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Abstract

This work quantifies the impact of interventions to curtail mobility and social interactions in order to
control the COVID-19 pandemic. We analyze the change in world-wide mobility at multiple spatio-temporal
resolutions – county, state, country – using an anonymized aggregate mobility map that captures population
flows between geographic cells of size 5 km2. We show that human mobility underwent an abrupt and
significant change, partly in response to the interventions, resulting in 87% reduction of international travel
and up to 75% reduction of domestic travel. Taking two very different countries sampled from the global
spectrum, we observe a maximum reduction of 42% in mobility across different states of the United States
(US), and a 68% reduction across the states of India between late March and late April. Since then, there
has been an uptick in flows, with the US seeing 53% increase and India up to 38% increase with respect to
flows seen during the lockdown. As we overlay this global map with epidemic incidence curves and dates
of government interventions, we observe that as case counts rose, mobility fell – often before stay-at-home
orders were issued. Further, in order to understand mixing within a region, we propose a new metric to
quantify the effect of social distancing on the basis of mobility. We find that population mixing has decreased
considerably as the pandemic has progressed and are able to measure this effect across the world. Finally,
we carry out a counterfactual analysis of delaying the lockdown and show that a one week delay would have
doubled the reported number of cases in the US and India. To our knowledge, this work is the first to model
in near real-time, the interplay of human mobility, epidemic dynamics and public policies across multiple
spatial resolutions and at a global scale.

1 Introduction

The COVID-19 pandemic is arguably the most acute public health emergency since the 1918 influenza
pandemic. It has already infected over 6.67 million people and resulted in 391K deaths across the globe1.
The economic impact is expected to be 3-10 trillion dollars2. The pandemic has affected almost every country
in the world3 and has resulted in an unprecedented response by governments across the world to control
its spread. Pharmaceutical interventions are not generally available at this stage (with the exception of
remdesivir under FDA’s expanded access [1]) and thus, countries have had to rely exclusively on behavioral

∗Equal contribution
†Corresponding author
1Source: https://covid19.who.int/ as of June 04, 2020.
2https://www.un.org/development/desa/en/news/policy/wesp-mid-2020-report.html
3Detailed global cases data available at https://nssac.bii.virginia.edu/covid-19/dashboard/
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interventions that involve some form of social distancing. The rapid spread of the pandemic has forced
countries to institute strict social distancing measures. Each social distancing policy is characterized by: (i)
when and how gradually it started, (ii) the length of time for which it was enforced, (iii) the scope and
pervasiveness, and (iv) the stringency (total lockdown versus stay-at-home advisories). For example, across
the US, social distancing policies were instituted at the state level in a progressive manner: a declaration of a
state of emergency by many states, followed by school closures, with the final extreme measure being stay-at-
home or shelter-at-home orders (SAHO) [2], which saw the closure of recreational centers, parks, restaurant
dine-in services, etc. As a contrast, a country-wide lockdown was instituted in India which subsequently led
to suspended road, rail, and air transport. Non-essential services and schools were closed and individual-level
mobility was severely curtailed.

Evaluating the level of public response to the global, country, and state level restrictions is important
to understand COVID-19 dynamics. However, it is important to do this without compromising individual
privacy. As pointed out by multiple public health experts and demonstrated in the literature [3, 4], aggregate
mobility data, acquired through mobile phone location history, global positioning systems data, direction
requests data, etc., indicate a considerable reduction of activity by individuals during the pandemic, and thus
act as surrogate data sources to understand compliance with social distancing measures. With appropriate
data-sharing policies, these data sources can be used to study social distancing, while also ensuring individual
privacy through a combination of anonymization, aggregation and noising techniques that provide the needed
privacy guarantees. There have been a number of recent studies along these lines, for example, in China
using Baidu data, in the US using mobility data, and at a global scale using airline traffic [5, 6, 7, 8, 9, 10,
11, 12, 13, 14, 15]

The Google COVID-19 Aggregated Mobility Research Dataset (cf. Appendix A, henceforth called in-
terchangeably mobility map or flows) provides a global, time-varying anonymized mobility map of flows at
a resolution of 5km2. Figure 1 provides an overview of the volume of local mobility at the level of cell
resolution, county, state, and country. The data set has guaranteed differential privacy while capturing mo-
bility flows (MF) at every level of spatio-temporal resolution. The global coverage enables us to undertake
multi-scale global analyses of changes in mobility patterns. We combine this data with two additional data
layers: data from the University of Virginia COVID-19 Dashboard4 that provides detailed, global epidemic
surveillance data and data on social distancing guidelines in US states and India (at the national level). The
integrated layered map provides a new way to assess the impact of changes in global mobility patterns on
COVID-19 dynamics. Our analysis can be summarized in the three broad findings described below; more
specific findings and additional discussion can be found in Section 2.5.

First, the global analysis reveals that human mobility underwent an abrupt change in response to the
COVID-19 pandemic. The abrupt change resulted in a 90% daily reduction in international travel between
selected countries5, about 40-50% daily reduction of aggregate human mobility in the United States (US)
and about 60-70% daily reduction of mobility in India during a 30-45 day period starting in late March and
ending in late April. Since the first week of May there has been a steady increase in mobility globally. The
data provides the first empirical global-scale evidence of mobility reduction and confirms various reports
suggesting such a noticeable change.

Second, using the integrated map, we analyze the effects of both a social-distancing advisory and a lock-
down using two countries, the US and India. We choose the two countries due to their size, population
density, epidemiological context and differences in how policies are being implemented. Also, both coun-
tries started implementing social distancing measures at similar times (third and fourth week of March).
Thanks to the resolution of the data, our approach captures mobility patterns at a sub-state level (county
or administrative level 2) as well. In the US, we observe a high degree of correlation between rising case
counts and drop in mobility, with considerable flow reduction occurring before SAHO. In order to quantify
mixing within the population, we create a metric called the social distancing index which indicates that
across counties of the US, population mixing has reduced with the progression of the pandemic. We also
report how inter-state mobility was significantly impacted in both US and India.

