis of SampleLam that demonstrates the change in
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its performance as the underlying distribution of arms shifts. We simulate a shifting distribution of

arms by sampling an α fraction of arms from a fully random distribution, which has uniform ran-

dom transition probabilities and rewards (with r(s) ∈ [0, 1]) and a 1 − α fraction of arms from the

adherence simulation data. The arms from the adherence simulation data have d = 4 and the arms

from the fully random distribution have a corresponding 40 states. Arms from both distributions

have four actions with costs in [0, 1, 2,B], as in the adherence simulation in section 1.7. We compare

the discounted sum of rewards, using discount factor 0.95, averaged over all arms N and 20 simu-

lations, over L = 40 rounds. We also subtract the mean reward collected from the nobody policy

to make the differences between SampleLam and the best policyHawkinsmore clear. Results are

shown for a budget of B = 0.1 andN = 250 arms.

Note that Fig. 1.2a was generated using arms from the fully random distribution – this suggests

that SampleLam should be good at estimating λmin as α −→ 1 and should correspondingly achieve

performance comparable to Hawkins. Also note that SampleLam performed suboptimally on the

adherence simulation data in section 1.7, suggesting that λmin was not equal to the sample mean of

λis in that distribution in general. We see that when α is near 0, SampleLam’s poor performance on

the adherence simulation data is shown as expected, but as α increases, and more arms are sampled

from the fully random distribution, SampleLam’s estimates of λmin become progressively closer to

the true value, making the policies it computes progressively closer to the well-performing Lagrange

policy.

A.5 Lagrange Policy vs. Index Policy

Here we expand on the relationship between the Lagrange policy and theWhittle index policy for

binary-action RMABs, by giving the following Lemma:

Lemma A.5. The Lagrange policy always produces equal or greater rewards than theWhittle index
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policy in binary-action RMABs as N,B −→ ∞ with B/N fixed.

Proof. This can be seen via the results fromWeber &Weiss 161 which prove the asymptotic opti-

mality of the Whittle index policy under indexability (see Whittle’s definition of indexability163).

To prove their result, they first give Theorem 1 which shows that, in the binary-action case, as

N,B −→ ∞with B/N fixed, the optimal return from the constrained problem (Eq. 1.3) converges

to the optimal return of the Lagrangian relaxation of the problem (Eq. 1.7). This implies that if

one could compute and follow the policy that minimizes the Lagrange bound (i.e., the Lagrange

policy), one could achieve the asymptotically optimal reward. They then go on to show that un-

der indexability, index policies replicate the Lagrange policy. However, since we are computing the

Lagrange policy directly, we bypass the step of computing indices, but we maintain the asymptotic

performance guarantees that they enjoy. This holds true regardless of whether the problem is index-

able.
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Algorithm A.1.1: BuildBounds
Data: D,G,N

1 U = [] ; // list of dicts for upper bound pieces
2 L = [] ; // list of dicts for lower bound pieces
3 for i ∈ 0, ...,N− 1 do
4 /* Computing upper bounds, start from back */
5 j = |G[i]| − 1;
6 U [i, j][‘m’] = 0; // last slope always 0 for UB
7 U [i, j][‘b’] = 0; // last intercept is arbitrary
8 λtest = G[i, j];
9 /* set up the next line: y=mx+b */

10 y = U [i, j][‘m’] ∗ λtest + U [i, j][‘b’];
11 for j ∈ |G[i]| − 2, ..., 0 do
12 U [i, j][‘m’] = D[i, j+ 1];
13 /* b=y-mx */
14 U [i, j][‘b’] = y− U [i, j][‘m’] ∗ λtest;
15 λtest = G[i, j];
16 /* set up the next line: y=mx+b */
17 y = U [i, j][‘m’] ∗ λtest + U [i, j][‘b’];
18 /* Computing lower bounds, start from front */
19 y = 0;
20 for j ∈ 0, ..., |G[i]| − 1 do
21 λtest = G[i, j];
22 L[i, j][‘m’] = D[i, j];
23 /* b=y-mx */
24 L[i, j][‘b’] = y− L[i, j][‘m’] ∗ λtest;
25 /* set up the next line: y=mx+b */
26 y = L[i, j][‘m’] ∗ G[i, j+ 1] + L[i, j][‘b’];
27 return U ,L
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Algorithm A.3.1:Compute Action Value Function
Data: V,T,R,C, λ, β

1 Q = [] ; // hold the action value function
2 for s ∈ S do
3 for a ∈ A do
4 Q[s, a] = R[s]− λ ∗ C[a] + β ∗

∑
s′∈S V[s′] ∗ T[s, a, s′]

5 returnQ

Algorithm A.3.2:ActionKnapsackDP
Data: Q,C,B

1 ; // Q filtered to current state of each arm i
2 z = [] ; // N× B Table for solving DP
3 for j ∈ 0, ...,B do
4 /* Initialize top row to 0 */
5 z[0, j] = 0;
6 for i ∈ 0, ...,N− 1 do
7 for j ∈ 0, ...,B do
8 z[i, j] = z[i− 1, j] + Q[i, 0];
9 for k ∈ 1, ..., |A| − 1 do
10 if C[k] ≤ j then
11 z[i, j] = max{z[i, j], z[i− 1, j− C[k]] + Q[i, k]};
12 return z
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Figure A.1: Rewards (top row), linear‐scale runtimes (middle row) and log‐scale runtimes (bottom row) on the health
care dataset with d = 4 adherence levels. Columns represent a budget of 0.1N, 0.2N, and 0.5N, respectively. At all
values of ε, BLam significantly outperforms VfNc when the budget is small and the tradeoff between individual actions is
important. BLam also scales much better than Hawkins, achieving a 5 times speedup in the 0.1 budget case and 6 times
speedup in the 0.2 and 0.5 budget cases. BLam, at all values of ε, scales similarly to SampleLam on this dataset.
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Figure A.2: Rewards (top row), linear‐scale runtimes (middle row) and log‐scale runtimes (bottom row) on the health care
dataset with budget 0.1N. Columns represent d = 3, 4, 5 adherence levels, respectively. At all values of ε, BLam
significantly outperforms VfNc. Further, the Hawkins LP scales quadratically in the number of states on each arm, while
BLam identifies problem structure that keep the underlying LPs small, making speedups more dramatic as the problem
size increases. BLam, at all values of ε, scales similarly to SampleLam on this dataset. (Same as Fig. 1.5, but with log‐
scale runtime included.)
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Fig. 1.4.)
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and 1 − α arms are sampled from the adherence simulation data. As more arms are sampled from the fully random
distribution, SampleLam’s estimates become closer to λmin, making the policies it computes progressively closer to the
well‐performing Lagrange policy.
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B
Appendix to Chapter 2

B.1 Proof of convergence forMAIQL

In this section, we provide a detailed proof of the convergence for MAIQL.We begin by stating

2 standard assumptions for establishing the convergence guarantee of Q-learning in the average-

reward setting, and then add a third that’s required for two time-scale convergence.

Assumption 1 (Uni-chain Property). There exists a state s0 that is reachable from any other state
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s ∈ S with a positive probability under any policy.

This property formalizes the notion that there aren’t any ‘forks’ in the MDP, in each of which very

different outcomes could occur. This is important because, if there were a fork, the notion of ‘aver-

age’ reward would be ill-defined as it would depend on which ‘fork’ gets taken.

Assumption 2 (Asynchronous Update Step-Size). The sequence of step-sizes {α(t)} satisfy the follow-

ing properties for any x ∈ (0, 1):

sup
t

α(⌊xt⌋)
α(t)

< ∞

sup
y∈[x,1]

∣∣∣∣∣
∑⌊yt⌋

m=0 α(m)∑t
m=0 α(m)

− 1

∣∣∣∣∣→ 0

This is a condition that is required to show that updatingQ(s, aj) values one at a time with an ε-

greedy policy is equivalent to updating all theQ(s, aj) values together, in expectation.

Assumption 3 (Relative Step-Size). The two sequences of step-sizes, {α(t)} and {γ(t)}, satisfy the

following properties:

(A) Fast Time-Scale:
∞∑
t=0

α(t) → ∞,
∞∑
t=0

α2(t) < ∞

(B) Slow Time-Scale:
∞∑
t=0

γ(t) → ∞,
∞∑
t=0

γ2(t) < ∞

(C) lim
t→∞

γ(t)
α(t)

→ 0

An example of possible step sizes for which this condition is true is α(t) = 1
t and γ(t) = 1

t log t . In

our experiments we use α(t) = C
⌈ t
D ⌉
, and γ(t) = C′

1+⌈ t log(t)
D ⌉

.

We then detail the proof for Theorem 2.4.3 below. This proof involves mapping the discrete Q

and λ updates from theMAIQL algorithm (Section 2.4) to updates in an equivalent continuous-
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time Ordinary Differential Equation (ODE). This conversion then allows us to use the analysis tools

created to analyse the evolution of two-timescale ODEs to show that our coupled updates converge.

The proof detailed below broadly follows along the lines of Avrachenkov & Borkar 12 , but where

they discuss convergence in the binary action case, we generalize their proof to the multi-action

scenario by using the notion of multi-action indexability from Glazebrook et al. 52 .

Theorem 2.4.3. MAIQL converges to the optimal multi-action index λ∗s,a for a given state s and

action a under Assumptions 1, 2, 3, and the problem being multi-action indexable.

Proof. To convert these discrete updates to ODEs, we map a given time-step t to a point τ = T(t)

in a continuous time, such that any time T(t) =
∑t

m=0 α(t). Because we’re parameterising the time

with α (rather than γ) we call τ the fast time-scale. To make this more concrete, we defineQ(τ) as a

function of the Q-value with time, and setQ(T(t)) = Qt to the value of the Q-function after t up-

dates . Then, for values of T(t) < τ < T(t+ 1),Q(τ) is assumed to be linearly interpolated between

Qt andQt+1, creating a continuous function of τ. Similarly, we define λ(τ) such that λ(T(t)) = λt

We can then re-arrange the terms in Equation 2.9 to create an ODE that characterizes the value of

Q(τ):

Qt+1(s, aj) = Qt(s, a) + α(t)
[
[r(s)− λts,ajcj − f(Qt)

+ max
a′j∈{0,1}

Qt(s′, a′j)]− Qt(s, aj)
]

⇒
Qt+1(s, aj)− Qt(s, aj)

α(t)︸ ︷︷ ︸
Q̇(τ)

= [r(s)− λts,ajcj − f(Qt)

+ max
a′j∈{0,1}

Qt(s′, a′j)]− Qt(s, aj)

where Q̇(τ) is the derivative ofQ(τ) and corresponds to the slope of the interpolated function in the

range (T(t),T(t+ 1)).
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Similarly, we can re-arrange Equation 2.10 to get the ODE for λ(τ):

λt+1
s,aj = λts,aj + α(t)

(
γ(t)
α(t)

)
(Qt(s, aj)− Qt(s, aj−1))

⇒
λt+1
s,aj − λts,aj
α(t)︸ ︷︷ ︸
λ̇(τ)

=

(
γ(t)
α(t)

)
(Qt(s, aj)− Qt(s, aj−1)) (B.1)

then we see limτ→∞ λ̇(τ) → 0 because, by Assumption 3 (c), limt→∞
γ(t)
α(t) → 0 and, by Assump-

tion 3 (A), T(∞) =
∑∞

t=0 α(t) → ∞. Therefore, λ(τ) can be seen as quasi-static w.r.t. Q(τ)

at the fast time-scale. As a result, the updates in this time-scale correspond to standard Q-Learning

for a fixedMDP defined by the value of λ(τ). Given Assumptions 1, 3 (A), and 2, this is known to

converge to the optimal Q-valuesQ∗
λ for the given value of λ(τ)

2.

Now, at the slow time-scale τ′, we can repeat this continuous-time re-parameterization, except

with T′(t) =
∑t

m=0 γ(t). Then, re-arranging Equation 2.9 in a similar way as above, we get:

Qt+1(s, aj)− Qt(s, aj)
γ(t)︸ ︷︷ ︸
Q̇(τ′)

=

(
α(t)
γ(t)

)
[r(s)− λts,ajcj − f(Qt)

+ max
a′j∈{0,1}

Qt(s′, a′j)]− Qt(s, aj)

Now, given that limt→∞
α(t)
γ(t) → ∞, and from the argument above about the Q-values converg-

ing in the fast time-scale, we can see the interpolated λ(τ′) value as tracking the converged Q-values

Q∗
λ(τ′) (for that value of λ(τ

′)). Then, we can write the ODE for λ(τ′) as:

λ̇(τ′) = Q∗
λ(τ′)(s, aj)− Q∗

λ(τ′)(s, aj−1)

whereQ∗
λ(τ′) corresponds to the optimal Q-values corresponding to the given value of λ(τ′).

Now, if λ(τ′) < λ∗s,aj (the multi-action index for state s and action aj), by the definition 2.4.2
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of the multi-action index, we know that an action of weight cj or higher is preferred. As a result, we

see that λ̇(τ′) > 0 in that case. If λ(τ′) > λ∗s,aj , the opposite is true and so λ̇(τ
′) < 0. Then,

because λ(0) = 0 is bounded and given the step-sizes in Assumption 3 (B), λ(τ′) converges to an

equilibrium in whichQ∗
λ(s, aj)− Q∗

λ(s, a) → 0.

Given that, by definition, λ∗(s, aj) is the value at which Q∗
λ(s, aj) = Q∗

λ(s, aj−1), λ(τ′) converges to

the multi-action index.

This is a high-level proof, but the specific conditions for convergence can be seen in Lakshmi-

narayanan & Bhatnagar 89 . They require 5 conditions: (1) Lipschitzness, (2) Bounded ‘noise’, (3)

Properties about the relative step-sizes, (4) Convergence of fast time-scale, and (5) Convergence of

slow time-scale.

Of these, (1)-(4) proceed in much the same way as in Avrachenkov & Borkar 12 because they do

not depend on the multi-action extension of indexability. In addition, it is easy to show that the

proof of (5) from Avrachenkov & Borkar 12 extends to the multi-action case which considers the

limiting value ofQ(s, aj) − Q(s, aj−1) rather thanQ(s, 1) − Q(s, 0). As a result, we refer the reader

to Avrachenkov & Borkar 12 for the complete proof.

