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Abstract
Micronutrient deficiency (MND), which is a form of malnu-
trition that can have serious health consequences, is difficult
to diagnose in early stages without blood draws, which are
expensive and time-consuming to collect and process. It is
even more difficult at a public health scale seeking to iden-
tify regions at higher risk of MND. To provide data more
widely and frequently, we propose an accurate, scalable, low-
cost, and interpretable regional-level MND prediction sys-
tem. Specifically, our work is the first to use satellite data,
such as forest cover, weather, and presence of water, to predict
deficiency of micronutrients such as iron, Vitamin B12, and
Vitamin A, directly from their biomarkers. We use real-world,
ground truth biomarker data collected from four different re-
gions across Madagascar for training, and demonstrate that
satellite data are viable for predicting regional-level MND,
surprisingly exceeding the performance of baseline predic-
tions based only on survey responses. Our method could be
broadly applied to other countries where satellite data are
available, and potentially create high societal impact if these
predictions are used by policy makers, public health officials,
or healthcare providers.

Introduction
More than 2 billion people worldwide, including 340 mil-
lion children (Keeley, Little, and Zuehlke 2019), are affected
by micronutrient deficiencies, or the lack of vitamins and
minerals required by the body for healthy functioning and
development (Micha et al. 2020). These micronutrient de-
ficiencies, hereafter referred to as MND, further drive the
global burden of disease but remain difficult to diagnose
since the effects often become visible only when the defi-
ciency is severe (von Grebmer et al. 2014). From a pub-
lic health perspective seeking to reduce MND prevalence
throughout a population, it is important to identify regions
at risk of MND. However, due to the difficulty of diagnosing
MND, regions with MND are unclear to public health orga-
nizations until direct measurements are made, such as blood
draws to measure biomarkers and/or surveys/questionnaires.
Unfortunately, these blood draws and surveys are costly and
time-consuming, and furthermore, quantifying micronutri-
ent levels in a blood sample requires limited, specialized
laboratory equipment, leading to infrequent data collection.
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Due to the difficulty in both types of data collection, we
seek a new data source that may be more scalable, such as
satellite data (i.e., data products derived from raw satellite
imagery). This may at first seem unrelated, as MND status
is unique to an individual, pertaining to an individuals’ nu-
trition, disease status, and other characteristics which cannot
be viewed by satellite. Indeed, prior work applying artificial
intelligence (AI) techniques to satellite data, e.g., in estimat-
ing crop type (Gadiraju et al. 2020), often search for fea-
tures directly observable by satellite. Predicting an indirect
feature such as MND prevalence brings additional technical
challenges, including choosing relevant satellite data, link-
ing a limited amount of ground truth data from individuals
to satellite data to train machine learning models, and sup-
porting interpretability for public health experts.
Contributions: Through our novel system, we establish that
satellite data can be used to predict MND at a regional level
despite these challenges. In fact, our system is the first to
predict MND from a regional level, as measured directly
from real-world, ground truth biomarkers, using satellite
data. This involves i) aggregating individuals’ MND states
from biomarker data over geographic regions to align with
satellite data, ii) using segmentation to generate custom fea-
tures of importance, specifically market locations in this
case, iii) providing scalablity with automatic feature selec-
tion, which performs comparably to expert feature selec-
tion, and iv) two prediction paradigms to handle the chal-
lenges that arise from limited ground truth data: logistic re-
gression, which also naturally handles the pressing need for
interpretability of predictions in the field, and multi-layer
perceptron with domain adaptation. Not only does this sys-
tem achieve good accuracy, but this also results in improved
performance compared to the baseline of survey-based pre-
dictions. We believe this MND detection system could be
broadly applied to other countries where satellite data are
available, potentially leading to more information for public
health interventions and high societal impact.

