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As the COVID-19 pandemic continues, formulating targeted pol-
icy interventions that are informed by differential severe acute
respiratory syndrome coronavirus 2 (SARS-CoV-2) transmission
dynamics will be of vital importance to national and regional
governments. We develop an individual-level model for SARS-
CoV-2 transmission that accounts for location-dependent distri-
butions of age, household structure, and comorbidities. We use
these distributions together with age-stratified contact matrices
to instantiate specific models for Hubei, China; Lombardy, Italy;
and New York City, United States. Using data on reported deaths
to obtain a posterior distribution over unknown parameters, we
infer differences in the progression of the epidemic in the three
locations. We also examine the role of transmission due to par-
ticular age groups on total infections and deaths. The effect of
limiting contacts by a particular age group varies by location, indi-
cating that strategies to reduce transmission should be tailored
based on population-specific demography and social structure.
These findings highlight the role of between-population variation
in formulating policy interventions. Across the three populations,
though, we find that targeted “salutary sheltering” by 50% of
a single age group may substantially curtail transmission when
combined with the adoption of physical distancing measures by
the rest of the population.
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ince December 2019, the COVID-19 pandemic—propagated

by the novel coronavirus severe acute respiratory syndrome
coronavirus 2 (SARS-CoV-2)—has resulted in significant mor-
bidity and mortality (1). As of 1 August 2020, an estimated 18
million individuals have been infected, with over 700,000 fatali-
ties worldwide (2). Key factors such as existing comorbidities and
age appear to play a role in an increased risk of mortality (3).
Epidemiological studies have provided significant insights into
the disease and its transmission dynamics to date (4-7). How-
ever, as national and regional governments begin to implement
broad-reaching policies in response to rising case counts and
stressed healthcare systems, tailoring these polices based on an
understanding of how population-specific demography impacts
outbreak dynamics will be vital. Previous modeling studies have
not incorporated the rich set of household demographic features
needed to address such questions.

This study develops a stochastic agent-based model for SARS-
CoV-2 transmission which accounts for distributions of age,
household types, comorbidities, and contact between different
age groups in a given population (Fig. 1). Our model accounts
for both within-household contact (simulated via household dis-
tributions taken from census data) and out-of-household contact
using age-stratified, country-specific estimated contact matrices
(8). We instantiate the model for Hubei, China; Lombardy,
Italy; and New York City, United States, developing a Bayesian
inference strategy for estimating the distribution of unknown
parameters using data on reported deaths in each location. This
enables us to uncover differences in the progression of the epi-
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demic in each location. We also examine how transmission by
particular age groups contributes to infections and deaths in
each location, allowing us to compare the efficacy of efforts to
reduce transmission across said groups. There is large between-
population variation in the role played by any individual age
group. However, across populations, both infections and deaths
are substantially reduced by a combination of population-wide
physical distancing and “salutary sheltering”—a term we coin
here to describe individuals who shelter in place irrespective of
their exposure or infectious state—by half the individuals in a
specific age group, without the need for potentially untenable
policies such as indefinite sheltering of all older adults.

Results

Inferring Differences in Dynamics between Populations. Using our
model, we estimate posterior distributions over unobserved
quantities which characterize the dynamics of the epidemic in
a particular location. This section presents estimates for two
quantities: first, the basic reproduction number 7y, and second,
the rate at which infections are documented. Neither quantity
is directly observable in the data due to substantial underdocu-
mentation of infections; however, these estimates are needed to
characterize the scope of the outbreak in a particular location,
the degree to which existing testing strategies capture new infec-
tions, and the rate at which infections are expected to increase
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Fig. 1. We use a modified SEIR model, where the infectious states are
subdivided into levels of disease severity. The transitions are probabilistic
and there is a time lag for transitioning between states. For example, the
magnified section shows the details of transitions between mild, recovered,
and severe states. Each arrow consists of the probability of transition [e.g.,
Pm—ss(aj, ¢;) denotes the probability of progressing from mild to severe] as
well as the associated time lag (e.g., the time t for progression from mild to
severe is drawn from an exponential distribution with mean \n,_,;). a; and
¢; denote the age and set of comorbidities for the infected individual i.

in the absence of any intervention. These findings are critical to
formulate policy interventions that are tailored to the outbreak
as it evolves in a given population. We start by providing a brief
overview of our inference strategy and model validation and then
present the main estimates.