B.2 Reproducibility

Code is available at https://github.com/killian-34/MAIQL_and_LPQL. All the Q and λ values

are initiated to zero in all the experiments. The parameter settings used for the two process type,

random, and medication adherence data experiments are included in Tables B.1, B.2, and B.3, re-

spectively. C is the multiplier for the size of the Q-value updates. C′ is the multiplier for the size of

the index value updates. “Rp/dream” is the number of replays per dream. “Rp T” is the replay pe-

riod (replay every T steps). λ-bound is the upper bound (and negative of the lower bound) imposed

on values of the indices for WIBQL andMAIQL during learning – placing these bounds sometimes
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WIBQL QL-λ=0 MAIQL M-Aprx LPQL
C 0.1 0.2 0.1 0.4 0.4
C′ 0.2 - 0.2 - -
Rp/dream NA 1000 1000 1000 NA
Rp T 1E+06 100 10 100 1E+06
λ-bound 3 - 3 3 3
D 500 500 500 500 500
ε0 0.99 0.99 0.99 0.99 0.99
nlam - - - 3000 3000

Table B.1: Parameter settings for two process experiment.

helps prevent divergent behavior in early rounds when updates are large – λmax is the upper bound

value that an index could take, as defined by the problem parameters, i.e., max{r}
min{C}(1−β)

81. D is the di-

visor of the decaying ε-greedy function as well as the divisor of α(t) and γ(t), the decaying functions

defining the size of the updates of Q-values and index values, defined in the previous section. ε0 is

the multiplier for the ε-greedy function. nlam is the number of points in λ-space used to approxi-

mate the Q(s, a, λ)-functions in LQPL andMAIQL-Aprx. All values were determined via manual

tuning – empirically we found that most parameter settings led to similar long-term performance

between algorithms, as long as the settings did not cause the algorithms to diverge. In the tables,

M-Aprx stands for MAIQL-Aprx.

B.3 Algorithm Pseudocodes

See Algorithms B.3.1 and B.3.2 for the update and action selection steps of MAIQL and Algo-

rithms B.3.3 and B.3.4 for the update and action selection steps of LPQL. The linear program for
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WIBQL QL-λ=0 MAIQL M-Aprx LPQL
C - - 0.2 0.8 0.8
C′ - - 0.4 - -
Rp/dream - - 1000 NA NA
Rp T - - 100 1E+06 1E+06
λ-bound - - λmax λmax λmax

D - - 500 500 500
ε0 - - 0.99 0.99 0.99
nlam - - - 2000 2000

Table B.2: Parameter settings for random data experiment.

Oracle-LP-Index for a given current state ssscur and action ak is given below:

min
Vi(si,λi),λi

N−1∑
i=0

λiB
1− β

+

N−1∑
i=0

μi(si)Vi(si, λi)

s.t. Vi(si, λi) ≥ ri(si)− λicj + β
∑
si′

T(si, aij, si′)Vi(si′, λi)

∀i ∈ {0, ...,N− 1}, ∀si ∈ S, ∀aj ∈ A

ri(sicur)− λick + β
∑
si′

T(sicur, aik, s
i′)Vi(si′, λi) =

ri(sicur)− λick−1 + β
∑
si′

T(sicur, aik−1, s
i′)Vi(si′, λi)

∀i ∈ {0, ...,N− 1}

λi ≥ 0 ∀i ∈ {0, ...,N− 1}

(B.2)

The LP is similar to Eq. 2.11, but differs in two ways. First, instead of having a single λ value across

all arms, each arm has its own independent λi value. Second, the second group of constraints is new,

and forces the λi values to be set such that the planner would be indifferent between taking the ac-
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WIBQL QL-λ=0 MAIQL M-Aprx LPQL
C - 0.8 0.05 0.8 0.8
C′ - - 0.1 - -
Rp/dream - 1000 1000 1000 1000
Rp T - 10 5 5 5
λ-bound - - λmax λmax λmax

D - 1000 2000 1000 1000
ε0 - 0.99 0.99 0.99 0.99
nlam - - - 2000 2000

Table B.3: Parameter settings for adherence data experiment.

tion in question ak or the action that is one step cheaper ak−1, which follows exactly the definition

of the multi-action indexes. Note that although the indexes can each be computed independently,

for convenience, we compute the index for a given ak for each arm simultaneously to reduce over-

head, as given in the above LP.

The ActionKnapsackILP referenced in Algorithm B.3.4 is the same as the modified knapsack

given in Eq. A.8, reproduced below:

max
AAA

N−1∑
i=0

M−1∑
j=0

AAAijQsss,λind(i, aj)

s.t.
N−1∑
i=0

M−1∑
j=0

AAAijcj ≤ B

M−1∑
j=0

AAAij = 1 ∀i ∈ 0, . . . ,N− 1

AAAij ∈ {0, 1}

(B.3)

whereQsss,λind(i, aj) is theQ-function for each arm filtered to the current state of the arms, sss, and
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minimizing value λind, as given by the penultimate line of Algorithm B.3.4.

RandomAction, referenced in Algorithms B.3.2 and B.3.4, chooses random actions through

the following iterative procedure: (1) randomly choose an arm with uniform probability, (2) ran-

domly choose an action with probability inversely proportional to one plus its cost (must add one to

avoid dividing by 0 for no-action). The procedure iterates until the budget is exhausted.

EpsilonGreedy(t), also referenced in Algorithms B.3.2 and B.3.4, draws a uniform random

number between 0 and 1 and returns true if it is less than ε0/
⌈ t
D
⌉
and false otherwise.

B.4 Medication Adherence Setting Details

We used the following procedure to estimate transition probabilities from the medication adher-

ence data from Killian et al. 82 . First, we specify a history length of L. This gives a state space of size

Algorithm B.3.1:MAIQLUpdate
Data: Q ∈ RN×|S|×(|A|−1)×|S|×|A|, // Need one copy of Q[s, a] for each index

on each arm

λ ∈ RN×|S|×(|A|−1), // multi-action index estimates
Batch, C, // Experience tuples, action costs
t, ν(·), // iteration, state-action counter
S,A,N // state space, action space, # of arms
Hyperparameters: β,C,C′,D for (n, s, a, r, s′) ∈ Batch do

α = C
⌈ ν(s,a,n)

D ⌉

for i ∈ 0, . . . , |S| do
for j ∈ 1, . . . , |A| do

Q[n, i, j, s, a] +=
α(r− C[a] ∗ λ[i, j] + β ∗max{Q[n, i, j, s′]} − Q[n, i, j, s, a])

if a ̸= 0 & t (modN) == 0 then
γ = C′

1+⌈ ν(s,a,n) log ν(s,a,n)
D ⌉

λ[s, a] +=
γ(Q[n,s,a,s,a])−Q[n,s,a,s,a−1])

C[a]−C[a−1]
returnQ, λ
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Algorithm B.3.2:MAIQL Action Select
Data: λ ∈ RN×|S|×(|A|−1), // multi-action index estimates
sss ∈ RN // current state of all arms
t,N,B // current iteration, # of arms, budget
if EpsilonGreedy(t) then

returnRandomAction()
else

aaa = [0 for _ in range(N)]

λf = FilterCurrentState(λ, sss) // λf ∈ RN×(|A|−1)

for i ∈ 0 . . .B do
i = argmax(λf[aaa+ 1]− λf[aaa]) // aaa is a vector index, argmax
ignores out of bounds indexes
a[i] += 1

return aaa

2L for each arm. Then, for each patient in the data, we count all of the occurrences of each state

transition across a treatment regimen of 6 months (168 days). If Lwas small (e.g., 1 or 2), we could

take a frequentist approach and simply normalize these counts appropriately to get valid transition

probabilities to sample for experiments. However, as the history length L gets larger, the number of

non-zero entries in the count data for state transitions become large. We take two steps to account

for this sparsity. (1) We runK-means clustering over all patients, using the count data as features,

then combine the counts for all patients within a cluster. Intuitively, the larger theK, the more

“peaks” of the distribution of patient adherence modes we will try to approximate, but the fewer

data points are available to estimate the distribution in each cluster — however, it may be desirable

to have more clusters to allow for some samples to come from uncommon but “diverse” modes that

may be challenging to plan for. We setK to 10. (2) We then take a Bayesian approach, rather than

a frequentist approach for sampling patients/processes from the clustered counts data. That is, we

treat the counts as priors of a beta distribution, then sample transition probabilities from those dis-

tributions according to the priors. Finally, to simulate action effects, since actions were not recorded
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Algorithm B.3.3: LPQLUpdate
Data: Q ∈ RN×nlam|S|×|A|, // Need one copy of Q[s, a] for each of the nlam

test points on each arm
Batch, C, // Experience tuples, action costs
λmax, // Max λ at which to estimate Q
nlam, // # of λ points at which to estimate Q
ν(·) // state-action counter
Hyperparameters: β,C,D for (n, s, a, r, s′) ∈ Batch do

α = C
⌈ ν(s,a,n)

D ⌉

for i ∈ 0, . . . , nlam do
λp = i∗λmax

nlam
Q[n, i, s, a] += α(r− C[a] ∗ λp + β ∗max{Q[n, i, s′]} − Q[n, i, s, a])

returnQ

in the available adherence data, we scale the priors multiplicatively according to the index of the ac-

tion, i.e., larger/more expensive actions increase the priors associated with moving to the adhering

state.

In summary, to get a transition function for a single simulated arm in the medication adher-

ence experimental setting, we do the following. First, randomly choose a cluster, with probability

weighted by the number of patients in the cluster. Then, build up a transition matrix by sampling

each row according to its own beta distribution with priors given by the counts data (i.e., actual

observations of s → s′ transitions), scaled by the action effects.

This process was desirable for producing simulated arms with transition functions tailored to re-

semble that of a real world dataset, while allowing for some randomness via the sampling procedure,

as well as a straightforward way to impose simulated action effects. However, one downside of this

approach is that, since each row of the transition matrix is sampled independently, this may produce

simulated arms whose probability of adherence changes in a non-smooth manner as a function of

history. For example, in the real-world, we would expect that P(0111 → 1111) is correlated with

P(1011 → 0111) and that P(0000 → 0000) is correlated with P(1000 → 0000), but our procedure
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would not necessarily enforce these relationships if there were not sufficient occurrences of each

transition in the counts data.

The python code used to execute this procedure is included in the repository at https://github.

com/killian-34/MAIQL_and_LPQL.
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Algorithm B.3.4: LPQL Action Select
Data: Q ∈ RN×nlam|S|×|A|, // Q-functions for each of the nlam test points

on each arm
sss ∈ RN // current state of all arms
λmax, // Max λ at which Q is estimated
nlam, // # of λ points at which Q is estimated
t, β // iteration, discount factor
N, C,B // # of arms, action costs, budget
if EpsilonGreedy(t) then

returnRandomAction()
aaa = [0 for _ in range (N)]

Qf = FilterCurrentState(Q, sss) // Qf ∈ RN×nlam×|A|

λind = −1
/* The min of Eq. 2.11 occurs at the point where the negative sum of

slopes of all Vi = max{Qi
λ} is ≤ B/(1− β), so we will iterate

through our estimates of Qi
λ and stop our search at the first point

where that is true. */
for i ∈ 0, . . . , nlam do

λ0p = i∗λmax
nlam

λ1p =
(i+1)∗λmax

nlam

mV =
maxa{Qf[:,i+1]}−maxa{Qf[:,i]}

λ1p−λ0p
// mV ∈ RN

if
∑

n{mV} ≥ − B
1−β then

λind = i
break

aaa = ActionKnapsackILP(Qf[:, λind, :], C,B)
return aaa
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C
Appendix to Chapter 4

C.1 Proof of Indexability

We give the proof assuming forward threshold policies are optimal, and note where relevant how the

proof also works for reverse threshold optimal policies.

Fact 1. For two non-concurrent, increasing, linear functions f1(m) and f2(m) and two points m1,m2,

such that m1 ≤ m2, if f1(m1) ≤ f2(m1) and f1(m2) ≥ f2(m2), then
df1
dm ≥ df2

dm . Additionally, if
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f1(m1) < f2(m1) and f1(m2) ≥ f2(m2), then
df1
dm >

df2
dm .

Proof. We now start proving the theorem by assuming that forward belief threshold policies are

optimal. Let b∗th(m) denote the threshold corresponding to the optimal threshold policy for a given

m. To show indexability, we must show that if a belief state b is passive, i.e., b > b∗th(m1), for some

m1, then it is also passive, i.e., b > b∗th(m2), for allm2 ≥ m1.

In our problem, we have 2T belief states which, for a forward threshold policy, can be arranged in

a descending order of their belief values: B := {b2T, b2T−1, . . . , bi, . . . , b1}.* A forward threshold

policy is then any real value bth which splits B into a passive setP = {bi : bi > bth ∀bi ∈ B}

and active set C = {bi : bth ≥ bi ∀bi ∈ B}. Note that all values of bth such that bi+1 ≥ bth >

bi ∀i ∈ 1, . . . , 2T correspond to the same threshold policy. Thus there are only 2T + 1 unique

threshold policies possible corresponding to the 2T + 1 such belief regions marked by points in

B. Let Π = {π2T+1, π2T, . . . , π1} denote these unique possible threshold policies arranged in

a decreasing order, where πi ≥ πj implies b∗th(πi) ≥ b∗th(πj)where b
∗
th(πi) is the optimal belief

threshold associated with πi.† Thus the threshold policy πi would follow: bi > b∗th(πi) ≥ bi−1

∀i ∈ 1, . . . , 2T+ 1, where b0 := −∞ and b2T+1 := ∞. Note that in a policy πi, if for a belief state

b, the optimal action is passive, then under a policy πj, the optimal action at b is also passive ∀j ≤ i

because b∗th(πi) ≥ b∗th(πj). Thus to prove indexability, it is sufficient to show that:

∀m1,m2 such thatm1 ≤ m2,

if π∗(m1) = πi and π∗(m2) = πj, then

=⇒ i ≥ j

(C.1)

*For simplicity, this assumes the starting belief is equal to the belief at the head of one of the chains, i.e.,
Pa
1,1 or Pa

0,1. However, we could add to the set B another T belief states corresponding to a chain that starts
from any arbitrary belief and evolves for T passive actions. These new states could be ordered appropriately
within B and the rest of the proof would follow unchanged.

