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Abstract. Optimization tasks situated in incomplete information set-
tings are often preceded by a prediction problem to estimate the miss-
ing information; past work shows the traditional predict-then-optimize
(PTO) framework can be improved by training a predictive model with
respect to the optimization task through a PTO paradigm called decision-
focused learning. Little is known, however, about the performance of tra-
ditional PTO and decision-focused learning when exposed to adversarial
label drift. We provide modifications of traditional PTO and decision-
focused learning that attempt to improve robustness by anticipating la-
bel drift. When the predictive model is perfectly expressive, we cast these
learning problems as Stackelberg games. With these games, we provide a
necessary condition for when anticipating label drift can improve the per-
formance of a PTO algorithm: if performance can be improved, then the
downstream optimization objective must be asymmetric. We then bound
the loss of decision quality in the presence of adversarial label drift to
show there may exist a strict gap between the performance of the two
algorithms. We verify our theoretical findings empirically in two asym-
metric and two symmetric settings. These experimental results demon-
strate that robustified decision-focused learning is generally more robust
to adversarial label drift than both robust and traditional PTO.

Keywords: predict-then-optimize · adversarial label drift · decision-
focused learning

1 Introduction

The predict-then-optimize (PTO) framework [4, 11, 14, 24, 33] is a common
paradigm for making “smart” decisions with incomplete information. In this
framework, one predicts information about the state of the world, and then
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optimizes a given reward function based on these predictions, possibly subject
to constraints. One example of PTO is the problem of hospital bed demand
prediction during the COVID-19 pandemic, when hospitals faced shortages of
beds but were able to acquire overflow spaces for patients at an additional cost
[17, 27]. These hospitals needed to predict the true distribution of hospital beds
needed and then choose the optimal number of overflow beds to purchase [13, 20].
For example, one may want to predict the distribution of bed demand, then op-
timize to order beds such that there are enough beds on 95% of nights. The
traditional way of doing this is to train a two-stage (TS) model in which one
first learns a predictive model to maximize predictive accuracy, and then runs an
optimization algorithm maximizing a decision quality function over the trained
model’s predictions. In this paradigm, predictive accuracy is not always aligned
with the reward function being optimized [9]. To correct for this, decision-focused
learning (DFL) [14, 33], in contrast to the traditional PTO paradigm of two-
stage learning (TS), trains the predictive model to directly optimize the decision
quality function and differentiates through the entire prediction and optimiza-
tion pipeline, making training an end-to-end process. DFL has been shown to
outperform TS across a wide variety of domains [9, 22, 28, 32].

While predict-then-optimize frameworks are becoming increasing popular,
their robustness to label drift at decision time is not well-understood. Under-
standing robustness enables us to reason about the suitability of the models for
various test sets. Differences between labels in train and test sets is common
in practice. In hospital bed demand prediction, this difference in labels might
arise if the prognosis of different viral variants changes. Our primary method of
assessing a model’s ability to deal with such differences between training and
testing sets is by adding perturbations to the underlying labels at test time and
assessing how it impacts the model’s downstream performance. Specifically, we
study adversarial label perturbations, with the intuition that a model that can
handle worst-case label drift is robust. This label drift can have a profound ef-
fect on the downstream decisions, leading to, for example, a shortage of hospital
beds. Before decision-focused learning becomes more widely applied in real-world
settings, it is imperative to understand the robustness of predict-then-optimize
algorithms to label drift.

Our contributions include the following: First, we propose modifications of
both TS and DFL that anticipate label noise in training (Robust TS, Robust
DFL, and Algorithm 1). Next, by examining the decision quality function, we
give a necessary condition for when a learner can improve performance by an-
ticipating label drift: the decision quality function must be asymmetric around
the optimal decision (Theorem 1). Moreover, we derive bounds on their relative
performance by casting both optimization problems as Stackelberg games (§ 4.2)
to demonstrate that Robust DFL is at least as robust as Robust TS when the
predictive model is perfectly expressive. Finally, we empirically validate these
theoretical results by comparing Robust DFL and Robust TS across four do-
mains (§ 5) and empirically demonstrate that Robust DFL outperforms Robust
TS under adversarial label drift.
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1.1 Related Work

Predict-then-optimize and decision-focused learning Predictive models maximiz-
ing accuracy on the entire dataset sometimes do so with the consequence of
making suboptimal decisions with those predictions in hand (cf. [6, 15]). This
suboptimal decision-making is partially remedied by decision-focused learning,
which integrates the downstream decision-making objective into the learning
pipeline. Decision-focused learning has been applied in settings where the opti-
mization task is combinatorial in nature [3, 22, 33]. Kotary et al. [19] surveys
recent efforts to leverage ML to solve constrained optimization problems.

Robustness and optimization in machine learning Our work falls in the intersec-
tion of work on decision-focused learning and the broad literature on adversarial
machine learning [12, 31]. Much of this literature considers label tampering,
which is commonly studied in the context of data poisoning attacks, in which la-
bels in a training dataset are adversarially changed prior to model learning. For
example, Butler et al. [8] demonstrate that predict-then-optimize frameworks
are susceptible to data poisoning attacks on data features in the training set. In
contrast, we are concerned with adversarial drift on labels at test time– after the
model has been trained. The literature focusing on adversarial drift at test time
[10, 16, 30] is largely concerned with shifts in features rather than labels, often
using robust optimization [21, 35] to these shifts in features. A related problem
is that of adversarial label contamination, where a small number of labels in
the training set are flipped [34]. Also connected is H-infinity control [5], which
minimizes the gain in the system states with respect to bounded noise.