Background and Related Work
AI for Social Impact and Satellite Data: Existing applica-
tions of AI related to nutrition include food security, agricul-
ture, food rescues, and even foodborne illnesses (Shi, Wang,
and Fang 2020). Some of this literature relies on satellite and
other remotely-sensed images, such as agricultural produc-



tivity assessments and planning (Nakalembe 2020). Land
cover mapping (Poortinga et al. 2019) and socioeconomic
status prediction (Ayush et al. 2020) have also been ex-
plored. However, these factors are arguably directly visible
in satellite data, e.g., to predict socioeconomic status, Ayush
et al. (2020) search for objects directly in satellite data, such
as trucks. Dengue fever prediction in Abdur Rehman, Saif,
and Chunara (2019) is based on identifying features such as
standing water locations (mosquito habitat) and roads (hu-
man presence). While dengue status is not directly visible,
these direct causes are. MND prediction is less direct, as it
may depend on disease and nearby agriculture, forests, etc.
Possible Causes of MND: The causal mechanisms of MND
are complex, but there are multiple factors that likely influ-
ence MND, including environmental (e.g., forest presence),
epidemiological (e.g., malaria), and socio-economic factors.
One of the primary environmental factors studied for its im-
pacts on MND is forests. Generally, research indicates that
access to forests may improve dietary diversity. Dietary di-
versity is an assessment of the range of food groups con-
sumed over a period of time that is typically used as a proxy
for sufficient nutrient intake (Steyn et al. 2006), which is typ-
ically measured using survey responses detailing foods con-
sumed. Forests may directly support dietary diversity, e.g.,
from bushmeat and wild fruits, provide an additional source
of income, e.g., through the sale of forest products, or sup-
port crop and livestock production (Sunderland, O’Connor
et al. 2020). A study on children’s diets across 27 developing
countries, including Madagascar, finds that close proximity
to forests improved the household prevalence of Vitamin A-
and iron-rich foods by 11% and 16%, respectively (Rasolo-
foson et al. 2018). Ickowitz et al. (2014), one of the most
similar studies to ours, analyze dietary diversity, fruit and
vegetable consumption, and animal source food consump-
tion in children using satellite data such as tree cover, road
location, climate, and urban population information.

As an example of socioeconomic factors, Koppmair,
Kassie, and Qaim (2017) show that access (as measured by
distance) to food markets in Malawi plays an important role
in supporting dietary diversity, particularly for farm house-
holds. Markets may directly provide food, and/or may pro-
vide additional sources of income for local residents through
agricultural and livestock production sales, which can indi-
rectly improve dietary diversity. Agriculture, livestock, and
water supply also play an important role in health and nu-
trition (Brown et al. 2014). We further discuss the impact of
socioeconomic status on MND in the appendix1.

While these methods imply that satellite data can con-
tribute towards predicting MND, dietary diversity depends
only on foods consumed, which may be directly observable
from satellite imagery (e.g., crops or forests). Biomarkers
may involve further subtleties, such as individual character-
istics or disease. We use additional features as a result.

Data Description
Ground Truth Data: Ground truth data were collected by
Golden et al. (2020) in 2017-2018 in four distinct ecological

1https://bit.ly/MND-IAAI2022

Figure 1: Regions studied in Madagascar (left), known (cen-
ter) and predicted (right) markets in these regions.

regions in Madagascar, denoted as the Central Plateau (CP),
Southwest (SW), Southeast (SE), and West Coast (WCO)
(see Fig. 1). CP is at a high elevation, SW is arid, SE is a
mid-altitude rainforest, and WCO is seasonally dry.

In this paper, we will focus on the survey responses and
biomarker data from blood samples that were collected in
Golden et al. (2020). Surveys were provided to individuals
in households, small groups, and more. In total, responses
were collected from 6292 individuals from 1125 house-
holds within 24 communities in CP, SE, SW, and WCO.
Biomarker levels from blood draws were also collected from
a subset of these individuals. We denote the set of individu-
als by p ∈ {0, 1, ..., P}. Each individual has an underlying
MND state, dp, based on a biomarker level,m, that is thresh-
olded by t, derived from public health literature. Therefore,
individual p has dp = 1 if m < t and 0 otherwise. After
combining data from blood draws with surveys and house-
hold GPS locations, we have 2458 samples.

