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Abstract

Black and white rhino are threatened with extinction due
to recent increases in poaching. While both species are in-
tensively protected, monitoring and field observations are
difficult, and many aspects of their behavior and space use
are not well known. The detection of relevant landscape
features, particularly rhino middens, can facilitate a better
understanding of the spatial behavior of black and white
rhino and consequently support more targeted conservation
efforts. Middens are communal defecation sites used for ter-
ritorial marking and social communication across sex and
age. Middens have not been previously mapped at the land-
scape scale, and doing so would provide important insights
into how these megaherbivores use and shape their savanna
habitats. We propose a preliminary system to gather data
that will ultimately enable us to detect rhino middens in
high-resolution orthomosaics derived from remotely sensed
RGB and thermal data. This system is based on thresh-
olding and morphological filters as a first step to support
data labeling, with a promising initial reduction in midden
search space and labeling time. We also present current
challenges and next steps.

1. Introduction

Understanding animal habitat use is key to both in-
vestigating animal-driven ecosystem processes [9] and to
improving species-specific conservation management [S].
This is especially important for threatened and endangered
species that require extensive management and protection.
Many of these species, however, are elusive and therefore
difficult to monitor and study, resulting in a lack of species-
specific ecological knowledge [17]. Black (Diceros bicor-
nis) and white (Ceratotherium simum) thino in particular
are threatened with extinction due to the exponential rise
in poaching over the past two decades [5], and are there-
fore managed and protected accordingly. However, little is
known about their ecology, particularly their spatial behav-
ior, as rhino are considered elusive, intractable, and danger-
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Figure 1. RGB orthomosaic showing the location of an example
midden in the landscape. Rhino middens closely resemble the
ground and surrounding vegetation, making detection challenging.

ous to study in the wild [12]. Traditional monitoring efforts,
such as direct observation, are additionally constrained by
limited human and financial resources, especially in areas
that are large and difficult to access [1].

Advances in remote sensing technology have been in-
creasingly applied to ecological research, providing an effi-
cient and cost-effective tool for both surveying wildlife and
mapping the landscapes they occupy [15]. In particular, a
variety of sensors, including RGB, thermal, and Lidar, have
been mounted on unoccupied aerial vehicles (UAVSs) to col-
lect key habitat data [1 1], detect and survey animal popula-
tions [6], and study animal behavior [4].

Rather than directly searching for the animals them-
selves via remote sensing techniques, we instead propose
to locate rhino middens (Fig. 1). Both species of rhino
defecate in communal middens used for territorial mark-
ing and social communication by individuals of all ages and
sexes [16, 13]. The role of middens as information centers
signaling age, sex, territorial, and oestrous state has been
demonstrated in white rhino [13, 14], but has been less rig-
orously studied in black rhino. In both species, it is believed



that individuals rely on olfactory investigations at commu-
nal middens to gather critical population information, and
thus middens likely influence rhino movement and space
use across species. However, midden networks have never
been mapped across an entire rhino population, and thus this
approach could yield important ecological and conservation
insights. Specifically, a greater understanding of the spa-
tial patterning of middens will yield insights into rhino spa-
tial behavior, such as home range and habitat use informa-
tion critical to conservation management and anti-poaching
strategy, and its implications for the surrounding landscape,
including the redistribution of nutrients by rhino to these
concentrated defecation sites. As a practical consideration,
rhino middens also provide a more static landmark to detect
compared to the animals themselves .

Currently, large quantities of thermal and RGB data ex-
ist and are still being collected using UAVs in known rhino
ranges throughout southern Africa. To analyze such large
datasets, ecologists have increasingly turned to automation
and machine learning techniques for consistent and efficient
object detection and pattern recognition [10, 2]. We simi-
larly wish to automate the detection of middens to expedite
mapping and facilitate behavioral understanding. A mid-
den detection system would ideally identify middens in or-
thomosaics, which could then be verified by ground-truth
surveys. That said, we currently do not have labeled exam-
ples of middens in the UAV imagery, though we anticipate
the presence of many middens (on the order of hundreds)
from the multiple field sites where data have and will be
collected. In this paper, we use high resolution thermal and
RGB data collected in Kruger National Park, South Africa,
in combination with simple thresholding and morphologi-
cal filters, as a first step towards labeling and later detecting
rhino middens in aerial imagery.

2. Methods
2.1. Remote sensing data

UAV remote sensing data were collected over a 284
hectare site in January 2020 in an area of Kruger National
Park known to have rhinos. Photos, thermal images, and
Lidar data were acquired simultaneously using the Harvard
Animal Landscape Observatory (HALO) sensor package,
which consists of a Riegl VUX-1LR Lidar scanner, a Sony
A6000 camera (24 megapixels), and a FLIR Tau-2 thermal
camera (327,680 pixels). The sensor package was flown on
a DJI M600 multicopter at an altitude of 100m and a speed
of 8 m/s. The UAV’s trajectory was refined using base sta-
tion data to achieve an absolute accuracy of 4 cm or less
along its flight path.

