
A PROOF OF CONVERGENCE FOR MAIQL
In this section, we provide a detailed proof of the convergence for

MAIQL. We begin by stating 2 standard assumptions for establish-

ing the convergence guarantee of Q-learning in the average-reward

setting, and then add a third that’s required for two time-scale

convergence.

Assumption 1 (Uni-chain Property). There exists a state 𝑠0
that is reachable from any other state 𝑠 ∈ 𝑆 with a positive probability
under any policy.

This property formalises the notion that there aren’t any ‘forks’ in

theMDP, in each of which very different outcomes could occur. This

is important because, if there were a fork, the notion of ‘average’

reward would be ill-defined as it would depend on which ‘fork’ gets

taken.

Assumption 2 (Asynchronous Update Step-Size). The se-

quence of step-sizes {𝛼 (𝑡)} satisfy the following properties for any

𝑥 ∈ (0, 1):
sup

𝑡

𝛼 (⌊𝑥𝑡⌋)
𝛼 (𝑡) < ∞

sup

𝑦∈[𝑥,1]

������
∑ ⌊𝑦𝑡 ⌋
𝑚=0

𝛼 (𝑚)∑𝑡
𝑚=0

𝛼 (𝑚)
− 1

������ → 0

This is a condition that is required to show that updating 𝑄 (𝑠, 𝑎 𝑗 )
values one at a time with an 𝜖-greedy policy is equivalent to updat-

ing all the 𝑄 (𝑠, 𝑎 𝑗 ) values together, in expectation.

Assumption 3 (Relative Step-Size). The two sequences of step-

sizes, {𝛼 (𝑡)} and {𝛾 (𝑡)}, satisfy the following properties:

(A) Fast Time-Scale:

∞∑
𝑡=0

𝛼 (𝑡) → ∞,

∞∑
𝑡=0

𝛼2 (𝑡) < ∞

(B) Slow Time-Scale:

∞∑
𝑡=0

𝛾 (𝑡) → ∞,

∞∑
𝑡=0

𝛾2 (𝑡) < ∞

(C) lim

𝑡→∞
𝛾 (𝑡)
𝛼 (𝑡) → 0

An example of possible step sizes for which this condition is true is

𝛼 (𝑡) = 1

𝑡 and 𝛾 (𝑡) = 1

𝑡 log 𝑡
. In our experiments we use 𝛼 (𝑡) = 𝐶

⌈ 𝑡
𝐷
⌉ ,

and 𝛾 (𝑡) = 𝐶′

1+⌈ 𝑡 log(𝑡 )
𝐷

⌉
.

We then detail the proof for Theorem 4.3 below. This proof

involves mapping the discrete Q and _ updates from the MAIQL

algorithm (Section 4) to updates in an equivalent continuous-time

Ordinary Differential Equation (ODE). This conversion then allows

us to use the analysis tools created to analyse the evolution of two-

timescale ODEs to show that our coupled updates converge. The

proof detailed below broadly follows along the lines of Avrachenkov

and Borkar [3], but where they discuss convergence in the binary

action case, we generalize their proof to the multi-action scenario

by using the notion of multi-action indexability from [12].

Theorem 4.3. MAIQL converges to the optimal multi-action index

_∗𝑠,𝑎 for a given state 𝑠 and action 𝑎 under Assumptions 1, 2, 3, and

the problem being multi-action indexable.

Proof. To convert these discrete updates to ODEs, we map a

given time-step 𝑡 to a point 𝜏 = 𝑇 (𝑡) in a continuous time, such that

any time𝑇 (𝑡) = ∑𝑡
𝑚=0

𝛼 (𝑡). Because we’re parameterising the time

with 𝛼 (rather than 𝛾 ) we call 𝜏 the fast time-scale. To make this

more concrete, we define 𝑄 (𝜏) as a function of the Q-value with

time, and set 𝑄 (𝑇 (𝑡)) = 𝑄𝑡
to the value of the Q-function after 𝑡

updates . Then, for values of𝑇 (𝑡) < 𝜏 < 𝑇 (𝑡 +1),𝑄 (𝜏) is assumed to

be linearly interpolated between𝑄𝑡
and𝑄𝑡+1

, creating a continuous

function of 𝜏 . Similarly, we define _(𝜏) such that _(𝑇 (𝑡)) = _𝑡
We can then re-arrange the terms in Equation 9 to create an ODE

that characterises the value of 𝑄 (𝜏):