2 Background

2.1 Predict-Then-Optimize Problems

In the standard predict-then-optimize framework, one makes a prediction about
the state of the world, then optimizes a decision quality function given the predic-
tion. The predictive task is to learn a parameterized (by w) model mw : X → Y
mapping features x ∈ X to predict the unknown parameters mw(x) = ŷ ∈ Y ⊆
Rd in the optimization problem. This prediction is used to make decisions based
on a decision quality function f : Z × Y → R mapping decisions z ∈ Z ⊆ Rℓ

and true labels y ∈ Y to a real-valued reward. Given a prediction ŷ, the learner
computes the optimal decision z∗(ŷ), where the function z∗ : Y → Z is defined

z∗(ŷ) := argmax
z∈Z

f(z, ŷ) . (1)

The decision is then evaluated on the ground truth label y0 to obtain the decision
quality f(z∗(ŷ), y0). The learner is given a dataset Dtrain = {(xi, yi)} to train
the predictive model. After the model mw is trained, a testing dataset Dtest is
presented. The trained model then yields predictions of the missing labels and
propose the corresponding decisions. The decisions are evaluated on the revealed
ground truth labels in the testing set 1

|Dtest|
∑

(x,y)∈Dtest

f(z∗(mw(x)), y).
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Assumptions on f Throughout, we generally assume that f is L-Lipschitz contin-
uous in both Y and Z and its maximum is always attained by some z ∈ Z so that
z∗(·) is always well-defined. Moreover, we assume that f(z∗(·), ·) is quasi-concave-
convex, meaning that f(z∗(·), y) is quasiconvex for all y ∈ Y and f(z∗(ŷ), ·) is
quasiconcave for all ŷ ∈ Y. This assumption is necessary in order to apply the
minimax theorem in § 4.2. If z∗ is affine in y, this condition is satisfied by f
being quasi-concave-convex.

2.2 Frameworks for Predict-Then-Optimize

We now summarize two existing learning methods with different objectives that
the learner uses to train the predictive model mw. These are visualized in Fig.
1(L). When unclear from context, we refer to TS and DFL as “Standard TS” and
“Standard DFL” to disambiguate them from their robust counterparts introduced
in § 3.

The two-stage (TS) approach learns a predictive model mw by minimizing
root mean squared error (RMSE):

min
w

∑
(x,y)∈Dtrain

∥mw(x)− y∥2 , (Standard TS)

where the norm ∥ · ∥ denotes the Euclidean norm. We denote the model learned
by Standard TS on the training data Dtrain by mT . After the model is learned,
given a new input x, the prediction yT = mT (x) is then used to optimize the
decision quality function z∗(yT ) in Eq. (1).

In contrast, the objective in decision-focused learning is the decision quality
function instead of RMSE.

max
w

∑
(x,y)∈Dtrain

f(z∗(mw(x)), y) (Standard DFL)

Similarly, we call the Standard DFL model mD learned via training data Dtrain.
The advantage of decision-focused learning is the alignment of the training ob-
jective and the testing objective f . To optimize the objective in Standard DFL,
it is common to use gradient descent, which requires backpropagating through
the optimal decision z∗ from Eq. (1). This can be achieved by differentiating
through the optimality and KKT conditions (cf. [1, 2]).

3 Robust algorithms anticipating worst-case label drift

The dependence of optimization on prediction renders Predict-then-Optimize
frameworks particularly vulnerable to shifts in the (optimized-upon) labels at
test time. Adversarial training is often used in the adversarial machine learning
literature to mitigate susceptibility to changes in data at test time. It is natural
to ask when adversarial training, or some variant thereof, might improve the
decision quality of predict-then-optimize frameworks. We consider the case where
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mw optimize

mw

(i) Standard TS

(ii) Standard DFL

x0
y0

yT RMSE(y0, yT)

backprop

y0

z*(yD) f(z*, y0)

backprop

x0 yD

(i) Robust TS

(ii) Robust DFL backprop

mw optimize

y0

z*(yD) f(z*, y0 + ε*)x0 yD

ε*(z*, y0, b)

backprop

mw optimize

y0

z*(yT)x0 yT

ε*(z*, y0, b)

RMSE(yT, y0 + ε*)

Fig. 1: In TS (left, i),
the model optimizes
RMSE loss, as opposed
to DFL (left, ii), which
uses the decision quality
function as the loss.
Robust analogs (right)
are proposed in § 3.

models mT and mD are fully expressive and there is no generalization error, and
empirically validate that the intuition from that setting still holds in imperfect
generalization settings in § 5.

3.1 Modeling Worst-Case Label Drift

We study the robustness of a model by examining its decision quality under
adversarial label drift; intuitively, adversarial drift yields a worst-case decision
quality (under some “drift budget”) to stress-test a model’s robustness.