During this data collection process, Golden et al. (2020)
followed all procedures to minimize the risk to local pop-
ulations involved as subjects in the study, as detailed in
our approved IRB protocol from the Harvard T.H. Chan
School of Public Health (IRB16-0166). This included gain-
ing informed consent for all study-related protocols, includ-
ing the future cross-referencing of biological data with re-
motely sensed data products to improve the targeting of
public health responses. To briefly summarize this process,
a community meeting was held to explain the study using
speeches. The research team then visited sampled house-
holds to invite individuals to participate. The prospective
participants were provided more information if they ex-
pressed interest. Furthermore, data are de-identified to limit
the risk of breaches of confidentiality, and we follow Har-
vard IRB protocols to further minimize risk. Gaining in-
formed consent does not automatically alleviate concern of
data misuse and inadvertent consequences; nevertheless, we
took all necessary precautions to protect human subjects in
the study. Please see Golden et al. (2020) for further details.
Satellite Data: Based on the causes of MND in Related
Work, we select publicly available satellite data, much of
which is derived from raw satellite imagery, e.g., using ma-
chine learning. We provide a full description of features, in-
cluding collection time (∼ 2017), in the appendix, but two



Figure 2: Illustration of using satellite data, which is first normalized and registered, as features to predict MND. Compare to
pixel-level labels derived from individual MND statuses. In this illustration, both predictions are correct.

we use include livestock population density (Robinson et al.
2014) and weather (McNally et al. 2017).

Once we collect these features (in the form of images) at
the sites of clinical data collection, we resample the images
to a uniform resolution of about 25x25 m for one pixel, at a
size of 308x308 pixels. This provides us with 23 images to-
tal with 86 features each (as image bands). After collecting
all satellite data, we normalize each feature to within [0, 1],
regardless of whether it was binary, categorical, or continu-
ous. We then do imputation by taking the nearest neighbor
if there are any missing data in the feature.

Problem Description and Aggregation
Given the values from satellite data for a pixel as input, our
goal is to predict MND presence (classification) or preva-
lence (regression) in that pixel as the output. Ground truth
labels are derived from biomarkers in blood samples.
Define Grid with Satellite Data: More specifically, we rep-
resent the input, i.e., the satellite data, via a multidimen-
sional image array, S. There are 23 S in our dataset, as the
ecological regions are large. Therefore, we add an overall
image index, Sl,r, where r represents the current region, and
l represents the image index within that region. Each Sl,r is
indexed by i for rows (y-axis), j for columns (x-axis), and k
(z-axis) for features, i.e., the individual satellite data features
such as forest cover, weather, and presence of water.
Aggregation to Link Data: To link the two data sources,
we rely on locations. Each p (individual, see Data Descrip-
tion) is associated with some gp, a geographic coordinate.
Each Sl,r

i,j is associated with a set of geographic coordinates,
Gl,r

i,j . We may now find the set of individuals, P l,r
i,j , whose

locations fall within each pixel, such that gp ∈ Gl,r
i,j . We find

their underlying MND states, dp, to calculate MND preva-
lence, the percentage of individuals who have MND as de-
fined by biomarker levels. This prevalence, vl,ri,j , is our label:

vl,ri,j =

∑
p∈P

l,r
i,j

dp

|P l,r
i,j |

, (1)

where |P l,r
i,j | =

∑
p∈P l,r

i,j
1 is the cardinality of set P l,r

i,j . We

may threshold vl,ri,j for a classification task, or predict the

explicit value directly as a regression task. Please see Fig. 2
for an illustration. In our dataset, this leads to 300-500 pixel
labels, which is only about 0.02% of pixels.

Formally, our goal is to train a region-specific ML model
frω(·) parameterized by ω for each of the 4 ecological re-
gions, where given input training data Sl,r

i,j in the training set,
the model is optimized to minimize the discrepancy between
prediction v̂l,ri,j = frω(S

l,r
i,j ) (see Fig. 2) and the ground truth

label vl,ri,j : minω ESl,r
i,j∈Sr

tr
D(v̂l,ri,j , v

l,r
i,j ) where D(v̂l,ri,j , v

l,r
i,j )

could be, e.g., mean squared error (MSE) for regression, or
cross-entropy (CE) for classification. ESl,r

i,j∈Sr
tr

is an expec-
tation taken over all pixels in the training set Sr

tr in region r,
for each micronutrient. We assume the data are i.i.d.

Prediction Methodology
Market Detection: As discussed in Related Work, the pres-
ence of markets is an important factor for MND. We would
consequently like to add markets as an extra feature on top
of the existing satellite data products. Yet, it is difficult to
know where all markets are located in Madagascar. We only
know of those specifically mentioned during the focus group
surveys conducted in Golden et al. (2020).