𝑄𝑡+1 (𝑠, 𝑎 𝑗 ) = 𝑄𝑡 (𝑠, 𝑎) + 𝛼 (𝑡)
[
[𝑟 (𝑠) − _𝑡𝑠,𝑎 𝑗

𝑐 𝑗 − 𝑓 (𝑄𝑡 )

+ max

𝑎′
𝑗
∈{0,1}

𝑄𝑡 (𝑠 ′, 𝑎′𝑗 )] −𝑄
𝑡 (𝑠, 𝑎 𝑗 )

]
⇒

𝑄𝑡+1 (𝑠, 𝑎 𝑗 ) −𝑄𝑡 (𝑠, 𝑎 𝑗 )
𝛼 (𝑡)︸                        ︷︷                        ︸
¤𝑄 (𝜏)

= [𝑟 (𝑠) − _𝑡𝑠,𝑎 𝑗
𝑐 𝑗 − 𝑓 (𝑄𝑡 )

+ max

𝑎′
𝑗
∈{0,1}

𝑄𝑡 (𝑠 ′, 𝑎′𝑗 )] −𝑄
𝑡 (𝑠, 𝑎 𝑗 )

where ¤𝑄 (𝜏) is the derivative of 𝑄 (𝜏) and corresponds to the slope

of the interpolated function in the range (𝑇 (𝑡),𝑇 (𝑡 + 1)).
Similarly, we can re-arrange Equation 10 to get the ODE for _(𝜏):

_𝑡+1

𝑠,𝑎 𝑗
= _𝑡𝑠,𝑎 𝑗

+ 𝛼 (𝑡)
(
𝛾 (𝑡)
𝛼 (𝑡)

)
(𝑄𝑡 (𝑠, 𝑎 𝑗 ) −𝑄𝑡 (𝑠, 𝑎 𝑗−1))

⇒
_𝑡+1

𝑠,𝑎 𝑗
− _𝑡𝑠,𝑎 𝑗

𝛼 (𝑡)︸         ︷︷         ︸
¤_ (𝜏)

=

(
𝛾 (𝑡)
𝛼 (𝑡)

)
(𝑄𝑡 (𝑠, 𝑎 𝑗 ) −𝑄𝑡 (𝑠, 𝑎 𝑗−1)) (16)

Then, if look at Equation 16, we see lim𝜏→∞ ¤_(𝜏) → 0 because,

by Assumption 3 (c), lim𝑡→∞
𝛾 (𝑡 )
𝛼 (𝑡 ) → 0 and, by Assumption 3 (A),

𝑇 (∞) =
∑∞
𝑡=0

𝛼 (𝑡) → ∞. Therefore, _(𝜏) can be seen as quasi-

static w.r.t. 𝑄 (𝜏) at the fast time-scale. As a result, the updates in

this time-scale correspond to standard Q-Learning for a fixed MDP

defined by the value of _(𝜏). Given Assumptions 1, 3 (A), and 2,

this is known to converge to the optimal Q-values 𝑄∗
_
for the given

value of _(𝜏) [1].
Now, at the slow time-scale 𝜏 ′, we can repeat this continuous-

time re-parameterisation, except with 𝑇 ′(𝑡) =
∑𝑡
𝑚=0

𝛾 (𝑡). Then,
re-arranging Equation 9 in a similar way as above, we get:

𝑄𝑡+1 (𝑠, 𝑎 𝑗 ) −𝑄𝑡 (𝑠, 𝑎 𝑗 )
𝛾 (𝑡)︸                        ︷︷                        ︸
¤𝑄 (𝜏 ′)

=

(
𝛼 (𝑡)
𝛾 (𝑡)