†For reverse threshold optimal processes, simply arrange B and Π in ascending order of belief. The rest of
the proof follows similarly.
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where π∗(m) denotes the optimal threshold policy at subsidym.

Lemma C.1.0.1. Letm∗
i be the infimum among allm’s for which π∗(m) = πi. Then, the infimum

is achievable (i.e., π∗(m∗
i ) = πi) and moreoverm∗

2T+1 < m∗
2T < ... < m∗

1 .

Proof. We prove this using induction. Consider the base case: m∗
2T+1 < m∗

i ∀ i < 2T + 1. When

m → −∞, the optimal action would clearly always be to act to avoid accruing large negative re-

ward. So π2T+1 would be the optimal policy form → −∞ and clearly the base case is true.

For the inductive case, assume the hypothesis,m∗
2T+1 < ... < m∗

t+1 < m∗
i ∀i < t + 1. Letm∗

t

be the infimum among allm’s for which π∗(m) = πt. We must show: (1)m∗
t < m∗

i ∀i < t; (2)

π∗(m∗
t ) = πt (i.e., the infimum is achievable). For convenience, we denote L = {πt, πt−1, ...π1} as

the set of “lower-side” polices andU = {π2T+1, π2T, ...πt+1} as the set of “upper-side” policies.

Asm is increased beyondm∗
t+1, letm′ be the infimum value among allm’s whose optimal policy

is from L = {πt, πt−1, ...π1} (note, the definition ofm′ is different fromm∗
t since at this point

we do not know whether the smallestm’s optimal policy is πt or some πi with i < t yet). That is,

either the optimal threshold policy atm′ is from L (when the infimum is achievable) or there exists

an infinite sequence {m̄l}∞l=1 that converges from the right side tom′ (i.e., m̄l ≥ m′ for all s) and the

optimal policy for any m̄l is from policy set L (when the infimum is not achievable). For notational

convenience, we will think of the former achievable case also as that there is a sequence {m̄l}∞l=1

that converges tom′ and the optimal policy for any m̄l is from L (letting all m̄l = m′ will do). In

fact, a stronger conclusion holds. That is, we can choose an infinite-length sequence {m̄l}∞l=1 such

that the optimal policy for each m̄l will be the same. This simply follows from the fact that {m̄l}∞l=1

has infinite length, and their optimal policy is from a finite set L. So some policy from Lmust be

optimal for infinitely many of m̄l’s. Therefore, we shall assume that m̄l → m′ from the right side

and the optimal policy for each m̄l is some π̄ ∈ L.

Our main claim is that for subsidym′, the passive action and active action must both be optimal
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at state bt. Therefore, by definition, this implies the threshold policy πt is optimal form′. We thus

havem∗
t = m′,m∗

i > m∗
t ∀i < t, and moreover πt is indeed optimal form∗

t (i.e., the infimum

is achievable). This concludes the induction proof. The remainder of this proof will be devoted to

prove this claim.

By definition ofm′, there exists a sequence {mu}∞u=1 that converges tom′ from the left side

(i.e.,mu < m′ for all t) and moreover the optimal policy for anymu is from the policy setU =

{π2T+1, π2T, ...πt+1}. Similar to the above reasoning, we shall choose the sequence {mu}∞u=1 such

that their optimal policy is the same π ∈ U.

We now prove that the passive action and active action must both be optimal at state bt form′.

Assume, for the sake of contradiction, that the optimal action at bt for subsidym′ is passive and that

the active action is not optimal (the other case where the optimal action is active follows a similar

contradiction argument). That means the optimal policy form′ has a threshold b∗th(m
′) < bt and

thus π∗(m′) ∈ L. Moreover, since the active action is not optimal for bt, πmust not be optimal for

m′ and thus achieves strictly less reward than π∗(m′). Sincemu → m′, we thus have

lim
u→∞

Vmu
(π) = Vm′(π) < Vm′(π(m′)),

where the last inequality uses the fact that π is sub-optimal form′ because the active action is strictly

sub-optimal for bt. On the other hand,

Vm′(π(m′)) = lim
u→∞

Vmu
(π(m′)) ≤ lim

u→∞
Vmu

(π)

These two inequalities contradict each other. This concludes our proof of the lemma.
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Let πi be the optimal policy at somem1.

=⇒ m∗
i ≤ m1

=⇒ m∗
j < m∗

i ≤ m1 ∀j > i using Lemma C.1.0.1

LetVπ(m, b) be the discounted reward of policy π at arbitrary state b as defined in Eq. 4.2. Then for

anyVπi(m, b) andVπj(m, b) such that j > iwe have:

Vπi(m∗
j , b) < Vπj(m∗

j , b) (πj is optimal atm∗
j ) (C.2)

Vπi(m∗
i , b) ≥ Vπj(m∗

i , b) (πi is optimal atm∗
i ) (C.3)

m∗
j < m∗

i if j > i (C.4)

=⇒ dVπi
dm

>
dVπj

dm
∀j > i (C.5)

Where Eq. C.2 is a strict inequality as implied by Lemma C.1.0.1 and Eq. C.5 follows from Fact 1

and the value function’s linear dependence onm (whether discounted or average reward criterion).

We now claim that ∀mj > m∗
i , if πj is optimal formj then we must have j ≤ i. Towards a contradic-

tion, assume j > i. Then similar to the above equations, we have the following:

Vπi(mj, b) ≤ Vπj(mj, b) (πj is optimal atmj) (C.6)

Vπi(m∗
i , b) ≥ Vπj(m∗

i , b) (πi is optimal atm∗
i ) (C.7)

m∗
i < mj (C.8)

=⇒ dVπi
dm

≤
dVπj

dm
∀j > i (C.9)

Where Eq. C.9 follows from Fact 1 and the value function’s linear dependence onm (whether dis-
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counted or average reward criterion). which contradicts Eq. C.5. Therefore, our claim holds. From

C.1, that implies indexability.

C.2 Technical Condition for Forward Threshold Policies to be Optimal

We restate Eq. 4.2 here:

Vm(b) = max


m+ b+ βVm(τ(b)) passive

b+ β(bVm(Pa1,1) + (1− b)Vm(Pa0,1)) active

where τ(b) := τ1(b) from Eq. 4.1. Simplified, τ(b) is simply a linear function of b given by the

expression

τ(b) = bPp1,1 + (1− b)Pp0,1

= (Pp1,1 − Pp0,1)b+ Pp0,1
(C.10)

We will start by stating two facts, then proving three useful technical lemmas.

Fact 2. d(τ(b))
db = (Pp1,1 − Pp0,1) ≤ 1.

Fact 3. ∀b, b′ s.t. b ≥ b′, τ(b) ≥ τ(b′).

Facts 2 and 3 follow from Eq C.10.

Lemma C.2.0.1. Vm(b1)− Vm(b2) ≥ b1 − b2, ∀b1, b2 s.t. b1 > b2

Proof. Wewill proceed via induction, where the base case will be a one-step value function. Then

we will show that the t-step value function assumption implies the t+1-step inductive value func-

tion hypothesis. In the base case the value function equals only the one-step immediate reward.

It is sufficient to compare the value functionsV1
m(b1) andV1

m(b2) element-wise, since if the true
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optimal action for one of the value functions is passive and the other active, the bound can still be

established by flipping the action of one of the value functions as needed. This gives:

Base caseV1
m(b1)− V1

m(b2) =

m+ b1 − (m+ b2) = b1 − b2 passive (C.11)

b1 − b2 = b1 − b2 active (C.12)

is clearly satisfied. Now assumeVt
m(b1)− Vt

m(b2)) ≥ b1 − b2. ThenVt+1
m (b1)− Vt+1

m (b2)

Case 1 (both passive):

= m+ b1 + βVt
m(τ(b1))− (m+ b2 + βVt

m(τ(b2)))

= b1 − b2 + β
(
Vt
m(τ(b1))− Vt

m(τ(b2))
)

≥ b1 − b2 + β(τ(b1)− τ(b2))

≥ b1 − b2

(C.13)

Case 2 (both active):

= b1 − b2 + β
(
(b1 − b2)Vt

m(Pa1,1) + (b2 − b1)Vt
m(Pa0,1)

)
= b1 − b2 + β

(
(b1 − b2)(Vt

m(Pa1,1)− Vt
m(Pa0,1))

)
= (b1 − b2)(1+ β(Vt

m(Pa1,1)− Vt
m(Pa0,1))

≥ (b1 − b2)(1+ β ∗ 0)

= (b1 − b2)

(C.14)

Corollary 1. Vm(b) is an increasing function in b, i.e.,Vm(b) ≥ Vm(b′), ∀b, b′ s.t. b ≥ b′.

180



Proof. The proof follows from Lemma C.2.0.1 by setting b1 = b and b2 = b′.

Lemma C.2.0.2. Vm(b1)− Vm(b2) ≤ b1−b2
1−β ,∀b1, b2 s.t. b1 > b2

Proof. Proceed by induction again. The base caseVm(b1)− Vm(b2) =

m+ b1 − (m+ b2) = b1 − b2 ≤
b1 − b2
1− β

both passive (C.15)

b1 − b2 = b1 − b2 ≤
b1 − b2
1− β

both active (C.16)

which are both clearly satisfied. Now assumeVt
m(b1)−Vt

m(b2) ≤ b1−b2
1−β . Then,Vt+1

m (b1)−Vt+1
m (b2)

Case 1 (both passive):

=
(
m+ b1 + βVt

m(τ(b1))
)
−
(
m+ b2 + βVt

m(τ(b2))
)

= (b1 − b2) + β
(
Vt
m(τ(b1))− Vt

m(τ(b2))
)

≤ (b1 − b2) + β

(
τ(b1)− τ(b2)

1− β

)

≤ (b1 − b2) + β

(
(b1 − b2)
1− β

)
by Fact 3

=
b1 − b2
1− β

(C.17)
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Case 2 (both active):

=
(
b1 + β

(
b1Vt

m(Pa1,1) + (1− b1)Vt
m(Pa0,1)

))
−(

b2 + β
(
b2Vt

m(Pa1,1) + (1− b2)Vt
m(Pa0,1)

))
= (b1 − b2) + β

((
b1 − b2

)(
Vt
m(Pa1,1)− Vt

m(Pa0,1)
))

≤ (b1 − b2) + β

(
(b1 − b2).

Pa1,1 − Pa0,1
1− β

)

≤ (b1 − b2) + β

(
(b1 − b2)
1− β

)
by Fact 2

=
b1 − b2
1− β

(C.18)

Lemma C.2.0.3. d(Vm(b))
db ≥ 1+ βα

where, α = min{Pp1,1 − Pp0,1,Pa1,1 − Pa0,1}

Proof. Using Eq. 4.2, we get:

d(Vm(b))
db

=


1+ βd(Vm(τ(b)))

d(τ(b))
d(τ(b))

db passive

1+ β(Vm(Pa1,1)− Vm(Pa0,1)) active
(C.19)
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Case 1 (passive):

= 1+ β
d(Vm(τ(b)))

d(τ(b))
(Pp1,1 − Pp0,1) (C.20)

= 1+ β lim
δ→0

Vm(τ(b) + δ)− Vm(τ(b))
τ(b) + δ− τ(b)

(Pp1,1 − Pp0,1) (C.21)

≥ 1+ β(Pp1,1 − Pp0,1) by Lemma C.2.0.1 (C.22)

≥ 1+ βα (C.23)

Case 2 (active):

= 1+ β(Vm(Pa1,1)− Vm(Pa0,1)) (C.24)

≥ 1+ β(Pa1,1 − Pa0,1) by Lemma C.2.0.1 (C.25)

≥ 1+ βα (C.26)

Now we derive the technical condition forTheorem 4.4.5. In this case, proving that threshold

policies are optimal is equivalent to proving that, if it is optimal to act now, then it is optimal to act

for all later beliefs. Formally, if for a belief b, the optimal action is to act, then we must show that for

a lower b′ < b, the optimal action is also to act. To do this, we show that Theorem 4.4.5 implies

that the derivative wrt b of the passive action value function is greater than the derivative wrt b of

the active action value function:

(Pp1,1 − Pp0,1)(1+ β(Pa1,1 − Pa0,1))(1− β) ≥ Pa1,1 − Pa0,1 (C.27)
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Note that since (Pa1,1 − Pa0,1) ≤ 1, =⇒ (1+ β(Pa1,1 − Pa0,1))(1− β) ≤ 1, Eq.C.27 itself implies that

α = Pa1,1 − Pa0,1. Thus, it becomes:

(Pp1,1 − Pp0,1)(1+ βα)(1− β) ≥ Pa1,1 − Pa0,1 (C.28)

=⇒ (Pp1,1 − Pp0,1)(1+ βα) ≥ Vm(Pa1,1)− Vm(Pa0,1) by Lemma C.2.0.2 (C.29)

=⇒ (Pp1,1 − Pp0,1)
d(Vm(b))

db
≥ Vm(Pa1,1)− Vm(Pa0,1) by Lemma. C.2.0.3 (C.30)

=⇒ 1+ β
d(Vm(τ(b)))

d(τb)
d(τ(b))

db
≥ 1+ β(Vm(Pa1,1)− Vm(Pa0,1)) by Fact 2 (C.31)

=⇒ d(Vm(b|a = 0))
d(b)

≥ d(Vm(b|a = 1))
d(b)

(C.32)

(C.33)

C.3 Technical Condition for Reverse Threshold Policies to be Optimal

Nowwe derive a technical condition for a reverse threshold policy. That is, a threshold policy in

which if it is optimal to be passive in the current state, then it must also be optimal to act in all later

states in the order. First we prove one more technical Lemma.