In understanding the worst case noise, suppose that an “adversary” (abstrac-
tion for nature generating worst-case label drift) can additively perturb the true
parameters y by some small ϵ such that ∥ϵ∥ ≤ r for a fixed budget r at test time.
We assume the “adversary” seeks to choose a best response

ϵ ∈ ϵ∗(z, y, r) := argmin
ϵ:∥ϵ∥≤r

f(z, y + ϵ) (2)

to minimize the predictive model’s decision quality function given the decision
z and true parameters y. If ϵ∗(z, y, r) is not uniquely determined, we slightly
abuse notation and take ϵ∗(z, y, r) to be any choice in the argmin of Eq. (2),
and if r is understood from context, we omit it as an argument. We often study
ϵ0 ∈ ϵ∗(z∗(y0), y0, r): an optimal response to the optimal decision.

Observe that the “adversary” seeks to minimize the decision quality function
even if the predictive model is optimizing root mean squared error, as in two-
stage learning. This is because we are concerned with the downstream decisions
recommended by the optimization problem, whose quality is measured by f .

3.2 Improving Decision Quality by Anticipating Label Drift:
Motivating Examples

We consider two different decision quality functions where either (A) the optimal
decision is the same in the presence and absence of noise, or (B) a learner can
make a “smarter” decision by anticipating the presence of noise. We leverage
insight from (B) to propose incorporate adversarial training into DFL and TS
in § 3.3.
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Consider a quadratic decision quality function pictured in Fig. 2(L), with
Z = Y = R. In this case, the optimal decision z∗(ŷ) = ŷ. The leader, without
anticipating label drift, maximizes their utility by selecting ŷ = y0. If they plan
for label drift, then the leader can generally choose some ŷ ̸= y0 or choose
ŷ = y0. If ŷ ̸= y0, then ϵ∗(ŷ, y0) = {r sign(y0 − ŷ)}, resulting in decision quality
1−(ŷ−(y0+ϵ∗))2 strictly less than 1−r2. In contrast, if ŷ = y0, then ϵ∗(y0, y0) =
{−r, r}, resulting in decision quality 1− r2. Therefore, a learner cannot benefit
from anticipating label noise, as their “best” decision in either case (anticipating
label noise or not) is to predict ŷ = y0.

In contrast, consider the “asymmetric” decision quality function in Fig.
2(R), where, again, Z = Y = R and z∗(ŷ) = ŷ for all ŷ ∈ Y. As above, suppose
a learner anticipates adversarial label drift. Broadly, the learner could choose
ŷ < y0, ŷ = y0 (with ϵ∗(y0, y0) = {−r}), or ŷ > y0 (again, with ϵ∗(ŷ, y0) =
{−r}). Fig. 2(R; red) demonstrates that choosing ŷ = y0 leads to a poor decision
quality once the the adversarial label perturbation is added. Therefore, the best
decision for a learner anticipating adversarial label drift is some ŷ < y0 such
that ϵ∗(ŷ, y0) = {r}, which mitigates the adversary’s attack (yellow). Therefore
the learner is able to leverage the asymmetry of the decision quality function in
order to choose a “smarter” decision than simply predicting y0, as they would
do without anticipating noise.

ŷ

ŷ = y0

f
(z

∗
(ŷ
),
·)

•••
- - f(z∗(·), y0)
- - f(z∗(·), y0 + r)

- - f(z∗(·), y0 − r)

ŷ

ŷ = y0
ŷ = y0 − δ

f
(z

∗
(ŷ
),
·)

••
•

- - f(z∗(·), y0)

- - f(z∗(·), y0 + ϵ∗(y0 − δ, y0))

- - f(z∗(·), y0 + ϵ∗(y0, y0))

Fig. 2: Two contrasting decision quality functions, both with z∗(ŷ) = ŷ. Different
dashed lines represent how the function shifts as y0 shifts. (L) The optimal deci-
sion z∗(y0) also maximizes the decision quality in the presence of an adversary.
Note that ϵ∗(y0, y0) = {r,−r}, and we demonstrate the decision quality under
either adversarially optimal drift (yellow, red lines). (R) The optimal decision in
the presence of an adversary is to choose ŷ < y0 (yellow dot), as ϵ∗(ŷ, y0) = {r}
for such ŷ. This is in contrast with ϵ∗(y0, y0) = {−r}. This change in optimal
drift leads one to observe that anticipating noise (yellow dot) yields higher de-
cision quality than not anticipating noise (red dot).

3.3 Robust Model Formulations

Observing that some models can improve their performance by anticipating label
noise, we now propose robust formulations of both TS and DFL, when the learner
anticipates label drift in the test set for such decision quality functions. The
learner commits to a model mw, and applies the model to every instance in
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the dataset (x0, y0) ∈ Dtrain to produce a prediction ŷ = mw(x0) and decision
ẑ = z∗(ŷ). The “adversary”, who knows the true parameters y0, observes the
chosen decision ẑ to conduct an attack ϵ∗(ẑ, y0, r) as defined in Eq. (2).