)
[𝑟 (𝑠) − _𝑡𝑠,𝑎 𝑗

𝑐 𝑗 − 𝑓 (𝑄𝑡 )

+ max

𝑎′
𝑗
∈{0,1}

𝑄𝑡 (𝑠 ′, 𝑎′𝑗 )] −𝑄
𝑡 (𝑠, 𝑎 𝑗 )

Now, given that lim𝑡→∞
𝛼 (𝑡 )
𝛾 (𝑡 ) → ∞, and from the argument

above about the Q-values converging in the fast time-scale, we can

see the interpolated _(𝜏 ′) value as tracking the converged Q-values
𝑄∗
_ (𝜏 ′) (for that value of _(𝜏

′)). Then, we can write the ODE for

_(𝜏 ′) as:
¤_(𝜏 ′) = 𝑄∗

_ (𝜏′) (𝑠, 𝑎 𝑗 ) −𝑄
∗
_ (𝜏 ′) (𝑠, 𝑎 𝑗−1)

where 𝑄∗
_ (𝜏′) corresponds to the optimal Q-values corresponding

to the given value of _(𝜏 ′).
Now, if _(𝜏 ′) < _∗𝑠,𝑎 𝑗

(the multi-action index for state 𝑠 and

action 𝑎 𝑗 ), by the definition of the multi-action index from the main

Q-Learning Lagrange Policies for Multi-Action Restless Bandits
Online Appendix



text, we know that an action of weight 𝑐 𝑗 or higher is preferred.

As a result, we see that
¤_(𝜏 ′) > 0 in that case. If _(𝜏 ′) > _∗𝑠,𝑎 𝑗

, the

opposite is true and so
¤_(𝜏 ′) < 0. Then, because _(0) = 0 is bounded

and given the step-sizes in Assumption 3 (B), _(𝜏 ′) converges to
an equilibrium in which 𝑄∗

_
(𝑠, 𝑎 𝑗 ) −𝑄∗

_
(𝑠, 𝑎) → 0.

Given that, by definition, _∗ (𝑠, 𝑎 𝑗 ) is the value at which𝑄∗
_
(𝑠, 𝑎 𝑗 ) =

𝑄∗
_
(𝑠, 𝑎 𝑗−1), _(𝜏 ′) converges to the multi-action index. □

This is a high-level proof, but the specific conditions for con-

vergence can be seen in Lakshminarayanan and Bhatnagar [20].

They require 5 conditions: (1) Lipschitzness, (2) Bounded ‘noise’,

(3) Properties about the relative step-sizes, (4) Convergence of fast

time-scale, and (5) Convergence of slow time-scale.

Of these, (1)-(4) proceed inmuch the sameway as in Avrachenkov

and Borkar [3] because they do not depend on the multi-action ex-

tension of indexability. In addition, it is easy to show that the proof

of (5) from Avrachenkov and Borkar [3] extends to the multi-action

case which considers the limiting value of 𝑄 (𝑠, 𝑎 𝑗 ) − 𝑄 (𝑠, 𝑎 𝑗−1)
rather than 𝑄 (𝑠, 1) − 𝑄 (𝑠, 0). As a result, we refer the reader to

Avrachenkov and Borkar [3] for the complete proof.

B REPRODUCIBILITY
Code is available at https://github.com/killian-34/MAIQL_and_

LPQL. All the Q and _ values are initiated to zero in all the ex-

periments. The parameter settings used for the two process type,

random, and medication adherence data experiments are included

in Tables 1, 2, and 3, respectively. 𝐶 is the multiplier for the size of

the Q-value updates. 𝐶 ′
is the multiplier for the size of the index

value updates. “Rp/dream” is the number of replays per dream. “Rp

T” is the replay period (replay every T steps). _-bound is the up-

per bound (and negative of the lower bound) imposed on values

of the indices for WIBQL and MAIQL during learning – placing

these bounds sometimes helps prevent divergent behavior in early

rounds when updates are large – _max is the upper bound value

that an index could take, as defined by the problem parameters, i.e.,

max{𝑟 }
min{C}(1−𝛽) [18].𝐷 is the divisor of the decaying 𝜖-greedy function

as well as the divisor of 𝛼 (𝑡) and 𝛾 (𝑡), the decaying functions defin-
ing the size of the updates of Q-values and index values, defined in

the previous section. 𝜖0 is the multiplier for the 𝜖-greedy function.