Lemma C.3.0.1. d(Vm(b))
db ≤ 1+ βγ

1−β

where, γ = max{Pp1,1 − Pp0,1,Pa1,1 − Pa0,1}

Proof. Using Equation C.2, we get:

d(Vm(b))
db

=


1+ βd(Vm(τ(b)))

d(τ(b))
d(τ(b))

db passive

1+ β(Vm(Pa1,1)− Vm(Pa0,1)) active
(C.34)
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Case 1 (passive):

= 1+ β
d(Vm(τ(b)))

d(τ(b))
(Pp1,1 − Pp0,1) (C.35)

= 1+ β lim
δ→0

Vm(τ(b) + δ)− Vm(τ(b))
τ(b) + δ− τ(b)

(Pp1,1 − Pp0,1) (C.36)

≤ 1+
β

1− β
(Pp1,1 − Pp0,1) by Lemma C.2.0.2 (C.37)

≤ 1+
βγ

1− β
(C.38)

Case 2 (active):

= 1+ β(Vm(Pa1,1)− Vm(Pa0,1)) (C.39)

≤ 1+
β

1− β
(Pa1,1 − Pa0,1) by Lemma C.2.0.2 (C.40)

≤ 1+
βγ

1− β
(C.41)

Now to give a condition under which reverse threshold policies are optimal. Formally, if for a be-

lief b, the optimal action is to be passive, then we must show that for a lower b′ < b, the optimal

action is also to be passive. We do this by showing that the Theorem 4.4.6 statement implies that

the derivative wrt b of the passive value function is less than the derivative wrt b of the active action

value function:

(Pp1,1 − Pp0,1)(1+
β(Pa1,1 − Pa0,1)

1− β
) ≤ Pa1,1 − Pa0,1 (C.42)
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Note that the Eq. C.42 itself implies that γ = Pa1,1 − Pa0,1, thus giving:

(Pp1,1 − Pp0,1)(1+
βγ

1− β
) ≤ Pa1,1 − Pa0,1 (C.43)

=⇒ (Pp1,1 − Pp0,1)(1+
βγ

1− β
) ≤ Vm(Pa1,1)− Vm(Pa0,1) by Lemma C.2.0.1 (C.44)

=⇒ (Pp1,1 − Pp0,1)
d(Vm(b))

db
≤ Vm(Pa1,1)− Vm(Pa0,1) by Lemma C.3.0.1 (C.45)

=⇒ 1+ β
d(Vm(τ(b)))

d(τb)
d(τ(b))

db
≤ 1+ β(Vm(Pa1,1)− Vm(Pa0,1)) by Fact 2 (C.46)

=⇒ d(Vm(b|a = 0))
d(b)

≤ d(Vm(b|a = 1))
d(b)

(C.47)

(C.48)

C.4 Threshold Conditions for Average Reward Case

First we define the concept of value boundedness42:

Definition C.4.1 (Value Boundedness). For a givenMDP, consider a value function Vβ(b), states

b ∈ B and some index state z ∈ B. Then anMDP is value bounded if for a constantM and function

M(b):

M(b) < Vβ(b)− Vβ(z) < M (C.49)

We now prove that Thm. 4.4.5 and Thm. 4.4.6 hold respectively under the average reward cri-

terion as β −→ 1 using Dutta’s Theorem as follows42. Consider anMDP that is value bounded.

Let πβ(·) be a stationary optimal policy for the discountedMDP. (1) Suppose πβ(·) −→ π point-

wise, as β −→ 1. Then π is a stationary optimal policy for the average reward criterion. (2) Further-

more, given state orderingO, if for all discounted optimal policies πβ(b),O(b′) ≥ O(b) implies

πβ(b′) ≥ πβ(b) (i.e., threshold policies are optimal), then any sequence of discounted optimal
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policies converge to an average optimal policy as β −→ 1.

(2) and (1) together imply that anyMDP that admits threshold optimal policies under dis-

counted reward criteria also admits threshold optimal policies under average reward criteria. By

construction, anyMDP that satisfies Thm. 4.4.5 or Thm. 4.4.6 admits threshold optimal policies

under the discounted reward criterion. Therefore, to prove that those conditions hold under the

average reward criterion as β −→ 1, we need only prove that any CoB is value bounded.

Theorem C.4.2. Any Collapsing Bandit is value bounded.

C.5 ExampleWhen theMyopic Policy Fails

We present an example in which the myopic baseline is barely better than No Calls, while Threshold

Whittle is optimal. Consider the system withN = 2 and k = 1 and the transition probabilities

shown in Fig. C.1a.

P p,1 =


0.97 0.03
0.03 0.97

�
P a,1 =


0.96 0.04
0.01 0.99

�

P p,2 =


0.25 0.75
0.03 0.97

�
P a,2 =


0.23 0.77
0.01 0.99

�
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Figure C.1: For the example transition matrices, Myopic performs worse than random, while Threshold Whittle is nearly
optimal.

Fig. C.1b shows how various policies perform on these two processes. The myopic policy is worse

than random and thresholdWhittle is nearly optimal. The myopic policy always acts on process 2

because the immediate reward it considers, (bt+1|a = 1) − (bt+1|a = 0) is marginally higher for

process 2 than process 1. However, process 1 is better to pull in the long run because process 2 has a
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large Pp0,1, making it self-correcting, meaning the process is likely to become adhering quickly even

without an intervention. However, process 1 has a very small Pa0,1 and P
p
0,1 and is thus difficult to

revive from the bad state even with an intervention, making it important to keep intervening to stop

the process from ever entering the bad state.

The following analysis shows that the myopic policy always prefers to pull arm 2:

For process 1:

(bt+1|a = 0) = 0.97.bt + 0.03.(1− bt) = 0.94.bt + 0.03

(bt+1|a = 1) = 0.99.bt + 0.01.(1− bt) = 0.95.bt + 0.04

Thus, Δbt = (bt+1|a = 1)− (bt+1|a = 0) = 0.01+ 0.01.bt < 0.02

Similarly, for process 2:

Δbt = 0.02

The myopic policy chooses the arm with the greater Δbt.

C.6 Learning Online

So far we assumed that all transition probabilities are known. However, in a real deployment, the

transition probabilities of processes would be unknown at the start, and it would be desirable to

learn the transition probabilities online in tandem with planning. To develop an online planning

regime for our algorithm, we use the tuberculosis medication adherence monitoring domain as a

case study and motivating example.

We implement a Thompson sampling-based learning method152, which is a heuristic which has

been shown to work well in practice and has been frequently used in the bandit literature72. In
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Thompson sampling, we sample from a posterior distribution over the estimated parameters and

use the samples for planning. This allows for “sub-optimal” actions to be taken periodically, build-

ing exploration implicitly into planning. Then, as arms are pulled we use the observations to update

our posterior distribution. We maintain a Beta distribution posterior over the parameters of each

row of a patient’s transition matrix and sample from it each day to generate a matrix with which the

system can plan for that round.

Additionally, we consider two specific features of the TBmedication adherence monitoring do-

main that can be used to accelerate learning with Thompson sampling. First, it is reasonable to as-

sume that patients (processes) might remember some number of previous days of their medication

adherence behavior. Thus, when the agent pulls an arm, the armmay reveal state observations for

some number of previous days which we call buffer length. The larger the buffer length, the faster

learning will converge since more observations are obtained for updating the posterior. We param-

eterize buffer length and evaluate its effect on learning and planning in experiments. Second, we

verify with real data that virtually all patients adhere to the natural constraints on the transition

probabilities given in Section 4.3. We exploit this known structure on the transition probabilities –

i.e., that processes tend to degrade when passive and that interventions must have positive effect –

to identify a constrained probability space from which we would like to sample when learning on-

line. We implement a version of Thompson sampling called constrained Thompson sampling which

samples from this joint, constrained probability space via rejection sampling.

On-demand index computation algorithm. When we learn online, the transition matri-

ces for a process change every day, and thus pre-computing the Whittle indices for every belief state

as in Alg. 4.4.1 is inefficient. We can address this by identifying and solving only the indifference

equation that is relevant to the current state of the process. We use the insight that for a threshold

of Xi on the current chain i, the corresponding threshold Xj on chain jwould be the state with the
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largest belief lower than b(Xi), i.e., Xj = min
u
{u : bj(u) < b(Xi)}. TheWhittle index for Xi is then

obtained by solving form : J(Xi,Xj)
m = J(Xi+1,Xj)

m . These computations are repeated every day yielding

overall complexity ofO(|Ω|T2) per process.
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Figure C.2: (left) Constrained Thompson sampling improves learning. (right) buffer lengths of 4–7 perform well for
various values of k/N, using constrained Thompson sampling. TW_X is the on‐demand index algorithm run in tandem
with Thompson sampling and a buffer length of X.

Fig. C.2 (right) evaluates the impact of varying buffer lengths for various ratios of k/N. Note

that in these experiments, Oracle fully observes states, but must still learn transition probabilities

online. Critically, we see that even when simulated patients report 4–7 observations per arm-pull,

the performance is close to that of the non-Oracle learning upper bound (buffer length=∞) for any

k/N. This is a key consideration for deployment in a medication adherence context: patients need

only remember their last 4–7 doses on average for our approach to be nearly effective as possible in

the TB context.

Fig. C.2 (left) compares the performance of learning policies with and without constrained

Thompson sampling for k/N = 25%. All policies benefit from the constrained sampling approach,

suggesting that imposing our knowledge of the transition probability constraints was beneficial to

learning.
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C.7 Sensitivity Analysis

In Fig. C.3, we investigate ThresholdWhittle’s performance relative to the choice of parameters

used to perturb the real data from the TBmedication adherence domain. All the plots show that

ThresholdWhittle’s performance is robust to the choice of parameters.

0.0 0.2 0.4
Perturbation, δ1

25

50

75

100

In
te

rv
en

ti
on

b
en

efi
t

(%
)

0.0 0.2 0.4
Perturbation, δ2

40

60

80

100

0.0 0.2 0.4
Perturbation, δ3

25

50

75

100

Threshold Whittle Myopic Random

0.0 0.2 0.4
Perturbation, δ4

40

60

80

100

Figure C.3: Performance of Threshold Whittle is robust to perturbation of the transition matrix parameters. Note that
100% corresponds to the performance of Threshold Whittle for this plot only.

C.8 Performance on Reverse Threshold Optimal Processes

Here we investigate why ThresholdWhittle demonstrates near-optimal performance even on reverse-

threshold-optimal processes. We randomly sample forward and reverse threshold optimal processes,

checked with Thm. 4.4.5 and Thm. 4.4.6, respectively, using β = 0.95, then compute their in-

dices with the ThresholdWhittle algorithm. Figures. C.4a and C.4b show a few samples of these

trajectories for reverse and forward threshold optimal processes, respectively. Via similar arguments

from the proof in Appendix C.1, it can be shown that the true Whittle indices for reverse (forward)

threshold optimal processes should always be increasing (decreasing) in belief. Fig. C.4a shows that

for such reverse threshold optimal processes, the indices computed by ThresholdWhittle do tend

to increase in belief as expected, which may lead to ThresholdWhittle’s good performance even

though it is not guaranteed to be optimal on those processes. (And for completeness, Fig. C.4b
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Figure C.4: (a) Threshold Whittle‐computed indices vs. reachable beliefs for 10 randomly sampled reverse threshold
optimal processes (one line per process). These indices tend to increase in belief, as expected for reverse threshold
optimal processes according to the proof in Appendix C.1. (b) Threshold Whittle‐computed indices vs. reachable beliefs
for 10 randomly sampled forward threshold optimal processes (one line per process). These indices always decrease in
belief, as expected for forward threshold optimal processes according to the proof in Appendix C.1.

shows that for forward threshold optimal policies, the indices computed by ThresholdWhittle al-

ways decrease in belief as expected.)
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Appendix to Chapter 5

D.1 Proofs

D.1.1 Proof of Proposition 5.4.1

Proposition D.1.1. To learn the value λ that minimizes Eq. 5.4 given a state sss, the λ-network, pa-

rameterized by Λ, should be updated with the following gradient rule:

Λt = Λt−1 − α

(
B

1− β
+

N∑
n=1

Dn(sn, λt−1(sss))

)
(D.1)

where α is the learning rate and Dn(sn, λ) is the negative of the expected β-discounted sum of action

costs for arm n starting at state sn under the optimal policy for arm n for a given value of λ.

Proof. The gradient update rule is derived by taking the gradient of Eq. 5.4 with respect to λ, which

has two main terms, λB/(1 − β), and the sum overQn, the Q-functions with respect to λ. Looking

more closely atQn, the only terms which are a function of λ are the costs of actions taken by the

policy thatQn implies, i.e., terms−λcj. Thus, the gradient ofQn is the negative expected discounted

sum of costs taken by the optimal policy at the given value of λ, i.e., dQn
dλ = −E[

∑H
t=0 β

tcn,t], where

cn,t is the cost of the action taken on arm n in round t.

D.1.2 Proof of Proposition 5.4.2

Proposition D.1.2. Given arm policies corresponding to optimal Q-functions, Prop. 5.4.1 will lead Λ

to converge to the optimal as the number of training epochs and K −→ ∞.
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Proof. Eq. 5.4 is convex in λ, which follows from definition ofQn, i.e., the max over piece-wise lin-

ear functions of λ is also a convex function in λ. Thus the learning task of Λ is also convex. There-

fore, all that is required for asymptotic convergence of Λ is that (1) the gradients we estimate via

Prop. 5.4.1 are accurate, and that (2) all inputs, i.e., all states sss, are seen infinitely often in the limit.

(1) is achieved by the assumption that optimalQ-functions are given, an analytic condition that is

achieved in practice by allowing the arm-networks to train for a reasonable number of rounds un-

der a given output of the λ-network, before updating Λ. Specifically, given optimal Q-functions

and their corresponding optimal policies, the sampled sums of spent budget from those optimal

policies represent an unbiased estimator of eachDn. Note, though that to be an unbiased estima-

tor, this relies on not imposing the budget constraint at training time, a procedure we carry out in

practice.* Thus (1) is achieved. (2) is achieved by following a training procedure that uniformly ran-

domly samples start states sss for each round of training until convergence. Thus the proposition is

established.

D.1.3 Proof of Proposition 5.4.3

Proposition D.1.3. RR-DPO converges in a finite number of steps to the minimax regret-optimal

policy.