There are four model parameters for which values are not pre-
cisely estimated in the literature. Each such parameter is instead
drawn from a prior distribution. First is pin¢, the probability of
infection given contact with an infected individual. This deter-
mines the level of transmissibility of the disease. Second is t,
the start time of the infection, which is not precisely character-
ized in most locations and has an impact due to rapid doubling
times. Third is a parameter dnyi, Which accounts for differences
in mortality rates between locations that are not captured by
demographic factors in the model (e.g., the impact of variation
in health system capacities). dmue is @ multiplier to the base-
line mortality rate from ref. 9 and is applied uniformly across
age groups. We also include an age-specific multiplier to the
mortality rate for individuals over 60 y of age in Lombardy,
which is calibrated independently of the other parameters to
match the fraction of deaths attributed to the 60+-y age group
[which is significantly higher in Lombardy than the other two
locations (9-11)]. Further discussion of the age-specific distri-
bution of deaths can be found in SI Appendix. Fourth is §, the
reduction in person-to-person contact after mobility restrictions
were imposed in each location. Following mobility restrictions,
the expected number of contacts between agents in any two age
groups outside the household is reduced to . times its starting
value. For Hubei, we fix this parameter using a post-lockdown
contact survey (12). For Lombardy and New York City, post-
lockdown surveys are not available and so we estimate ¢, within
the Bayesian framework. Details of the prior distributions and
the modeled scenario in each location can be found in S/
Appendix.

By conditioning on the observed time series of deaths, we
obtain a joint posterior distribution over both the unobserved
model states, such as the number of people infected at each time
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step, as well as the three unknown parameters. We use reported
deaths because they are believed to be better-documented than
infections and perform a sensitivity analysis to account for
possible underdocumentation of deaths (13, 14). Fig. 2 shows
that the model closely reproduces the observed time series of
deaths in each location. In SI Appendix, Figs. S1-S3 we also
perform out-of-sample validation by fitting the model using a
portion of the time series and assessing the accuracy of the
predictive posterior distribution on data that was not used to
fit the model.

Fig. 3, Left shows the posterior distribution over ry in each
location. Substantial differences are evident between the three
locations. The posterior median is 2.23 in Hubei (90% cred-
ible interval: 2.10 to 2.37), 2.95 in Lombardy (2.80 to 3.19),
and 3.20 in New York City (2.71 to 3.93). The estimates for
Hubei fall within the range of a number of existing estimates
(15), while the interval for Lombardy is similar to the inter-
val 2.9 to 3.2 estimated by previous work (16). The estimated
ro for New York City is larger than either Hubei or Lom-
bardy. The relative ranking of 7, for the three populations is not
impacted by a sensitivity analysis for underreporting of deaths,
shown in Fig. 3. Death totals from Hubei have been substan-
tially revised upward to correct for underreporting in the early
stages of the epidemic (17), but such corrections are either
unavailable or rapidly evolving for Lombardy and New York
City. Our sensitivity analysis assumes that deaths in Lombardy
and New York City are twice what was reported, consistent with
preliminary investigations of excess mortality data (13, 14). In
this scenario, the posterior median value of ry rises slightly to
3.12 in Lombardy and remains constant (at 3.20) in New York
City. However, the estimated value of ¢, for each location rises
sharply, indicating that the model explains increased deaths in
this scenario via the possibility of less severe contact reductions
during lockdown.

Fig. 3, Right shows the posterior distribution over the fraction
of infections that were documented in each location (obtained
by dividing the number of confirmed cases in each location by
the number of infections in the simulation under each sample
from the posterior). Documentation rates are uniformly low,
indicating undocumented infections in all locations; however, we
estimate lower documentation in Lombardy (90% credible inter-
val: 5.1 to 6.0%) than in either New York City (5.4 to 12.7%)
or Hubei (6.4 to 12.1%). Documentation rates are substantially
lower when assuming twice the reported deaths in Lombardy and
New York City (Fig. 3, Bottom).