Finally, we carry out a counterfactual computational experiment to study the impact of delaying the
lockdowns in the US and India. We find that even a one week delay would have caused substantial increase

4https://nssac.bii.virginia.edu/covid-19/dashboard/
5We have selected a few illustrative countries to keep the discussion tractable, which were salient from an epidemiological

perspective; additional country data can be reported if requested.
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Figure 1: Multiple scales of mobility: mobility flows between 5 km2 grid cells are aggregated to appropriate
spatial resolution for the analyses in this paper. The figure shows progressively the mobility volume at
various S2 cell levels (L12 to L6) and geographical scales (county, state, country and globe).

in the number of infections in both the countries. The results confirm the importance of timely lockdown in
both the countries.

1.1 Methods

Data sets:

Google COVID-19 Aggregated Mobility Research Dataset, which contains the anonymized relative
MF aggregated over users within a 5 km2 cell. All the flow data is aggregated to the county (administrative
level 2) and state (administrative level 1) for the US and India. We refer the reader to Appendix A for a
detailed description of the dataset.
COVID-19 surveillance data via the UVA COVID-19 surveillance dashboard [16]. It contains daily
confirmed cases and death count worldwide. The data is available at the level of a county in the US and at
a state level in India. Daily case counts and death counts are further aggregated to weekly counts.

Metrics:

In order to quantify the effects of social distancing through changes in mobility, we introduce two metrics
namely the Flow Reduction Rate (FRR) and Social Distancing Index (SDI). While FRR measures the
reduction in connectivity of a region to the outside world, SDI measures the change in mixing within the
region. Additionally we use a case growth rate (CGR) and effective reproductive number (Reff ) to quantify
the corresponding changes in case incidence.
Flow Reduction Rate (FRR): One way to measure the impact of social distancing is to compare the
levels of connectivity before and after the SAHO/lockdowns. Given a set of nodes V , with flows from i to j
during week t denoted by fij(t), we first compute the average outflows during the pre-pandemic period for
node i ∈ V as f̄i = 1

|Tp|
∑

tp∈Tp

∑
j∈V fij(tp) over first Tp weeks of year 2020 (in our study we considered
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the first 6 weeks of 2020). For a given node i, FRRi(t) is then defined as

FRRi(t) =

∑
j∈V fij(t)− f̄i

f̄i
. (1)

This defines a unit-less relative change in outflows from node i for any given week t with respect to f̄i.
Henceforth, we omit i and t in the notation. Since MF is mostly symmetric (counting trips in both directions),
without loss of generality we work with outgoing flows. Note that FRR is scale-agnostic and can be computed
for a county, state or country.
Social Distancing Index (SDI): In order to quantify the mixing or movement within a county, we consider
the flows between the 5 km2 cells in it. This is motivated by the fact that, under extreme case of social
distancing (i.e., stay-at-home), the inter-cell flows will be significantly reduced. Let V denote the set of cells
within a county. Let F(t) denote the normalized flow matrix of the county at week t with normalized flow

from cell i to cell j defined as Fij(t) =
fij(t)∑

j∈V fij(t) . We compare F(t) to two matrices, the uniform matrix

U and the identity matrix I. The uniform matrix with entries Uij = 1
|V | , where |V | is the cardinality or the

number of cells in V denotes equiprobable movement between cells and indicates a scenario of high level of
mixing or movement between cells. On the other hand, the identity matrix I, with entries Iii = 1 and zero
otherwise, indicates a scenario where all flows are within a cell and no mixing or flow happens between cells.

The SDI quantifies the closeness of F(t) to U and I and is defined as

SDI(t) =
||F(t)−U||2

||F(t)−U||2 + ||F(t)− I||2
. (2)

SDI(t) value close to one indicates the closeness of F(t) to the identity matrix while a value close to zeros
indicates its closeness to the uniform matrix.
Case count growth rate (CGR): Denoting the new confirmed case count at week t as nt, the CGR of
week t+ 1 is computed as log(nt+1 + 1)− log(nt + 1), where we add 1 to smooth zero counts.
Effective reproductive number (Reff ) [17]: This is the average number of secondary cases per infectious
case in a population made up of both susceptible and non-susceptible hosts. In our study, we use an SEIR
model fitted to the normalized case incidence to estimate Reff as described below.

Simulations:

We evaluate the impact of early measures (SAHO in the US and a curfew-like lockdown in India) along
similar lines as presented in [18]. As for the disease simulation, we employ a compartmental SEIR model
[19, 20] . We set the disease parameters as follows: mean incubation period 5 days, mean infectious period
5 days, delay from onset to confirmation 7 days and case ascertainment rate of 15% [21].
We calibrate a weekly Reff using simulation optimization to match the new confirmed cases per 100k
(smoothed using Savitzky-Golay filter with filter window size of 7) at the state or country level, which
is referred as the normal scenario. We search for Reff in the plausible range. To simulate and compare the
effect of a delayed intervention, we consider two counterfactual scenarios which involve one-week delay and
a two-week delay in imposing said interventions. Accordingly, we extend the Reff schedule by persisting a
Reff value in week t for one (or two) more weeks, and mirror the normal schedule with a one (or two) week
delay. We then simulate using the modified Reff schedule to produce the counterfactual simulated epicurve.
Monte Carlo simulation is applied to quantify the uncertainty by adding noise to Reff with noise level of
AWGN with σ = 0.025. We then report the number of cumulative cases avoided as of May 30 for the
counterfactual scenarios. We also compare the peak time and peak values of the delay scenarios with respect
to the normal scenario for United States.