Proof. A common strategy for establishing optimal convergence of the double oracle is to show

that the pure strategy sets of both players can be exhausted. We can achieve this in our setting un-

der the conditions (1) that each player has a finite strategy set, i.e., is possible to be exhausted and

(2) that each oracle gives an optimal best response. Since the agent pure strategy set is already fi-

nite, we can achieve (1) by discretizing the nature oracle—in effect by rounding the outputs of the

*It is critical to note that at test time, we always impose the budget constraint— i.e., all of our methods
solve the original constrained RMAB problem— they only use the Lagrangian relaxation as a tool to find
good policies to the original constrained problem.
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policy network. For (2), for analytical purposes, we make the common assumption that our ora-

cles internally converge to their optimal values, i.e., in our case, the arm-networks and λ-network

converge optimally. However, since our networks learn the Lagrange-relaxed version of the prob-

lem, some additional tools are needed. Speficially, we must identify conditions in which DDLPO-

Act gives policies which approach π∗ω. This can be achieved in the binary-action setting with α =

‘Whittle’, which uses a binary search procedure to identify a value of λ such that exactly B arms have

Qn(a = 1, λ) > Qn(a = 0, λ), then acting on those arms. This procedure is equivalent to the

Whittle index policy, which is asymptotically optimal for binary-action RMABs161.

D.1.4 Proof of Proposition 5.4.4

Proposition D.1.4. In the Robust RMAB problem with interval uncertainty, the max regret of a

reward-maximizing policy can be arbitrarily large compared to a minimax regret-optimal policy.

Proof. Consider a binary-action RMAB problem with two arms A and B. Let the reward from

each arm beRwhen the arm is in a good state and 0 in a bad state. Our problem is to plan the best

action with a budget of 1 and horizon of 1. Supposing the initial state is bad for each arm, the tran-

sition probabilities for the transition matrix for each arm n is

 1 0

1− pn pn

where the uncertain

variable pn is constrained to be within pA, pB ∈ [0, 1]. Each value in the matrix corresponds to the

probability of an arm at state bad transitioning to bad (column 1) or good (column 2) if we take the

passive (row 1) or active action (row 2).

To compute a reward-maximizing policy that does not consider robustness to uncertainty, we

must optimize for one instantiation of the uncertainty set, which requires making one of three as-

sumptions.

• Case 1: If we assume pA = pB, then an optimal policy is to act with probability aA on arm A

and aB on arm B as long as aA + aB = 1. W.l.o.g., suppose aA ≥ aB; then nature would set
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pA = 0 and pB = 1, imposing regret at leastR/2.

• Case 2: If pA > pB, then the optimal policy would be to always act on arm A with probability

aA = 1 and never act on B (aB = 0). Nature would then set pA = 0 and pB = 1 to impose

regretR.

• Case 3: If pA < pB, the case is symmetric to Case 2 and result in regretR. Clearly, max regret

is minimized when our action is such that aA + aB = 1; in this setting, we learn this optimal

policy only under Case 1. Following Case 2 or 3, the difference between our regret and the

minimax regret isR/2, which grows arbitrarily higher asR → ∞.

A slight modification to this problem renders Case 1 non-optimal. Let the reward beRwhen

arm A is in a good state andR − 1 for arm B, so the optimal policy learned under the assumption

from Case 1 leads to aA = 1 and aB = 0. Then nature could respond with pA = 0 and pB = 1,

yielding reward 0 and regretR − 1, while the minimax regret–optimal policy achieves a minimum

reward of (R − 1)/2 (by playing aA = 0.5 and aB = 0.5 where nature responds with pA = 0 and

pB = 1). Thus, the gap again can grow arbitrarily high asR → ∞ provided thatR > 1. We there-

fore have that in all cases, any reward-maximizing policy can achieve arbitrarily bad performance in

terms of regret.

D.2 DDLPO-Act subroutines

Here we provide the integer program which implements QKnapsack, one of the action-selection

procedures used in Alg. 5.4.2 to take actions at test time. QKnapsack takes λ andQn(s, a, λ) from

the learned λ-network and arm networks, respectively, and returns the combination of actions that

maximizes the sum of Q-values over all arms, subject to the costs of each action C and the budget

constraint B.
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max
X

N∑
n=1

|A|∑
j=1

xnjQn(sn, anj, λ) (D.2)

s.t.
N∑
i=n

|A|∑
j=1

xnjcj ≤ B (D.3)

|A|∑
j=1

xnj = 1 ∀n ∈ 1...N (D.4)

xnj ∈ {0, 1} (D.5)

In Alg. D.2.1, we give the procedure BinaSearchwhich implements a binary search over the

learnedQ(λ)-values to find a charge λ for which exactly B arms prefer to act rather than not act.

This mimics the Whittle index policy in binary-action settings.

D.3 Experimental Domain Details

D.3.1 ARMMAN

TheMDPs in the ARMMAN domain18 have three ordered states representing the level of engage-

ment of the beneficiaries in the previous week. Rewards are better for lower states, i.e.,R(0) =

1,R(1) = 0.5,R(2) = 0. At each step, the beneficiary may only change by one level, e.g., low-to-

medium or high-to-medium but not low-to-high. They also assume that beneficiaries follow one of

three typical patterns, A, B, and C, resulting in three MDPs with different transition probabilities.

There are two patterns of effects present that differentiate the beneficiary types. (1) For each of the

above types, the planner can only make a difference when the patient is in state 1. Type A responds

very positively to interventions, but regresses to low reward states in absence. Type B has a similar

but less amplified effect, and type C is likely to stay in state 1, but can be prevented from regressing
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Algorithm D.2.1 BinaSearch (for the Whittle Index Policy)
Input: State sss, arm critic networks φ1, . . . , φN, budget B, tolerance
ε.
1: qnj = φn(sn, anj, λ = 0) ∀n ∈ [N], ∀j ∈ [|A|]
2: lb = 0
3: ub = maxn∈[N],j∈[|A|] {qnj}
4: while ub− lb > ε do
5: λ = ub+lb

2
6: qnj = φn(sn, anj, λ) ∀n ∈ [N],∀j ∈ [|A|]
7: if fewer than B arms have qn,j=1 > qn,j=0 then
8: ub = λ {Charging too much, decrease}
9: else if more than B arms have qn,j=1 > qn,j=0 then
10: lb = λ {Can charge more, increase}
11: else if exactly B arms have qn,j=1 > qn,j=0 then
12: break
13: aaa = 000
14: an = 1 where qn,j=1 > qn,j=0
15: if ub− lb ≤ ε then
16: break ties randomly s.t. ||aaa||1 = B
17: return aaa

to state 2 when an action is taken. (2) Further, types A and C have only a 10% chance of staying in

the high reward state, while type B has a 90% chance of staying there.

We converted these patient types to robust versions where the transition probabilities are uncer-

tain as follows:

Ti
s=0 =

pi000 1− pi000 0.0

pi010 1− pi010 0.0

 ,

Ti
s=1 =

0.0 1− pi102 pi102

pi110 1− pi110 0.0

 ,
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Ti
s=2 =

0.0 1− pi202 pi202

0.0 1− pi212 pi212

 ,

where i indexes the type (i.e., A, B or C). We then set each pisas′ to be in a range of width 0.5 cen-

tered on the entries from each of the A, B, C beneficiary types for s ∈ {1, 2}. To add additional

heterogeneity to the experiments, for s = 0, we set the range to 1.0 so that any beneficiary type can

be made to have some non-negligible chance of staying in the good state, rather than only type B

beneficiaries. The full set of parameter ranges are given in the Table D.1 below.

Param L U L U L U

Type A Type B Type C

pi000 .00 1 .00 1 .00 1
pi010 .00 1 .00 1 .00 1
pi102 .50 1 .35 .85 .35 .85
pi110 .50 1 .15 .65 .00 .50
pi202 .35 .85 .35 .85 .35 .85
pi212 .35 .85 .35 .85 .35 .85

Table D.1: Upper (U) and lower (L) parameter ranges for the robust ARMMAN environment.

In all experiments, 20% of arms were sampled from type A, 20% from type B and 60% for type C.

To add additional heterogeneity, for each of the 50 random seeds we uniformly sample a sub-range

contained within the ranges given in Table D.1. In the agent oracle experiments, for each of the 50

random seeds, since these require fully instantiated transition matrices, we uniformly sample each

parameter value for each arm according to its type such that the values are contained in the ranges

given in Table D.1.
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D.3.2 SIS EpidemicModel

In this domain, each arm follows its own compartmental SIS epidemic model. Each arm’s SIS model

tracks whether each ofNp members of a population is in a susceptible (S) or infectious (I) state.

This can be tracked withNp states, since it can be computed howmany people are in state I if only

the number of people in state S and the population sizeNp is known.

To define a discrete SIS model, we instantiate the model given in Yaesoubi & Cohen 171 section

4.1 with a Δt of 1. We also augment the model to include action effects and rewards. Specifically,

R(NS) = NS/Np, whereNS is the number of susceptible (non-infected) people. Further, there

are three actions {a0, a1, a2}with costs c = {0, 1, 2}. Action a0 represents no action, a1 divides

the contacts per day κ (λ in Yaesoubi & Cohen 171) by aeff1 , and a2 divides the infectiousness rinfect

(r(t) in Yaesoubi & Cohen 171) by aeff2 . That is, taking action a1 will reduce the average number of

contacts per day in a given arm, and taking action a2 will reduce the probability of infection given

contact in a given arm, thus reducing the expected number of people that will become infected in

the next round. However, to make this a robust problem, the relative effect sizes of each action for

each arm will not be known to the planner, nor will the κ or rinfect. We impose the following uncer-

tainty intervals for all arms: κ ∈ [1, 10], rinfect ∈ [0.5, 0.99], aeff1 ∈ [1, 10], and aeff2 ∈ [1, 10].

In the robust double oracle experiments, to add additional heterogeneity, for each of the 50 ran-

dom seeds we uniformly sample a sub-range contained within the ranges given above for each arm.

In the agent oracle experiments, for each of the 50 random seeds, since these require fully instan-

tiated transition matrices, we uniformly sample each parameter value for each arm such that the

values are contained in the ranges given above.
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D.4 Hyperparameter Settings and Implementation Details

Neural networks: All neural networks in experiments are implemented using PyTorch 1.3.1123

with 2 fully connected layers each with 16 units and tanh activation functions, and a final layer of

appropriate size for the relevant output dimension with an identity activation function. The output

of discrete actor networks (i.e., the policy network from the agent oracle, and the policy network

of agent A in the nature oracle) pass through a categorical distribution from which actions are ran-

domly sampled at training time, without a budget imposed. It is critical not to impose the budget at

training time, so that the budget spent by the optimal policy under a given λ will result in a mean-

ingful gradient for updating the λ-network. The output of continuous actor networks (i.e., agent B

in the nature oracle which selects environment parameter settings) instead are passed as the means

of Gaussian distributions – with the log standard deviations learned as individual parameters sepa-

rate from the network – from which continuous actions are sampled at training time. At test time,

actions are sampled from both types of networks deterministically. For categorical distributions, we

greedily select the highest probability actions. For Gaussian distributions, we act according to the

means. All discount factors were set to 0.9. The remaining hyperparameters that were constant for

all experiments for the agent and nature oracles are indicated in Table D.2. ForRobust Double Or-

acle experiments, all agent and nature oracles were run for 100 training epochs. ForAgent Oracle

experiments, DDLPOwas run for 100 training epochs for the synthetic and ARMMAN domains

and 200 epochs for the SIS domain.

λ-network: Critical to training the λ-network is cyclical control of the temperature parameter

that weights the entropy term in the actor loss functions. Recall that the λ-network is only updated

every n_subepochs. In general, after each update to the λ-network, we want to encourage explo-

ration so that actor networks explore the new part of the state space defined by updated predictions

of λ. However, after n_subepochs rounds, we will use the cost of the sampled actor policies as a
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gradient for updating the λ-network, and that gradient will only be accurate if the actor policy has

converged to the optimal policies for the given λ predictions. Therefore, we also want to have lit-

tle or no exploration in the round before we update the λ-network. In general, we would also like

the entropy of the policy network to reduce over time so that the actor networks and λ-networks

eventually both converge.

To accomplish both of these tasks, the weight (temperature) of the entropy regularization term in

the loss function of the actor network will decay/reset according to two processes. The first process

will linearly decay the temperature from some positive, but time-decaying starting value (see next

process) τt immediately after each λ-network update, down to 0 after n_subepochs. The second

process will linearly decay the temperature from a maximum τ0 (start entropy coeff in Table D.2)

down to τmin (end entropy coeff in Table D.2) by the end of training.

We found that it also helps to train the actor network with no entropy and with the λ-network

frozen for some number of rounds before training is stopped (lambda freeze epochs in Table D.2).

Double Oracle: In all experiments in Sec. 5.5, we initialize the agent strategy list with HO, HM,

and HP, and the nature strategy list with pessimistic, mean, and optimistic nature strategies, then

run RR-DPO for 6 iterations. This produces a set of 8 agent strategies, 8 nature strategies, a table

where each entry represents the regret of each agent pure strategy (row) against each nature pure

strategy (column), and an optimal mixed strategy over each set that represents a Nash equilibrium

of the minimax regret game given in the table. The regret table is computed by first computing the

returns of each agent/nature pure strategy combination, then subtracting the max value of each col-

umn from all entries in that column (i.e., the best agent strategy for a given nature strategy gets 0

regret). The regret of RR-DPO is reported as the expected utility corresponding to the Nash equi-

librium of the regret game given by the table, once that regret table is normalized to account for the

returns of baselines (see next paragraph).

After this main loop completes, we then compute the regret of the baselines by evaluating each
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baseline policy against each pure strategy in the nature strategy list. Then, we also run the nature

oracle against each baseline policy to find a nature strategy that should maximize the regret of that

baseline. The regret for each baseline is reported as the max regret against this new nature strategy, as

well as all pure nature strategies from the main RR-DPO loop.

Hawkins Baselines: The Hawkins policies are implemented with gurobipy 9.1.2, a Python

wrapper for Gurobi (9.0.3)58 following the LP given in Hawkins 60 equation 2.5 to compute λ and

Q(s, a, λ) for each arm and the integer program in equation 2.12 to select actions.