Although we estimate a substantial number of undocumented
infections, all locations remain potentially vulnerable to second-
wave outbreaks, with the median percentage of the population
infected at 1.3% in Hubei, 13.8% in Lombardy, and 22.0% in
New York City. Note that in Hubei our estimate is for the entire
province of Hubei, with a population of 58.5 million people,
including—but not limited to—the city of Wuhan. Recent sero-
logical surveys have estimated 25% of the population previously
infected in New York City (18), consistent with our distribution.
When assuming that deaths are underreported by a factor of 2 in
Lombardy and New York City, the median percentage infected
is 28.2% in Lombardy and 38.7% in New York City*. Overall,
our estimates for rp and the remaining population of suscepti-
ble individuals indicate that Hubei, Lombardy, and New York
City could experience new outbreaks in the absence of continued

*Of note, even in a scenario with substantially more deaths than documented, it is pos-
sible for the fraction infected to be lower than these estimates. Our model’s contact
patterns capture the general population, but there is the potential for excess deaths
to occur disproportionately in high-risk settings with anomalous contact patterns [e.g.,
reports have linked a large number of deaths to elder care facilities (19)]. In such cir-
cumstances, higher total deaths would not necessarily indicate a substantial increase in
the fraction of the entire population infected.
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Fig. 2. Posterior distribution over the number of deaths each day compared to the number of reported deaths. Light blue lines are individual samples from
the posterior, green is the median, and the black dots are the number of reported deaths. The red dashed line represents the start of modeled contact

reductions in each location.

interventions to reduce transmission. Despite this, between-
population differences remain substantial; Hubei, Lombardy,
and New York City have each had distinct experiences with
COVID-19 that must be considered with respect to future policy
responses.

Containment Policies: Salutary Sheltering and Physical Distancing.
Various interventions—from complete lockdown to physical dis-
tancing recommendations—have been implemented worldwide
in response to COVID-19. Within these are a range of alterna-
tives. For example, a government could encourage some percent-
age of a given age group to remain sheltered in place, while the
rest of the population could continue in-person work and social
activities. Age-specific policies are particularly relevant because
they have already been employed in some countries [e.g., US
Centers for Disease Control and Prevention recommendations
that people above 65 y old shelter in place (20)] and because
older age groups are more likely to be able to telecommute, at
least in the United States (21, 22).

Here, we investigate to what extent a second-wave outbreak
in each of our three locations of interest can be mitigated by
encouraging a single age group to engage in salutary sheltering
or whether the entire population must also be asked to adopt
physical distancing. We compare scenarios that combine vary-
ing levels of two different interventions: 1) salutary sheltering
by a given fraction of a single age group modeled by eliminat-
ing all outside-of-household contact for agents who engage in
sheltering and and 2) physical distancing by the population as a
whole, modeled by reducing the expected number of outside-of-
household contacts between all agents (who are not engaging in
salutary sheltering) to a given percentage of their original value.
While this case study applies to Hubei, Lombardy, and New York
City, it could be extended to other locations using population-
specific demographic data as well. ST Appendix includes details
of all experiments described along with sensitivity analyses where
the impact of physical distancing is further varied and where the
population begins in a completely susceptible state (SI Appendix,
Figs. S5-S8).

Fig. 4 shows the number of new infections or deaths in each
location during the second wave as we vary three quantities: 1)
the reduction in contacts due to physical distancing by the entire
population, 2) the age group which engages in salutary shelter-
ing, and 3) the fraction of that age group which shelters in place.
All results are averages over population-level parameters from
the posterior distributions estimated in the previous section. We
highlight several main results. SI Appendix provides a further
breakdown of results from each scenario in terms of infections
and deaths in those above and below 60 y of age (SI Appendix,
Tables S3-S14).

First, the marginal impact of salutary sheltering by different
age groups in limiting infections in the second-wave outbreak
depends on the level of physical distancing adopted by the rest
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of the population. When physical distancing is high (25% of the
original level of contact, shown in SI Appendix), the second-wave
outbreak never infects a significant number of people because
the effective reproduction number remains below 1. When phys-
ical distancing is not widely adopted (75% of the original level of
contact), the outbreak reaches a significant fraction of the popu-
lation no matter which group engages in sheltering (at least 30%
of the population and often more becomes infected). However,
in the middle scenario (50% of the original level of contact), the
population is in a state where sheltering by members of a group
with a large number of average contacts can significantly reduce
the extent of total infections. Typically, members of the 20- to
40-y and 40- to 60-y age groups have more contacts than those in
older or younger groups (8), so sheltering by both these groups
can sharply reduce the fraction of the population infected in the
second wave.