𝑛𝑙𝑎𝑚 is the number of points in _-space used to approximate the

Q(s, a, _)-functions in LQPL and MAIQL-Aprx. All values were

determined via manual tuning – empirically we found that most

parameter settings led to similar long-term performance between

algorithms, as long as the settings did not cause the algorithms to

diverge. In the tables, M-Aprx stands for MAIQL-Aprx.

C ALGORITHM PSEUDOCODES
See Algorithms 1 and 2 for the update and action selection steps of

MAIQL and Algorithms 3 and 4 for the update and action selection

steps of LPQL. The linear program for Oracle-LP-Index for a given

current state 𝒔𝑐𝑢𝑟 and action 𝑎𝑘 is given below:

WIBQL QL-_=0 MAIQL M-Aprx LPQL

C 0.1 0.2 0.1 0.4 0.4

𝐶 ′
0.2 - 0.2 - -

Rp/dream NA 1000 1000 1000 NA

Rp T 1E+06 100 10 100 1E+06

_-bound 3 - 3 3 3

D 500 500 500 500 500

𝜖0 0.99 0.99 0.99 0.99 0.99

𝑛𝑙𝑎𝑚 - - - 3000 3000

Table 1: Parameter settings for two process experiment.

WIBQL QL-_=0 MAIQL M-Aprx LPQL

C - - 0.2 0.8 0.8

𝐶 ′
- - 0.4 - -

Rp/dream - - 1000 NA NA

Rp T - - 100 1E+06 1E+06

_-bound - - _max _max _max

D - - 500 500 500

𝜖0 - - 0.99 0.99 0.99

𝑛𝑙𝑎𝑚 - - - 2000 2000

Table 2: Parameter settings for random data experiment.

WIBQL QL-_=0 MAIQL M-Aprx LPQL

C - 0.8 0.05 0.8 0.8

𝐶 ′
- - 0.1 - -

Rp/dream - 1000 1000 1000 1000

Rp T - 10 5 5 5

_-bound - - _max _max _max

D - 1000 2000 1000 1000

𝜖0 - 0.99 0.99 0.99 0.99

𝑛𝑙𝑎𝑚 - - - 2000 2000

Table 3: Parameter settings for adherence data experiment.

min

𝑉 𝑖 (𝑠𝑖 ,_𝑖 ),_𝑖

𝑁−1∑
𝑖=0

_𝑖𝐵

1 − 𝛽 +
𝑁−1∑
𝑖=0

`𝑖 (𝑠𝑖 )𝑉 𝑖 (𝑠𝑖 , _𝑖 )

s.t. 𝑉 𝑖 (𝑠𝑖 , _𝑖 ) ≥ 𝑟 𝑖 (𝑠𝑖 ) − _𝑖𝑐 𝑗 + 𝛽
∑
𝑠𝑖′
𝑇 (𝑠𝑖 , 𝑎𝑖𝑗 , 𝑠

𝑖 ′)𝑉 𝑖 (𝑠𝑖 ′, _𝑖 )

∀𝑖 ∈ {0, ..., 𝑁 − 1}, ∀𝑠𝑖 ∈ S, ∀𝑎 𝑗 ∈ A

𝑟 𝑖 (𝑠𝑖𝑐𝑢𝑟 ) − _𝑖𝑐𝑘 + 𝛽
∑
𝑠𝑖′
𝑇 (𝑠𝑖𝑐𝑢𝑟 , 𝑎𝑖𝑘 , 𝑠

𝑖 ′)𝑉 𝑖 (𝑠𝑖 ′, _𝑖 ) =

𝑟 𝑖 (𝑠𝑖𝑐𝑢𝑟 ) − _𝑖𝑐𝑘−1
+ 𝛽

∑
𝑠𝑖′
𝑇 (𝑠𝑖𝑐𝑢𝑟 , 𝑎𝑖𝑘−1

, 𝑠𝑖 ′)𝑉 𝑖 (𝑠𝑖 ′, _𝑖 )