To add this, we therefore start by comparing the known
market locations from the survey data responses with satel-
lite data, and infer that the number of buildings within town
clusters and the proximity to roads may be used as predic-
tors of market presence in Madagascar. Specifically, we de-
termine empirically that 20 buildings and one road within
about 0.8 km2 are highly indicative of market presence.

In order to apply these thresholds in an automatic market
detection pipeline, we first have to locate roads and build-
ings. While OpenStreetMap (OSM)2 provides building and
road segmentation data, it is not always complete. This is es-
pecially true in our regions of interest. As a result, we train
a satellite image-based segmentation model.

For ground truth data to train this segmentation model, we
use nearby OSM building labels where they are more com-
plete. In particular, for each of the four regions in Madagas-
car, we automatically identify the closest densely-clustered

2www.openstreetmap.org



OSM building labels to the known market locations. These
labels are saved to the building segmentation training set,
along with high-resolution images from the Google Maps
Static API3. For each region, the training dataset contains
roughly 100-200 training images and at least 500 corre-
sponding OSM building labels across all images. Each indi-
vidual image has 600x600 pixels, with a 0.46 m resolution.

For the building segmentation model, we use a U-Net con-
volutional network (Ronneberger, Fischer, and Brox 2015)
with a ResNet-34 encoder pretrained on ImageNet. The U-
Net architecture, originally developed for biomedical image
segmentation, is commonly used for satellite image segmen-
tation, and is particularly useful for training on smaller train-
ing sets such as the sparse OSM building label data. The
satellite image training set is augmented with random flips,
rotations, and resizes. Binary cross entropy is used as the
loss function, and we use the Adam optimizer with a learn-
ing rate of 1e-2. The model is trained using a batch size of
16. Results are shown in Fig. 1. The building segmentation
model and thresholding achieves 0.86 precision in detect-
ing the ground-truth markets from survey data. We include
these as features in our data by drawing radii of multiple dis-
tances around each market, so that pixels in this layer rep-
resent the number of markets within a certain radius. We
create these radii masks given healthcare center coordinates
(Humanitarian Data Exchange 2020) as well, bringing us to
90 total features. While we focus on markets here, this seg-
mentation process could be applied to generate other satel-
lite image-based features that do not already exist, such as
custom landcover maps.
K-Medoids-based Feature Selection: It is helpful to have
many features, but not all features are necessarily informa-
tive. The risk of overfitting when using all 90 features can
be large when dealing with limited data. A straightforward
idea is to use knowledge from domain experts to select only
features that are most important for predicting MND in a
particular region. However, this introduces two more issues.
First, the feature importance of different regions may vary
drastically due to different ecologies. In Madagascar, for ex-
ample, certain agriculture, such as pulses, are only present
and predictive of MND in some regions. It would require
a significant amount of manual work to specify the set of
important features for each area. Second, the causal mecha-
nisms behind MND are not fully understood. Therefore, it is
critical to come up with an automatic feature selection pro-
cedure that effectively filters out uninformative features with
minimal manual effort.

We start by removing any features that are always 0
throughout the full dataset (i.e., Si,j,k = 0,∀i, j), lead-
ing to 69 features. We then use the K-medoids clustering
method (Park and Jun 2009) to group highly correlated fea-
tures. Each point in our space is a vector of individual pixel
values in an image (representing a feature), such that the
dimension of the space is the number of pixels. We use
Pearson’s correlation coefficient as the distance metric be-
tween features. Similar to K-means clustering, K-medoids
clustering also aims at partitioning the data points (i.e., fea-

3developers.google.com/maps/documentation/maps-static

tures) into different clusters. Both minimize the sum of dis-
tances between points labeled to be in the same cluster and a
point designated to be the center of that cluster. However, K-
means uses the central position (centroids) as the designated
point, while K-medoids uses a point that actually exists in
the set of data points (i.e., an existing satellite data feature).
As such, we are able to use the medoid feature to represent
the group of correlated features, preserving interpretability.