Second, the importance of sheltering by each age group in pre-
venting deaths varies according to the level of physical distancing
adopted by the rest of the population. When returning to a near-
normal level of contact makes infection of a significant fraction of
the population unavoidable (75% of normal contact), deaths are
most appreciably reduced by sheltering the 60+ age group, since
older individuals are at much higher risk of death after infection
than those in younger age groups. However, in the intermedi-
ate scenario of 50% contact reduction, it may be more effective
for members of younger age groups (20 to 40 y or 40 to 60 y)
to engage in salutary sheltering. While these individuals are typ-
ically at lower risk of death than those in the 60+ group, they
also have a significantly larger number of average daily contacts
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Fig. 3. Posterior distribution over ry and the fraction of infections doc-

umented in each location (Top) conditioning on reported deaths and
(Bottom) conditioning on deaths in New York City and Lombardy being
twice what was reported.

PNAS Latest Articles | 3of 7

POPULATION
BIOLOGY


https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2010651117/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2010651117/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2010651117/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2010651117/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2010651117/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2010651117/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2010651117/-/DCSupplemental

Downloaded by guest on October 3, 2020

50% contact 75% contact

50% contact 75% contact

1.0
Hubei
0.81 1 200000 B 019
2 B 2040
5 I 40-60
= 1000001 = 60+
0.25 0.5 0.75 0.25 0.5 0.75 0.25 0.5 0.75 0.25 0.5 0.75
Fraction sheltering Fraction sheltering Fraction sheltering Fraction sheltering
1.0
Lombardy
0.81 100000 I 0-19
£0.61 © 75000 - 20-40
3 = B 40-60
Q [
£ 04 S 500001 3 60+
0.2 250001
0.0 -
025 05 075 025 05 075 025 05 075 025 05 075
Fraction sheltering Fraction sheltering Fraction sheltering Fraction sheltering
1.0
New York 60000
0.81 [ 0-19
» I 20-40
S 0.61 2 400001
.% _::‘E' I 40-60
[
£ 0.4 a 3 60+
20000
0.21
0.0-

025 05 075 025 05 075
Fraction sheltering Fraction sheltering

025 05 0.75
Fraction sheltering

025 05 075
Fraction sheltering

Fig. 4. Number of new infections and new deaths in second-wave outbreak scenarios for each location. Each column shows a different level of physical
distancing by the population as a whole, where contacts between all age groups are reduced to the given percentage of their starting value. The x axis
within each plot shows the result when the given fraction of a single age group shelters at home (in addition to physical distancing by the rest of the
population). The result of this combination of sheltering and distancing is represented by a bar, where the color of the bar indicates the age group which
engaged in sheltering (see key). The height of the bar gives the total number of infections or deaths in the population in that scenario. Each row gives the
results for a single location, where the first two plots show the fraction of the population which is newly infected in the second wave and the next two

plots show the number of new deaths which occur.

(8). By sheltering, they help shield older groups from infection
more effectively than if an equivalent fraction of the older group
engaged in sheltering themselves.

Third, the impact of sheltering by these groups across different
scenarios is impacted by between-population differences. Each
population has differences in contact patterns, the estimated
probability of infection on contact (piyf), the fraction who were
infected in the initial outbreak (assuming short-term immunity
against reinfection during the second outbreak), and the vulner-
ability of older individuals. For example, sheltering by the 60+
age group reduces deaths much more substantially in Lombardy
than in either Hubei or New York City because Italian fatali-
ties are concentrated more heavily in older groups, with 95% of
reported deaths in the 60+ age group compared to 80% in Hubei
and 74% in New York City (9-11). As a result, it is still slightly
preferable in terms of averted deaths to shelter the 60+ group
in Lombardy even in scenarios where there would be an advan-
tage to sheltering by younger groups in other locations (50%
contact levels). Another example is in Hubei, where the frac-
tion of the population that is newly infected in the second wave

40f7 | www.pnas.org/cgi/doi/10.1073/pnas.2010651117

is larger than in either Lombardy or New York City (despite a
lower estimated rp in Hubei). This is because we estimate that
a nonnegligible portion of Lombardy and New York City were
both previously infected, while the population of Hubei province
is still almost entirely susceptible (discussed in the previous sec-
tion). The interplay of demographics, social structures, and the
impact of the first outbreak create a range of between-population
differences across scenarios.