∀𝑖 ∈ {0, ..., 𝑁 − 1}
_𝑖 ≥ 0 ∀𝑖 ∈ {0, ..., 𝑁 − 1}

(17)

The LP is similar to Eq. 11, but differs in two ways. First, instead

of having a single _ value across all arms, each arm has its own

https://github.com/killian-34/MAIQL_and_LPQL
https://github.com/killian-34/MAIQL_and_LPQL


independent _𝑖 value. Second, the second group of constraints is

new, and forces the _𝑖 values to be set such that the planner would

be indifferent between taking the action in question 𝑎𝑘 or the action

that is one step cheaper 𝑎𝑘−1
, which follows exactly the definition

of the multi-action indexes. Note that although the indexes can

each be computed independently, for convenience, we compute

the index for a given 𝑎𝑘 for each arm simultaneously to reduce

overhead, as given in the above LP.

The ActionKnapsackILP referenced in Algorithm 4 is the same

as the modified knapsack given in Killian et al. [18], reproduced

below:

max

𝑨

𝑁−1∑
𝑖=0

𝑀−1∑
𝑗=0

𝑨𝑖 𝑗𝑄𝒔,_𝑖𝑛𝑑 (𝑖, 𝑎 𝑗 )

s.t.

𝑁−1∑
𝑖=0

𝑀−1∑
𝑗=0

𝑨𝑖 𝑗𝑐 𝑗 ≤ 𝐵

𝑀−1∑
𝑗=0

𝑨𝑖 𝑗 = 1 ∀𝑖 ∈ 0, . . . , 𝑁 − 1

𝑨𝑖 𝑗 ∈ {0, 1}

(18)

where 𝑄𝒔,_𝑖𝑛𝑑 (𝑖, 𝑎 𝑗 ) is the 𝑄-function for each arm filtered to the

current state of the arms, 𝒔, and minimizing value _𝑖𝑛𝑑 , as given by

the penultimate line of Algorithm 4.

RandomAction, referenced in Algorithms 2 and 4, chooses ran-

dom actions through the following iterative procedure: (1) randomly

choose an arm with uniform probability, (2) randomly choose an

action with probability inversely proportional to one plus its cost

(must add one to avoid dividing by 0 for no-action). The procedure

iterates until the budget is exhausted.

Algorithm 1:MAIQL Update

Data: 𝑄 ∈ R𝑁×|S |×( |A |−1)×|S |×|A |
, // Need one copy

of 𝑄 [𝑠, 𝑎] for each index on each arm

_ ∈ R𝑁×|S |×( |A |−1) , // multi-action index

estimates

Batch, C, // Experience tuples, action costs

𝑡, a (·), // iteration, state-action counter

S,A, 𝑁 // state space, action space, # of arms

Hyperparameters: 𝛽,𝐶,𝐶 ′, 𝐷 // See maintext

for (𝑛, 𝑠, 𝑎, 𝑟, 𝑠 ′) ∈ Batch do
𝛼 = 𝐶

⌈ a (𝑠,𝑎,𝑛)
𝐷

⌉
for 𝑖 ∈ 0, . . . , |S| do

for 𝑗 ∈ 1, . . . , |A| do
𝑄 [𝑛, 𝑖, 𝑗, 𝑠, 𝑎] += 𝛼 (𝑟 − C[𝑎] ∗ _[𝑖, 𝑗] + 𝛽 ∗

max{𝑄 [𝑛, 𝑖, 𝑗, 𝑠 ′]} −𝑄 [𝑛, 𝑖, 𝑗, 𝑠, 𝑎])
if 𝑎 ≠ 0 & 𝑡 (mod 𝑁 ) == 0 then

𝛾 = 𝐶′

1+⌈ a (𝑠,𝑎,𝑛) log a (𝑠,𝑎,𝑛)
𝐷

⌉

_[𝑠, 𝑎] += 𝛾 (𝑄 [𝑛,𝑠,𝑎,𝑠,𝑎])−𝑄 [𝑛,𝑠,𝑎,𝑠,𝑎−1])
C [𝑎]−C [𝑎−1]