We post-process the image data, selecting the 300-500
(0.02%) ground truth pixels to form a feature matrix.
Prediction with Logistic Regression: We first use a simple
but effective logistic regression model. We choose logistic
regression as one of the underlying ML models in this paper,
due to its following advantages. First, it has fewer weights
compared to other models such as deep neural networks, and
therefore is less prone to overfitting. This is particularly im-
portant given the limited amount of data we have and the
high-dimensional feature space. Second, it is interpretable
by itself (as shown in experiments, e.g., Fig. 5), where the
weights ω of different features directly indicate the im-
portance of the features in determining the prediction out-
come. Moreover, compared to post-hoc model-free explana-
tion methods such as LIME (Ribeiro, Singh, and Guestrin
2016) and SHAP (Lundberg and Lee 2017), which only pro-
vide instance-level explanations, the weights of logistic re-
gression models imply feature importance at an aggregated
level, which we show could provide important insights to
public health experts. We primarily focus on region-specific
prediction for tailored interpretation and results, but we also
train using all regions’ training data combined and predict
on each regions’ test set, which we call Naively Combined.
Prediction with Multi-layer Perceptron and Domain
Adaptation: Another strategy to address limited training
data is domain adaptation (Huang et al. 2006), which allows
us to use data from all 4 ecological regions as follows: The
target domain is the region of Madagascar in which we are
making our predictions. The source domains are the other
3 regions, which we would like to use for augmentation.
We project all 4 into a domain-invariant latent representation
with a single hidden layer (5 neurons) and the loss function:

l = α ∗ lsrc + ltgt + λ ∗ ltransfer (2)

where lsrc and ltgt are the binary cross-entropy loss in the
source and target domains. ltransfer is the CORAL loss
(Sun, Feng, and Saenko 2016) between the source and target
domains. α and λ are hyperparameters, and are tuned to be
0.1 and 0.01, respectively, out of {0.01, 0.1, 1, 10}. Finally,
we predict on the target domain test set.

Results
We present experimental results using 4-fold cross-
validation (i.e., data from one region are broken into 4 folds).
Due to the limited amount of data, it is impractical to have
more folds. We primarily report Area Under the Curve -
Receiver Operating Characteristics (AUC-ROC, or AUC in
short) to evaluate the MND classification tasks, and discuss
recall in the appendix. Note that we only report the mean
AUC values averaged over the 4 folds as the standard de-
viation becomes trivial for only 4 folds. All data collection



(a) Iron deficiency (b) Vitamin B12 deficiency (c) Vitamin A deficiency

Figure 3: Comparison of survey-based (with or without feature selection) and satellite data-based MND prediction by regions.

and experimentation rely on the default, free resources on
Google Colab4, and training for all 4 folds takes less than
1 minute in general for both logistic regression and domain
adaptation.

a) Is our prediction accurate? We compare with predic-
tions made by survey data only, as is similar to prior work
such as (Ickowitz et al. 2014). The results are shown in
Fig. 3. For survey data, we tested two versions, the original,
full amount of data, and a version with one simple level of
feature selection. In this case, we selected features which we
believed could reasonably be seen or inferred from satellite
data. When comparing both survey-based predictions with
our satellite data-based predictions, we can see that satellite
data-based prediction is better in i) all 4 regions for iron, ii)
3 out of 4 regions for Vitamin B12, and iii) 2 out of 4 regions
for Vitamin A. Where it does not outperform survey-based
predictions, it performs comparably with significantly lower
cost. Across all of the 4 regions and all of the 3 types of nu-
trients, the AUC value is higher than 0.6 in 105 cases, and is
close to 0.5 for the other 2 cases. Meanwhile, the F1 scores
of our predictions are on average 0.6 (ranging up to 0.9) and
are also comparable to those based on surveys. Satellite data-
based regression results are comparable to survey-based re-
gression. Therefore, we consider our predictions accurate.

b) Which features are important for MND prediction? As
logistic regression is considered an inherently interpretable
model, we focus our analysis on the weights of each vari-
able, particularly those whose absolute values are largest.
First, we build an “important features” list. For each region-
specific model and each micronutrient (in total 3 × 4 = 12
cases), we record the features with the top 3 highest positive
weights and negative weights. We aggregated statistics on
the number of times that each feature appears in these “im-
portant features” lists in Table 1. From this, we observe that
market features are very important, with market presence
within 7.5 km with 6 appearances, and within 3.75 km with
3 appearances. We also observe other interesting trends, in-
cluding that more forest fires are linked to greater rates of
Vitamin A and B12 deficiency in the SE region (rainforest),
but not in other regions that are less reliant on forest prod-
ucts, which may be a useful insight for public health experts.

4https://colab.research.google.com
5Please note that some of these statistics may slightly fluctuate,

e.g., 9 instead of 10 cases sometimes.