Building on this analysis of Hubei, Lombardy, and New York
City, our model suggests that hybrid policies that combine tar-
geted salutary sheltering by one subpopulation and physical
distancing by the rest can substantially mitigate infections and
deaths due to a second-wave outbreak. However, the relative
importance of sheltering by different age groups is strongly
impacted by the extent to which physical distancing is adopted
by the rest of the population and by a range of factors which
can differ between populations. This suggests that demography
and behavior in a particular place must be carefully considered
while developing population-level interventions. Our analysis
can be readily extended to other locations by parameterizing

Wilder et al.
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our model for a new population using existing demographic
data and age-stratified contact patterns, allowing analysis of
population-specific interventions.

Discussion and Future Work

In this study, we developed a model of SARS-CoV-2 transmis-
sion that incorporates household structure, age distributions,
comorbidities, and age-stratified contact patterns in Hubei, Lom-
bardy, and New York City and created simulations using avail-
able demographic information from these three locations. Our
findings suggest that in some locations substantial reductions
in SARS-CoV-2 spread can be achieved by less drastic options
short of population-wide sheltering in place. Instead, targeted
salutary sheltering of specific age groups combined with adher-
ence to physical distancing by the rest of the population may
be sufficient to thwart a substantial fraction of infections and
deaths. Physical distancing could be achieved by engaging in
activities such as staggered work schedules, increasing spac-
ing in restaurants, and prescribing times to use the gym or
grocery store. Specific mechanisms and considerations for imple-
menting physical distancing are documented in SI Appendix.
It is important to note that between-population differences in
the impact of sheltering different age groups can be substan-
tial. Contact patterns, household structures, and variation in
fatality rates (whether due to demographics or factors such as
health system capacity) all influence the number of infections
or deaths averted by sheltering a particular group. Thus, the
implementation of physical distancing and sheltering policies
should be tailored to the dynamics of COVID-19 in a particular
population.

From a pragmatic perspective, targeted salutary sheltering
may not be realistic for all populations. Its feasibility relies
on access to safe shelter, which does not reflect reality for
all individuals. In addition, sociopolitical realities may render
this recommendation more feasible in some populations than
in others. Concerns for personal liberty, discrimination against
subsegments of the population, and societal acceptability may
prevent the adoption of targeted salutary sheltering in some
regions of the world. Allowing salutary sheltering to operate on
a voluntary basis using a shift system (rather than for indefinite
time periods) may address some of these issues. Future work
should formulate targeted recommendations about salutary shel-
tering and physical distancing by age group or other stratification
adapted to a specific country’s workforce.

One strength of this study is our ability to assess targeted inter-
ventions such as salutary sheltering in a population-specific man-
ner. Existing modeling work of COVID-19 has largely focused
on simpler compartmental or branching process models which
do not allow for such assessments. While these models have
played an important role in estimating key parameters such as
1o (5, 7) and the rate at which infections are documented (23),
as well as in the evaluation of prospective nonpharmaceutical
interventions (24, 25), they do not characterize how differences
in demography impact the course of an epidemic in a particular
location. Our focus on population-specific demography allows
for further refinement of current mortality estimates and is a
strength of this study. ro estimates in this study are generally
comparable to other estimates in the literature (15), although
our model yields higher estimates for New York City and Lom-
bardy than Hubei—possibly due to differential mask-wearing
practices (26) or adoption of behavioral interventions such as
hand hygiene (27). Reporting rates estimated in this study were
generally lower than those in prior studies (28), although the
trend across locations is consistent. One potential explanation
is that Russell et al. (28) estimate documentation from death
data using a case fatality rate from the literature while our model
uses an infection fatality rate (IFR). The IFR is lower because
it includes all infections, not only those that become confirmed
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cases. A lower fatality rate in turn implies that each additional
infection is less likely to result in death, and so a greater num-
ber of total infections are required to account for the observed
number of deaths.