2 Results

2.1 Global mobility flow analysis

Different countries of the world experienced the effects and reacted differently to the evolving pandemic.
Just considering the mobility and comparing the total outflows in January 2020 (as a baseline) with the
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(a) (b)

Figure 2: (Global Data) Global flow analysis: (a) Inter-country and (b) intra-county MF reduction across
the world with flows from January and April in 2020. The MF are aggregated to country level. FRR
for inter-country flow is computed with flows satisfying i 6= j, while intra-country flow reduction FRR is
computed with flows satisfying i = j. The darker the color, the stronger the flow reduction is. We observe
74% and 87% inter-country flow reduction for the US and India, respectively. The average intra-country
flow reductions for the USA and India are 39% and 72%, respectively.

total outflow in April, we observe a 74% reduction in inter-country mobility in the US, and 87% in India.
Figure 2 shows other countries. The domestic mobility flow reduction for the US and India are 39% and
72%, respectively.

In order to study the impact of social distancing policies on human mobility and COVID-19 dynamics in
parts of the world, we consider at least one country from each continent (except Antartica) and present their
case numbers and respective MF in Figure 3. It is interesting to note that as the pandemic set in, people
from these countries started reducing their mobility. The MF reduction in most of the countries started in
the week of 2020/03/08-2020/03/14. Further, we observe that most countries show a reduction in flow a
week or two prior to the formal lockdown announcements6.

Analysis of the impact of MF on the infection spread in terms of weekly new confirmed cases and
cumulative growth rate (CGR) enables us to understand the interplay between mobility and cases. Towards
this goal, we present MF and the weekly new confirmed case count (in Figure 3b), and MF reduction with
growth of new confirmed cases (in Figure 3c). In all these countries we observe a substantial reduction
in MF. The dynamics of the disease spread are not apparent from the weekly number of new cases but a
consistent drop in CGR over the subsequent weeks indicates a slowing down of the spread of COVID-19
across all countries.

We now turn to an in-depth analysis of mobility and disease dynamics for the US and India, which in
many ways span the spectrum of human mobility, social distancing, government interventions, and COVID-19
dynamics.

2.2 Research findings for the US

Temporal analysis of MF changes with the COVID-19 progression and government social dis-
tancing orders

The temporal range is from week 2020/01/19-2020/01/25 (the first confirmed case appeared in the US) to
week 2020/05/24-2020/05/30. The analysis is conducted at both state and county levels.

In order to analyze the mobility patterns and the disease progression during the initial phase of the
pandemic, we perform a correlation analysis on data from 2020/01/19-2020/01/25 to 2020/05/03-2020/05/09.
Figure 4a shows Pearson correlations between weekly county level outgoing flow and new confirmed case count
by states. We observe that the correlation varies across counties and shows low (median −0.2 in Utah) to
high (median −0.82 in New Jersey) negative correlation between MF and new confirmed case count. We
also determine the lags of a state’s confirmed case that yield the highest correlation with respective MF and

6The starting dates of lockdowns in different countries were obtained from the https://en.wikipedia.org/wiki/COVID-19_

pandemic_lockdowns
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(a) Weekly MF reduction rate (FRR).

(b) Weekly MF and new confirmed cases in 8 selected countries around the
world.

(c) Weekly FRR and CGR in 8 selected countries around the world.

Figure 3: (Global Data: A select few countries) Impact of country wide social distancing policies on
human mobility and COVID-19 dynamics. The time range is from 2020/02/02-2020/02/08 to 2020/05/24-
2020/05/30. (a) Outgoing flow reduction from eight selected countries across the world: Australia, Brazil,
India, Italy, Nigeria, Singapore, United Kingdom, and United States. To obtain these flow reduction rates
(FRR), we used outgoing flows in January of each of these countries as their respective baseline and calcu-
lated the change with respect to the respective baseline from week 2020/02/02-2020/02/08 to 2020/05/24-
2020/05/30. Each line in the plot corresponds to a country and it shows weekly FRR for that country with
respect to the baseline. In addition, we use a vertical dashed line to show the week when lockdown or SAHO
were imposed by each of these countries. The time of SAHO or lockdown mandates in different countries
may overlap with each other. Note that FRR and lockdown lines share the same color for a given country. It
is interesting to note that most countries show a decreasing trend in flow a week or two prior to the formal
lockdown announcement. Moreover, most of these selected countries have initiated lockdown measures in
the later part of March 2020. (b)Weekly outgoing flows (black) vs. new confirmed cases (red) in the selected
eight countries. The blue dashed lines depict the start of the lockdown week in each country. We observe
that the two lines show opposite trends. (c) Weekly FRR (black) vs. CGR of the new confirmed cases (red)
in the eight selected countries. The blue dashed lines depict the start of the lockdown week in each country.
We observe that post-lockdown CGR is decreasing for most of these countries.
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present the results in Figure 4b and 4c. We observe that most county-level and state-level mobility show
highest correlation with new confirmed cases lagged by −2. Figure 4d presents the weekly outgoing flow and
new confirmed case count which are aggregated to state level in top 5 states with the largest total confirmed
cases.

We further explore the change in MF using the flow reduction rate (FRR) (1). Figure 5a shows a 41%
(Q1 : −50% and Q3 : −30% in FRR) mobility reduction compared to baseline flows across the states during
the week 2020/03/22-2020/03/28 where most states had declared SAHO. There is a 17% reduction in flows
during the week of the first school closure order, and 19% flow reduction in the week of the first SAHO. In
the subsequent three weeks after the declaration of SAH orders the flows remain nearly constant, but since
then there has been a rebound in the flows with flow reduction at around −19%. The relative timing of the
reduction in flows indicates that the population complied to the social distancing guidelines and reduced
mobility before the SAH orders.