RLvMid Baseline: We found that RLvMid found effective policies for the nature strategy it was

trained against (as evidenced in Figure 5.2)(a-f), but that that learned policy could be brittle against

other nature strategies. This is likely because different nature strategies produce different distribu-

tions of states, meaning RLvMid would fit policies well to states seen when planning against the

mean nature strategy, but underfit its policies for states seen more often in different distributions.

However, the lone RLvMid baseline policy can somewhat correct for this effect by training an en-

semble of policies against slight perturbations of the mean nature strategy that adjust the parameter

values output by nature by a small ε. In all experiments we train 3 RLvMid policies against 3 ran-

dom perturbations of the mean nature strategy, then report the regret of RLvMid as the minimum

of the max regrets returned by any of the 3.
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Figure D.1: (Left column) varies the uncertainty intervals to be 0.25, 0.5 and 1.0 times their widths (UM = uncertainty
multiplier). The gap between our robust RR‐DPO method and non‐robust methods becomes larger as the uncertainty
interval increases, and our robust algorithm RR‐DPO always provides the lowest regret policies. (Right column) varies
the horizon H in 10, 25, 50, 100. As expected, the gap between RR‐DPO and the baselines either stays the same, or
increases as H is increased, further demonstrating the robustness of our algorithm to various parameters.
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parameter value

agent
clip ratio 2.0e+00
lambda freeze epochs 2.0e+01
start entropy coeff 5.0e-01
end entropy coeff 0.0e+00
actor learning rate 2.0e-03
critic learning rate 2.0e-03
lambda learning rate 2.0e-03
trains per epoch 2.0e+01
n_subepochs 4.0e+00

nature
clip ratio 2.0e+00
lambda freeze epochs 2.0e+01
start entropy coeff 5.0e-01
end entropy coeff 0.0e+00
actorA learning rate 1.0e-03
criticA learning rate 1.0e-03
actorB learning rate 5.0e-03
criticB learning rate 5.0e-03
lambda learning rate 2.0e-03
trains per epoch 2.0e+01
n_subepochs 4.0e+00
n_sims 2.5e+01

Table D.2: Hyperparameter settings for agent and nature oracles for all experiments.
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E
Appendix to Chapter 6

E.1 ANote on Language

Throughout chapter 6, we use the term “mother” to refer to pregnant women and people, birthing

women and people, or postnatal women and people. We note that “mother” is gendered language

that also typically refers to someone who has already given birth, which may not be the case for

newly pregnant women and people who are enrolled in maternal health programs but have not yet
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Table E.1: Notation table

Notation Description

[N] Set ofN natural numbers {1, . . . ,N}
[a, a] A real interval denoting all values of a such that a ≤ a ≤ a
N Number of women (arms)
K Number of interventions (service calls) that can be made each round
M Number of groups

Sn
Set of states (engagement status) of arm n ∈ [N];
Sn = {0, 1} (non-engaging state and engaging state)

SN Combinatorial set of states over all arms
sss Vector of states of all arms

An
Set of actions (intervention decisions) on arm n ∈ [N];

An = {0, 1} (no-intervention and intervention)
AN Combinatorial set of actions over all arms

Pn
s,a,s′

Probability of transitioning from state s to s′
on action a for an individual n

Pm Uncertainty intervals for all transition probabilities for groupm
πi Planner’s i-th pure strategy (Whittle index policy)
Pi Adversary’s i-th pure strategy (instantiation of Pm for allm)
α Planner’s mixed strategy
β Adversary’s mixed strategy

G(π,P) Expected reward when planner plays a pure strategy π
and adversary plays a pure strategy P

R(π,P) Expected regret when planner plays a pure strategy π
and adversary plays a pure strategy P

given birth.

We stand by the need to provide compassionate medical care for trans and non-binary patients,

and recognize that the word “mother” may not reflect the identity of all people. Some recent calls

advocate the language “birthing person” or “birthing women and people” over “mother”133,56.

Others point out that language such as “birthing person” may be dehumanizing and go against best

practices in health communication of making communication easy to understand for patients with

low literacy or education or are communicating in their non-native language57.
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For the above reasons and to keep our writing concise, in chapter 6 we use “mother” while recog-

nizing that the term is imperfect. We hope to move to healthcare language that is inclusive of all who

are in need of those services. We also highlight the need to reevaluate other related terminology such

as “maternal health” to move towards more inclusive language, and thus more inclusive care.

E.2 Ethical Considerations

As our system aims to improve engagement with maternal health information, this deployment

must be carefully trialed with guardrails developed before a large-scale deployment. We are collab-

orating with ARMMAN to carry out these trials and develop such guardrails. We recognize the

system’s recommendations are influenced by historical data, a potential source of bias, especially

when data is scarce. A benefit of our method is to be robust to such scarcity-induced bias, a key step

forward toward responsible deployment.

Thus, some of the key ethical considerations are in how GROUPS may be used to optimize re-

source allocation in real world settings. We discussed how we, specifically, will work toward respon-

sible deployment with our partners, as well as how GROUPS represents a new capability in RMAB

planning, by allowing one to encode uncertainty due to, e.g., data scarcity. However, we must also

consider the impact of a system like GROUPS on society more broadly. For instance, with such a

scalable and inherently black box optimization tool such as GROUPS, there may be a temptation to

allow the scheduling and delivery of interventions to become fully automated. This could negatively

impact, e.g., the availability of work for humans who may have previously scheduled or delivered

the interventions, or negatively impact intervention recipients who perhaps could receive unwanted

interventions with little option for human-mediated recourse. To avoid these negative impacts, we

stress that our system should be seen as a supplemental tool on the toolbelt of intervention sched-

ulers, to be considered among a range of existing criteria and expertise, rather than a replacement
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solution.

E.3 Limitations

Our work takes a major step forward in scaling up RMAB solutions to perform robustly under un-

certainty. However, it accomplishes this, in part, by taking advantage of the decomposable nature

of the Whittle index andWhittle index regret, which both require the binary-action setting typi-

cally considered for RMABs. This could be limiting in domains where planners need to optimize

over a suite of different types of interventions, rather than deciding between only {act, not act} for

each arm. We note though, that our methods could be extended to the multi-action setting with,

e.g., multi-action notions of the Whittle index53, and corresponding notions of multi-action index

regret.

The scalability of our method also relies on the existence of a reasonable number of groups

within data. We validate that our method runs hundreds of times faster than the state of the art

when there are∼ 10 arms and groups (Fig. E.5). We also show that our method runs in about 15

minutes for the real maternal health dataset which has∼ 15K arms and 40 groups (Fig. E.3). How-

ever, even our method may have difficulty scaling if there were, e.g., tens of thousands of groups

in the data. Yet, in that case, the planner could create a smaller number of groups, each with more

arms per group. Then uncertainty of each group might increase, but the planner could still use

GROUPS to plan and achieve good performance. We demonstrate an example of such a tradeoff

between number of groups and performance in Fig. 6.3(e). GROUPS performs better than the

baselines across all cases.
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E.4 Additional Notation and Preliminaries

The number of mothers in groupm ∈ [M] is equal to γm. The total number of mothers is equal

toN =
∑

m∈[M] γm. Further, S
m = ×n∈[γm]S

m
n (resp. Am = ×n∈[γm]A

m
n ) denotes the set of

different state-profiles (resp. action-profiles) of the mothers in groupm. An element of Sm (resp.

Im) is denoted as sm = (smn )n∈[γj] (resp. a
m = (amn )n∈[γm]). Finally, S = ×m∈[M]Sm (resp.

A = ×m∈[M]Am) denotes the different state-profile (action-profile) of all theNmothers, and s

denotes an element of S .

A policy π is a map from S toA, such that for each sss ∈ S , π(sss) has at mostK actions as 1 (inter-

vention) and the remaining are 0 (no-intervention). In particular, πmaps a strategy profile of theN

mothers to an action profile with at most k intervention actions. We use Π to denote the set of all

such policies. We note that Π is equal to the set of pure strategies of the planner. Let α ∈ ΔI(Π)

( respectively β ∈ ΔI(P)) be a mixed strategy. Then we use Pα(π) ( resp. Pβ(P)) to denote the

probability of choosing π ∈ ΠI (resp. P ∈ PI) under α (resp. β).

Finally, we often use (α⋆X,Y, β
⋆
X,Y) to denote the minimax maximin regret strategies of the planner

and adversary respectively, when the planner plays mixed strategies from ΔX(Π) and the adversary

plays mixed strategies from ΔY(P) (see Section 6.5 for the definitions of ΔX(Π) and ΔY(P)), and

X,Y ∈ {M, I}. Note that α⋆X,Y is the planner’s minimax strategy and β⋆X,Y is the adversary’s maximin

strategy.

E.4.1 Permutations onΠ andP

LetGm be the set of all permutations of [γm], where a permutation is a bijective map from [γm] to

[γm]. We use σm to denote the elements ofGm. Further, letG =G1 × · · · × GM. We use σ =

(σ1, . . . , σM) to denote an element ofG; note that here σm ∈ Gm.

Let a = (amn )n∈[γm],m∈[M] be an action profile. Then for a σ = (σ1, . . . , σM) ∈ G, define
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σ(a) = (amσm(n))n∈[γm],m∈[M]. In particular σ permutes the actions corresponding to the mothers

in groupm according to σm. Now we show how a σ ∈ G defines bijective maps onP and Π. For

every σ ∈ G define the map φσ : Π → Π (respectively ψσ : P → P) as follows: denote φσ(π)

as π′ (resp. ψσ(P) as P
′), then π′(s) = σ(π(s)) (resp. (P′)mn = Pmσm(n)). We make the following

observation which will be helpful later on.

Observation 1. For all π ∈ Π, P ∈ P , and σ ∈ G the following holds R(π,P) = R(φσ(π), ψσ(P)).

The following observation follows from the fact that for every σ ∈ G, φσ and ψσ define bijective

maps on Π and P respectively.

Observation 2. Let α ∈ ΔI(Π) and β ∈ ΔI(P) be mixed strategies of the planner and adversary

respectively. Then for any σ ∈ G the following holds:

R(α, β) =
∑
π,p

Pα(φσ(π)) · Pβ(ψσ(P)) · R(φσ(π), ψσ(P)) .

Next, we define permutations which are transpositions. We say σm ∈ Gm is a transposition if

there exists n, n′ ∈ [γm] such that σm(n) = n′ and σm(n′) = n, and for all ℓ /∈ {n, n′}, σm(ℓ) = ℓ.

We say σ = (σ1, . . . , σM) ∈ G is a transposition if for allm ∈ [M], σm is a transposition. We note

that every σ ∈ G can be expressed as a composition of finitely many transpositions. We note the

following observation.

Observation 3. Let σ ∈ G be a transposition. Then for every π ∈ A and P ∈ P , φσ(φσ(π)) = π

and ψσ(ψσ(P)) = P.
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E.4.2 Mixed Strategies that DoNotDistinguish BetweenMothers in the Same

Group

We say a mixed strategy α of the planner is indifferent towards mothers from the same group if for all

π, π′ ∈ Π such that there is a σ ∈ G satisfying π′ = φσ(π), Pα(π) = Pα(π′). We use ΔM(Π) to

denote such mixed strategies.

If we define the probability of intervening on mother n under a mixed strategy α as follows

Pα(intervene n) =
∑
π∈Π

Pα(π)
∑
s∈S

1{aπs,n = 1}

then it is easy to see that for an α ∈ ΔM(Π) and mothers n, n′ in the same group Pα(intervene n) =

Pα(intervene n′).

E.5 Proofs of Theorem 1, 2, and 3

We refer the reader to Section E.4 for additional notations and missing definitions used in the proof.

Additionally, we now define order-preserving maps, that we will use in the proof of Theorem 6.5.3.

E.5.1 Order-PreservingMaps

To prove Theorem 6.5.3 from Section 6.5.3, we require the assumption that there is a map ψ :

ΔI(P) → ΔM(P) such that

1. For every α1, α2 ∈ ΔM(Π) and β ∈ ΔI(P),R(α1, β) > R(α2, β) iffR(α1, ψ(β)) >

R(α2, ψ(β)), and

2. For every α ∈ ΔM(Π) and β1, β2 ∈ ΔI(P)R(α, β1) > R(α, β2) iffR(α, ψ(β1)) >

R(α2, ψ(β1))
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While (1) and (2) may not hold for general mixed strategies in ΔI(Π), it is likely to be true for mixed

strategies in ΔM(Π), since these strategies do not distinguish between mothers from the same

group. Next, we describe a possible candidate map.

First we define a map φ : P → P . Let P ∈ P be a pure strategy of the adversary which

assigns different transition probabilities to the mothers in the same group, and for pure strategy

p let Pm,n
s,a,s′ be the probability of the mother n in groupm transitioning from state s to s′ under ac-

tion a. We define φ(P) = P̂ as follows, P̂ assigns the same transition probability to all the moth-

ers in a group by averaging the transition probabilities of the mothers in that group. In particular,

P̂m,n
s,a,s′ = P̂ms,a,s′ =

∑
m∈[γm]

pm,n
s,a,s′ . Notice that the pure strategy φ(P) of the adversary is indifferent

to mothers in the same group. Further, for a P ∈ P , let φ−1(P) = {P′ ∈ P | φ(P′) = p}.

Now let β ∈ ΔI(P). Then ψ(β) = β′ is defined as follows: Pβ′(P) =
∑

P′∈φ−1(p) Pβ(P′). Since,

φ−1(P) ̸= ∅ only if p assigns the same transition probability to all the mothers in a group. Hence,

we have ψ(β) ∈ ΔM(P).

E.5.2 Proof of Theorem 6.5.1

We require the following proposition to prove the theorem.

Proposition E.5.1. Suppose the minimax maximin regret strategies (α⋆I,I, β
⋆
I,I) is such that there exists

a permutation σ ∈ G satisfying Pβ(P) = Pβ(ψσ(P)) for every P ∈ PI. Then there exists a planner

mixed strategy α′ ∈ ΔI(Π) such that Pα(φσ(π)) = Pα(π) for every π ∈ Π, and (α′, β⋆I,I) are

minimax maximin regret strategies of the planner and adversary respectively at the individual level.