return 𝑄 , _

Algorithm 2:MAIQL Action Select

Data: _ ∈ R𝑁×|S |×( |A |−1) , // multi-action index

estimates

𝒔 ∈ R𝑁 // current state of all arms

𝑡, 𝑁 , 𝐵 // current iteration, # of arms, budget

if EpsilonGreedy(𝑡) then
return RandomAction()

else
𝒂 = [0 for _ in range(𝑁 )]
_𝑓 = FilterCurrentState(_, 𝒔) // _𝑓 ∈ R𝑁×( |A |−1)

for 𝑖 ∈ 0 . . . 𝐵 do
𝑖 = arg max(_𝑓 [𝒂 + 1] − _𝑓 [𝒂]) // 𝒂 is a vector
index, arg max ignores out of bounds
indexes

𝑎[𝑖] += 1

return 𝒂

Algorithm 3: LPQL Update

Data: 𝑄 ∈ R𝑁×𝑛𝑙𝑎𝑚 |S |×|A |
, // Need one copy of

𝑄 [𝑠, 𝑎] for each of the 𝑛𝑙𝑎𝑚 test points on
each arm

Batch, C, // Experience tuples, action costs

_max, // Max _ at which to estimate 𝑄

𝑛𝑙𝑎𝑚, // # of _ points at which to estimate 𝑄

a (·) // state-action counter

Hyperparameters: 𝛽,𝐶, 𝐷 // See maintext

for (𝑛, 𝑠, 𝑎, 𝑟, 𝑠 ′) ∈ Batch do
𝛼 = 𝐶

⌈ a (𝑠,𝑎,𝑛)
𝐷

⌉
for 𝑖 ∈ 0, . . . , 𝑛𝑙𝑎𝑚 do

_𝑝 =
𝑖∗_max

𝑛𝑙𝑎𝑚
𝑄 [𝑛, 𝑖, 𝑠, 𝑎] +=
𝛼 (𝑟 −C[𝑎] ∗_𝑝 + 𝛽 ∗max{𝑄 [𝑛, 𝑖, 𝑠 ′]} −𝑄 [𝑛, 𝑖, 𝑠, 𝑎])

return Q

EpsilonGreedy(𝑡), also referenced in Algorithms 2 and 4, draws

a uniform random number between 0 and 1 and returns true if it is

less than 𝜖0/
⌈
𝑡
𝐷

⌉
and false otherwise.

D MEDICATION ADHERENCE SETTING
DETAILS

We used the following procedure to estimate transition probabilities

from the medication adherence data from Killian et al. [19]. First,

we specify a history length of 𝐿. This gives a state space of size 2
𝐿

for each arm. Then, for each patient in the data, we count all of the

occurrences of each state transition across a treatment regimen of

6 months (168 days). If 𝐿 was small (e.g., 1 or 2), we could take a

frequentist approach and simply normalize these counts appropri-

ately to get valid transition probabilities to sample for experiments.

However, as the history length 𝐿 gets larger, the number of non-

zero entries in the count data for state transitions become large.

We take two steps to account for this sparsity. (1) We run 𝐾-means

clustering over all patients, using the count data as features, then



Algorithm 4: LPQL Action Select

Data: 𝑄 ∈ R𝑁×𝑛𝑙𝑎𝑚 |S |×|A |
, // 𝑄-functions for each

of the 𝑛𝑙𝑎𝑚 test points on each arm

𝒔 ∈ R𝑁 // current state of all arms

_max, // Max _ at which 𝑄 is estimated

𝑛𝑙𝑎𝑚, // # of _ points at which 𝑄 is estimated

𝑡, 𝛽 // iteration, discount factor

𝑁, C, 𝐵 // # of arms, action costs, budget

if EpsilonGreedy(𝑡) then
return RandomAction()