Figure 5b presents the timeline of FRR, the growth rate of the new confirmed cases (CGR) and social
distancing orders in the five states with the highest number of confirmed cases. Although, we observe
that the number of new confirmed cases increase despite the MF dropping rapidly during the week from
2020/03/01-2020/03/07 to week 2020/03/29-2020/04/04, we observe that the rate of growth of cases drops
significantly.

Spatial distribution of mobility patterns and COVID-19 cases

Figure 6 provides a spatio-temporal view of how the FRR coincides with the state-level new cases. During
the week of 2020/01/26-2020/02/01, when the US recorded its first few cases, the mobility patterns across
all the states show normal behaviour. As of 2020/03/02, 100 confirmed cases were recorded across the US;
by March 2020/03/17, all the 50 states had the incidence of COVID-19 and during the week of 2020/03/15-
2020/03/21, New York state had recorded nearly 10,000 new cases. We observe that with the progression of
the pandemic, predominantly, the most populous states have the highest number of new cases. During the
week of 2020/03/15-2020/03/21 a national emergency was declared and in addition several states had already
closed schools and we begin to observe an overall reduction in the mobility. We also observe that generally
the states with high number of cases also have higher reduction in flow. This becomes more evident in the
week of 2020/03/29-2020/04/04 where we observe flows reducing with the case counts. In the interstate
mobility matrix, the self-loop flows are suppressed. In order to achieve a sense of adjacency, we group the
states according to their respective HHS region designations. During normal times, the inter-state mobility
matrix shows considerable flows across all the states. During the week of 2020/03/15-2020/03/21 a few
interstate connections start to drop and in the week 2020/03/29-2020/04/04 we observe nearly 70% of the
state-pairs that are present during normal times, dropping.

An analysis of mixing within counties

In this analysis, we attempt to capture the mixing within a county by employing the inter-cell flows. Ideally,
with social distancing orders in place, one would expect inter-cell flows within a county to drop. Due to
reduced inter-cell flows, normalized flows should tend towards an identity matrix and hence SDI(t) defined
in Equation (2) should move closer to 1. In Figure 7a, the boxplot represents the variation in SDI(t) across
the various weeks of 2020. We observe SDI(t) to be nearly constant until the implementation of national
emergency and state-level orders after which we start to observe an increase in SDI (10%). However, by
the third week of April we start to observe SDI dropping and staying nearly constant over the weeks of
May, which could be attributed to social distancing fatigue, a desire to return to daily routines, and other
factors. Although, the SDI has reduced, the values are higher than the baseline values indicating a lower
than normal mixing. As a general observation of variations in SDI across counties, we consider five states
which have experienced the highest number of cases. The variations in SDI(t) across different weeks of the
pandemic can be observed through the choropleth plots in Figure 7b, 7c, and 7d. We observe the overall
shading moving towards yellow indicating reduction in mixing within counties. Since the last week of April,
we observe a decrease in SDI indicating social distancing fatigue. Importantly, the SDI has remained nearly
constant over the month of May and median SDI nearly 5% higher than the median baseline values.
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(a) Pearson correlation between county level outgoing flow and new confirmed case count by states.

(b) Frequency of lags that produce maximum
absolute Pearson’s correlation value between
county level outgoing flow and lagged new con-
firmed case count by states.

(c) Frequency of lags that produce maximum
absolute Pearson’s correlation value between
state level outgoing flow and lagged new con-
firmed case count by states.

(d) Weekly MF vs. new confirmed cases in top 5 states with the largest number of confirmed cases.

Figure 4: (US Data). Correlation analysis of human mobility and COVID-19 dynamics. (a) In order to
analyze the human mobility and COVID-19 dynamics during the initial phase of the pandemic, we restrict
our time range from 2020/01/19-2020/01/25 to 2020/05/03-2020/05/09 for the correlation analysis. This
shows moderate to high negative correlation between MFand new confirmed case count. Analyses in (b) and
(c) to identify the lags at which the correlation is maximum (absolute value) reveal similar patterns at both
the county-level and state-level. (d) Weekly outgoing flow (black) and new confirmed cases (red) in the top
5 states with the largest number of confirmed cases. The two lines show opposite trends and cross around
week 2020/03/22-2020/03/28. The mobility starts to drop before the SAHO (dashed blue vertical line) in 5
states.

2.3 Research findings for India

2.3.1 Analysis of mobility flows and its correlation with cases

The temporal range is from week 2020/03/01-2020/03/07 (the first confirmed case appeared in India) to
week 2020/05/24-2020/05/30. The analysis is mainly conducted at the state level in India due to lack of
authoritative infection data at district level.

Figure 8b shows Pearson correlations between weekly outgoing flow and new confirmed case count at
the state level (again the date range restricted from 2020/03/01-2020/03/07 to 2020/05/03-2020/05/09 to
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(a) Weekly MF reduction rate (FRR).

(b) Weekly FRR vs. CGR in top 5 states with the largest number of confirmed cases.

Figure 5: (US Data). Impact of state level social distancing policies on human mobility and COVID-19
dynamics. The time range is from 2020/01/19-2020/01/25 to 2020/05/24-2020/05/30. Vertical dashed lines
mark the time of state level social distancing mandates including emergency declaration (purple), school
closure (orange), and SAHO (blue). The time of mandates at different states may overlap with each other.
(a) A spaghetti plot shows the weekly FRR time series of 50 states. A boxplot is used to display variation in
samples of 50 states each week. The median value is shown along with the median line (orange, also outliers
are disregarded). A positive value indicates an increase in flow and a negative value means reduction in
flows when compared with pre-pandemic flows. (b) Weekly FRR (black) vs. CGR of the new confirmed
cases (red) in 5 states with the highest number of confirmed cases. Although, in Figure 4d, we see that the
number of new cases are increasing, (b) indicates that the growth rate of the new cases drops considerably
across states.

capture the initial phase of the pandemic). We observe that the correlation varies across states and shows
low (−0.75 in Uttarakhand) to high (-0.27 in Punjab) negative correlation between MF and new confirmed
case count. We have ignored smaller states with less than 10 COVID-19 cases from this analysis.

