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Abstract

The widespread availability of cell phones has enabled non-profits to deliver critical1

health information to their beneficiaries in a timely manner. This paper describes2

our work in assisting non-profits employing automated messaging programs to3

deliver timely preventive care information to new and expecting mothers during4

pregnancy and after delivery. Unfortunately, a key challenge in such information5

delivery programs is that a significant fraction of beneficiaries tend to drop out.6

Yet, non-profits often have limited health-worker resources (time) to place crucial7

service calls for live interaction with beneficiaries to prevent such engagement8

drops. To assist non-profits in optimizing this limited resource, we developed a9

Restless Multi-Armed Bandits (RMABs) system. One key technical contribution in10

this system is a novel clustering method of offline historical data to infer unknown11

RMAB parameters. Our second major contribution is evaluation of our RMAB12

system in collaboration with an NGO, via a real-world service quality improvement13

study. The study compared strategies for optimizing service calls to 23003 partic-14

ipants over a period of 7 weeks to reduce engagement drops. We show that the15

RMAB group provides statistically significant improvement over other comparison16

groups, reducing ∼ 30% engagement drops. To the best of our knowledge, this17

is the first study demonstrating the utility of RMABs in real world public health18

settings. We are transitioning our system to the NGO for real-world use.19

1 Introduction20

The ubiquity of cell phones has allowed non-profits to deliver targeted health information via voice21

or text messages to beneficiaries in underserved communities, often with significant demonstrated22

benefits to those communities [15, 22]. We focus in particular on non-profits that target improving23

maternal and infant health in low-resource communities in the global south. These non-profits deliver24

ante- and post-natal care information via voice and text to prevent adverse health outcomes [2, 12, 13].25

Unfortunately, such information delivery programs are often faced with a key shortcoming: a large26

fraction of beneficiaries who enroll may drop out or reduce engagement with the information program.27

Yet non-profits often have limited health-worker time available on a periodic (weekly) basis to help28

prevent engagement drops. More specifically, there is limited availability of health-worker time where29

they can place crucial service calls (phone calls) to a limited number of beneficiaries, to encourage30

beneficiaries’ participation, address complaints and thus prevent engagement drops.31

Optimizing limited health worker resources to prevent engagement drops requires that we prioritize32

beneficiaries who would benefit most from service calls on a periodic (e.g., weekly) basis. We33

model this resource optimization problem using Restless Multi-Armed Bandits (RMABs), with34

each beneficiary modeled as an RMAB arm. RMABs have been well studied for allocation of35

limited resources motivated by a myriad of application domains including preventive interventions for36
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healthcare [21], planning anti-poaching patrols [25], machine repair and sensor maintenance [11] and37

communication systems [27]. However, RMABs have rarely seen real world deployment, and to the38

best of our knowledge, never been deployed in the context of large-scale public health applications.39

This paper presents first results of an RMAB system in real world public health settings. Based40

on available health worker time, RMABs choose m out of N total beneficiaries on a periodic (e.g.,41

weekly) basis for service calls, where the m are chosen to optimize prevention of engagement drops.42

The paper presents two main contributions. First, previous work often assumes RMAB parameters as43

either known or easily learned over long periods of deployment. We show that both assumptions do44

not hold in our real-world contexts; instead, we present clustering of offline historical data as a novel45

approach to infer unknown RMAB parameters.46

Our second contribution is a real world evaluation showing the benefit of our system, conducted in47

partnership with an Indian NGO, ABC (real name withheld for anonymity), focused on maternal48

and child care. ABC conducts a large-scale health information program, with concrete evidence of49

health benefits, which has so far served over a million mothers. In this program, an automated voice50

message is delivered to an expecting or new mother (beneficiary) over cell phone on a weekly basis51

throughout pregnancy and for a year post birth in a language and time slot of her preference.52

Unfortunately, ABC’s information delivery program also suffers from engagement drops. Therefore,53

in collaboration with ABC we conducted a service quality improvement study to maximize the54

effectiveness of their service calls to ensure beneficiaries do not drop off from the program or55

stop listening to weekly voice messages. More specifically, the current standard of care in ABC’s56

program is that any beneficiary may initiate a service call by placing a so called “missed call”. This57

beneficiary-initiated service call is intended to help address beneficiaries’ complaints and requests,58

thus encouraging engagement. However, given the overall decreasing engagement numbers in the59

current setup, key questions for our study are to investigate an approach for effectively conducting60

additional ABC-initiated service calls (these are limited in number) to reduce engagement drops.61

To that end, our service quality improvement study comprised of 23,003 real-world beneficiaries62

spanning 7 weeks. Beneficiaries were divided into 3 groups, each adding to the current standard of63

care. The first group exercised ABC’s current standard of care (CSOC) without additional ABC-64

initiated calls. In the second, the RMAB group, ABC staff added to the CSOC by initiating service65

calls to 225 beneficiaries on average per week chosen by RMAB. The third was the Round-Robin66

group, where the exact same number of beneficiaries as the RMAB group were called every week67

based on a systematic sequential basis.68

Results from our study demonstrate that RMAB provides statistically significant improvement over69