!Note that spatial patterning of middens will likely shift over time with
changes in population demographics, still requiring regular mapping but
less quickly than animal movement.

Thermal infrared images were converted into false-color
images using ThermoViewer software and an automatic
color scale. All imagery was rectified and mosaicked in
the Terrasolid software suite using a terrain model derived
from the coincident Lidar data. The relative accuracy of the
Lidar ground data was 4.5 cm. The photos were rectified
and mosaicked at a resolution of 5 cm, while the thermal
images were at a resolution of 0.5 m.

2.2. Midden labeling

We used both RGB and thermal infrared orthomosaics
for the same site in Kruger National Park. At this site, rhi-
nos are the only known animals that create middens with the
unique features used in our search. Middens have certain
identifiable characteristics in RGB imagery, such as their
texture and color, but they are difficult to distinguish in a
large, heterogeneous RGB orthomosaic (Fig. 1). Fortu-
nately, middens tend to be warm and are therefore bright
in thermal infrared imagery. As a result, the easiest way for
ecologists to identify middens from aerial imagery is to first
look for candidates in the thermal imagery and then verify
them in the RGB imagery. We sought to build a simple au-
tomated version of this process in order to make labeling
easier by identifying hotspots in the thermal imagery and
recording their GPS coordinates.

To do this, we first created a mask using a simple thresh-
old of values in the thermal imagery, followed by a closing
morphological operator in order to group very nearby bright
points. We finally carried out connected component analy-
sis to get the centroids for these groups. We converted these
from pixel coordinate to GPS location using gdal, and wrote
out these candidate GPS locations as a CSV. The CSV file
was then loaded into QGIS with the RGB and thermal IR
orthomosaics.

We evaluated the quality of these candidate predictions
by zooming into the candidate GPS locations and alternat-
ing between the RGB and thermal IR views (Fig. 2). We
manually verified candidates, classifying each point across
a spectrum of certainty based on midden characteristics and
placement. Verification classes included: yes, lean yes,
uncertain, lean no, and no. In our preliminary analysis,
we evaluated two candidate data sets at 80 and 75 percent
thresholds (i.e., percentage of the maximum digital count in
the images). At each threshold, we also conducted a manual
assessment of hotspots that were not automatically identi-
fied but, to our best knowledge, should be classified as mid-
dens. Manual verification and assessment of candidates was
conducted by one coauthor. We report the results below.

3. Preliminary Results

Using an 80% threshold, 66 candidate GPS locations
were identified in the thermal orthomosaic. Of the candi-
date hotspots, roughly 32% were verified as likely middens



Figure 2. Example detection of a midden using thresholding and
morphological filters in the thermal imagery (right) and manually
verified using the RGB (left).

(n =10 yes; n = 11 lean yes), about 23% were uncertain (n
= 15), 39% were unlikely to be middens (n = 15 no; n =11
lean no), and 6% were duplicate locations (n = 4). A man-
ual search of the thermal orthomosaic found 21 additional
hotspots that were confirmed as likely middens in the RGB
imagery. Fig. 3 shows an example of both a false positive
(i.e., a candidate incorrectly detected as a midden) and an
undetected midden in the thermal and RGB imagery.

Using a 75% threshold, 230 candidate GPS locations
were identified in the thermal orthomosaic, over 3 times as
many as found in the 80% threshold. The number of can-
didates verified as likely middens increased by about 35%
when the threshold was lowered (n = 17 yes; n = 15 lean
yes). Unfortunately, the number of candidates unlikely to
be middens increased far more drastically, with 6 times the
number of likely false positives identified (n = 102 no; n =
54 lean no). In the manual search of the thermal orthomo-
saic for undetected hotspots, 13 locations were identified as
likely to be middens. The results for both thresholds are
summarized in Table 1, including the total number of pixels
in the thermal orthomosaic for reference.

Figure 3. (Top) Example false positive where bare ground was
identified as a candidate location, shown in RGB (A) and ther-
mal (B). (Bottom) Example undetected midden in RGB (C) and
thermal imagery (D).

Verification class 80% threshold | 75% threshold
Yes 10 17
Lean yes 11 15
Uncertain 15 34
Lean no 11 54
No 15 102
Duplicate 4 8
Total candidates 66 230
Undetected middens 21 13
Total pixels 9532992 9532992
Orthomosaic area 238.3 ha 238.3 ha

Table 1. Manual classification of candidate middens at the two
thresholds sampled, along with total number of pixels and area
for the thermal orthomosaic.

Figure 4. Example of a midden detected as a threshold candidate
that would likely be overlooked in a manual search due to its small
size and the relatively homogeneous pixel brightness in the area.
Shown in RGB (left) and thermal (right).