We further explore the MF change by applying flow reduction rate (FRR) (1). Figure 8a shows a 66%
(Q1 : −69% and Q3 : −57% in FRR) mobility reduction compared to normal flows across the states during
the week 2020/03/22-2020/03/28 where the central government had declared the first lockdown. Many states
across India, large and small, like Maharashtra, Karnataka, Uttar Pradesh, Kerala, Uttarakhand, Odisha,
Bihar, Chattisgarh, Punjab and Manipur declared school closure in the week 2020/03/08/-2020/03/14.
Delhi announced school closure a week after these states. We observed 10% flow reduction in the next
week after the school closure orders in the week 2020/03/08-2020/03/14. In the following week 2020/03/15-
2020/03/21, many corporations issued work from home advisories and government offices decided to function
with reduced staff strength with rotation. This seems to have resulted in a significant drop in the flow by
51%. The people’s curfew on March 22, 2020 followed by nationwide lockdown for 21 days starting March
25, 2020 further reduced the flows by 2%. These flow levels were maintained for the next couple of weeks
till the end of the first lockdown. The second lockdown in India was taken for 19 days between April 15,
2020 to May 3, 2020. We observe a slight increase in flows in the first week of the second lockdown and an
increase of 10% in the third week. This increase can be attributed to allowance of certain economic activities
in less affected areas post April 20. Over the month of May, the flows have steadily increased by nearly 40%
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(a) 2020/01/26-2020/02/01: 4 cases recorded across the country

(b) 2020/03/15-2020/03/21: Week where multiple states implemented social distancing orders.

(c) 2020/03/29-2020/04/04: The week with the highest reduction in flows across the US.

Figure 6: (US Data) A comparison of variation in number of new cases to variation in flow reduction and
inter-state mobility across different weeks. Column 1 represents the spatial distribution of new cases across
the US, column 2 shows the spatial distribution of FRR, and column 3 depicts the heatmap of natural
logarithm of the flow between states (states are ordered as per the health and human services grouping
to obtain a sense of adjacency, self-loops are suppressed and brown indicates state-pairs not recorded in
the data). Row 1 represents baseline times (only a few cases recorded). Row 2 represents the week when
New York and California recorded considerable number of weekly new cases and we observe that there is
considerable reduction in flows across the US and also interstate mobility. By the week of 2020/03/29-
2020/04/04, the weekly number of new cases has increased substantially and almost all states have brought
down mobility significantly, with the number of state pairs with non-zero flows dropping by 70%.

compared to flows during the imposition of lockdown. Thus the lockdown orders and graded resumption of
economic activities seems to have large impact on mobility in India.

The effect of lockdown orders on mobility can be observed by comparing inter-state flows prior (Figure 9b)
and post lockdown (Figure 9c). The usual flow of inter-state mobility has either reduced significantly or
dried up completely (e. g. Uttar Pradesh-Madhya Pradesh).

2.3.2 Migration pattern analysis for India

Across the world, social distancing measures and the associated economic impact has changed human behav-
ioral patterns. In India, news reports indicated that the lockdown triggered the movement of large groups
of people from cities to their distant home towns. In order to detect and analyze the migratory patterns,
we consider the time-varying mobility network of India with edges representing connection between district
and edge weights as MF between them. An absence of an edge during a time period denotes relatively small
amount of flow on that edge and thus is dropped for privacy reasons. Denoting E(t) as the set of edges
at time t, we compute the Jaccard index J(t)7 between the consecutive weeks of 2020. In addition, we
also determine the number of edges added and removed across the weeks and show the respective plots in
Figure 10.

7Given the set of edges E(t) and E(t − 1), Jaccard index J(t) =
E(t)∩E(t−1)
E(t)∪E(t−1)

, where, ∩ and ∪ represent the standard

intersection and union of sets operations, respectively.
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We observe a sharp dip in the Jaccard index during the week of lockdown (March 25, 2020) indicating
a large change in edge configuration compared to the previous week. This drop in Jaccard index can be
attributed to the large number of edges being dropped during the lockdown week. Also, the number of new
edges added from the week of lockdown is minimal. The interstate mobility patterns (cf. 9c) do not indicate
large flows across states.

Analysis of the mobility data does not reveal mass migration of population at and during lockdown
time and/or the subsequent weeks (see Section 3 for limitations). But we do observe a rise in mobility and
the number of new connections being established between the districts in the recent weeks and one could
attribute it to the various schemes introduced by the government to transport people to their destination.

2.4 Evaluating the epidemic impact of timely lockdown

Figure 11 and Figure 12 below show the posterior fitting to the smoothed daily new confirmed cases with
normal and delay scenarios for multiple states in the US and India, where the blue line is the smoothed
number of new confirmed cases per 100k. The red lines and pink shadows are the mean estimate and 95%
CIs. The grey lines are fitted Reff estimates. Solid lines denote normal schedule, dotted lines and dashed lines
denote the scenarios of one-week and two-week delay. The numerical comparison between normal scenario
and delay scenarios is presented in Table 1.

Figure 11 shows delay scenarios for the US and five states in the US. The searching range of Reff is set to
[0.5,3.2] for New York and New Jersey [18, 22] and [0.5,3] for the US, Massachusetts, Illinois, and California
[22], the upper bound partially to counter the effects of testing ramp-up. We postpone Reff at different weeks
for different states according to their SAHO. For the US, we use the week 2020/03/15-2020/03/21 when the
first state level SAHO is claimed. The simulations indicate that a delay in implementation of interventions
by one week in the US would have led to 2.2M [95% CI: 1.5M - 2.8M] additional cases as of May 30, 2020. If
the interventions had been postponed by two weeks, the number of additional cases would have been 6.2M
[95% CI: 5.2M - 7.3M]. The ratios indicate nearly 2.2 times the ground truth number of cases for the one
week delay scenario and nearly 4.4 times the ground truth number of cases for the two week delay scenario.
(numbers are tabulated in Table 1).