CSOC and round-robin groups. This improvement is also practically significant — the RMAB group70

achieves a ∼ 30% reduction in engagement drops over the other groups. Moreover, the round-robin71

group does not achieve statistically significant improvement over the CSOC group, i.e., RMAB’s72

optimization of service calls is crucial. To the best of our knowledge, this is the first large-scale73

empirical validation of use of RMABs in a public health context. Based on these results, the RMAB74

system is currently being transitioned to ABC to optimize service calls to their ever growing set of75

beneficiaries. Additionally, this methodology can be useful in assisting engagement in many other76

awareness or adherence programs, e.g., Chen et al. [5], Thirumurthy and Lester [29].77

2 Problem Statement78

We assume the planner has access to an offline historical data set of beneficiaries, Dtrain. For each79

beneficiary i,Dtrain[i] consists of a tuple, 〈f, E〉, where f corresponds to beneficiary i’s static feature80

vector, and E is an episode storing the trajectory of (s, α, s′) pairs for that beneficiary, where s81

denotes the start state, α the action taken (passive v/s active), and s′ the next state that the beneficiary82

lands in after executing α in state s. We assume that these (s, α, s′) samples are drawn according to83

fixed, latent transition matrices P ass′ [i] and P pss′ [i] (corresponding to the active and passive actions84

respectively), unknown to the planner, and potentially unique to each beneficiary.85

Additionally, we have a different beneficiary cohort Dtest, with N beneficiaries, marked {1, . . . , N},86

that the planner must plan service calls for. The transition parameters corresponding to beneficiaries87

in Dtest are unknown to the planner, but assumed to be drawn at random from a distribution similar88

to the joint distribution of features and transition parameters of beneficiaries in the historical data89

distribution. The planner has access to the feature vector f for beneficiaries in Dtest.90
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We now define the service call planning problem as follows. The planner has upto m resources91

available per round, which the planner may spend towards delivering service calls to beneficiaries.92

Beneficiaries are represented by N arms of the RMAB, of which the planner may pull upto m arms93

(i.e., m service calls) at each time step. We consider a round or timestep of one week which allows94

planning based on the most recent engagement patterns of the beneficiaries.95

3 Methodology96

We use clustering techniques that exploit historical data Dtrain to estimate an offline RMAB problem97

instance relying solely on the beneficiaries’ static features and online state transition data. While98

there is limited service call data (active transition samples) for any single beneficiary, clustering on99

the beneficiaries allows us to combine their data to infer transition probabilities for the entire group,100

thus overcoming the challenge of limited samples (time-steps) per beneficiary. Clustering offers the101

added advantage of reducing computational cost for resource limited NGOs; since all beneficiaries102

within a cluster share identical transition probability values we can compute their Whittle index all103

at once. We test four such clustering methods, but adopt the PPF method (described below) in our104

final study, and defer the description of other methods to Appendix D. Finally, we adopt the Whittle105

solution approach for RMABs (detailed in Appendix E) to plan actions and pre-compute all of the106

possible 2k index values possible (corresponding to combinations of k possible clusters and 2 states).107

Passive Transition-Probability based Clustering (PPF): The key motivation here is to group108

together beneficiaries with similar transition behaviors, irrespective of their features. To this end, we109

use k-means clustering on passive transition probabilities (to avoid issues with missing active data) of110

beneficiaries in Dtrain and identify cluster centers. We then learn a map φ from the feature vector f111

to the cluster assignment of the beneficiaries that can be used to infer the cluster assignments of new112

beneficiaries at test-time solely from f . We use a random forest model as φ.113

4 Service Quality Improvement Study114

For our quality improvement study, we consider the cohort of beneficiaries registered in the program115

between Feb 16, 2021 and March 15, 2021 (as Dtest). The 23003 beneficiaries are randomly116

distributed across 3 groups, each group adding to the CSOC as follows:117

Current-Standard-of-Care (CSOC) Group: The beneficiaries in this group follow the original118

standard of care, where there are no ABC initiated service calls. The listenership behavior of119

beneficiaries in this group is used as a benchmark for the RR and RMAB groups.120

RMAB group: In this group, beneficiaries are selected for ABC-initiated service call per week via121

the Whittle Index policy described in Section B. Even though all beneficiaries within a cluster are122

modeled by identical MDP parameters, their states may evolve independently, and so the Whittle123

indices are tracked for each beneficiary separately, leading to an RMAB with 7668 arms.124

Round Robin (RR) group: By default, NGOs including ABC often conduct service calls using125

some systematic set order – the idea here is to have an easily executable policy, that services enough126

of a cross-section of beneficiaries and can be scaled up or down per week based on available resources.127

To recreate this setting, we generate service calls to beneficiaries based on the ascending order of their128

date of enrollment for this RR group, as recommended by ABC. If this method succeeds compared129

to CSOC, then a simple manual strategy is enough; RMAB style optimization may not be needed.130

We ensure absence of selection bias in our randomized group assignment via Analysis of Variance131

(ANOVA) test (see Appendix H). Beneficiaries across all three groups receive the same automated132

voice messages regarding pregnancy and post-birth care throughout the program, and no health related133

information is withheld from any beneficiary. The study only aims to evaluate the effectiveness of134

ABC-initiated outbound service calls with respect to improving engagement with the program across135

the three groups. No interviews or research data or feedback was collected from the beneficiaries.136

4.1 Results and Statistical Analysis137

We present our key results from the study in Figure 1. The results are computed at the end138

of 7 weeks from the start of the quality improvement study on April 26, 2021. Figure 1 mea-139
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sures the impact of service calls by the RMAB and RR policies in comparison to the CSOC140

Group. Beneficiaries’ engagement with the program typically starts to dwindle with time.141

Figure 1: Cumulative weekly engagement
drops prevented (compared to CSOC) by
RMAB far exceed those prevented by RR.