𝒂 = [0 for _ in range (𝑁 )]
𝑄 𝑓 = FilterCurrentState(𝑄, 𝒔) // 𝑄 𝑓 ∈ R𝑁×𝑛𝑙𝑎𝑚×|A |

_𝑖𝑛𝑑 = −1

/* The min of Eq. 11 occurs at the point where

the negative sum of slopes of all 𝑉 𝑖 = max{𝑄𝑖
_
}

is ≤ 𝐵/(1 − 𝛽), so we will iterate through our
estimates of 𝑄𝑖

_
and stop our search at the

first point where that is true. */

for 𝑖 ∈ 0, . . . , 𝑛𝑙𝑎𝑚 do
_0

𝑝 =
𝑖∗_max

𝑛𝑙𝑎𝑚

_1

𝑝 =
(𝑖+1)∗_max

𝑛𝑙𝑎𝑚

𝑚𝑉 =
max𝑎 {𝑄 𝑓 [:,𝑖+1] }−max𝑎 {𝑄 𝑓 [:,𝑖 ] }

_1

𝑝−_0

𝑝

// 𝑚𝑉 ∈ R𝑁

if
∑
𝑛{𝑚𝑉 } ≥ − 𝐵

1−𝛽 then
_𝑖𝑛𝑑 = 𝑖

break

𝒂 = ActionKnapsackILP(𝑄 𝑓 [:, _𝑖𝑛𝑑 , :], C, 𝐵)
return 𝒂

combine the counts for all patients within a cluster. Intuitively,

the larger the 𝐾 , the more “peaks” of the distribution of patient

adherence modes we will try to approximate, but the fewer data

points are available to estimate the distribution in each cluster —

however, it may be desirable to have more clusters to allow for some

samples to come from uncommon but “diverse” modes that may be

challenging to plan for. In this paper, we set 𝐾 to 10. (2) We then

take a Bayesian approach, rather than a frequentist approach for

sampling patients/processes from the clustered counts data. That

is, we treat the counts as priors of a beta distribution, then sample

transition probabilities from those distributions according to the

priors. Finally, to simulate action effects, since actions were not

recorded in the available adherence data, we scale the priors mul-

tiplicatively according to the index of the action, i.e., larger/more

expensive actions increase the priors associated with moving to the

adhering state.

In summary, to get a transition function for a single simulated

arm in themedication adherence experimental setting, we do the fol-

lowing. First, randomly choose a cluster, with probability weighted

by the number of patients in the cluster. Then, build up a transition

matrix by sampling each row according to its own beta distribution

with priors given by the counts data (i.e., actual observations of

𝑠 → 𝑠 ′ transitions), scaled by the action effects.

This process was desirable for producing simulated arms with

transition functions tailored to resemble that of a real world dataset,

while allowing for some randomness via the sampling procedure,

as well as a straightforward way to impose simulated action effects.

However, one downside of this approach is that, since each row of

the transition matrix is sampled independently, this may produce

simulated arms whose probability of adherence changes in a non-

smooth manner as a function of history. For example, in the real-

world, we would expect that 𝑃 (0111 → 1111) is correlated with

𝑃 (1011 → 0111) and that 𝑃 (0000 → 0000) is correlated with

𝑃 (1000 → 0000), but our procedure would not necessarily enforce

these relationships if there were not sufficient occurrences of each

transition in the counts data.

The python code used to execute this procedure is included in

the repository at https://github.com/killian-34/MAIQL_and_LPQL.

https://github.com/killian-34/MAIQL_and_LPQL

	Abstract
	1 Introduction
	2 Related Work
	3 Preliminaries and Notations
	4 Algorithm: MAIQL
	4.1 Algorithm
	4.2 Theoretical Guarantees
	4.3 MAIQL Limitations

	5 Algorithm: LPQL
	5.1 Theoretical Guarantees
	5.2 Extending LPQL Update Technique to Approximate MAIQL

	6 Experimental Results
	6.1 Two Process Types
	6.2 Random Matrices
	6.3 Medication Adherence

	7 Conclusion
	Acknowledgments
	References
	A Proof of convergence for MAIQL
	B Reproducibility
	C Algorithm Pseudocodes
	D Medication Adherence Setting Details