In the context of India, the simulation results show similar trends as the US scenario. We set the searching
range of Reff to be [0.5,3.0] [23, 24] for the counterfactual simulation. The lockdown was implemented on
the 2020/03/25 and hence, we use the Reff of that week to create the one-week and two-week delay scenarios
for India and all five states. The scenarios are demonstrated at both the country-level and the state-level
and the results are shown in Fig. 12. As indicated by the case count curves, we see an increasing trend and
the peak is yet to be appear. Overall, the factor of increase in total number of cases as observed around
2020/05/30 would be nearly 2 times and 4 times compared to actual confirmed cases for the one-week and
two-week delay scenarios, respectively. Also, the simulations project that a one week delay in imposition of
lockdown would have lead to 150K [95% CI: 120K - 174K] additional cases while a two-week delay would
have resulted in 410K [95% CI: 350K - 480K] additional cases (numbers are tabulated in Table 1).

Although, the US has far more reported cases than India at the current time, it should be noted that
the testing rate in US ( 55,000 per million) is significantly higher than that in India ( 2800 per million) [25].
Also, the two countries are in different phases of the epidemic with the number of new cases slowly declining
in the US, while steadily increasing in India.

2.5 Discussion

Key findings:

1. Globally, we observe a considerable reduction in flows across most countries. With international airline
traffic suspended by most countries, the inter-country flows have seen a significant drop. The US and
India have had a 74% and 87% drop in international flows, respectively.

2. Overall, the state-level social distancing strategies across the US and the lock-down enforcement across
India have paid dividends in reducing mobility with the US experiencing a maximum drop of 42%
(Q1 : −48% and Q3 : −40%) compared to usual flows across the states during the week where most
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Table 1: Comparison in peak size, peak time, cumulative cases between normal scenario and delay scenarios.
A ratio is given by vdelay/vnormal for peak size and cumulative cases, while a difference is given by vdelay −
vnormal for peak time and cumulative cases. Mean values with 95% CIs are shown in the table. The peak
analysis for states where peak does not appear until May 30th is omitted.

US

one-week delay US NY NJ MA IL CA
peak size (ratio) 2.45 2.51 2.39 2.19 2.28 -

[1.93,2.98] [2.08,2.94] [1.94,2.83] [1.66,2.72] [1.75,2.80] -
peak time (diff. in days) 3 5 2 6 3 -

[-20,25] [-1,12] [-11,16] [-1,12] [-12,18] -
cumulative cases (ratio) 2.20 2.18 2.11 2.07 2.09 2.13

[1.77,2.62] [1.92,2.45] [1.82,2.40] [1.72,2.42] [1.72,2.46] [1.73,2.53]
diff. in cumulative cases 2161 403 178 104 131 127
(K) [1541,2781] [338,468] [144,212] [79,129] [96,166] [92,162]
two-week delay US NY NJ MA IL CA
peak size (ratio) 5.68 5.23 5.16 4.06 4.33 -

[4.54,6.82] [4.57,5.88] [4.38,5.93] [3.24,4.88] [3.54,5.12] -
peak time (diff. in days) 5 10 5 5 4 -

[-11,22] [4,16] [-5,16] [-5,15] [-10,19] -
cumulative cases (ratio) 4.44 3.92 3.75 3.69 3.83 4.37

[3.59,5.28] [3.53,4.32] [3.32,4.17] [3.12,4.26] [3.29,4.36] [3.54,5.20]
diff. in cumulative cases 6227 997 443 264 341 381
(K) [5185,7269] [921,1073] [408,478] [234,294] [307,375] [315,447]

India

one-week delay IN DL GJ MH RJ TN
cumulative cases (ratio) 2.08 1.58 2.74 2.37 2.48 2.02

[1.45,2.70] [1.18,1.98] [1.65,3.83] [1.57,3.17] [1.64,3.33] [1.42,2.63]
diff. in cumulative cases 151 9.8 17.0 50.6 8.1 18.1
(k) [124.5,177.1] [8.2,11.4] [13.9,19.9] [43.5,57.6] [ 6556,9699] [15.1,21.1]
two-week delay IN DL GJ MH RJ TN
cumulative cases (ratio) 3.92 2.83 7.43 4.72 5.30 4.46

[2.71,5.15] [2.14,3.53] [4.58,4.85] [4.53734 10.316] [3.50,7.11] [3.12,5.81]
diff. in cumulative cases 414.6 25.6 48.3 123.9 22.0 47.5
(K) [346.6,482.6] [22.2,29.0] [40.6,55.9] [106.3,141.6] [18.1,25.9] [41.2 ,53.9]

Table 2: Summary of key observations based on our analysis in the two countries

Observation US India

Maximum reduction in overall mobility 42% (Q1:-48%, Q3:-40%) 68% (Q1:-71%, Q3:-59%)
Reduction in mobility before SAH orders 22% (Q1:-30%, Q2:-10%) 15% (Q1:-26%, Q2:-5%)
Reduction in international outflows 74% 87%
Reduction in inter-state flow pairs 70% 70%
Change in intra-county mixing or SDI 10% 2%
Rebound in mobility since reduced mobility 53.5% 38.2%

states had declared SAHO. In India, on the other hand, there was a maximum drop of 68% (Q1 : −72%
and Q3 : −66%) across states compared to the baseline due the lock-down declaration.