142

In Figure 1, we measure the impact of a service call143

policy as the cumulative drop in engagement pre-144

vented compared to the CSOC Group (see Appendix J145

for details). We consider drop in engagement instead146

of the raw engagement numbers themselves, because147

of the slight difference in the numbers of beneficiaries148

in engaging (E) state at the start of the study. Fig-149

ure 1 shows that the RMAB policy prevents a total150

622 instances of a drop in automated health message151

engagement, at the end of 7 weeks, as compared to152

CSOC. RR group, on the other hand, only prevents153

101 engagement drops by the end of week 7. Given154

that there are a total of 1944 engagement drops in the155

CSOC group, we show in Table 1, that the RMAB group has 32.0% and 28.3% less cumulative156

engagement drops as compared to the CSOC and RR groups respectively by the end of the study.157

Table 1: Statistical significance for service call policy impact
at week 7 is tested using a linear regression model. We use:
∗p < 0.05; †p < 0.1

RMAB
vs CSOC

RR vs
CSOC

RMAB
vs RR

% reduction in cumula-
tive engagement drops 32.0% 5.2% 28.3%

p-value 0.044∗ 0.740 0.098†
Coefficient β -0.0819 -0.0137 -0.0068

To investigate the benefit from use158

of RMAB policy over policies in the159

RR and CSOC groups, we use re-160

gression analysis [1]. The results161

are summarized in Table 1. We find162

that RMAB has a statistically sig-163

nificant treatment effect in reducing164

cumulative engagement drop (nega-165

tive β, p < 0.05) as compared to166

CSOC group. However, the treat-167

ment effect is not statistically signifi-168

cant when comparing RR with CSOC169

group (p = 0.740). Additionally,170

comparing RMAB group with RR, we find β, the RMAB treatment effect, to be significant (p < 0.1).171

This shows that RMAB policy has a statistically significant effect on reducing cumulative engagement172

drop as compared to both the RR policy and CSOC. RR fails to achieve statistical significance against173

CSOC. Together these results illustrate the importance of RMAB’s optimization of service calls, and174

that without such optimization, service calls may not yield any benefits.175

5 Conclusions and Lessons Learned176

We present an RMAB based system to assist these non-profits in optimizing their limited service177

resources to support their massive programs delivering key health messages to a broad population of178

beneficiaries. To the best of our knowledge, ours is the first study to demonstrate the effectiveness of179

such RMAB-based resource optimization in real-world public health contexts. These encouraging180

results have initiated the transition of our RMAB software to ABC for real-world deployment. We181

hope this work paves the way for use of RMABs in many other health service applications.182

Some key lessons learned from this research, complementing those outlined in [8, 30, 34] include the183

following (see Appendix K for an elaborate discussion). First, social-impact driven engagement and184

design iterations with the NGOs on the ground is crucial to understanding the right AI model for use185

and appropriate research challenges. In short, domain partnerships with NGOs to achieve real social186

impact automatically revealed requirements for use of novel application of an AI model (RMAB) and187

new research problems in this model. Second, data and compute limitations of non-profits are a real188

world constraint, and must be seen as genuine research challenges in AI for social impact, rather than189

limitations. Third, in deploying AI systems for social impact, there are many technical challenges190

that may not need innovative solutions, but they are critical to deploying solutions at scale. Finally we191

hope this work serves as a useful example of deploying an AI system for social impact in partnership192

with non-profits in the real world and will pave the way for more such impactful solutions.193
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A Related Work285

Patient adherence monitoring in healthcare has been shown to be an important problem [19], and286

is closely related to the churn prediction problem, studied extensively in the context of industries287

like telecom [7], finance [26, 35], etc. The healthcare domain has seen several studies on patient288

adherence for diseases like HIV [31], cardiac problems [6, 28], Tuberculosis [16, 23], etc. These289

studies use a combination of patient background information and past adherence data, and build290

machine learning models to predict future adherence to prescribed medication 1. However, such291

models treat adherence monitoring as a single-shot problem and are unable to appropriately handle292

the sequential resource allocation problem at hand. Additionally, the pool of beneficiaries flagged as293

high risk can itself be large, and the model can’t be used to prioritize calls on a periodic basis, as294

required in our settings.295

The Restless Multi-Armed Bandit (RMAB) framework has been popularly adopted to tackle such296

sequential resource allocation problems [14, 33]. Computing the optimal solution for RMAB297

problems is shown to be PSPACE-hard. Whittle proposed an index-based heuristic [33], that can298

be solved in polynomial time and is now the dominant technique used for solving RMABs. It299

has been shown to be asymptotically optimal for the time average reward problem [32], and other300

families of RMABs arising from stochastic scheduling problems [11]. Several works as listed in301