Despite the overall prevalence of false positives, the use
of thresholding and morphological filters to create candi-
date GPS locations provided organization and structure to
the manual verification, which overall increased the effi-
ciency of searching for middens in the thermal and RGB
imagery. We estimate that using candidate locations saved
at least 4-6 hours of manual detection effort for a single site
orthomosaic (9532992 pixels in the thermal / 238.3 ha). The
automatic identification of hotspots also detected areas that
may have otherwise been overlooked in a manual search, es-
pecially in areas with relatively homogeneous pixel bright-
ness or where middens were small or less fresh, resulting in
a less pronounced thermal signature, e.g., Fig. 4.

The occurrence of undetected middens at both thresholds
is, in part, the result of brightness variation among flight
lines in the thermal orthomosaic. Across thresholds, we
observed a clear bias in the occurrence of candidates cor-
responding to the brightest regions of the orthomosaic, as
shown in Fig. 5. We similarly observed that almost all un-
detected middens occurred within the darkest flight lines,
where hotspot brightness was prominent relative to the sur-
rounding pixels but was low relative to the entirety of the
orthomosaic, and was therefore excluded by the threshold-
ing process. We expand upon this challenge below.



Figure 5. Thermal orthomosaic showing brightness variation
among flight lines, the resulting candidate bias (green circles), and
consequential identification of undetected middens (red circles) in
the darkest regions of the imagery.

4. Challenges and Future Work

While the use of thresholding and morphological filters
confirmed that we can, in an efficient manner, use thermal
imagery to label rhino middens in savanna landscapes, our
primary goal moving forward is increasing the accuracy and
precision of candidate locations to ensure easier labeling
over the additional orthomosaics currently on hand, and in
anticipation of numerous planned UAV flights covering an
estimated 500,000 hectares.

Our first priority is to address the artificial variation in
brightness among flight lines in the thermal imagery. We
are currently evaluating two options aimed at reducing can-
didate bias. First, we will run the same thresholding pro-
cess described above, but on a new version of the orthomo-
saic that more consistently maps to temperature through-
out. Brightness differences between individually rectified
images could also be corrected with histogram matching
or equalization, e.g., contrast limited adaptive histogram
equalization. Ideally, this would allow pixel brightness to
be evaluated at a more localized extent, which should de-
crease the number of undetected middens. After this, we
will choose the optimal threshold using middens we have
found from this analysis to evaluate the trade offs.

In addition to refining the thresholding process using the
thermal data, we plan to further reduce the number of false

positives detected by incorporating information from the
RGB imagery as well as Lidar-derived products. For exam-
ple, middens are generally a dark brown color and, although
they vary in size, tend to have characteristic oblong or circu-
lar shapes. After the pixel coordinates identified in the ther-
mal imagery are converted to GPS locations, we can loop
through each coordinate in the RGB imagery and determine
if the candidates have these midden characteristics. In ad-
dition, we may also be able to use Lidar-derived DTMs or
DSMs to compare variation in elevation at candidate points,
which will provide a means of differentiating middens from
bare ground, termite mounds, or rocks. Together, these ad-
ditional criteria will help better exclude false positive can-
didates.

Of critical importance to the manual verification process
is the ground truthing of candidate GPS locations via field
surveys. We currently do not have ground truth data with
which to evaluate the accuracy of either the thresholding
process or the manual assessment of midden presence, but
we plan to collect these data at the next available oppor-
tunity. Although the ground truth data will be collected
asynchronously with flight occurrence, we expect, based on
knowledge of rhino life history traits and home range estab-
lishment, that the majority of middens will still be in use,
and that those that are not will persist long enough to be
detectable by ground survey.

Beyond refining our detection and assessment process,
we also plan to expand our midden search both within and
outside of Kruger at sites with known rhino presence. With
additional sites, we expect to gain a clearer understanding of
the landscape features influencing midden patterning, such
as placement along animals paths and in proximity to key
resources, which is suggested by the results observed here.
In expanding our analysis, we also aim to build an image
dataset that, in the future, can be used to train automatic de-
tection algorithms, such as convolutional neural networks
(CNNs), to improve our ability to identify rhino middens.
Although we will likely be limited in the amount of train-
ing samples we can capture, fine-tuning has been success-
fully used on other small image datasets to accurately train
a CNN and detect target objects in thermal data [3]. Moving
toward automatic detection will further increase efficiency
while reducing bias that has been documented in manual
methods [7].

Although these complex challenges exist, we have
shown that the use of simple thresholding and morphologi-
cal filters is an effective first step towards the efficient and
accurate detection of rhino middens from remotely sensed
imagery. As we move forward to address these challenges,
we are confident that our improved ability to map rhino mid-
dens across landscapes will both advance our understanding
of rhino spatial behavior and support the management and
conservation of these iconic endangered species.
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