Definition 1 (Robust two-stage learning). The learner aims to minimize
the root mean squared error between the predictions and the perturbed labels
(Fig. 1 (R,i)):

min
w

∑
(x0,y0)∈Dtrain

∥mw(x0)− (y0 + ϵ∗x0,y0
)∥2 (Robust TS)

s.t. ϵ∗x0,y0
= argmin

ϵ:∥ϵ∥≤r

f(z∗(mw(x0)), y0 + ϵ)

If the function class given by weights w has high capacity, then we abstract
away the model weights and, given any data point (x0, y0), we suppose that the
model is able to choose yRT := mRT (x0) that is a solution of the following:

max
yRT

1− ∥yRT − (y0 + ϵRT )∥2 s.t. ϵRT = argmin
ϵ:∥ϵ∥≤r

f(z∗(yRT ), y0 + ϵ) (3)

Observe that Robust TS is an analogue of standard adversarial training al-
gorithms, where adversarial changes are now made to labels instead of features.
While an alternative formulation might use perturbations that attack the RMSE
loss instead of the decision quality, this approach disembodies the robust learn-
ing problem from the Predict-Then-Optimize context. Because the algorithm is
exposed to adversarial label drift at test time, our Robust TS algorithm is best
trained with label drift. We find empirical support for Robust TS in § 5.

Definition 2 (Robust decision-focused learning). The learner aims to max-
imize the decision quality evaluated on the perturbed labels (Fig. 1 (R, ii)):

max
w

∑
(x0,y0)∈Dtrain

f(z∗(mw(x0)), y0 + ϵ∗x0,y0
) (Robust DFL)

s.t. ϵ∗x0,y0
∈ argmin

ϵ:∥ϵ∥≤r

f(z∗(mw(x0)), y0 + ϵ)

Similarly to Robust TS, if the model is fully expressive, then the model can
find yRD := mD(x0) for each (x0, y0) pair independently of other data points.
This prompts us to solve Robust DFL:

max
yRD

f(z∗(yRD), y0 + ϵRD) s.t. ϵRD = argmin
ϵ:∥ϵ∥≤r

f(z∗(yRD), y0 + ϵ) (4)

One can understand Equation (4) as a zero-sum game by observing ϵRD ∈
argmax∥ϵ∥≤r −f(z∗(yRD), y0+ϵ). Moreover, as ϵRD is a function of yRD, casting
as a Stackelberg game is natural, where the “adversary” adding noise follows
observing the model’s prediction yRD. Therefore, we can study whether or not
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the pair (yRD, ϵRD) is an equilibrium solution. Moreover, if f(z∗(·), ·) is quasi-
concave-convex, then we can apply the canonical minimax theorem [29] and
conclude that (yRD, ϵRD) is a Nash equilibrium as Eq. (4) is zero-sum. Casting
this problem as a game is similar to the approach taken by Hardt et al. [18],
though their model of noise is anticipating noise on features, rather than labels.

4 Improving Robustness by Anticipating Label Drift

With robust formulations in hand, we now show that if adversarial training
can improve the decision quality regret of an algorithm when worst-case label
drift is added at test time, the optimization objective f must be asymmetric in
the parameter space around the optimal decision, demonstrated by studying ϵ∗.
Knowing that anticipating label drift can improve decision quality, we discuss
how to apply Robust TS and Robust DFL in practice, incorporating max-min
optimization into training to be robust to label drift.

4.1 Robustness via Defendability

The examples in § 3.2 develop the intuition that asymmetry of f around the
optimal decision plays an important role in determining the robustness of the
decision quality function when models are perfectly expressive.

Definition 3. A decision quality function f : Z×Y → R is r-defendable at y0 ∈
Y if there exists ŷ ∈ Y such that f(z∗(ŷ), y0 + ϵ∗(z∗(ŷ), y0, r)) > f(z∗(y0), y0 +
ϵ∗(z∗(y0), y0, r)).

Defendability is tightly connected to the pair (y0, ϵ
∗(z∗(y0), y0)) not being

a Nash equilibrium to the problem in Eq. (4), modulo the ability to apply the
minimax theorem. We now show that defendability also implies a certain type
of asymmetry in the decision quality function, studied through ϵ∗.

Theorem 1. Let f be a decision quality function such that f(z∗(·), ·) is quasi-
concave-convex. If f is r-defendable at y0, then ϵ∗(z∗(y0), y0, r) ̸= {ϵ : ∥ϵ∥ = r}.

Proof. For contradiction, suppose ϵ∗(z∗(y0), y0, r) = {ϵ : ∥ϵ∥ = r}. Since ϵ∗ is
defined as a best response, we immediately have f(z∗(ŷ), y0) ≥ f(z∗(ŷ), y0 +
ϵ∗(ŷ, y0)). Moreover, since f is defendable, we have f(z∗(ŷ), y0 + ϵ∗(ŷ, y0)) >
f(z∗(y0), y0 + ϵ∗(y0, y0)) = f(z∗(y0), y0 + ϵ∗(ŷ, y0)). Finally, as f is quasiconvex
in its second argument and all budget-exhausting responses belong in ϵ∗(y0, y0),
we have max(f(z∗(y0), y0 + ϵ∗(ŷ, y0)), f(z

∗(y0), y0 − ϵ∗(ŷ, y0))) = f(z∗(y0), y0 +
ϵ∗(ŷ, y0)) ≥ f(z∗(y0), y0). Chaining these together,

f(z∗(ŷ), y0) ≥ f(z∗(ŷ), y0 + ϵ∗(ŷ, y0)) ϵ∗ is best response
> f(z∗(y0), y0 + ϵ∗(y0, y0)) defendability
= f(z∗(y0), y0 + ϵ∗(ŷ, y0)) assumption on ϵ∗

≥ f(z∗(y0), y0) quasiconvexity + assumption on ϵ∗,

which contradicts the optimality of z∗.
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Theorem 1 shows that if decision quality can be improved by anticipating
label drift, it must be the case that the best response to y0 must be context-
dependent, taking into consideration the shape of f .