Section 1, show applicability of RMABs in different domains but these unrealistically assume perfect302

knowledge of the RMAB parameters, and have not been tested in real-world contexts. Avrachenkov303

and Borkar [3], Biswas et al. [4], present a Whittle Index-based Q-learning approach for unknown304

RMAB parameters. However, their techniques either assume identical arms or rely on receiving305

thousands of samples from each arm, which is unrealistic in our setting, given limited overall stay306

of a beneficiary in an information program — a beneficiary may drop out or stop engaging with the307

program few weeks post enrolment unless a service call convinces them to do otherwise. Instead,308

we present a novel approach that applies clustering to the available historical data to infer model309

parameters.310

Clustering in the context of Multi-Armed Bandit and Contextual Bandits has received significant311

attention in the past [9, 17, 18, 36], but these settings do not consider restless bandit problems.312

B Preliminaries313

B.1 Background: Restless Multi-Armed Bandits314

An RMAB instance consists of N independent 2-action Markov Decision Processes (MDP) [24],315

where each MDP is defined by the tuple {S,A, R,P}. S denotes the state space, A is the set of316

possible actions, R is the reward function R : S × A × S → R and P represents the transition317

function. We use Pαs,s′ to denote the probability of transitioning from state s to state s′ under the318

action α. The policy π, is a mapping π : S → A that selects the action to be taken at a given state.319

The total reward accrued can be measured using either the discounted or average reward criteria to320

sum up the immediate rewards accrued by the MDP at each time step. Our formulation is amenable321

to both, although we use the discounted reward criterion in our study.322

The expected discounted reward starting from state s0 is defined as V πβ (s0) =323

E [
∑∞
t=0 β

tR(st, π(st), st+1|π, s0)] where the next state is drawn according to st+1 ∼ P
π(st)
st,st+1 ,324

β ∈ [0, 1) is the discount factor and actions are selected according to the policy mapping π. The325

planner’s goal is to maximize the total reward.326

We model the engagement behavior of each beneficiary by an MDP corresponding to an arm of the327

RMAB. Pulling an arm corresponds to an active action, i.e., making a service call (denoted by α = a),328

while α = p denotes the passive action of abstaining from a call. The state space S consists of binary329

valued states, s, that account for the recent engagement behavior of the beneficiary; s ∈ [NE,E]330

(or equivalently, s ∈ [0, 1]) where E and NE denote the ‘Engaging’ and ‘Not Engaging’ states331

respectively. For example, in our domain, ABC considers that if a beneficiary stays on the automated332

voice message for more than 30 seconds (average message length is 1 minute), then the beneficiary333

1Similarly, in our previous preliminary study (anonymous 2020) published in a non-archival setting, we used
demographic and message features to build models for predicting beneficiaries likely to drop-off from ABC’s
information program.
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has engaged. If a beneficiary engages at least once with the automated voice messages sent during334

a week, they are assigned the engaging (E) state for that time step and non-engaging (NE) state335

otherwise. For each action α ∈ A, the beneficiary states follow a Markov chain represented by the336

2-state Gilbert-Elliot model [10] with transition parameters given by Pαss′ , as shown in Figure 2. With337

slight abuse of notation, the reward function R(.) of nth MDP is simply given by Rn(s) = s for338

s ∈ {0, 1}.339

NE E

1− PαE,E

PαE,E

PαNE,E

1− PαNE,E

Figure 2: The beneficiary transitions from a current state s to a next state s′ under action α, with
probability Pαss′ .

We adopt the Whittle solution approach described previously for solving the RMAB. It hinges around340

the key idea of a “passive subsidy”, which is a hypothetical reward offered to the planner, in addition341

to the original reward function for choosing the passive action. The Whittle Index is then defined as342

the infimum subsidy that makes the planner indifferent between the ‘active’ and the ‘passive’ actions,343

i.e.,:344

W (s) = infλ{λ : Qλ(s, p) = Qλ(s, a)} (1)

C Data Description345

Beneficiaries enroll into ABC’s information program with the help of health workers, who collect346

the beneficiary’s demographic data such as age, education level, income bracket, phone owner in the347

family, gestation age, number of children, preferred language and preferred slots for the automated348

voice messages during enrolment. These features are referred to as Beneficiary Registration Features349

in rest of the paper. Beneficiaries provided both written and digital consent for receiving automated350

voice messages and service calls. ABC also stores listenership information regarding the automated351

voice messages together with the registration data in an anonymized fashion.352

The offline data of beneficiaries consists of beneficiary features, automated call data and service353

call data. The beneficiary features are collected at registration time and are unique determined by a354

Beneficiary ID. The features available in this data are:355

• Age356

• Education level - Ordinal value from 1-7 specifying increasing education level357

• Income Binned - Ordinal value from 1-7 specifying increasing income groups (e.g. 1 is358