Figure 4: Comparison feature selection methods, including
removing any features without data, human expert feature
selection, and our K-medoids method, all in region WCO.

Fig. 5 illustrates this pattern for Vitamin A in SE.
c) How does the automatic feature selection perform?

To evaluate the performance of automatic feature selection
(FS), we compare with two baselines. First, we consider the
case where there is no feature selection apart from removing
features which are completely zero (i.e., no data) (Satellite
Remove 0 FS). We also compare with expert feature selec-
tion, in which a public health expert examines the features
we propose, and groups them based on their knowledge6.
They also select a representative feature for each of their
groups (Satellite Expert FS). Finally, we consider the per-
formance of our correlation and K-medoids-based algorithm
(Satellite Auto FS). We show results for one of the regions
(WCO) due to space limitation, but trends in other regions
are similar. We can see that both Expert FS and Auto FS
are better than the case where no FS is used, especially for
Vitamin B12. In all three cases, Auto FS always performs
comparably to Expert FS, as it does in other examples that
are not included here, but Auto FS is more scalable.

We also compare the groups that are found by Auto FS
and Expert FS. Very interestingly, we find that in the two
methods, 8 out of 21 group centers overlap: banana, cat-

6Expert chose 21, which led us to select K = 21



Feature Description Frequency
Chicken population density 9
Cattle population density 8
Net shortwave radiation flux 7
Presence of market within 7.5 km 6
Soil moisture in 100 - 200 cm underground 6
Soil temperature in 10 - 40 cm underground 5
Near surface wind speed 4
Surface pressure 4
Fire (temperature of pixel) 4
Presence of market within 3.75 km 3

Table 1: Frequency of each feature appearing in either the
top 3 positive or negative coefficients. The 10 (out of 21)
features with the highest appearance frequencies are shown.

Figure 5: Logistic regression weights (x-axis) for Vitamin A,
region SE. Positive numbers mean positive correlation with
MND. Medoid feature names provided (SM: soil moisture).

tle, chicken, goat, maize, presence of markets within 7.5
km, surface pressure, and wind speed. This shows that our
method is choosing features deemed important by a human
expert as well. The above results well demonstrate that our
proposed automatic feature selection method is an effective
while scalable alternative to expert feature selection.

d) How do different prediction paradigms compare?
We compare the region-specific logistic regression models
(Satellite Auto FS), the logistic regression model version
that combines training data from all of the regions (Naively
Combined), and multi-layer perceptron with domain adap-
tation (Domain Adaptation). We present results from region
CP. Here, and overall, we find that Vitamin B12 and Iron
achieve better performance using Domain Adaptation, while
Vitamin A achieves better performance using the logistic
regression-based Satellite Auto FS or Naively Combined.
This may be because each micronutrient differs slightly in its
relevant factors, and factors may vary regionally (e.g., some
regions are forested). Clearly, each method works well with
limited amounts of data, but we acknowledge the tradeoffs
in interpretability, and a potential lack of robustness in the
model due to limited samples.

Figure 6: Comparing AUC of a logistic regression model
trained by naively combining training data from all re-
gions, a multi-layer perceptron with domain adaptation, and
a region-specific logistic regression model, all in CP.

Conclusion and Discussion
In conclusion, satellite data are viable to use for MND pre-
diction at a public health scale. We presented a system rely-
ing on the aggregation of individual MND states over geo-
graphic regions, a search for relevant features, such as mar-
kets, automatic feature selection, which performs compara-
bly to human expert feature selection, and domain adapta-
tion and logistic regression prediction models. This system
worked well even with limited ground truth biomarker data.
Deployment Considerations While our system has not yet
been deployed, we would like to emphasize several deploy-
ment considerations. This methodology would not replace
surveys and blood samples collected among communities.
Rather, we believe it should be used to cover gaps in that
data collection, e.g., where data could not be collected, or
in between collections. To do this, public health officials,
policymakers, healthcare workers, or individuals can load
publicly available, current satellite data and apply the ex-
isting model, without any survey or blood sample data. We
can then update these models when another data collection
occurs. This also applies for deployment in other countries.
We plan to develop a web application to load satellite data
at the desired time and location, and the current proposed
model, to provide predictions. We plan to iterate on this with
potential users, including officials from Catholic Relief Ser-
vices, Médecins Sans Frontières, and the Ministry of Health
in Madagascar. In the meantime, code and satellite data are
available7, while ground truth data are withheld for privacy.
Future Work: We began preliminary experiments into
sparse segmentation and spatial aggregation to further in-
clude spatial patterns in the prediction step, but they require
further refinement before deployment. We also encourage
the use of custom features, as illustrated with markets. Most
importantly, we believe there is ample room for further re-
search, and a great deal of promise for broad application to
inform future public health interventions.