In the following section, we will present regret bounds for these robust al-
gorithms. It is important to note, however, that for symmetric decision quality
functions, these algorithms yield the same solution pairs as their standard coun-
terparts.

Proposition 1. Consider decision quality function f and y0 ∈ Rk such that
ϵ∗(z∗(y0), y0, r) = {ϵ : ∥ϵ∥ = r}. Then for any ϵ0 ∈ ϵ∗(z∗(y0), y0, r), the pair
(y0, ϵ0) is a subgame perfect Nash equilibrium for Standard TS (Eq. (5)), Stan-
dard DFL (Eq. (6)), Robust TS (Eq. (3)), and Robust DFL (Eq. (4)).

Proof. We formally cast standard TS and standard DFL as games when models
are perfectly expressive.

max
yT

1− ∥yT − y0∥2 s.t. ϵ∗(yT , y0) = argmin
∥ϵ∥≤r

f(z∗(yT ), y0 + ϵ) (5)

Observe that the leader’s payoff is independent of the follower’s payoff −f(z∗(yT ), y0+
ϵ). Similarly, we cast Standard DFL as a game when models are perfectly ex-
pressive.

max
yD

f(z∗(yD), y0) s.t. ϵ∗(yD, y0) = argmin
∥ϵ∥≤r

f(z∗(yD), y0 + ϵ) (6)

For standard TS and DFL, since the leader’s payoff is independent of the
response, choosing yT or yD = y0 maximizes the leader’s reward, regardless of
the adversary’s response. Given the decision y0, the “adversary” playing ϵ0 ∈
ϵ∗(z∗(y0), y0, r) is a best response to optimize their objective.

In Robust TS, there is always a response ϵ ∈ ϵ∗(z∗(·), y0) such that ∥ϵ∥ = r
by quasiconvexity of f in its second argument. The objective then becomes
maxyRT

1−∥yRT −y0∥2+ c2 for some c ≥ 0 by quasiconcavity of f(z∗(·), ·) in its
first objective (which implies that the best response will not improve decision
quality). Regardless of the choice of ϵ, then the optimal decision is to report
yRT = y0. Thus, (y0, ϵ0) is a subgame perfect Nash equilibrium.

Finally in Robust DFL, the assumption implies that f is not r-defendable
at y0 by Theorem 1. Therefore, (y0, ϵ0) is a Nash equilibrium, and in turn, a
subgame perfect Nash equilibrium since we can apply the minimax theorem.

Proposition 1 suggests that if the adversary’s best response to the learner
choosing the optimal y0 can arbitrarily exhaust the noise budget, the standard
and robust algorithms have the same solution. Since Robust TS (Eq. (3)) can
be understood as a general-sum Stackelberg game, less is known about the con-
vergence to the equilibria than zero-sum Stackelberg games like Robust DFL
(c.f., [7]). This may play a larger role in distinguishing the performance of ro-
bust and standard algorithms when models have some generalization error, as we
demonstrate in § 5. However, for certain asymmetric decision quality functions,
we now show that Robust DFL outperforms Robust TS. This yields a simple
check to understand whether a decision quality function is robust to label drift.
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4.2 Bounding Decision Quality Regret

We now show that Robust DFL yields decision quality no worse than that of Ro-
bust TS (Theorem 2). In Proposition 2, we use the piecewise quadratic decision
quality function from § 3.2 to demonstrate the performance gap from Robust TS
can be strictly worse than that of Robust DFL by considering an asymmetric
decision quality function, which we show by proving f is defendable implies a
strict regret bound.

We start by defining the decision quality regret as the gap in decision quality
from of a predictive model to this optimum. Note that while optimizing the deci-
sion quality function is a maximization problem for the model, lowering decision
quality regret is better as it measures the error induced by poorly responding to
label drift.

Definition 4 (Decision quality regret). Define the decision quality regret
of prediction ŷ when the ground truth parameter is y0 with an adversarial per-
turbation budget r by:

Reg(ŷ, y0; r) = f(z∗(y0), y0)− min
ϵ:∥ϵ∥≤r

f(z∗(ŷ), y0 + ϵ)

The decision quality regret defined in Def. 4 measures the regret of the (op-
timal) decision z∗(ŷ) induced by prediction ŷ and the worst-case label deviated
up to a perturbation of norm r. We now show that the decision quality regret of
the optimal Robust TS prediction yRT as at least as high as that of the optimal
Robust DFL prediction yRD.

Theorem 2. Let f : Z ×Y → R be a L-Lipschitz decision quality function, and
consider some ground truth y0 ∈ Y such that (yRD, ϵRD) is a solution to Eq. (4)
and (yRT , ϵRT ) is a solution to Eq (3). Then

0 ≤ Reg(yRD, y0; r) ≤ Reg(yRT , y0; r) ≤ 2L ∥yRT − y0∥+ Lr .

Proof. The optimality of Robust DFL can be written as a maximization problem

with a worst-case objective: yD = argmax
ŷ

(
min

ϵ:∥ϵ∥≤r
f(z∗(ŷ), y0 + ϵ)

)
. In contrast,

the learner in Robust TS does not maximize the worst-case decision quality,
which leads to a prediction yTS with a suboptimal objective. Therefore, we have:

min
ϵ:∥ϵ∥≤r

f(z∗(yD), y0 + ϵ) ≥ min
ϵ:∥ϵ∥≤r

f(z∗(yT ), y0 + ϵ) . (7)

By the definition of the decision quality regret, Equation 7 directly implies
Reg(yD, y0; r) ≤ Reg(yT , y0; r). The remaining inequality can be shown by using
Lemma 1 (§ A), which concludes the proof.