0-5000 monthly income group and 7 is 30000 and above income group)359

• Phone Owner in the family - family, neighbor, husband, woman herself360

• Gestation Age - At time of registration361

• Number of children362

• Preferred Language - choice among two languages for automated voice messages made363

offered by ABC364

• Preferred slots - Preference for time at which calls are to be made365

The automated call data has complete log of automated calls made by ABC. Every call is uniquely366

determined by a Call ID and is characterised by:367

• Beneficiary ID of the beneficiary who is called368

• Date and time of call369

• Duration of call listened370

• Gestation age of beneficiary at time of call371
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k Average
RMSE

Standard
Deviation

Missing
Data

Non-meaningful
Clusters

10 0.061 232.57 0.0 0.20
20 0.041 145.59 0.0 0.30
30 0.032 99.32 0.2 0.30
40 0.027 77.50 0.2 0.20
50 0.021 55.48 0.3 0.30
75 0.016 50.34 0.4 0.27

100 0.013 45.25 0.6 0.27
200 0.006 33.40 0.9 0.14

Table 2: Average RMSE, cluster size variance, missing data ratio, and non-meaningful clusters over
all beneficiaries for different k. Total Beneficiaries = 4238

The duration column is used to determine whether at any timestep, the beneficiary is in engaging or372

non-engaging state. The service call data consists of beneficiary ID and the week in which the call373

is made. Transitions (s, α, s′) can be obtained by combining the automated call data (obtain states374

s, s′) and service call data (obtain action α). For beneficiaries in Dtest, we only have beneficiary375

features available at test time. The automated call data is obtained every week and the service calls376

are generated by the RMAB or Round Robin algorithm.377

D Clustering Methods378

We use a historical dataset,Dtrain from ABC consisting of 4238 beneficiaries in total. We experiment379

to find an optimal number of clusters, k. We tried k = {10, 20, 30, 40, 50, 75, 100, 200} on Passive380

Transition-Probability based Clustering (PPF) and evaluated results on the following parameters:381

1. Representation: Cluster centers that are representative of the underlying data distribution382

better resemble the ground truth transition probabilities. This is of prime importance to the383

planner, who must rely on these values to plan actions, and is measured by RMSE error in384

Table 2.385

2. Balanced cluster sizes: A low imbalance across cluster sizes is desirable to preclude the386

possibility of arriving at few, gigantic clusters which will assign identical whittle indices to387

a large group of beneficiaries. Table 2 shows the variance among cluster sizes for each k.388

3. Missing data: The historical dataset Dtrain contains very few active transition samples389

which results in missing active transition probabilities for many beneficiaries. Clustering390

beneficiaries together alleviates this issue but with increasing number of clusters, the missing391

data problem aggravates. The ratio of clusters with missing data for a given k is presented in392

table 2.393

4. Meaningful transition probabilities: Interventions naturally tend to have a positive impact394

on the engagement behaviour of beneficiaries, hence P aNE,E > P pNE,E and P aE,E > P pE,E .395

Clusters with transition probabilities conforming to these constraints are thus plausible and396

more desirable. Such clusters are termed as meaningful in our evaluation. Table 2 contains397

ratio of non-meaningful clusters for a given k.398

We observe that as k increases, the RMSE and standard deviation decrease because of better fitting and399

smaller clusters respectively; the missing data problem worsens though. Based on the performance of400

different values of k on these factors, with the check for non-meaningful clusters, we found k = 40 to401

be the most optimal value.402

Figure 3 shows our overall solution methodology.403

1. Features-only Clustering (FO): This method relies on the correlation between the beneficiary404

feature vector f and their corresponding engagement behavior. We employ k-means clustering on the405

feature vector f of all beneficiaries in the historic dataset Dtrain, and then derive the representative406

transition probabilities for each cluster by pooling all the (s, α, s′) tuples of beneficiaries assigned407

to that cluster. At test time, the features f of a new, previously unseen beneficiary in Dtest map the408

beneficiary to their corresponding cluster and estimated transition probabilities.409
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Figure 3: RMAB Training and Testing pipelines proposed

2. Feature + All Probabilities (FAP) In this 2-level hierarchical clustering technique, the first level410

uses a rule-based method, using features to divide beneficiaries into a large number of pre-defined411

buckets, B. Transition probabilities are then computed by pooling the (s, α, s′) samples from all the412

beneficiaries in each bucket. Finally, we perform a k-means clustering on the transition probabilities413

of these B buckets to reduce them to k clusters (k � B). However, this method suffers from several414

smaller buckets missing or having very few active transition samples.415

3. Feature + Passive Probabilities (FPP): This method builds on the FAP method, but only416

considers the passive action probabilities to preclude the issue of missing active transition samples.417

The rule-based clustering on features involved in FPP and FAP methods can be thought of as using418

one specific, hand-tuned mapping function φ. In contrast, the PPF method learns such a map φ from419

data, eliminating the need to manually define accurate and reliable feature buckets.420

D.1 Evaluation of Clustering Methods421

We use a historical dataset, Dtrain from ABC consisting of 4238 beneficiaries in total, who enrolled422

into the program between May-July 2020. We compare the clustering methods empirically, based on423

the criteria described below.424

(a) FO clustering (b) FPP clustering (c) FAP clustering (d) PPF clustering

Figure 4: Comparison of passive transition probabilities obtained from different clustering methods
with cluster sizes k = {20, 40} with the ground truth transition probabilities. Blue dots represent the
true passive transition probabilities for every beneficiary while red or green dots represent estimated
cluster centres.