7https://github.com/exb7900/mnd-iaai2022
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Additional Data Details
Satellite Data
We used the data shown in Table 2. We acknowledge the use
of data and/or imagery from NASA’s Fire Information for
Resource Management System (FIRMS) (https://earthdata.
nasa.gov/firms), part of NASA’s Earth Observing System
Data and Information System (EOSDIS).

MND Thresholds
In Table 3, we include the thresholds used to define MND
in this paper, though we are unable to provide raw data pub-
licly.

Additional Results
Socioeconomic Status
The causal mechanisms of MND are quite complex, but it is
believed that there are multiple factors that influence MND.
For example, we mention in “Possible Causes of MND”
some environmental factors, especially forest presence, as
well as socio-economic status. Epidemiological factors are
also potential causes of MND, e.g., malaria.

In our analysis, we included multiple correlates to socio-
economic status, such as nighttime lights, i.e., images of
Earth at night, where it is expected that highly populous and
resourced areas have more light. We found that the corre-
lation coefficient between nighttime lights data and ground
truth iron deficiency is 0.127, implying that alone, it may not
be highly correlated. The individual feature with the greatest
correlation is the sugarcane crop, with 0.147. If we predict
solely with sugarcane, we achieve an AUC of 0.428, which
is less than our findings of about 0.6 for iron deficiency. This
implies that we need the other factors as well in order to pre-
dict MND.

Regression
We also report the regression results in Fig. 7. We can see
that the satellite imagery-based regression results are still
comparable to the two versions of survey-based regression.
In particular, MAE of our method ranges 0.16-0.19 in iron,
0.18-0.35 in Vitamin B12, and 0.19-0.29 in Vitamin A,
which are reasonable considering the range of the regres-
sion task is [0, 1] and the means are 0.21, 0.36, and 0.20, re-
spectively. The AUC, F1-score, and MAE results all together
demonstrate that our predictions are reasonably accurate.

Recall
Recall is important, as false negatives may lead to resources
allocated away from people who truly have MND. Gener-
ally, recall is comparable to AUC for these data. However, it
is higher in some cases. For example, for iron deficiency in
region SE, recall is nearly 0.9.



Feature Collection Time Google EE
Livestock Population Density (Robinson et al. 2014) 2010

Crop Cover (Xiong et al. 2017) 2015
Elevation (NASA JPL 2020) 2000 X

Fire (Giglio and LANCE FIRMS 2016) 2016 X
Fishing Hours (Kroodsma et al. 2018) 2016 X

Forest Cover (Shimada et al. 2014) 2017 X
Forest Change (Hansen et al. 2013) 2017 X
Landcover (Buchhorn et al. 2020) 2017 X

Nighttime Lights (Elvidge et al. 2017) 2017 X
Population Density (CIESIN 2017) 2015 X

Presence of Water (Pekel et al. 2016) 1984-2019 X
Weather (McNally et al. 2017; NASA GSFC HSL 2018) 2017 X

Crop Production (International Food Policy Research Institute 2020) 2017
Markets (Golden et al. 2020) 2017-2018

Healthcare Sites (Humanitarian Data Exchange 2020) 2020

Table 2: Satellite data sources, collection time, and availability on Google Earth Engine.

MND Biomarker Values
Iron a Ferritin < 30 ng/mL

Vitamin A b Retinol < 0.20055 mg/L
Vitamin B12 c B12 < 300 pmol/L

Table 3: Micronutrient deficiency thresholds.

ahttps://www.who.int/vmnis/indicators/serum ferritin.pdf
bhttps://apps.who.int/iris/bitstream/handle/10665/44110/

9789241598019 eng.pdf
cUSDA
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Figure 7: Regression results comparison between satellite imagery based and survey based predictions. All elements are the
same as Fig. 3 except that y-axis now means MAE of the regression task. Note that in this figure, lower bars imply better results.