Theorem 2 quantifies the source of decision quality regret in terms of ∥ŷ − y0∥
and r. While Theorem 2 gives both upper and lower bounds on the decision
quality regret incurred by Robust TS, it is unclear at first whether the gap
is ever strict. In Proposition 2, we show by counterexample that the decision
quality regret of the optimal Robust TS solution can be strictly greater than
that of the optimal Robust DFL solution.
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Algorithm 1 Robust Decision-focused Learning
1: Input: training set Dtrain, learning rate α, model mw, adversarial learning rate

αadv, perturbation budget r
2: for epoch = 1, 2, · · · and (x0, y0) ∈ Dtrain do
3: Generate prediction ŷ = mw(x0)
4: Solve Eq. (1) to get decision z∗ = argmaxz f(z, ŷ)
5: Solve Eq. (2) to get perturbation ϵ̂ = ϵ∗(z∗, y0, r)
6: Compute decision quality f(z∗, y0 + ϵ̂)
7: Run approximate gradient ascent mw ← mw + α ∂f

∂z∗
∂z∗

∂ŷ
∂ŷ
∂w

8: end for
9: Return: predictive model mw

Proposition 2. For all r ∈ R++, there exists a decision quality f : Z × Y → R
such that Reg(yRD, y0; r) < Reg(yRT , y0; r).

Proof. In the setting where the model is perfectly expressive, the solution to
Robust TS (Equation 3) yields yRT = y0 as any deviation yields a stronger
attack and increased error. We know from Lemma 2 (§ A) that a decision
quality function f is r-defendable at y0 if and only if there exists ŷ ∈ Y such
that Reg(ŷ, y0; r) < Reg(y0, y0; r) = Reg(yRT , y0; r), where equality follows as
yRT = y0. If yRT = y0, this tells us that f is r-defendable iff Reg(ŷ, y0; r) <
Reg(yRT , y0; r), thus the gap is strict if f is r-defendable at y0. Observe that the
decision quality function in § 3.2 is r-defendable, so the definition is feasible.

When models are perfectly expressive, Theorem 2 shows that the gap between
the Robust DFL and Robust TS is bounded by Lr. Moreover, Proposition 2
shows that the gap in decision quality regret between Robust DFL and Robust
TS is strict for r-defendable decision quality functions. Together, these results
highlight the benefits of using decision-focused learning in the presence of label
drift for r-defendable decision quality functions.

4.3 Robust Algorithms in Practice

In practice, optimizing the robust algorithms is not simple. In particular, given
the pair (ŷ, y0), the computation of the decision quality f(z∗(ŷ), y0 + ϵ̂) requires
estimating (i) optimal decision ẑ = z∗(ŷ) by the optimization problem in Eq. (1),
and (ii) the optimal adversarial perturbation ϵ̂ = ϵ∗(ẑ, y0, r) defined in Eq. (2).
Both of these values are not generally defined with closed-form solutions. In
Algorithm 1, we leverage the idea from DFL to differentiate through optimization
problems and apply the concept of adversarial training to solve the problem in
Def. 2. We solve for ϵ̂ by running projected gradient descent, which we instantiate
multiple times. The time complexities of training the models can be found in
§ B. While both Robust TS and Robust DFL are slower than their standard
counterparts due to the optimization required at each iteration to calculate ϵ̂,
both algorithms still run in polynomial time.



12 Johnson-Yu et al.

5 Experiments

5.1 Experimental Domains

We now compare the non-robust learning methods discussed in § 2.2 and the ro-
bust learning methods discussed in Defs. 1 and 2. We evaluate the performance
of different learning methods in four different domains that deal with optimizing
over uncertain, estimated parameters where model expressivity is limited. Both
the linear top-k and demand prediction domains have asymmetric decision qual-
ity functions, while portfolio optimization and budget allocation have symmetric
decision quality functions. The latter three domains are drawn from Shah et al.
[28], which we augment with the first domain in order to have an additional
asymmetric domain. For detailed descriptions of each domain, see § C.

– Demand Prediction Using features x0 to predict the bed demand y0, select
number of beds z∗(ŷ) via an asymmetric decision quality f with a preference
to overestimating demand.

– Linear Top-k Using a linear model to predict the utilities y0 of d resources
from features x0, where the relationship between features and labels is cubic,
select the k resources with the highest utilities.

– Portfolio Optimization Predict the next stock price from historical stock
prices and then choose a continuous allocation z ∈ Z ⊆ [0, 1]d between d
stocks [26], maximizing the sum of the immediate net profits and a symmetric
quadratic risk penalty term.

– Budget Allocation Choose a website on which to run advertisements by
predicting the click-through rates on each website for each user and then
selecting a set of websites on which to run advertisements to maximize the
expected number of users who click on the ad.

The adversarial perturbations added to the labels represents a shift in the bed
demand, underlying utilities, stock prices, and click-through rates, respectively.
We ran all experiments over 30 different random seeds and present the mean of
the performances on the test set. These experiments are run with a predictive
model that is not fully expressive; despite this, the results still align with the
intuition from our theoretical results.