1. Representation: Cluster centers that are representative of the underlying data distribution better425

resemble the ground truth transition probabilities. This is of prime importance to the planner, who426

must rely on these values to plan actions. Fig 4 plots the ground truth transition probabilities and the427

resulting cluster centers determined using the proposed methods. Visual inspection reveals that the428

PPF method represents the ground truth well, as is corroborated by the quantitative metrics of Table429

3 that compares the RMSE error across different clustering methods.430

2. Balanced cluster sizes: A low imbalance across cluster sizes is desirable to preclude the possibility431

of arriving at few, gigantic clusters which will assign identical whittle indices to a large groups of432

beneficiaries. Working with smaller clusters also aggravates the missing data problem in estimation433

of active transition probabilities. Considering the variance in cluster sizes and RMSE error for the434
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different clustering methods with k = {20, 40} as shown in Table 3, PPF outperforms the other435

clustering methods and was chosen for the pilot study.436

Table 3: Average RMSE and cluster size variance over
all beneficiaries for different methods. Total Beneficia-
ries = 4238, µ20 = 211.9, µ40 = 105.95 (µ = average
beneficiaries per cluster)

Clustering
Method

Average RMSE Standard Deviation
k = 20 k = 40 k = 20 k = 40

FO 0.229 0.228 143.30 74.22
FPP 0.223 0.222 596.19 295.01
FAP 0.224 0.223 318.46 218.37
PPF 0.041 0.027 145.59 77.50

Next we turn to choosing k, the number437

of clusters: as k grows, the clusters be-438

come sparse in number of active samples439

aggravating the missing data problem440

while a smaller k suffers from a higher441

RMSE. We found k = 40 to be optimal442

and chose it for the pilot study (details in443

Appendix D).444

As we got this RMAB system ready for445

real-world use, there was as an impor-446

tant observation for social impact set-447

tings: real-world use also required us to448

carefully handle several domain specific449

challenges, which were time consuming.450

For example, despite careful clustering, a few clusters may still be missing active probability values,451

which required employing a data imputation heuristic (details in Appendix F). Moreover, there were452

other constraints specific to ABC, such as a beneficiary should receive only one service call every η453

weeks, which was addressed by introducing “sleeping states” for beneficiaries who receive a service454

call (details in Appendix G).455

E Whittle Index Implementation456

For computing the whittle indices, we use the algorithm proposed by Qian et al. [25]. We perform a457

binary search over the passive subsidy λ that makes the Q-value at a given state indifferent to the458

active or passive action. Since transition probabilities are known (through estimation), we use value459

iteration to compute value function which can then be used to find Q-value. The value iteration460

is said to be converged when it doesn’t change more than εval_iter. Similarly, we stop the binary461

search when the subsidy doesn’t change more than εbin_search. We use εval_iter = 1e − 4 and462

εbin_search = 1e− 5 in our setup. The 2 ∗ k indices thus computed for the k clusters, can then be463

looked up at all future time steps in constant time, making this an optimal solution for large scale464

deployment with limited compute resources.465

F Estimating missing active transition probabilities466

Since the number of beneficiaries in Dtrain who received a service call is much smaller compared467

to the total number of beneficiaries, there may be some clusters where the transition probabilities468

corresponding to the “active” action cannot be estimated from the data. We use the following heuristic469

to estimate these:470

P as,s′(i) = P ps,s′(i) + δ, i ∈M

where,

δ =

∑
j∈K\M

[P as,s′(j)− P
p
s,s′(j)]∑

j∈K\M
1

P as,s′(i) corresponds to the transition probability for “active” action starting in state s and resulting in471

state s′ for a cluster i, and P ps,s′(j) corresponds to the “passive” action probability for cluster j. M is472

the set of clusters with missing active action transition probabilities P as,s′(i), and K is the set of all473

clusters.474
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G Sleeping states475

To accommodate the frequency constraint presented by the NGO that prohibits beneficiaries from476

receiving a service call more than once every η timesteps, we augment the individual beneficiary477

MDPs to introduce additional sleeping states. To incorporate a frequency constraint of η, we introduce478

2 ∗ (η − 1) additional sleeping states, so that the augmented MDP consists of 2η states in total. The479

idea is to force the augmented MDP to transition through sleeping states for (η − 1) time steps after480

an active action, before allowing it to reach the available states again. The set of 2η states can be481

listed as: {NE1, E1, NE2, E2 . . . NEη, Eη}, where the first 2 ∗ (η − 1) states in the list are the482

sleeping states. We consider η = 4 henceforth in the paper. Formally, the passive and active transition483

matrices of the augmented MDP (indexed using the same order of states as the list above) can be484

given by:485

P̃ pss’ =

02×2, P pss′ , 02×2, 02×2
02×2, 02×2, P pss′ , 02×2
02×2, 02×2, 02×2, P pss′
02×2, 02×2, 02×2, P pss′


486

P̃ ass’ =

02×2, P pss′ , 02×2, 02×2
02×2, 02×2, P pss′ , 02×2
02×2, 02×2, 02×2, P pss′
P ass′ , 02×2, 02×2, 02×2


The augmentation ensures that when passive, the state transitions to the adjoining bucket of sleeping487

states to the right, towards the available states each round as shown in Figure 5. When active, the488

state either resets to the starting sleeping state or transitions to the next sleeping state depending on489

whether currently the arm was available or sleeping. By design, the transition probabilities for the490

sleeping states of augmented MDP are identical for both actions and are distinct only in the available491

set of states.