3. US Specific findings:

(a) The relative timing of the reduction in flows indicates that substantial amount of the population
adhered to social distancing guidelines and reduced mobility before the state’s imposition of the
SAHO. There is a 17% reduction in flows during the week of the first school closure order, and 19%
flow reduction in the week of the first SAHO. In the subsequent three weeks after the declaration
of SAH orders the flows remain nearly a constant, but since then there has been a rebound in the
flows with flow reduction at 19% as per the latest data.

(b) At the county level, the flow pattern over the weeks of the progression of the pandemic show
high (median −0.82 in New Jersey) negative correlation to low (median −0.2 in Utah) negative
correlation with the number of new weekly confirmed cases. Importantly, we observe a steady
reduction in growth rate with the reduction in mobility.

(c) We observe a considerable reduction in interstate flows with nearly 70% drop in the intensity of
travel between them when compared to pre-pandemic baseline.
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(d) SDI (defined in Section 1.1) is a metric to quantify the level of mixing with a region. A higher
value of SDI indicates lower level of mixing. We observe a 10% increase in SDI values post SAHO
when compared to SDI computed during the pre-pandemic period.

(e) The counterfactual simulations project that the US would have seen up to 2.2M [95% CI: 1.5M
- 2.8M] additional cases nationwide as of May 30, 2020. If the social distancing measures were
postponed by one week, the number of cases would be 2.20 times the current number of confirmed
cases. If the interventions postponed by two weeks, the number of additional cases would be 6.2M
(95% CI: 5.2M - 7.3M) in the US and the number of cases would have been 4.44 times the current
number of confirmed cases.

4. India specific findings:

(a) The mobility reduced by 15% in India a week prior to the first of the multiple series of lockdowns
(this week saw a few states closing down schools). The MF dropped to 62% during the week
of formal lockdown announcement following the “People’s curfew”. The reduction in mobility
continued until the end of the first lockdown, which shows by and large compliance with policy
intervention for social distancing. A steady decline in FRR over the weeks of May indicate rebound
in the flow and can be attributed to either fatigue or graded relaxation is less affected zones in
the country.

(b) Pearson’s correlation coefficient between the MF and the number of confirmed cases is mostly
negative with median of -0.43. The moderate correlation indicates that concurrent with the rising
number of newly found cases there was a drop in MF.

(c) The interstate mobility among the Indian states reduced significantly. The flows have stopped
completely or have registered a very large drop. This implies that the SDI for Indian states
approached the values close to one very quickly after the lockdown was put in place indicating
reduced mixing within districts.

(d) The counterfactual simulations project that a week’s delay in lockdown implementation would
have lead to 151K [95% CI: 124.5K-177.1K] additional cases while a two week delay would have
resulted in 414.6K [95% CI: 346.6K-482.6K] additional cases as of May 30, 2020. These numbers
imply that the total number of cases would have been nearly 2 times and 4 times the actual
confirmed cases for one-week and two-week delay in interventions, respectively.

3 Limitations

An important aspect that is not captured in our analysis is COVID-19 testing. Some of the increase in cases
is likely due to the increased testing in US and India. Thus, confirmed cases as reported are likely an under
count of the prevalence; but the difference is hard to quantify exactly. Testing in India as well as the US
was largely confined to individuals reporting to clinics with symptoms. Nevertheless, we believe our results
show significant correlation patterns between human mobility and COVID-19 dynamics. It also provides a
clear evidence of the abrupt changes in mobility patterns across the world in relatively small time window.
The mobility map, like other such data sets, have a bias based on device ownership, when the devices are
used, etc. For instance, Google mobility data is limited to smartphone users who have opted in to Google’s
consumer Location History feature, which is off by default. These data may not be representative of the
population as a whole, and furthermore their representativeness may vary by location. Importantly, these
limited data are only viewed through the lens of differential privacy algorithms, specifically designed to
protect user anonymity and obscure fine detail. Moreover, comparisons across rather than within locations
are only descriptive since these regions can differ in substantial ways.

We did not observe large MF between states due to migratory workers at the start of the lock down period
(as well as during lock down period) in India. This can be potentially due to relative flow volumes needed to
maintain differential privacy and ownership bias. Finally, a decrease in aggregate mobility does not provide
precise estimates in the decrease in the social interaction. Estimating social interactions precisely will require
different kinds of digital traces.
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Research-in-context

Evidence before the study

We have searched Google scholar, Nature, Science, Lancet, medRxiv, for journal articles and news reports
that have studied the mobility patterns during the COVID-19 pandemic. We used keywords such as ”mobility
reduction COVID-19”, ”mobility patterns COVID-19” ”effect of social distancing on mobility” to filter out
articles relevant to our study. Further, we used references within to obtain other related studies on the topic
of mobility changes during COVID-19 crisis.

We found a few articles that have assessed the human mobility during the pandemic. Out of these articles,
only a handful address the interplay between mobility, public policies, and disease dynamics.

Added value to study

As per the literature review, this work is the first to model the complex interplay between COVID-19
spread, human mobility, and government policies in near real-time at multiple spatial resolutions, such as,
global, country, state, and sub-state level. In addition, this is the first study to employ the Google COVID-19
Aggregated Mobility Research Dataset (described in the main text) for this study. Although, the manuscript
focuses on two countries, the analysis can be extended to any specific country. Counterfactual analysis to
study the effects of delayed interventions is one-of-a-kind.

Interpretations

The study reveals a huge drop in mobility globally. The effect of this drop in mobility shows a concurrent
drop in growth rate of COVID-19 cases. Counterfactual analysis reveal that the government interventions,
at least in the US and India, were timely and averted a significant number of cases.