Proof. Suppose there exists πm, πℓ ∈ ΠI such that φσ(πm) = πℓ but Pα(πℓ) < Pα(πm). First, we
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show in this case thatR(πm, β⋆I,I) = R(πℓ, β⋆I,I).

R(πℓ, β⋆I,I)
=
(i)
∑
p∈P

Pβ⋆I,I(P) · R(πℓ,P)

=
(ii)
∑
p∈P

Pβ⋆I,I(ψσ(P)) · R(πℓ, ψσ(P))

=
(iii)
∑
p∈P

Pβ⋆I,I(P) · R(πm,P)

= R(πm, β⋆I,I)

In the above equations: (i) follows from the definition of regret of a pure strategy πℓ on the adver-

sary’s mixed strategy β⋆I,I, (ii) follows as σ is a permutation (also see Observation 2) and fromObser-

vation 1 we haveR(πm,P) = R(πℓ, ψσ(P)) for all P ∈ P , and (iii) follows by using Pβ⋆I,I(P) =

Pβ⋆I,I(ψσ(P)) for all P ∈ P . Now construct a mixed strategy α′ such that Pα′(πm) = Pα′(πℓ) =

Pα(πm)+Pα(πℓ)
2 , and for all π ∈ ΠI such that π ̸= πm and π ̸= πℓ we have Pα′(π) = Pα(π). Since

R(πm, β⋆I,I) = R(πℓ, β⋆I,I), it is easy to see that (α
′, β) is a minimax maximin regret strategies at the

individual level, and from construction Pα′(πm) = Pα′(πℓ).

Proof of Theorem 6.5.1. If α⋆I,I ∈ ΔM(Π) then the Theorem follows. Hence, assume there are

πm, πℓ ∈ Π and a permutation σ ∈ G such that φσ(πm) = πℓ but Pα(πm) > Pα(πℓ). Here,

we use the subscriptm and ℓ to denote more and less. Observe that we may assume without loss

of generality that σ is a transposition (see App. E.4). This is because any permutation in σ ∈ G

can be expressed as a composition of transpositions. Hence, assuming σ is a transposition, we have

φσ(πℓ) = πm.

Let (α⋆I,I, β
⋆
I,I) be a minimax maximin regret strategies, that is, β⋆I,I is a regret maximizing mixed
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strategy of adversary against α⋆I,I, that is

β⋆I,I ∈ argmax
β∈ΔI(P)

R(α⋆I,I, β) .

Construct β′ such that Pβ′(P) = Pβ⋆I,I(ψσ(P)) for all P ∈ P . Note that since σ is a transposition, we

also have Pβ′(ψσ(P)) = Pβ⋆I,I(P) for all P ∈ P . Hence, as β⋆I,I is regret maximizing for the adversary

against the planner’s mixed strategy α⋆I,I, we haveR(α⋆I,I, β
′) ≤ R(α⋆I,I, β

⋆
I,I).

First, we argue thatR(α⋆I,I, β
′) = R(α⋆I,I, β

⋆
I,I). SupposeR(α

⋆
I,I, β

′) < R(α⋆I,I, β
⋆
I,I). Then writing

the regret expressions forR(α⋆I,I, β
′) andR(α⋆I,I, β

⋆
I,I)we have

∑
p

∑
π

Pβ′(ψσ(P)) · Pα⋆I,I(π) · R(π,P) (E.1)

<
∑
p

∑
π

Pβ⋆I,I(P) · Pα⋆I,I(π) · R(π,P)

SubstitutingR(π,P) = R(φσ(π), ψσ(P)) for all π,P (see Observation 1) we have

∑
p

∑
π

Pβ⋆I,I(ψσ(P)) · Pα⋆I,I(π)R(φσ(π), ψσ(P)) (E.2)

<
∑
p

∑
π

Pβ⋆I,I(P) · Pα⋆I,I(π)R(π,P)

Let α′ be the mixed strategy of planner such that Pα′(φσ(π)) = Pα⋆I,I(π). Substituting this in the

above equation we have

∑
p

∑
π

Pβ⋆I,I(ψσ(P)) · Pα′(φσ(π)R(φσ(π), ψσ(P)) (E.3)

<
∑
p

∑
π

Pβ⋆I,I(P) · Pα⋆I,I(π)R(π,P)
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FromObservation 2 we have,

∑
p

∑
π

Pβ⋆I,I(ψσ(P))·Pα′(φσ(π)) · R(φσ(π), ψσ(P)) (E.4)

= R(α′, β⋆I,I)

HenceR(α′, β⋆I,I) < R(α⋆I,I, β
⋆
I,I). This contradicts the minimax theorem which states that α⋆I,I is the

regret minimizing mixed strategy of the planner against the adversary’s mixed strategy β⋆I,I. Hence,

we haveR(α⋆I,I, β
′) = R(α⋆I,I, β

⋆
I,I). We note that the above equations also show that α′ is the regret

minimizing mixed strategy for the planner in response to adversary’s mixed strategy β′.

Now construct β̃ such that

Pβ̃(P) =
Pβ⋆I,I(P) + Pβ′(P)

2
=

Pβ⋆I,I(P) + Pβ⋆I,I(ψσ(P))
2

.

We now argue that (α⋆I,I, β̃) is a minimax maximin regret strategies at the individual level, that is,

α⋆I,I is regret minimizing against β̃, and β̃ is regret maximizing against α⋆I,I. Since σ is a transposition,

this implies Pβ̃(P) = Pβ̃(ψσ(P)) for all p ∈ P. Further, asR(α⋆I,I, β
′) = R(α⋆I,I, β

⋆
I,I), we have

R(α⋆I,I, β
⋆
I,I) = R(α⋆I,I, β̃), and hence, β̃ is a regret maximizing mixed strategy of the adversary against

α⋆I,I, that is,

β̃ ∈ argmax
β∈ΔI(P)

R(α⋆I,I, β) .

Also, a similar argument, as from Equations E.1 to E.4, shows thatR(α⋆I,I, β
′) = R(α′, β′), and

hence α⋆I,I is a regret minimizing mixed strategy for the planner in response to adversary’s mixed

strategy β′. This follows from the minimax theorem and that α′ is the regret minimizing mixed

strategy for the planner in response to adversary’s mixed strategy β′. This together implies α⋆I,I is

the regret minimizing mixed strategy for the planner in response to adversary’s mixed strategy β̃. In
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particular, (α′, )

Nowwe use Proposition E.5.1, which shows that there exists a α̃ such that Pα̃(πm) = Pα̃(πℓ),

β̃ ∈ argmax
β∈ΔI(P)

R(α̃, β)

andR(α̃, β̃) = R(α⋆I,I, β̃) = R(α⋆I,I, β
⋆
I,I). We can repeat this process finitely many times to show

to construct a mixed strategy α such that for any two policies π, π′ ∈ A, if there exists a σ such that

φσ(π) = π′ then Pα(π) = Pα(π′), and maxβ∈ΔI(P)(R(α, β)) = R(α⋆I,I, β
⋆
I,I). Since α ∈ ΔM(Π),

we have, without loss of generality α = α⋆M,I.

E.5.3 Proof of Theorem 6.5.2

Let (α⋆M,M, β⋆M,M) be a minmax-maximin regret strategies at the group level. Further, let π, π′ ∈ Π

be such that Pα⋆M,M
(π) > Pα⋆M,M

(π′), and there exists a σ ∈ G such that π′ = φσ(π). Let α be an

planner mixed strategy such that Pα(π) = Pα(π′) =
Pα⋆M,M

(π)+Pα⋆M,M
(π′)

2 . First observe that since

β ∈ ΔM(P),R(π, β) = R(π′, β). It follows from this that (α, β) is also a minmax regret solution

at the group level. We can repeat this process finitely many times to show that for any two policies

π, π′ ∈ Π, if there exists a σ such that φσ(π) = π′ then Pα(π) = Pα(π′).

E.5.4 Proof of Theorem 6.5.3

Let (α⋆M,M, β⋆M,M) be a minimax-maximin regret strategies at the group level. Also, let β⋆ be the re-

gret maximizing strategy of the adversary at the individual level against the planner’s mixed strategy

α⋆M,M, that is

β⋆ = argmax
β∈ΔI(P)

R(α⋆M,M, β)
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Further, let (α⋆I,I, β
⋆
I,I) be a minimax-maximin regret strategies at the individual level. In particular,

from the minimax theorem

β⋆I,I = max
β∈ΔI(P)

R(α⋆I,I, β)

Hence, we wish to showR(α⋆M,M, β⋆) = R(α⋆I,I, β
⋆
I,I). Now let (α⋆M,I, β

⋆
M,I) be a minimax-maximin

regret strategies, when the planner plays at group level (from ΔM(Π)) and the adversary plays at the

individual level (from ΔI(P)). Hence, again from the minimax theorem

β⋆M,I = max
β∈ΔI(P)

R(α⋆M,I, β)

Recall from Theorem 6.5.1, we have

R(α⋆I,I, β
⋆
I,I) = R(α⋆M,I, β

⋆
M,I)

Hence, to prove the theorem it is sufficient to show thatR(α⋆M,M, β⋆) = R(α⋆M,I, β
⋆
M,I). Since

(α⋆M,I, β
⋆
M,I)) is a minimax-maximin strategy regret strategies, when the planner plays at group level

(from ΔM(Π)) and the adversary plays at the individual level, we have

R(α⋆M,M, β⋆) ≥ R(α⋆M,I, β
⋆
M,I)

Suppose for contradiction

R(α⋆M,M, β⋆) > R(α⋆M,I, β
⋆
M,I) (E.5)

Now we have the following two equations:

R(α⋆M,M, β⋆) ≥ R(α⋆M,M, β⋆M,I) (E.6)

R(α⋆M,M, β⋆M,I) ≥ R(α⋆M,I, β
⋆
M,I) (E.7)
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Equation E.6 follows from β⋆ being the regret maximizing strategy of the adversary at the individ-

ual level against the planner’s mixed strategy α⋆M,M, and Equation E.7 follows from the minimax

theorem and α⋆M,I, β
⋆
M,I being the minimax maximin regret strategies when the planner plays at the

group level and the adversary plays at the individual level. Now corresponding to Equations E.6 and

E.7 assuming there is an order preserving map (see App. E.5.1) ψ : ΔI(P) → ΔM(P), we have

R(α⋆M,M, ψ(β⋆)) ≥ R(α⋆M,M, ψ(β⋆M,I)) (E.8)

R(α⋆M,M, ψ(β⋆M,I)) ≥ R(α⋆M,I, ψ(β
⋆
M,I)) (E.9)

Equation E.8 follows from property 1 of the order preserving map, and Equation E.9 follows from

property 2. From Equations E.5, E.8 and E.9, we have

R(α⋆M,M, ψ(β⋆)) > R(α⋆M,I, ψ(β
⋆
M,I)) (E.10)

Finally we use property 2 of the order preserving map to claim the following two equations,

R(α⋆M,M, ψ(β⋆)) = R(α⋆M,M, β⋆M,M) (E.11)

R(α⋆M,I, ψ(β
⋆
M,I)) = max

β∈ΔM(P)
R(α⋆M,I, β) (E.12)

Both equations require property 2 of the order-preserving map. Additionally, Equation E.11, fol-

lows because β⋆ (resp. β⋆M,M) is regret maximizing for adversary at the individual level (resp. at the

group level) against planner’s strategy α⋆M,M, and Equation E.12 follows because β⋆M,I is regret max-

imizing for adversary at the individual level against planner’s strategy α⋆M,I. Hence, from Equations

E.10, E.11 and E.12, we have

R(α⋆M,M, β⋆M,M) > max
β∈ΔM(P)

R(α⋆M,I, β)
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The above equation contradicts the worst-case minimality of α⋆M,M, when both players play at the

group level. Hence, we haveR(α⋆M,M, β⋆) ≥ R(α⋆M,I, β
⋆
M,I).

E.6 Minimizing/MaximizingWhittle Indices

The binary quadratic program for simultaneously maximizing and/or minimizing the Whittle in-

dices over one or more states of a group, given a set of interval parameter ranges on the transitions

probabilities [Ps,a,s′ ,Ps,a,s′ ], namedMinMaxWhittleBQP is given as follows:

min
Ws′

∑
s′∈I(S)

θs′Ws′ Primary objective

min
Vs′

∑
s′∈I(S)

Vs′(s′,Ws′) Secondary objective

s.t.

Qs′(s, a,Ws′) = R(s)−Ws′C(a) + γT(s, a, ·)⊺Vs′(·,Ws′)

Vs′(s,Ws′) ≥ Qs′(s, a,Ws′)

Vs′(s,Ws′) ≤ Qs′(s, a,Ws′) + b(s, a, s′)M

∀s ∈ S, a ∈ A, s′ ∈ I(S)∑
a∈A

b(s, a, s′) = |A| − 1

∀s ∈ S, s′ ∈ I(S)

Ws′ = γ
[
T(s′, 1, ·)⊺Vs′(·,Ws′)− T(s′, 0, ·)⊺Vs′(·,Ws′)

]
∀s′ ∈ I(S)

T(s, a, s′′) ∈ [Ps,a,s′′ ,Ps,a,s′′ ]

∀s ∈ S, a ∈ A, s′′ ∈ S

(E.13)
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Where I(S) is the set of all states for which the users wants to jointly optimize Whittle indices,

θs′ ∈ {−1, 0, 1} is the “sense” for the corresponding index to optimize, i.e., 1 to minimize,−1 to

maximize, or 0 to not optimize the index for that state (note that θ corresponds to obj in Alg. 6.4.2),

Ws′ is the Whittle index for state s′,V andQ are the state and state-action value functions, respec-

tively, C(a) = a is the cost of an action, b is a binary variable that serves to enforce one of theQ

constraints onV to be tight (ensuring the value function is solved, and thus Whittle index is valid),

M is a large number, e.g., 104, T are variables that hold the transition probabilities,R(s) = s is the

reward, and γ is the discount factor. Note that all T⊺V terms are quadratic, since both T andV are

variables in this optimization.