One key advantage of our framework is its flexibility. Our
model is modifiable to test different policies or simulate addi-
tional features with greater fidelity across a variety of popu-
lations. Examples of future work that can be accommodated
include analysis of contact tracing and testing policies, health sys-
tem capacity, and multiple waves of infection after lifting physical
distancing restrictions. Our model includes the necessary fea-
tures to simulate these scenarios while remaining otherwise
parsimonious, a desirable feature given uncertainties in data
reporting.

This study is not without limitations, however. While sev-
eral comorbidities associated with mortality in COVID-19 were
accounted for, the availability of existing data limited the incor-
poration of all relevant comorbidities. Most notably, chronic
pulmonary disease was not included although it has been associ-
ated with mortality in COVID-19 (29), nor was smoking, despite
its prevalence in both China and Italy (30, 31). Gender-mediated
differences were also excluded, which may be important for both
behavioral reasons [e.g., adoption of hand washing (32, 33)] and
biological reasons [e.g., the potential protective role of estrogen
in SARS-CoV infections (34)]. Nevertheless, these factors can
all be incorporated into the model as additional data become
available.

Additionally, our second-wave scenarios assumed that indi-
viduals who were infected previously are immune to reinfection
during the second wave. The duration of acquired immunity to
SARS-CoV-2 has not been precisely defined, though antibody
kinetics have been studied in recent work (35-37). If reinfec-
tion during a second wave is common, more individuals may
be infected than predicted by our simulations (though mortality
may be lower if previous infection is protective against adverse
effects).

Finally, it is worth noting that we have not yet attempted to
model super-spreader events in our existing framework. Such
events may have been consequential in South Korea (38), and
future work could attempt to model the epidemic there by incor-
porating a dispersion parameter into the contact distribution, a
method which has been employed in other models (5).

Despite these limitations, this study demonstrates the impor-
tance of considering population and household demograph-
ics when attempting to better define outbreak dynamics for
COVID-19. Furthermore, this model highlights potential policy
implications for nonpharmaceutical interventions that account
for population-specific demographic features and may provide
alternative strategies for national and regional governments
moving forward.

Materials and Methods

This section provides an overview of our modeling and inference strategy.
Additional details can be found in S/ Appendix.

Model. We develop an agent-based model for COVID-19 spread which
accounts for the distributions of age, household types, comorbidities, and
contact between different age groups in a given population. The model
follows a susceptible—exposed-infectious-removed (SEIR) template (39, 40).
Specifically, we simulate a population of n agents (or individuals), each
with an age aj, a set of comorbidities ¢;, and a household (a set of other
agents). We stratify age into 10-y intervals and incorporate hypertension
and diabetes as comorbidities due to their worldwide prevalence (41) and
association with higher risk of in-hospital death for COVID-19 patients (3).
However, our model can be expanded to include other comorbidities of
interest in the future. The specific procedure we use to sample agents from
the joint distribution of age, household structures, and comorbidities can
be found in S/ Appendix. We focus on modeling household contacts in par-
ticular detail because of the documented frequency of within-household
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transmission (7) and the previous suggestion that patterns of contact within
the household may play a large role in shaping the epidemic (42). It is
important to acknowledge that available data sources only suffice to model
the joint distribution of age and household structure, whereas sampled
comorbidities are conditioned only on the age of each agent (ignoring
potential correlations between the comorbidity statuses of household mem-
bers). However, this procedure still captures the marginal distribution of
comorbidities over age in the population and hence the aggregate impact
of COVID-19 on said population.

The disease is transmitted over a contact structure, which is divided into
in-household and out-of-household groups. Each agent has a household
consisting of a set of other agents (see S/ Appendix for details on how house-
holds are generated using country-specific census information). Individuals
infect members of their households at a higher rate than out-of-household
agents. We model out-of-household transmission using country-specific esti-
mated contact matrices (8). These matrices state the mean number of daily
contacts an individual of a particular age stratum has with individuals from
each of the other age strata. We assume demographics and contact patterns
in each location are well-approximated by country-level data.