5.2 Discussion of Empirical Results

In Fig. 3, we plot the effect of the budget for the adversarial perturbations at
test-time on the decision quality. The robust algorithms are trained with the
same budget as is used at test time, omitting the case where the test budget is
0. For more results on performance when the adversarial budget differs between
training and test time, see § C. In Fig. 4, we present the RMSE for each of
the algorithms’ predictions at test time, varying the adversarial perturbation
budget r, in order to show how much generalization error each model incurs.
Finally, in Fig. 5, we visualize the test-time predictions from the models in the
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Demand Prediction domain to show how DFL and Robust DFL have learned
to overestimate in order to maximize the reward, which favors overallocation of
beds rather than underallocation.

The results presented in § 3 show that Robust DFL will perform better than
Robust TS (and TS) in asymmetric domains under perfect expressiveness, and
this is verified in our experimental results in Fig. 3. It is notable and surprising
that Standard DFL already performs significantly better than both TS and Ro-
bust TS in these domains. Therefore in asymmetric domains, it may be useful
to spend effort on using even standard DFL for the sake of robustness, rather
than on robust version of TS, which ultimately still delivers lower quality.

Robust DFL also offers some improvements over Standard DFL: re-
ducing variance and improving decision quality in high-noise regimes.
For example, Robust DFL has a lower variance than DFL, as demonstrated in
the Linear Top-k domain of Fig. 3. This difference in variance is statistically sig-
nificant for most r in Linear Top-k: pr=0.5 < 10−5, pr=1 < 10−5, pr=1.5 < 10−5,
pr=2 < 10−5. Additionally, in the high-noise regimes (r = 3, 4, 5) of the Demand
Prediction domain, the decision quality yielded by Robust DFL is higher than
that of Standard DFL, and this difference is statistically significant (pr=3 < 0.01,
pr=4 < 0.0001, pr=5 < 10−5). In the Demand Prediction domain, both Robust
DFL and DFL learn to overestimate the bed demand, as seen in Fig. 5, which is
incentivized by the decision quality function. We can see, by comparing the left
and right sides of Fig. 5, that the addition of label perturbations at train time
allow Robust DFL to anticipate and tolerate label drift of a higher magnitude
(whereas DFL is non-adaptive because it is not trained with perturbations).

For perfectly expressive models and symmetric decision quality functions,
Proposition 1 suggests that all four algorithms will be the same. Despite the
fact that the predictive model is not perfectly expressive, Budget Allo-
cation (bottom right) still exemplifies this phenomenon, with the qualifi-
cation that DFL tends to do slightly better than TS. The Portfolio Optimization
domain (bottom left), however, shows an unforeseen result: the robust algo-
rithms (especially Robust DFL) outperform the standard algorithms.
This demonstrates that, despite the symmetry of the decision quality function
implying that TS and DFL are able to learn the optimal solution, the robust
algorithms offer a practical improvement in performance when models are not
perfectly expressive. Notably, as seen in the third plot of Fig. 4, Robust TS
achieves lower RMSE than TS. These results show that robustification can help
both symmetric and asymmetric domains.

6 Conclusion

In this work, we study robustness of predict-then-optimize frameworks to char-
acterize when an adversarially trained algorithm might outperform its standard
counterpart by anticipating noise in the test set. Leveraging these insights, we
propose robust versions of DFL and TS, and we show that Robust DFL out-
performs Robust TS when the decision quality function is defendable. Finally,
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Fig. 3: Effect of
adversarial budget
on decision quality
(30 trials). In the
asymmetric De-
mand Prediction
and Linear Top-k
domains, DFL
and Robust DFL
outperform TS and
Robust TS.

Fig. 4: Effect of adversarial noise budget on RMSE (30 trials). In all domains,
DFL/Robust DFL have higher RMSE than TS/Robust TS.

we empirically validate our results with experiments across four domains, find-
ing that Robust DFL does well in asymmetric domains and can even improve
performance in symmetric domains.
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Lemma 1. Let f be L-Lipschitz and fix r ∈ R+. For all y0, y ∈ Y, Reg(y, y0; r) ≤
2L∥y − y0∥+ Lr

Proof.

Reg(ŷ, y0; r) = f(z∗(y0), y0)− min
ϵ:∥ϵ∥≤r

f(z∗(ŷ), y0 + ϵ)

= f(z∗(y0), y0)− f(z∗(ŷ), y0 + ϵ̂)

≤ f(z∗(y0), ŷ) + L ∥y0 − ŷ∥ − f(z∗(ŷ), ŷ) + L ∥y0 + ϵ̂− ŷ∥
≤ f(z∗(y0), ŷ)− f(z∗(ŷ), ŷ)︸ ︷︷ ︸
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+2L ∥y0 − ŷ∥+ Lr
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Lemma 2. A decision quality function f : Z × Y → R is r-defendable at y0 if
and only if there exists ŷ ∈ Y such that Reg(ŷ, y0; r) < Reg(y0, y0; r).

Proof. f is r-defendable at y0 if and only if ∃ŷ ∈ Y such that

−f(z∗(ŷ), y0 + ϵ̂) < −f(z∗(y0), y0 + ϵ)

⇐⇒ f(z∗(y0), y0)− f(z∗(ŷ), y0 + ϵ̂) < f(z∗(y0), y0)− f(z∗(y0), y0 + ϵ) ,

where ϵ := ϵ∗(z∗(y0), y0, r) and ϵ̂ := ϵ∗(ŷ, y0, r).