E.7 Double Oracle andWhittle Index Algorithms

The outer loop of the double oracle algorithm is given in Alg. E.7.1. We also give ComputeWI

in Alg. E.7.2, our binary-search based method for computing the Whittle index, given transition

probabilities for a group Pm and a state s. Note also that ComputeWI could be implemented by

using MaxWhittleBQP, and a small wrapper function to adjust the input appropriately. That

is, MaxWhittleBQP expects intervals over transition parameters Pm, but computing the Whittle

index only requires some choice of Pm in the intervals. Thus the wrapper needs to encode Pm as

intervals, which can be accomplished by copying each transition probability of Pm to an interval

with the same upper and lower bound, for each s, a, s′. Then, to get the Whittle index for a certain

state of the groupm, the wrapper should pass in a sense that negative-one-hot encodes the desired

state. E.g., if one wants to compute the index for state s = 1 for an arm with two states, the wrapper

should pass in a sense θ = [0,−1]. With the above described inputs, specifically since the intervals

will have the same upper and lower bound, the quadratic terms in the MaxWhittleBQP will

become constant, effectively turning the binary quadratic program into a binary linear program
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Algorithm E.7.1Double Oracle
Input: Grouped RMAB simulator and parameter uncertainty intervals Pm for all groups.
Parameters: Number of iterations T
Output: Agent mixed strategy α
1: P0 = {P0}, with P0 selected at random
2: Π0 = {πB1 , πB2 , . . .}, where πBi are baseline and heuristic strategies
3: for epoch e = 1, 2, . . . ,T do
4: Solve for (αe, βe), mixed Nash equilibrium of regret game with strategy sets Pe−1 and

Πe−1
5: πe = WI4MS(βe)
6: Pe = RegretMaxWI(αe)
7: Pe = Pe−1 ∪ {Pe},Πe = Πe−1 ∪ {πe}
8: return αe

that does not search over transition probabilities for the best Whittle index, but simply returns the

Whittle index of the given transition probabilities. This represents a new way to compute Whittle

indices that could also be of general interest.

E.8 Evaluating EachOracle

Planner oracle We verify empirically that the planner oracle, described in Section 6.4.1, pro-

duces high quality best responses, i.e., reward-maximizing RMAB intervention policies π, across

various problem sizes and intervals. As baselines, we compare against: No action (NA)which sim-

ulates the policy that takes action a = 0 on all arms at all time steps, representing a lower bound

on reward;Randomwhich takes action a = 1 onK randomly chosen arms each round; and Brute

Forcewhich enumerates the entire feasible RMAB policy space, simulates the average reward of

each policy, then returns the reward of the best-performing policy. Brute force can only be com-

puted for small problem sizes, since its computation cost is exponential inN andK. We evaluate on

test data generated by, for each seed, randomly sampling transition intervals [Pms,a,s′ ,P
m
s,a,s′ ] ∀c, s, a, s′,

and randomly sampling a mixed nature strategy. Results, shown in Fig. E.1, are reported as the aver-
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Algorithm E.7.2 Compute Whittle Index (ComputeWI)
Input: Groupm, state sI, transition probabilities Pm for groupm, tolerance ε.
Output: Whittle indexWm(sI)
1: ub, lb = InitBSBounds(Pm) {Return upper and lower bounds onWm(sI) given Pm,

e.g., 1, 0.}
{Now binary search for the Whittle index}

2: while ub− lb > ε do
3: λ = ub+lb

2
4: a = ValueIteration(Pm, sI, λ) {Run value iteration for the MDP defined by Pm

with λ-adjusted reward function r(s, a, λ) = s − aλ, and return corresponding
π⋆(sI)}

5: if a=0 then
6: ub = λ {Charging too much, decrease}
7: else if a=1 then
8: lb = λ {Can charge more, increase}
9: Wm(sI) = ub+lb

2
10: returnWm(sI)

age reward over ten random seeds. Our approach, WI4MS performs nearly as well as brute force for

the small problem size, and outperforms all baselines as the problem size increases to the scale of the

maternal health intervention problem.

Adversary oracle We verify empirically that the adversary oracle, described in Section 6.4.2,

produces high quality best responses, i.e., regret-maximizing environments P, across various prob-

lem sizes and intervals. As baselines, we compare against: Randomwhich selects an P by uniformly

randomly sampling Pm ∈ Pm ∀m ∈ [M] and Brute Forcewhich (1) discretizes the adversary’s

pure strategy space intoD = 3 uniformly spaced values for each interval [Pms,a,s′ ,P
m
s,a,s′ ], (2) enu-

merates all possible combinations of the discrete environment setting, denoted Pd, (3) simulates the

average regret induced by each Pd by simulating the optimal WIP against Pd and simulating some

input planner mixed strategy α against Pd, then taking the difference, (4) then returns the regret of

the best-performing Pd. Brute force can only be computed for small problem sizes, since its compu-
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tation cost is exponential inN,K, andD. For instance, even forN = 2,K = 1, andD = 3 brute

force enumerates ∼60k choices of Pd. We evaluate on test data generated by randomly sample tran-

sition intervals [Pms,a,s′ ,P
m
s,a,s′ ] ∀c, s, a, s′. Also, since our adversary oracle implementation requires as

input both a planner mixed strategy α and its corresponding mixed adversary β of someMSNE (see

Alg. 6.4.2), we generate inputs to the oracle by first randomly generating agent and adversary pure

strategy sets according to the sampled [Pms,a,s′ ,P
m
s,a,s′ ], then running one iteration of the double oracle

using these strategy sets to generate the required α and β. Results, shown in Fig. E.2, are reported as

the average reward over ten random seeds. Our approach, RegretMaxWI performs nearly as well

as brute force for the small problem size, and vastly outperforms the naive random baseline even as

the problem size increases to the scale of the maternal health intervention problem.

Figure E.1: Evaluating planner oracle best response quality (WI4MS). Objective is to maximize reward (higher is better).
No Action simulates the policy that takes action a = 0 on all arms at all time steps, representing a lower bound on
reward. Random takes action a = 1 onK randomly chosen arms each round. Brute Force enumerates the entire fea‐
sible RMAB policy space, simulates the average reward of each policy, then returns the reward of the best‐performing
policy. Brute force can only be shown for small problem sizes, since its computation cost is exponential inN andK. Our
approachWI4MS performs well across all problem sizes.

E.9 Runtime Scalability of GROUPS

In Fig. E.3 we demonstrate the runtime improves achieved by our GROUPS robust planning

method as the number of groupsM decreases, with number of armsN held constant. Given Thm 6.5.3,

this demonstrates that we can achieve large scaling up of our robust planning without losing perfor-
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Figure E.2: Evaluating adversary oracle best response quality. Objective is to maximize regret (higher is better). Our ap‐
proach, RegretMaxWI, performs nearly as well as a discretized brute force algorithm for small problems, and continues
to perform far better than naive strategies for larger problems where brute force is intractable.

mance, under some mild assumptions, e.g., similarity of groups of arms.

Figure E.3: Run time scalability of GROUPS. Holding the number of armsN constant, the runtime of GROUPS improves
significantly as the number of groupsM decreases.

E.10 Experiment Setup Details

All algorithms were implemented in Python 3.7.4 and mathematical programs were solved using

Gurobi version 9.0.3 via the gurobipy interface58. Experiments were run on a cluster running Cen-

tOS with Intel(R) Xeon(R) CPU E5-2683 v4 @ 2.1 GHz with 8GB of RAM and four processors.

To compute regret, we simulate each planner strategy against the full set of the adversary’s pure

strategies (i.e., environment parameter settings, including both those computed by the adversary or-

acle as well as baseline responses pessimist, median, optimist, and random) to determine that which

maximizes regret.
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Figure E.4: More experimental results evaluating the regret (lower is better) incurred by GROUPS, our robust solution
approach, compared to non‐robust baselines across a variety of problem settings. Regret is interpreted, in real‐world
terms, as the maximum preventable missed messages across the uncertainty space. The problem setting used by ARM‐
MAN, which we use as default values, areK = 100,H = 10,N = 15,320, actual group size, andM = 40 groups.
Experiment (a) uses real data obtained from104; (b) and (c) use randomly sampled data, as described in section E.12.
Each result is averaged over 30 random seeds.

6 7 8 9 10 11 12

Number of Arms N (and Clusters M)

102

103

104

R
un

ti
m

e
(l

og
10

(s
ec

on
ds

))

Runtime vs Number of Arms (K = 1, M = N)

DDLPO

GROUPS

Figure E.5: Run time scaling of DDLPO 83 vs GROUPS. GROUPS is hundreds of times faster than DDLPO.

E.11 ARMMANConsent for Data Collection and Analysis

In this section, we provide information about consent related to data collection, analyzing data, data

usage and sharing. We highlight that this work is part of a long-standing research collaboration with

ARMMAN, with continuous analysis of data performed in close consultation with ARMMAN

researchers.
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E.11.1 Secondary Analysis and Data Usage

This study falls into the category of secondary analysis. To evaluate the performance of the algo-

rithms, we use unlinked, anonymized data generated during the course of implementation of the

program, i.e., previously collected engagement trajectories of different beneficiaries participating

in the service call program. The proposed algorithms are evaluated via a simulation-based method

discussed in Section 6.6. This work does not involve deployment of the proposed algorithm or any

other baselines to the service call program.

E.11.2 Consent for Data Collection and Sharing

The consent for collecting data is obtained from each of the participants of the service call program.

The data collection process is carefully explained to the participants to seek their consent before

collecting the data. The data is anonymized before sharing with us to ensure anonymity. Data ex-

change and use was regulated through clearly defined exchange protocols including anonymization,

read-access only to researchers and restricted use of the data for research purposes only.

E.11.3 Universal Accessibility of Health Information

To allay further concerns: this simulation study focuses on improving quality of service calls. Even

in the intended future application, all participants will receive the same weekly health information

by automated message regardless of whether they are scheduled to receive service calls or not. The

service call program does not withhold any information from the participants nor conduct any ex-

perimentation on the health information. The health information is always available to all partici-

pants, and participants can always request service calls via a free missed call service. In the intended

future application our algorithmmay only help schedule additional service calls to help beneficia-

ries who are likely to drop out of the program.
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E.12 Domain Descriptions

Maternal health The data used in chapter 6 are anonymized, aggregated summary statistics

of engagement behavior of mothers enrolled in ARMMAN’s mMtira program, and does not contain

any demographic information.

From the full dataset of 23,008 mothers, we chose a subset of 15,336 mothers from this cohort

who have a least one record of intervention, then computed summary statistics (i.e., frequentist

transition probabilities) over that subset. To create an arm–group mapping, we run K-means clus-

tering on those probabilities, and compute uncertainty intervals via bootstrapping followed by mul-

tiple imputation to compute standard deviations of the means140.

We now describe how we set up the environment settings used for each simulation variant. As

mentioned, the experiments in Figure 6.3(g)–(i) use the summary engagement statistics from AR-

MMAN. To vary the simulated number of mothers in Figure 6.3(i), we begin with the groupings

from the summary data but scale up the number of mothers in each group by a factor of 10 and 20

to reach 153.2K and 306.4K mothers, respectively, with budget scaled accordingly toK = 1000 and

K = 7000.

Statistics on the uncertainty intervals and group sizes for the summary ARMMAN dataset are

displayed in Figures E.6 and E.7, respectively.

TB Derived from data obtained from82, which contains anonymous records of daily adherence

to tuberculosis (TB) medication. We used the 8,350 records with at least 30 days of adherence data.

Though not collected in a grouped RMAB setting, we augmented the data to have groups by run-

ning K-Means grouping on the passive transition probabilities, and simulated uncertainty intervals

for passive and active transitions as Aσ standard deviations of the mean of group centers. We then

simulated uncertainty intervals: (1) for the passive transition probabilities as Aσ standard deviations
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(default Aσ = 3) about each group center and (2) for the active transition probabilities by adding

a random value η ∼ N(0.3, 0.3) to the corresponding passive transition (i.e., always preferable to

act), and creating an uncertainty interval about the mean 1.5×width of the passive uncertainty (i.e.,

less knowledge of active transitions vs. passive). These specific values were chosen to calibrate uncer-

tainties to roughly match those of the maternal health domain, for which uncertainty statistics were

available.

Statistics on the uncertainty intervals and group sizes for the TB dataset are displayed in Figures

E.8 and E.9, respectively.

Synthetic A benchmark domain from Killian et al. 83 comprised of three “arm types” [U,V,W],

each with their own intervals, designed so that non-robust policies have higher regret than robust

ones. Specifically,

Tn
s=0 =

0.5 0.5

0.5 0.5

 , Tn
s=1 =

 1.0 0.0

1− pn pn

 (E.14)

where

pU ∈ [0.00, 1.00]

pV ∈ [0.05, 0.90]

pW ∈ [0.10, 0.95]

.

We augment the domain to allow homogeneous groups of each arm type, where the size and pro-

portion of groups of each type may vary.

Randomly sampled data Used in Figure 6.3(b)–(c), we randomly generate transition proba-

bilities and group sizes, drawn from normal distributions. We ensure that these transition probabil-

ities are valid, that is that the probability transitioning to (or remaining in) the good state (s′ = 1)

with intervention (a = 1) is always higher than the probability of not intervening (a = 0), and
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similarly that the probability when starting in the engaging state (s = 1) is always higher than the

probability of starting in the not engaging state (s = 0).

0.0 0.2 0.4 0.6 0.8 1.0
P(1, 1, 1)
P(0, 1, 1)
P(1, 0, 1)
P(0, 0, 1)

P(
s,

a,
s′

)

Interval width

0.0 0.2 0.4 0.6 0.8 1.0

Interval mean

Figure E.6: Statistics on the uncertainty intervals from the ARMMAN data, averaged over 40 groups. Left shows the
distribution of interval widths over all 40 groups. Right shows the distribution of interval midpoints over all 40 groups.
Some uncertainty intervals are wider than 0.8, but the majority have width below 0.4. Uncertainty intervals of most
groups are in the range [0.3, 0.7].
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Figure E.7: Distribution of group sizes for the ARMMAN data.
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Figure E.8: Summary statistics on the uncertainty intervals from TB data obtained from82, averaged over 60 groups.
Left shows the distribution of interval widths over all groups. Right shows the distribution of interval midpoints over all
groups. In general, transition probability medians are closer to 1 for this domain than the ARMMAN domain.
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Figure E.9: Distribution of group sizes for TB adherence data.
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