The model iterates over a series of discrete time steps, each representing
a single day, from a starting time t, to an end time T. There are two main
components to each time step: disease progression and new infections. The
progression component is modeled by drawing two random variables for
each individual each time they change severity levels (e.g., on entering the
mild state). The first random variable is Bernoulli and indicates whether the
individual will recover or progress to the next severity level. The second vari-
able represents the amount of time until progression to the next severity
level. We use exponential distributions for almost all time-to-event distribu-
tions, a common choice in the absence of specific distributional information
(43, 44). The exception is the incubation time between presymptomatic and
mild states, where more specific information is available; here, we use a
log-normal distribution based on estimates in ref. 45. S/ Appendix, Table S1
summarizes all distributions and their parameters and describes how we
estimate age- and comorbidity-dependent severity progression. The “mild”
state in our model encompasses the entire gradient of individuals who
may have specific symptoms of COVID-19 but do not warrant hospitaliza-
tion, those with paucisymptomatic or subclinical infections, and those with
no detectable symptoms at all. Our model does not currently distinguish
between the transmissibility of individuals in any of these states, which
is not yet precisely characterized; however, it can be extended as more
information becomes available.

In the new infections component, infected individuals infect each of
their household members with probability p, at each time step. pj, is cali-
brated so that the total probability of infecting a household member before
either isolation or recovery matches the estimated secondary attack rate
for household members of COVID-19 patients (i.e., the average fraction
of household members infected) (46). Infected individuals draw outside-of-
household contacts from the general population using the country-specific
contact matrix. For an infected individual of age group i, we sample wj; ~
Poisson(ij) contacts for each age group j and setting s where M is the
country-specific contact matrix for setting s. We include contacts in work,
school, and community settings. Poisson distributions are a standard choice
for modeling contact distributions (8). Then, we sample VVZ contacts of age
J uniformly with replacement, and each contact is infected with the prob-
ability pj,s, the probability of infection given contact. There is evidence to
suggest that the probability of infection is higher for an older individual
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than a younger one given the same exposure (12), consistent with decline in
immune function with age. We adjust for this by letting the probability of
infection be Bp;,s when the exposed individual is over the age of 60y, for
B> 1. 3 is calibrated to match the fraction of deaths in China attributed to
individuals over the age of 60y, resulting in a value of 1.25. This is consistent
with the relationship between age and attack rate among close contacts of
a confirmed case reported by (12), where the increase in risk of infection for
a contact over 65 y old was estimated in the range 1.12 to 1.92.

Inference of Posterior Distributions. We infer unknown model parameters
and states in a Bayesian framework. This entails placing a prior distribution
over the unknown parameters and then specifying a likelihood function for
the observable data, the time series of deaths reported in a location. We
posit the following generative model for the observed deaths:

Pinf, dmult: to~U
di....dr ~ ABM(Pint, dmutts to)

ot ~ NegativeBinomial(dt, af,bs) t=1...T,

where U denotes a joint uniform prior, ABM denotes a draw from the
stochastic agent-based dynamics, d; ...dr are the time series output by
the simulation, and o4 ...o07r are the number of deaths observed on the
corresponding dates. We model the observations as drawn from a nega-
tive binomial distribution (appropriate for overdispersed count data) with
dispersion parameter o2,.. We separately estimated o2, by fitting an
autoregressive negative binomial regression to the observed counts using
the R package tscount (47). The negative binomial observation model was
strongly preferred to a Poisson model (see S/ Appendix, Table S2 with Akaike
information criterion values). Together, the likelihood function is given by

;
LPint, it o, dr ... dr) =] [ Pr [0t|dt' Uzz;bs] .

t=1

To obtain the posterior distribution, we use Latin hypercube sampling to
draw many (10,000 to 80,000 per location, depending on the size of the
prior ranges) samples from the joint uniform prior over pjn¢, dyut and tp and
then sample the latent variables d; . .. dr at each combination of parame-
ters. We compute the likelihood for the full sample (including the latent
variables). This allows us to use importance sampling to resample values
of (Pinf, dmuits to, d1 - . . d7) according to the posterior distribution. Finally,
we marginalize out d, ... dr to obtain the posterior over the parameters
Pinf: dmuit, to, along with unobservable state variables of the simulation such
as the number of infected individuals at each step.

Data Availability. Code and data have been deposited in GitHub (https:/
github.com/bwilder0/covid_abm_release).
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