Figure 5: To capture the service call frequency constraint, the beneficiary transitions into the sleeping
states for η−1 = 3 timesteps (weeks), after receiving a service call, before becoming available again.

492

H ANOVA Test493

To ensure that there is no selection bias in our random group assignment, we perform an Analysis of494

Variance (ANOVA) test to compare group means corresponding to all the beneficiary registration495

features. At 95% confidence interval, we find no significant difference in the mean values of features496

across all three groups. Joint p-value corresponding to every feature is reported in Table 4.497

I Hyperparameters and Compute Specifications498

We use εval_iter = 1e−4 and εbin_search = 1e−5 for whittle index computation. We used discount499

factor β defined in the MDP as 0.99. The random forest classifier used the following parameters:500
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Feature µRMAB µRR µCSOC Joint p-value
enroll_gest_age 20.323 20.454 20.325 0.472

age 24.799 24.733 24.878 2.609
number_of_children 1.675 1.686 1.705 1.373

education 3.531 3.490 3.477 2.961
income_binned 1.517 1.517 1.499 0.673

phone_owner_family 0.013 0.013 0.014 0.084
phone_owner_husband 0.103 0.108 0.107 0.636
phone_owner_neighbor 0.000 0.000 0.000 1.000

phone_owner_woman 0.884 0.879 0.879 0.616
language_1 0.519 0.517 0.507 1.261
language_2 0.475 0.477 0.487 1.262

Table 4: Mean feature values of beneficiaries in RMAB, RR and CSOC Groups along with joint
p-value obtained from ANOVA test

number of trees in the forest = 200, quality of split = entropy, maximum depth of the trees = 30.501

All experiments are performed on an Intel(R) Xeon (R) CPU with 16 cores and 64 GB memory.502

The experiment for clustering and whittle index computation takes 10 mins. This is a one-time503

computation. All outputs are then stored offline and used during deployment with minimal overhead.504

J Additional Experimental Details and Analysis505

Table 5: Beneficiary distribution in the three groups
and their start states during week 0 of the study.

Group Engaging Non-Engaging Total(E) (NE)
RMAB 3571 4097 7668

RR 3647 4021 7668
CSOC 3661 4006 7667

The quality improvement study started on April506

26, 2021, withm beneficiaries selected from the507

RMAB and RR group each (m� N ) per week508

for ABC-initiated service calls. Beneficiaries in509

Dtest received automated voice messages few510

days post enrolment as per their gestational age.511

As per the current standard of care, any of these512

beneficiaries could also initiate a service call513

by placing a “missed call”. ABC staff perform-514

ing service calls were blind to the experimental515

groups that the beneficiaries belonged to. Recall,516

the goal of the service calls is to encourage the beneficiaries to engage with the health information517

message program in the future. For this study, number of service calls m was on average 225 per518

week for each of RMAB and RR groups to reflect real-world constraints on service calls. The study519

was scheduled for a total of 7 weeks, during which 20% of the RMAB (and RR) group had received520

a service call, which is closer to the percentage of population that may be reached in service calls by521

ABC. 2522

Table 5 shows the absolute number of beneficiaries in states E or NE, where the state is computed523

using engagement data of one week (April 19 - April 26, 2021).524

The drop in engagement under a policy π at time t can be measured as the change in engagement:525

∆π
current(t) :=

∑
n∈N

(Rn(s0)−Rn(st)) (2)

where Rn(st) represents the reward for nth beneficiary in state st at time step t and cumulative drop526

in engagement is:527

∆π
cumulative(t) :=

∑
n∈N

ζ=t∑
ζ=0

(Rn(s0)−Rn(sζ)) (3)

The cumulative drop in engagement prevented by a policy π, in comparison to the CSOC Group is528

thus simply:529

∆π
cumulative(t)−∆CSOC

cumulative(t) (4)
2Each beneficiary group also received very similar beneficiary-initiated calls, but these were less than 10% of

the ABC-initiated calls in RMAB or RR groups over 7 weeks.
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(a) Week 1 Service Calls (b) Week 2 Service Calls

Figure 6: Distributions of clusters picked for service calls by RMAB and RR are significantly
different. RMAB is very strategic in picking only a few clusters with a promising probability of
success, RR displays no such selection.

and is plotted on the y-axis of Figure 1.530

J.1 Statistical Analysis531

Specifically, we fit a linear regression model to predict number of cumulative engagement drops at
week 7 while controlling for treatment assignment and covariates specified by beneficiary registration
features. The model is given by:

Yi = k + βTi +

J∑
j=1

γjxij + εi

where for the ith beneficiary, Yi is the outcome variable defined as number of cumulative engagement532

drops at week 7, k is the constant term, β is the treatment effect, Ti is the treatment indicator variable,533

xi is a vector of length J representing the ith beneficiary’s registration features, γj represents the534

impact of the jth feature on the outcome variable and εi is the error term. For evaluating the effect of535