3.1 Data sharing statement

The Google COVID-19 Aggregated Mobility Research Dataset used for this study is available upon request to
the corresponding authors and with permission of Google, LLC. University of Virginia COVID-19 Dashboard
that provides detailed, global epidemic surveillance data and used in this study is available for public use
on https://nssac.bii.virginia.edu/covid-19/dashboard/. The data on social distancing guidelines in
US states and India COVID-19 surveillance data would be shared upon request and would be uploaded on
https://dataverse.lib.virginia.edu/
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Appendices

A Google COVID-19 Aggregated Mobility Research Dataset

The dataset contains anonymized mobility flows aggregated over users who have turned on the Location
History setting, which is off by default. This is similar to the data used to show how busy certain types
of places are in Google Maps — helping identify when a local business tends to be the most crowded.
The dataset aggregates flows of people from region to region, which is here further aggregated at multiple
geographical resolutions weekly.

To produce this dataset, machine learning is applied to logs data to automatically segment it into se-
mantic trips [26]. To provide strong privacy guarantees, all trips were anonymized and aggregated using a
differentially private mechanism [27] to aggregate flows over time. This research is done on the resulting
heavily aggregated and differential private data. No individual user data was ever manually inspected, only
heavily aggregated flows of large populations were handled.

All anonymized trips are processed in aggregate to extract their origin and destination location and time.
For example, if users traveled from location a to location b within time interval tIn assessing public levels of
compliance to social distancing, several analyses have revealed reduction in overall mobility.
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(a)

(b) SDI in the counties of New York, New Jersey, Massachusetts, Illinois, California pre-pandemic.

(c) SDI in the counties of New York, New Jersey, Massachusetts, Illinois, California in the week of
2020/03/29-2020/04/04

(d) SDI in the counties of New York, New Jersey, Massachusetts, Illinois, California in the week of
2020/05/24-2020/05/30

Figure 7: SDI at a county level. (a) Variation in SDI across all the counties of the US (obtained from the
cell-to-cell flows within a county) for various weeks in the 2020. We observe that from week of 2020/03/15
(when most orders where implemented) the overall SDI starts to increase, implying that the mixing reduced.
But since the last week of April we observe the overall SDI dropping and staying nearly constant over the
weeks of May. (b), (c), and (d) shows the choropleth plots with counties shaded according to their SDI
values for five states with highest number of confirmed cases pre- and post-state-orders. (d) Indicates the
date when states have relaxed the social distancing order. Although, the mixing has increased, the SDI
values are higher than the baseline values.
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(a) (b)

Figure 8: (India Data) Impact of state level social distancing policies on human mobility and COVID-19
dynamics. The time range is from 2020/03/01-2020/03/07 to 2020/05/24-2020/05/30. Vertical dashed lines
mark the time of state level social distancing mandates including school closure (orange), and lockdown order
(blue). The time of different mandates at different states may overlap with each other. (a) A spaghetti plot
showing the weekly FRR time series for the 28 states and 8 union territories. A boxplot is used to display
variation in samples of each of these entities every week. The median value is shown along with the median
line (orange). A positive value means flow increase compared with pre-pandemic flows, while a negative
value means a reduction in flows. We observed significant reduction in MF after the on-set of COVID-19
pandemic in India. The lockdown measures further reduced the flow. Towards the end of second lockdown
(May 3, 2020), we observe slight increase in the MF and since then there has been a steady increase in
flows. (b) Distribution of Pearson’s correlation coefficient between state/union territory level outgoing flow
and new confirmed case count at weekly levels during the initial phase of the pandemic. Note that we have
only considered states with total cases more than 10 for this analysis. We observed Pearson’s correlation
coefficient of -0.47 for India, which indicates moderate negative correlation between the outgoing MF and
newly confirmed cases per week.
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(a) 2020/01/26-2020/02/01: 1 case recorded across the country

(b) 2020/03/15-2020/03/21: Week where cases detected in multiple states in India and
school closures were ordered.

(c) 2020/03/29-2020/04/04: The week with the highest reduction in flows across India and
this is the first full week of nation-wide lockdown.

Figure 9: (India Data) A comparison of variation in number of new cases to variation in flow reduction
and inter-state mobility across different weeks. Column 1 represents the spatial distribution of new cases
across India, column2 shows the spatial distribution of FRR, and column 3 depicts the heatmap of natural
logarithm of the flow between states (states are ordered in order to preserve a sense of adjacency as far as
possible with self-loops suppressed and brown shade indicates state-pairs not recorded in the data.). Row
1 represents normal times (only a few cases recorded). Row 2 represents the week when Maharashtra and
Delhi started recording number of weekly new cases and we observe that there is considerable reduction in
flows across India and also interstate mobility. By the week of 2020/03/29-2020/04/04, the weekly new cases
has increased substantially and the nation-wide lockdown has brought down mobility substantially, with the
numbers of state pairs with non-zero flows dropping by nearly 70% like in the US.
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Figure 10: Migration analysis: Change in Jaccard index, number of edges (or connections between districts)
removed, and number of new edges added across multiple weeks of 2020. Across the plots, the pattern at
the lockdown announcement week indicates a significant drop in connections and flow between districts.

Figure 11: Posterior fitting to daily new confirmed cases with delayed intervention scenarios in the US and
top five states with the highest number of confirmed cases. The blue line is the smoothed number of new
confirmed cases per 100k. The red lines and pink shadow are the mean estimate and 95% CIs. The grey
lines are fitted Reff estimates. Solid lines denote normal scenario, dotted lines and dashed lines denote the
scenario of one-week and two-week delay.
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Figure 12: Delayed intervention scenarios for India and a few states with highest number of confirmed cases
and India. The blue line indicates the smoothed number of daily cases, red lines correspond to simulation
results with scenarios appropriately indicated, and the grey lines show the estimated Reff and scenarios
created by prolonging the Reff for one week and two weeks. In general, we observe that with a one-week
delay in implementation of lockdown, the total number of cases nearly doubles, while for the two-week
scenario, we observe the cases increasing four folds in India. Mostly, the number of new cases is steadily
increasing across India.
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