B Runtime Analysis

TS = Θ(T ·N ·TM ), where T is the number of timesteps of model training, N is
the number of instances, and TM is the time to run the forward and backward
passes for the predictive model.

DFL = Θ(T · N · (TM + TZ + T ′
Z + TDQ + T ′

DQ)), where TZ is the time
for the forward pass of the optimization and T ′

Z is the backward pass for the
optimization, and TDQ/T ′

DQ are the forward and backward passes for calculating
the decision quality.

Robust TS = Θ(T ·N ·(TM+TZ+I ·TA·(TDQ+T ′
DQ))), where TA is the number

of iterations to run projected gradient descent, and I is the number of times
the perturbation generation process is instantiated (where more instantiations
produce a better ϵ̂).

Robust DFL = Θ(T ·N ·(TM +TZ+T ′
Z+TDQ+T ′

DQ+I ·TA ·(TDQ+T ′
DQ))).

C Experimental Setup

We now give an overview of the four studied decision quality functions. Note
that we do not enforce the concave-convex assumption on the decision quality
functions; rather, the associated experiments show the performance in realistic
scenarios where the assumption does not always hold.

Demand Prediction Domain The Demand Prediction task is to predict the num-
ber of beds required in a hospital’s overflow unit [17, 27]. In this setting, one
might have a decision quality with a global maximum at the exact demand but
also with a strong preference to overestimating bed demand than underestimat-
ing, yielding a decision quality like that in Fig. 6, given in Equation 8.

f(z, y) =
1

1 + e−2(z−y+2.73)
− 1

0.91(1 + 25e−(z−y+2.73)/6)
(8)

– Predict: Use feature x0 to predict the demand y0.
– Optimize: Pick a z∗ that maximizes the decision quality f in Equation 8.
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Fig. 6: Decision quality function f
for the Demand Prediction domain.
The decision quality drops drasti-
cally when the demand y is higher
than the supply z.

Linear Top-k Domain The linear model domain requires fitting a linear model
to data that express a cubic relationship between features and labels. It is drawn
from [28], motivated by the importance of such problems in the AI interpretabil-
ity literature .

– Predict: Use feature x0 ∈ Rd to predict the utility ŷ ∈ Rd , where the true
utility of resource n is y0n = 10x0

3
n − 6.5x0n.

– Optimize: Pick the top b = 1 from d resources, z∗(ŷ) = arg topk(ŷ).

Portfolio Optimization Domain The Portfolio Optimization domain is a quadratic
programming problem [26], where investors choose a continuous allocation z ∈
Z ⊆ [0, 1]n between n stocks, subject to a budget constraint Z = {z ∈ [0, 1]n :
1⊤z = 1}. We implement the Markowitz formulation [23, 25].

– Predict: Given d historical stock prices for n stocks, x ∈ Rn×d, predict the
next stock prices y ∈ Rn.

– Optimize: Given n predicted stock prices ŷ, maximize the weighted sum of
the immediate net profit minus a risk penalty term, with f(z, y) = z⊤y −
λz⊤Qz. We let the risk aversion constant λ = 0.1 and Q be the identity
matrix for simplicity.

Budget Allocation Domain The Budget Allocation domain is a submodular op-
timization problem adapted from Wilder et al. [33], where the task is to choose
a website on which to run advertisements using click-through rates (CTRs) from
the Yahoo! Webscope Dataset [36]. This is a particularly difficult problem for Ro-
bust DFL due to the combinatorial structure of the optimization problem. The
advertisement plan is discrete and it is hard for DFL to differentiate through
and learn from discrete decisions.

– Predict: Given d features for m websites, x ∈ Rm×d, predict the CTRs of
n users y ∈ Rm×n.

– Optimize: Given the predicted matrix of user/website CTRs ŷ, select a
set of websites (subject to budget constraint r) denoted by z ∈ {0, 1}m on
which to run advertisements to maximize the expected number of users who
click on the ad at least once. We also incorporate a weight matrix w that
represents the number of times that a user will see an ad on a given website.

f(z, y) =

n∑
j=0

(1−
m∏
i=0

(1− zi · yij)wij )
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D Additional empirical analysis

Performance of Robust algorithms with Unknown Noise Budgets In addition to
showing that Robust DFL is robust when the adversarial budget is known at
training time, we demonstrate that the generalizability of Robust DFL to differ-
ent noise budgets. In Fig. 7, each row represents a different training noise budget,
while each column represents a testing noise budget. Each cell is combination
between training noise and testing noise, containing the difference in decision
quality between Robust DFL and Robust TS. We observe that Robust DFL
outperforms Robust TS in a higher number of train/test noise combinations. In
particular, on and above the diagonal where the train noise is closer to the test
noise, the improvement is more significant.

Fig. 7: The shade of teal depicts the extent to which Robust DFL outperforms
Robust TS. The improvement of Robust DFL over DFL highlights the impor-
tance of using the decision quality and the importance of considering the adver-
sarial perturbation, respectively. Negative cells are where Robust TS outperforms
Robust DFL. Intuitively, these regions are where Robust DFL tries to defend
against noise that is simply not present at test time.
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