RMAB service calls as compared to CSOC group, we fit the regression model only for the subset of536

beneficiaries assigned to either of these two groups. Ti is set to 1 for beneficiaries belonging to the537

RMAB group and 0 for those in CSOC group. We repeat the same experiment to compare RR vs538

CSOC group and RMAB vs RR group.539

J.2 RMAB Strategies540

We analyse RMAB’s strategic selection of beneficiaries in comparison to RR using Figure 6, where541

we group beneficiaries according to their whittle indices, equivalently their 〈cluster, state〉.542

Figure 6 plots the frequency distribution of beneficiaries (shown via corresponding clusters) who543

were selected by RMAB and RR in the first two weeks. For example, the top plot in Figure 6a shows544

that RMAB selected 60 beneficiaries from cluster 29 (NE state). First, we observe that RMAB was545

clearly more selective, choosing beneficiaries from just four (Figure 6a) or seven (Figure 6b) clusters,546

rather than RR that chose from 20. Further, we assign each cluster a hue based on their probability547

of transitioning to engaging state from their current state given a service call. Figure 6 reveals that548

RMAB consistently prioritizes clusters with high probability of success (blue hues) while RR deploys549

no such selection; its distribution emulates the overall distribution of beneficiaries across clusters550

(mixed blue and red hues).551

Furthermore, Figure 7a further highlights the situation in week 1, where RMAB spent 100% of its552

service calls on beneficiaries in the non-engaging state while RR spent the same on only 64%. Figure553

7b shows that RMAB converts 31.2% of the beneficiaries shown in Figure 7a from non-engaging554

to engaging state by week 7, while RR does so for only 13.7%. This further illustrates the need for555

optimizing service calls for them to be effective, as done by RMAB.556
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(a) (b)

Figure 7: (a) % of week 1 service calls on non-engaging beneficiaries (b) % of non-engaging
beneficiaries of week 1 receiving service calls that converted to engaging by week 7

Figure 8: Performance of MYOPIC can be arbitrarily bad and even worse than RANDOM, unlike the
Whittle policy.

J.3 Synthetic Results557

We run additional simulations to test other service call policies beyond those included in the quality558

improvement study and confirm the superior performance of RMAB. Specifically, we compare to the559

following baselines: (1) RANDOM is a naive baseline that selects m arms at random. (2) MYOPIC is a560

greedy algorithm that pulls arms optimizing for the reward in the immediate next time step. WHITTLE561

is our algorithm. We compute a normalized reward of an algorithm ALG as: 100×(RALG−RCSOC
)

R
WHITTLE−RCSOC where562

R is the total discounted reward. Simulation results are averaged over 30 independent trials and run563

over 40 weeks.564

Figure 8 presents simulation of an adversarial example [20] consisting of x% of non-recoverable and565

100− x% of self-correcting beneficiaries for different values of x. Self-correcting beneficiaries tend566

to miss automated voice messages sporadically, but revert to engaging ways without needing a service567

call. Non-recoverable beneficiaries are those who may drop out for good, if they stop engaging.568

We find that in such situations, MYOPIC proves brittle, as it performs even worse than RANDOM569

while WHITTLE performs well consistently. The actual quality improvement study cohort consists570

of 48.12% non-recoverable beneficiaries (defined by P p01 < 0.2) and the remaining comprised of571

self-correcting and other types of beneficiaries.572

K Discussion of Lessons Learnt573

Some key lessons learned from this research, which complement some of the lessons outlined in574

[8, 30, 34] include the following. First, social-impact driven engagement and design iterations with575

the NGOs on the ground is crucial to understanding the right AI model for use and appropriate576

research challenges. As discussed in footnote 1, our initial effort used a one-shot prediction model,577

and only after some design iterations we arrived at the current RMAB model. Next, given the578

missing parameters in RMAB, we found that the assumptions made in literature for learning such579

paramters did not apply in our domain, exposing new research challenges in RMABs. In short,580

domain partnerships with NGOs to achieve real social impact automatically revealed requirements581

for use of novel application of an AI model (RMAB) and new research problems in this model.582
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Second, data and compute limitations of non-profits are a real world constraint, and must be seen as583

genuine research challenges in AI for social impact, rather than limitations. In our domain, one key584

technical contribution in our RMAB system is deploying clustering methods on offline historical data585

to infer unknown RMAB parameters. Data is limited as not enough samples are available for any586

given beneficiary, who may stay in the program for a limited time. Non-profit partners also cannot587

bear the burden of massive compute requirements.588

Our clustering approach allows efficient offline mapping to Whittle indices, addressing both data589

and compute limits, enabling scale-up to service 10s if not 100s of thousands of beneficiaries. Third,590

in deploying AI systems for social impact, there are many technical challenges that may not need591

innovative solutions, but they are critical to deploying solutions at scale. Indeed, deploying any592

system in the real world is challenging, but even more so in domains where NGOs may be interacting593

with low-resource communities. Finally we hope this work serves as a useful example of deploying594

an AI based system for social impact in partnership with non-profits in the real world and will pave595

the way for more such solutions with real world impact.596
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